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Abstract

The main goal of this paper is to study the asymptotic expansiear the boundary of the large

solutions of the equation
—Au+Xu" = f inQ,

wherel > 0, m > 1, f € C(Q), f > 0, andQ is an open bounded set &', N > 1, with boundary
smooth enough. Roughly speaking, we show that the numbeptisve terms in the asymptotic bound-
ary expansion of the solution is finite, but it goes to infirag/m goes to 1. We prove that the expansion
consists in two eventual geometrical and non—geometriads separated by a term independent on the
geometry oDX2, but dependent on the diffusion. For low explosive sourbesibn—geometrical part does
not exist, all coefficients depend on the diffusion and thengetry of the domain by means of well known
properties of the distance functielst(z, 92). For high explosive sources the preliminary coefficients,
relative to the non—geometrical part, are independerit and the diffusion. Finally, the geometrical part
does not exist for very high explosive sources.

To René Letelie, in memoriam

1 Introduction
In this paper we are interested in the solutions of the eqnati
—Au+gu)=f inQ, (1)
with anexplosivebehavior on the boundary
u(xr) — oo asx — . (2)

In general, the solutions dfl(1) arld (2) are call@dje solutionsf a Comparison Principle holds. It is due
to the inequality
u(z) >v(x), z€Q,

is satisfied for any other solutianof (@) with bounded boundary values.

Singular boundary value problems &$ ([)—(2) have been sixtn studied in the literature starting
with the results of L. Bieberbach and H. Rademacher for peechoices of the function(see for instance
[, [2], [8], [B]). From our point of view, the pioneer worka the topic are due to J.B. Kellerl[7] and
R. Osserman[10] on 1957 who proved the existence of larggisok of [1) provided thaf = 0, ¢
is a nondecreasing function afilis a bounded open set &Y, N > 1. They also establish necessary
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and sufficient conditions to guarantee that the large swigtexist under the so callédeller—Osserman

condition
/°° ds
Vo 9(r)dr

From that time forward an extensive literature has beenywed (see agaifn[1].]2].[3].]8]19] and the
references therein). In sight of results[in [3] or [9] abdwe existence and uniqueness of the classical large
solutions of [[1), we focus our attention on their asymptbébavior on the boundaif).

As it is usual in studying properties near the boundary, teadce functionlist(z, 92), here denoted
by d(x), plays an important role. As it is well known, if the bound@younded with$2 € C*, k > 1,
one provesl(-) € C* in the parallel strip near the boundary

< +00. (3)

Q5o = {2z eQ: 0<d(x) < do}- (4)

Obviously, the positive constang only depends 0@ (see[[2] or[[6]). In particular, as it was proved in
[3] if 92 € C? then the first term of the boundary explosive expansion ifoumiand independent dn for
the large solution of

—div(|VulP2Vu) + ™ = f inQ (1 <p<oo)

provided the conditiomn > p — 1 which is the extended version dfl (3). Other sharp propediethe
uniform first term of the expansion of the large solution[df f&r f = 0, have been obtained by C. Bandle,
G. Diaz, J. Garcia Melian, A. Greco, A. Lazer, S. Kim, N.rikoat’ev, R. Letelier, J. Lopez—Gbmez, M.
Marcus, J. Matero, P. McKenna, V. Nikishkin, M. del Pino, @GriR, J. Sabina and L. Véron among many
other authors. We remit to][1] and/[2] for some illustrations

Certainly the geometric properties of the domain can appehe asymptotic expansion near the bound-
ary. Indeed this influence occurs in secondary terms undee negularity assumptions on the boundary.
It is obtained by considering terms containifd (=) neglected in the leading coefficient of the expansion.
We note the important property

Ad(z) = —(N — 1)H(z),

whereH(x) denotes the mean curvature@fy € Q : d(y) < d(x)} atx (see again[[2] or[6]). The
simplest geometry is derived on balls,fas= By (0), for which
N-1
Ad(x) = ——, |z| <R.
||
The first contribution on this geometrical influence is dudttalel Pino and R. Letelier who proved in
[11] that the large solution of11), fay(r) = r™, 1 < m < 3, 902 € C* N > 1 andf = 0, admits the

expansion
o) = (20 DY o (1= (SN a),

whereH(z) is the mean curvature of the boundary at the point 0%, given byd(z) = |z — x|, and
o(1) — 0 asd(z) — 0. More recently, C. Bandle and M. Marcus have extended thdtsesf [11] by
obtaining the dependence on the mean curvatuéxih the second order term of the asymptotic behavior
of the large solution of{1), again jf = 0 (seel[2]).

As it was pointed out in the Abstract, the main goal of thisgraig to study the whole asymptotic
explosive expansion near the boundary of the large solatidf), here viewed as the source equation

—Au+X=f inQ (m>1, f>0). (6)
As in [3], we will use a simple scheme characterized by meéttsecbehavior
flx) = fo (d(a:))iqr asd(z) — 0
with
247

m —

oy = and ¢, =ma,, (7isanon—-negativeinteger)
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for which thelow explosive sourcesre given byr = 0 and f, > 0 and thehigh explosive sourcdsy 7 > 0
and f, > 0. We note that large solutions for low explosive sources heen considered in the literature,
mainly for null sourceg’ = 0 (see the above references). On the other hand, to the best bhowledge
only in [3, Theorem 3.8] large solutions for high explosioeisces have been studied.

So that, our main contribution is sketched as follows (sesofénil below) . Let us assuri€ smooth
enough and € C(Q2), f > 0, verifying

MT
) = (@) (o4 3o Aul@(@)" ), 2 € s
n=1
wheref,,, 0 < n < M,, are known constants, witfy > 0, andM,, to be defined later (segl(8)). Then we
prove that the large solution df](6) admits an explosive esfmm given by

the non—geometrical and non—diffused part )
it does not appear thin{r, M.} =0

min{7,M,}—1
ulz) = co(d<z>)“*(1+ S Cd@)" 4 Cumgrary (@)

min{7T,M,}

M-

+ Y cn<x><d<x>>:§l+o((d<x>)“**M*>,

n=min{7,M, }+1

the geometrical part

whereM.. + 1 is the number of all explosive terms. As it will be proved tate3 + 7 < m the expansion
is very simple, it consists of a unique explosive term (sem&&d1 an@l6). Furthermore, one has

lim1 M, =00

(seel(®) below). We prove that the main explosive fatés a precise positive constant independenfion
even independent on the diffusion whenewer 0. Moreover,C,,, 1 < n < min{r, M.} — 1 are precise
constants independent énand the diffusion an@’,,.;, (-, } is a constantindependent Brbut dependent
on the diffusion. The other explosive coefficiefits(x), min{7, M, }+1 < n < M., are explicit functions
depending on the geometry 6f and the diffusion. Equalitynin{r, M.} = 0 corresponds with theow
explosivesource case for which only the first term is uniform and ineejemt on(2; otherwise one has the
high explosivesource case. Certainly,ifin{r, M.} = M, the sources can be calledry high explosive
because alM; + 1 explosive coefficients in the expansion are uniform andpedeent on the geometry
and the diffusion.

For the simple cas@ = Bg(0) the geometrical part is uniform a#f2, consequently the expansion is
uniform ondf2. In general, we may illustrate the results by noting thatiar boundary pointsg, yo € 02
if

‘Cn (xo - sﬁmo) - C, (yo - sﬁyo)’ —0 ass—0

is satisfied formin{r, M.} + 1 < n < M, then we deduce
‘u (xo — sﬁmo) —u (yo — sﬁ)yo)‘ — 0 ass— 0;

otherwise
|u (a:o — sﬁ)zo) —u (yo — sﬁy0)| — oo ass — 0,

herem’,, andn’,, denote the relative unit outward vector.

The paper is organized as follows. The influence of the gemenatoperties of the domain requires
several awful straightforward computations in constngth formal boundary explosive expansion. It is
studied in Sectiol2. In Secti@h 3 we apply the formal expgarssto obtain the boundary explosive expan-
sion of the large solution of[6). Examplé€s 1 and 2 can ilatstthe contribution. The paper ends with some
technicalities. So, in Appendix A we expand the power of polyials by means of an explicit expression
which extends the old formula of Federico Villarreal (18%023). It is applied in Appendix B where we
obtain representations of the power of auxiliar sub andsabations used in the paper.



4 S. Alarc 6n, G. Diaz, R. Letelier T and J.M. Rey

We finish this Introduction by noting that the partial difé@tial equatior(6) appears in several contexts:
equilibrium of a charged gas in a container, invariance undeformal or projective transformations (see
[3] and the references therein). We also note that for thécpdar casem = 2, problem [6)-(R) is of
interest in the study of the subsonic motion of a gas (see @@l whenl < m < 2 it is related to a
problem involving superdiffusion (se€l[4[.1[5]). Also thimgular value boundary probler] (6)4(2) can be
viewed as the Dynamic Programming approach of a Stochaption@l Control problem (state constraints).

Here, at least in a heuristic way, the nonlinear teéufm))mfl denotes a kind of optimal feedback control.

2 Constructing the boundary explosive expansion of the large
solutions
As in Theorem 3.8 of[[3] we study the boundary behavior by tffedent ways to proving that

(d(z))”“ satisfies
—Au+ ™ = f neardf).

The first one is based on the scheme

Au Au™ f
—

(d(x)) "7 & (d(@) T = (d(2)) T neardQ = ¢ < agm

2 . .
T is the explosive exponent. The second scheme is

for whichag +2 = agm < ag =

Au Au™ f
—_——

(d(2)) 7 < (d(x)) " ~ (d(x))* neardQ = ¢ > agm.

Nowam = q < a = KIS oy is the explosive exponent. Both cases can be represented by
m

2471
m—1

oy = and ¢, = ma,, (7)

wherer is a non—negative integer number.
Therefore, the main boundary behavior can be written as

Co(d(a:))fm + 0((d(a:))7o”) asd(z) — 0.
Next we expand this behavior by means of formal expansioasthe boundary
Co(d(x)) ™" (1 +> Cn(:v)(d(:v))n).
n>1

HereC, is a positive constant ard, (x), n > 1, are real functions. Certainly we are interested in to obtain
the explosive terms, thus, governedby «.. So the maximum numbers of explosive terkis + 1 is
given bya, — 1 <M, < a,, whence

ar — 1, if - is an integer number

M. = . (8)
[ar], otherwise,

where|a,| denotes the integer part of..

Remark 1 Consequently, a maximum number of explosive tekiys+ 1 is available if

2
+ 7 1<, < 24T
m—1 m—1
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whence
MT+3+T MT+2—|—T
T = REN - €M, M, +1]. 9
e N e ©
Sincely = [3 + 7, 00|, One proves
]1,00[: U IMT-
M, >0

For the purpose of the paper we focus our attention in theldase 1 or, equivalentlyl < m < 3+7. g

We will assume thaf2 ¢ RN, N > 1, is a bounded open set with) smooth enough. Then, we
consider the functions

MT
Vi (@) =Co ) Vi, (@)
n=0
with
Vig(@) = (d@)F48)" " and VI, (z) = Cu(x)(d(z) F8) ™", 1<n<M,,
defined forz € Q such thatl(z) + § > 0 andé > 0 small enough. Straightforward computations yield
AVE (@) = ar(ar +1)(d(z) F8) " *|Vd(@)]® - arAd(z)(d(z) F8) "
AVE,(2) = (=ar +n)(=ar +n = 1)Co(x) (d(x) F ) "
+(—a; +n)[2(VC,(z), Vd(z)) + Cp(2)Ad(z)] (d(z) F 6)
+AC, (z)(d(z) F 5)_a7+n, 1<n<M,.

—ar+(n—1)

So that we derive
) M, +2
AV (z) = Co(d(x) F5) " (AO|Vd(x>|2+ 3 An<x>(d<x>$6)"),

with
Ao = ar(a; +1),
Ay(z) = ar(ar — 1)Cqi(2) — a,Ad(x),
Aale) = (~ar +2)(=ar + 1)Ca(a)
+(—ar +1)[2(VCi(x), Vd(z)) + Ci(x)Ad(x)],
An(z) = (—ar +n)(—ar +n—1)Cy(z) (10)
+(—ar +n —1)[2(VCp_1(z), Vd(z)) + Cp—1(z)Ad(z)]
+AC,_2(z), 3<n<M,,
Am, 11(z) = (—ar +M;)[2(VCy, (), Vd(2)) 4 Cun, (z)Ad(z)] + ACM, —1(2),
A, +2(2) = ACy, (2).

Remark 2 We note that all functiond.,,(z), 1 < n < M, + 2, depend on the geometry 6 through
the distance functiod(z). More preciselyA; () depends only on the mean curvature. On the other hand,
since|Vd(z)| = 1, = € Qs, (seel®) and]6]), in these parallel strip near the boundaeylas

M, +2
AVF (z) = Co(d(z) F6) 2 (Ao + ) An(z)(d(z) F 5)"). (11)

n=1 o
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In order to construct the semilinear differential opermwf, we need a representation as

(Vi)™ = Cg(d(z) F6) ™ (1 + Z D,(z)(d(z) F6)" + Y Du(x)(d(x)F 5)") (12)

n=1 n=M,+1

that will be obtained in[(43) later. Certainly it requiresasghtforward and tedious computations that, in
order to simplify the exposition, we have collected in ApgierB. So, we prove in(45)

Dy (z) = mCp(z) + i (Tln) Bnoii(z), 1<n<M,, (13)
i=2

. » i -
Bin(z) =Y (j ) (Ca())"™ > g (O @)™ (O (@)™
fl'V£1+é2"Yfz+"'+€j"Y£j —itj Yo, Veo- VZj !
Yey Fveg+oAve, =0
2<Uy <<l <=2
ey, Hmr €010}

fori = 1,2,...,n (see[(4R)). Moreover one proves that,in](13), e@gfizr), 1 < n < M,, does not
appear inB,,—; ;(x), i # 1. On the other hand, all coefficients,(z), 1 < n < M,, are involved in
D,(z), M; +1<n.

Remark 3 In order to illustrate we give some examples in Remaik 12 Asgeendix B). o

A last comment on the powéV; (z))™. From [12) we may write

M.,
(Vi(2)" =Cp(d(z) F46) " (1 + ) Du(z)(d(z) F6)" + ¥ (z;d(z) F 5)> (14)
n=1

for the continuous function

U(x;r) = Z Dy, (x)r™.

n=M:+1
In fact, sinceV is continuous uniformly on the set

{zreQ: 0<2d(x) < dp},
we may prove an inequality as
U~ (r) < U(x;r) < ¥H(r) (r small enough) (15)

for some functions
U (r) <0< Uh(r)
with
lim U (r) = 0.

r—0
Remark 4 In RemarKIB below also it is proved thatif is an integer for whic, > 1, then we have

mM -

U(z;d(z) F0) = Y Dp(x)(d(z) F0)"

n=M;,+1

(see[(4B)). o
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So that, we assume on the source funcifon C(Q2) the explosive expansion near the boundary

M.,
f(:v) _ (d(w))_QT (fO + Z fn(d(l'))n>, S Q(;O, (16)

wheref,, 0 < n < M., are real constants witfy, > 0. With the above notation, an explosive expansion
of the equation near the boundary is

M-+2
~AVE (@) A(VE@)" - (e =~Co(de) 36) (A0 + IRMELEED ")

+AC (d(z) F 0) a*’”(1+ZD F6)" + U (x;d(x )ﬂ))

(d@) " (fo Y (d(w))")
(see [T1).[14) andT16).

3 Proving the boundary asymptotic expansion of the solution
From the schemes of Sectioh 2 we consider the parametrizatio
(ar +2)+7=¢ =a;m

(seel()), for which

—AV5y () + A(VF (@)™ = f(z) = (d(z) F6) " [ —Cy (AO (d(z)F4)"

max{M,—7,0}

FY A ﬂ)"*f)

n=1 (17)
M-

+(ACE = fo) + > (ACTDa(z) — fn) (d(z) F6)"
n=1
¥ 6)]7
M,+2

O(z;1) = —Co Z Ay(x)r™T £ ACT (25 7). (18)
{=max{M,;—7,0}+1

for

As it was pointed out in the Introduction there are severdglof coefficients in the boundary asymp-
totic expansion of the solutions.

a) Coefficientsindependentonthe geometry and the diffulfien> 0 we choos&’, andCy, . . ., Cingr i, -1
from the equalities

—Co -0+ AC'Dy(z) = fr, 0<n <min{r,M,} — 1.
Sincen = 0 implies\CJ* = f,, one has

Cn = s (fn fo i (?) Bn—i,i) , 0<n <min{r,M;} - 1. (19)

=2
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From the properties d,, (see[(IB)), the coefficients,,, 1 < n < min{r,M,} — 1, are constants
independent of2. Obviously, they are independent on the diffusion too. &ely, we will assume

fo >0 whenever > 0. (20)

Remark 5 The examples of Remalk12 lead to

w (3
1
Cl — m—fo.fla
1 m-11 ,
CQ_me (f2 2 me 1)7
provided2 < min{r, M.} — 1. o

The coefficient,,;in (- 11, } iINdependent on the geometry but dependent on the diffusisobtained
by
—CoAp + )\CZ)anin{T,MT} = fmin{T,M,—}v

1.€.
1 min{7T,M,} m
Cmin{T,MT} = W (fmin{T,MT}+COaT (O“r""l)_/\cgI ; ( i )Bmin{‘r,M,}i,i> . (21)

Clearly, here there are two limit cases.
b.1) If Ciuingr, M, ) IS the last coefficient of the eventual explosive expansidh@solution, thus if

min{7,M,} =M, >0 (22)

holds, one has
—Oé-,—(OéT + 1)00 + )\C?DMT = fMT'

Therefore, ifr > 0 one has

! Q+r)m+7+D) (fo\™ < (m
Ot = o |t e (T) ‘fOZ;(i)BMT‘“]' @9

Then the relative high explosive sources involved, calley high explosive sourceisduce that all
coefficients on the expansion are independent on the gepm&lgso they are independent on the
diffusion, unless this last coefficie@ty .

Remark 6

1. Remarkll implies
M,=0 < 3+7<m,

for which the expansion has a unique explosive term unifarthindependent of2.
2. In general, conditio (22) implies

(m—2)1>3—m, if . is an integer number
(m—2)T >3 —m, otherwise

(see Remark]1 again). o
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©)

b.2) If 0 = 7 < M, the coefficienC,,;, (-, = Co is obtained from
— COAO + /\Cgl = fo < )\CgL — O (Oéo + 1)00 = fo. (24)
We note thatCy is independent on the geometry but dependent on the diffasid it coincides with
[ 2m1) T
o= (smms)

wheneverf, = 0. This case corresponds with low explosive sources for wbidi the geometrical
part of the expansion is available.

Coefficients dependent on the geometry and the diffusi@cho0S€ i 17 11, 341 (), - - -, Cor, (2)
from the equalities

- COAnfmin{T,MT}(x) + ACngn(*T) = fna min{Ta MT} +1<n<M,. (25)

By means ofA,, (z), min{7,M,} + 1 < n < M,, these coefficients depend on the geometr{ of
In particular,Cin(-m, 341 () depends only on the mean curvature (see Refark 2).

Certainly, whenr > 0, from the properties ob,, (z) (see[(IB)), one has

Cn(x) = L (fn + COAnfmin{‘r,M,.}(x) - fO Z (

mfo =2

that is a simple explicit formula. Whenever= 0 the condition[[2b) becomes

m) Bn_i,i(:v)> , min{T, M, }+1 <n < M,,

7

— CoAp(x) + ACI'Dyp(x) = fn, 1 <n <M. (26)

Then the relative coefficients,, (z), 1 < n < My, chosen in[(26), also admit an explicit expression
as
Anc’n('r) - F(ma Av an ) .fna CO? Cl('r)v SRR Cnfl(x))v

where
A, = 2ImCJ' — (—ag +n)(—ag +n —1)Cq

= CO((2 +n)(apg+ 1) +nlap — n)) + mfo
is a positive constant due to the definition@f and—ag + n < —ap + My < 0.

Remark 7 The obtainment of function€’,,(z) requires tedious computations. For example, for
7 > ( one obtains

1 fo\ ™
Cuin{r M, }4+1(7) = o (fmin{T,MT}Jrl + <XO> [ar(ar = 1)Ci(z) — a; Ad(z)]
min{7,M; }+1 m
—fo Z ( ; >Bmin{T,MT}+l—i,i(I)>'

=2

Whenr = fy = 0 the computations are easier. So, one proves

[ 2(m+1) 7T
o= (Sr)
C1(o) = g )i - Ao,
Calo) = Bt o = fy | (m =) (2V(AMW), V) ~ 1)1 Ad0) + (Ad(2))}
it D - 2a@)?)|
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for )
A(m — 1)m+! ) m—T

v(m) = ( 27 (m + 1)

The above choices lead to
— AVy (@) + A(V5(2))" = f(x) = (d(2) F ) " ®(2;d(2) F9) (27)
(seel(IIr)). Then the relative propertiesidfr; r) (see[(1B)) prove

Proposition 1  Let us considerf € C(Q) verifying (I8) and (20), as well asd2 € ¢>M-+1), Then the
function

M,
V() = Co(d(x) ™™ (1 0y cn<x><d<x>>">, (28)
n=1

where the coefficients,,, 0 < n < min{r, M.} — 1 are given by(T9), C,,in(-m.} iS given by@T) and
C,, € C2*M-=1)(Q; ), min{r,M,} + 1 < n < M,, are given byZ5), is a well defined’? function near
0f). Moreover, one has

(d(x))qT ( — AV(x) + /\(V(x))m — f(x)) = 0(d(z)). 5

Clearly, the functiorV is the candidate to govern the boundary asymptotic behaftoe large solution.
In order to prove it, sending — 0 in (24) we may obtain

—AV(z) + /\(V(:C))m — flx) = (d(x)) o (PT(CO) + @(w; d(w))),

whereCy is the positive root of

P ™ — ap(ag + D — fo, if 7 =0,
TN awm— fo, if 7> 0,

obtained in[(IB), ifr > 0, or in (24), whenever = 0. So that the main contribution is

Theorem 1 Under the assumption of Propositi@ihthe explosive boundary expansion of the large solution
of @) has the property

the non—geometrical and non—diffused part )
it does not appear ifnin{7, M.} =0

min{7,M,}—1 .
u(e) = Co(d(@) ™" (1+ S @)+ gy (@)

n=1
M,

+ > Cul@)d@)" > + o<(d(x))“*+M*>.

n=min{7,M, }+1

the geometrical part

PROOF.  In order to apply a comparison argument, we consider thefioations

M.,
W5 (z) = Co(d(z) F6) " (1 te+ Y Cula)(d@)F 5)") ,
n=1
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wheree > 0 will be sentto 0. So, we construct the perturbed polynomials

pie( ){ M £e)p)™ —ao(ao + 1)1 £e)u— fo, if =0,
e M@ xe)p)™ — fo, if 7> 0,

for which
PFe(Co) >0 and P;¢(Cp) < 0.

The reasoning is based on to prove tﬁﬁ}ts(x) are upper and lower solutions in a thin strip near the
boundary. Then, arguing as in Proposifién 1, we have
—AWFE (@) + A(WFE(2)™ = f(z) = (d(z) = 6) " (73?5(00) +@(z;d(x) - 5)) )
thus
—AWE (2) + AW (2)™ > f(z)

in a parallel stripd < d(x) < §;, provided2d; < &, small enough (sed](4)_(L5) arld{18)). So that
Comparison Principle leads to

u(z) — Wi (z) < sup (u(y) —Wi(y)), 6 <d(z)<d,

d(y):51
or
u(s) L (u(y) — Wi<(y))
1< S ;8 <d(x) <.
Wi () Wi ()

Now, sendingj; — 0 and there — 0 we derive

lim sup u(z) <1,
d(z)—0 ()

whereV(z) is the expansion function (s€e{28)). Analogously, one gsov
AW (@) + A(W55(2))™ — f(2) = (d(z) +6) " (P:E(Co) + @ (a3 d(w) + 5)>,

thus
—AW S (z) + AW (2))" < f(z)

in a parallel strip) < d(z) < 41, provided2d; < d, whence

o) _ aighy V50~ 0)

1- , 0<d(z) < dy.
W S Wi =
As above, sending — 0 and there — 0 we conclude
lim sup u(z) <1 < liminf ﬂ
d(z)—0 V(‘T) d(z)—0 (.I') =

Remark 8 Certainly Theoreri]l extends Theorem 3.8[0f [3] as well as ¢kalts obtained i [1]]2] or
[11] where only the second explosive term was considered far0. o

Theoreni L can be illustrated as follows
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Example 1 (Low explosive sources) As it was pointed out, the influence of the geometry was ob-
tained in [11] (see alsd [2]) where one proves that the lacyation verifies [b) assumed) € C*, 1 <
m < 3 andf = 0. It can be improved by Theorelh 1 whenever the values:@fre more accurate. For

. 5 . .
instance, let us suppo%eg m < 2 (or equivalently2 < ag < 3), for whichM, = 2, and

f() = (d(z) ™ <f1d(x) h (d<x>)2), £,

if 90 € C%, then Remarkl7 enables us to obtain

o) = (o) " (@) {14 2 e - s aw)

m+ 3

1 ([ Am — 1)mH1\ 7t 1
+§<<W) fom g {(m —3){2(V(Ad(x)), Vd())

() + (3@} + LD (- daw)?] ) )
+o ((d(x))%)
wherey(m) was given in Remarlk] 7. o

Example 2 (High explosive sources)
1. In order to simplify, we start by constructing an exampithaut geometrical part in the expansion. So,
for instance an inequality as> M, = 1 requires

4
M,=1 <« %§m<3+7 (see Remarkl1)
3+ 27
T4+ 1

T>M, & (m—-2)1>3-m <m (see Remarkl6)

3+2r _4+T1
2

. 4 .
T < for 7 > 1, both conditions hold When¥ < m < 3+ T, for which

f(@) = (d(@) " (fo+ fd(x)), fo>0.

Theorent ]l proves that the expansion of all explosive terntiseofarge solution is

= (2) o {1 o <f L Zrme e D) (2) %> d<x>}+o ((a@) ™).

providedd) € C* (see Remarks]5 arid 6 arid{23)). Clearly, the first coefficeimdependent on the
geometry ofQ2 and the diffusion, however the second one depends on thesiiff. Herer is an arbitrary
positive integer number.

2. Finally, we construct an example where the expansioniasoefficients uniform and independent on
Q plus three coefficients dependent@nit implies 7 = 1 andM; + 1 = 5. So, Remarkll enables us to

., 8 7 . L
conS|derg <m< 1 (or equivalentlyd < ay < 5) and, for simplicity, we suppose

3m

f(@) = fo(d(z)) ™F, fo>0.

Then the expansion of all explosive terms of the large sofus

u(w) = Co(d(z)) ™7 (1+Cld(x)+Cg(:c) (d(2))*+Ca(x) (d(2))* +Ca(x) (d(:v))4) +0 ((d(x))_%) :
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for the coefficients

Co = <%> E, (independent on the diffusion)
Ci = OH(L;_DCO, (dependent on the diffusion)
mjo
Cala) = 2150 [(al ~1)C; — Ad(x)} m=lee
mf() 2
Cs(z) = % [(2 —a1)Ca(z) + ClAd(:c)} - ’”T_lc1 {(m —2)C2 + 602(:17)] ,
C4(I) = % |:(3 — 061)03 (117) + 2<VCQ(.CC), Vd(:l?)> + CQ($)Ad($)i|
_m2_ 1 |:(m - 2iém — 3) Cil + (m — 2)0%02(:@) + 20103($) + (Cg(x))2:| s
wherea; = 3_ : and provided(2 € C!° (see RemarKs 3 aid 7). o

We end this Section with a careful glance on the proof of Teedd for which we note that the above
boundary behavior holds for the interior and the exteriammutaries of open sets with holes. It enables us
to extend the result for more general domains. So that, weeler

Theorem 2 Letz € 992 be a regular boundary point in the sense of an interior anéeat ball condition
are satisfied. Iff € L>°(RY), f > 0, then the behavior

1
2 1)\ ™
tim e = 7577 = ()
holds for the large solution df)). Here ', stands for the unit outward normal vectord®? at z.

PROOF. LetBg+(z§) C €2 such thatERj (&) N (RN \ Q) = {z} andu. the radially symmetric large
solution of
—Au. + Nu = f inB_ g+ (2)

for 0 < e < 1. Comparison Principle implies inequality
u(z) <u.(z), =x€ B_ort (x§)-

Since all coefficients of the expansicﬁl(lG)foﬁearaB(lis)Rj (x§) are all nulls, applying Theore 1 to
. we deduce
2(m+1) \ ™1
A(m —1)?
by sendings — 0. On the other hand, 18- (y3) C RN \ Q such thaBy- (y§) N Q = {z}, with R

z z

small enough, and, the radially symmetric solution of

. — _2
limsupu(z —sm,)sm-1 < (
s—0

—Au, + " = [ inByp-(20) \ By p- (w0),
u(zr) - o0 aslz—z— (1+e)R;,

u(z) -0 as|lz—z| —2R;.
Since functionu is nonnegative, Comparison Principle implies

u(z) >u(x), z€Q, (1+e)R; <|zr—2z| <2R;.
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On the other hand the relative coefficients of the expanBBndf f nearaB(
Now Theorenf]L applied ta, leads to

1+o)r: (#§) are all nulls too.

1

2(m +1) \ 7T
lilsll_)infu(z—sﬁz)smal > <%>

by sending: — 0. o

Remark 9 For f = 0 Theoren®2 was first proved ial[9] by using the asymptotic esipkobehavior on
interior boundaries of annulus and exterior boundariesatiéb o

Appendix A: Expanding the power of polynomials
In 1879 the mathematician peruvian Federico Villarrealb(81923) obtained a simple algorithm in
order to expand the power of polynomials (s@eGaceta Cielifica, 2, Mars 1886, (Per()). Here we show
a short presentation by using the expression
(G(2))" = F(x) (29)

where

q qn
G(z) = Zajxj and F(z)= Z bja?
=0 =0

and the coefficients;, b, € R with ay # 0 andg,n € N. Since differentiating the expressidn{29) one
obtains

) = (GG a) = n g G(a)
it must verify the equality
nF(x)G'(z) = F/(2)G(x). (30)
where
q q—1
G'(z) = Zj@xjfl = Z (j + Dajy12?
j=1 §=0
qn _ gqn—1 _
Fl(e) =) jbja’ ™" =3 (j+ Dbjsia’.
j=1 =0

Our introduction of the Villarreal formula is based on thexgeal equality

I v v k " v
(Lo )(Zmer) = S (X o)+ X (X shawsy )
j=0 j=0 k=0 *j=0 k=v+4+1 *j=0

v

£ 3 (2 de)
k=p+1 ~j=k—p
min{k,v}

= g( > ﬁjak—j>$ka

k=0 »j=max{0,k—pu}

obtained by straightforward computations, proviged € N with 4 > v. Next several choices are
considered. So
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o p=gqn,o; =bj,v=q—1,6; =(j+1)aj41 lead

q—1 k qn q—1
F( ) Z ] + 1 a7+1bk —j " Z j +1 aJ+1b;€ j z"
k=0 \j=0 k=q \j=0
qn+q—1 q—1

+ Z Z (j+1)aj+1bk_j .’L‘k

k=gqn+1 \j=k—qn

(31)
q—1 k+1 qn q
D dagbi—jir | 24D D jagbeji | 2"
k=0 \ j=1 k=g \j=1
qn+q—1 q
+ Y > jagbe_j | 2k
k=gn+1 \j=k—qgn+1
1 /L:qn_laaj:(j+1)bj+1aV:(Iaﬂj:ajlead
q k gn—1 q
F(@)Ga) =Y | Y (k=i +Dagbejpn | @+ Y | Y (k=i +Dagbpjpr | 2"
k=0 \ j=0 k=q+1 \j=0
qn+q—1 q
+ Z Z (k— 3+ Dajbp_j1 | =~
k=qn j=k—qn+1
(32)

By substituting [(3l1) and(32) in equality_(30) and identifyithe relative powers of, one obtains the
following relations.

o If k=0,1,...,g— 1then

k+1 k
nz jajbk,jJrl Z —] + 1 ajbk j+1
=1 j=0
and therefore
k+1 k
nz jajbr_jt1 = Z (k—j+Dajbr—jt1 + (k+ 1)aobpia.
— i

Therefore, agy # 0, one has

k1 k
b1 = G+ Dao (nz; Jagbr—jy1 — Z (k—J+ 1)ajbr—j+1

j=1
k
—— | n(k+ Dargrbo + Y (nj —k — 1+ j)ajbr—j11
BNCES 1) p
Lk
~ &+ Dao > ((n+1)j— k= Dajbp—j
Jj=1
1 k
" (k+ Dag ((n+ 1)k =5 +1) = (k+ 1))ar—j1b;.

<.
I
o
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In this way, we obtain the coefficien{s; }_, given by

bo = (ao)"

1—1
1 R . (33)
b= g 4 ) Dy =12

o If k =¢then
q q
”Zjajbqﬂ J Z q+1—j)ajbgyi—;
— =

whence
q

q
nz Jajbgr1—j = Z (¢ +1—j)ajbgi1—; + (g + 1)aobg1.
j Jj=1

Again, asag # 0, one has

1 q q
b1 = —— ja;bg—it1 — —j+ Dajbs—;
q+1 (g + Dao (”Z Ja;j0¢—j+1 Z(q J+Dajbg—jt

=1

Z (n+1)j —q—1ajbg—j+1 (34)
q+1 0

q
q+1 Z (n+1)(g—j+1) = (g+1))agj41b;.

j=1

<.

e lfk=q+1,q+2,...,qn— 1then
q q
nY jajbe—j =Y (k—j+Dabe_ji
j=1 j=0

hence
k

q
nz jajbr_jt1 = Z (k—j+Dajbr—jt1 + (k+ 1)aobky1.
j j=1

As ag # 0, one has

b1 = T s (nz Jajbe—ji1 — Z (k—J+1)abr—j

Jj=1
q
(n+1)j —k—1)ajbr—; 35
k—l—l J; J ) jVk—j+1 (35)
1 k
= i Da > ((n+1)(k—j+1) = (k+1)ar—j1b;.
Jj=k—q+1

Now, we obtain the coefficient®; }{" ., given by

1—1
1
0 .=
j=i—q

Finally, from (33), [(3%) and (35) we conclude
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Theorem 3 (Extended Villarreal formula)  For all ¢, n € N the coefficients of the expansion

q n qn
(Z aja:j> = Z bjz?  (a; €R, ag #0) (36)
j=0 j=0
satisfy theextended Villarreal formula
bi = a{}, if i = 0,
1 1—1
moZ(n—l—l (it—7)— )al ibj, ifi=1,2,...,q, (37)

7=0

i—1
1
- 1)(i — —)1 b,  fi=qg+1,q+2,... qn
moj;q(n—i- )& —j) —i)ai—;b; i=q+1,q+ qn

Remark 10 Straightforward computations lead to
bo = a8<n>, q, n €N

0
by = al~ 1(")a1, ¢, neN

by = a2 } if min{q,n} > 2,

b3 = ag*g (T) agas + < >
( )a0a4 + <Z> 2a1a3 + a2 + <§> 3agatas + <Z> a‘ll] , if min{g,n} > 4,
() ;

[ n n n
bs = a3*5 ( )a0a5 + 2a a1a4 + a2a3) (3)3@3 (alag + a%a3) + (4) 4a0a?ag + (5) ai’},

2apaias + ( )aﬂ, if min{q,n} > 3,

_ n—4
b4 = Qg

providedmin{q,n} > 5. o

The next contribution here is devoted with the explicit \@mnsof (34). More precisely, we note that
each summand in the brackets of the coefficients in Remarki®e written as

n\ j_; j Ye; . .
<>0 ’ 2. < j )a3f1a252- 0y, 0<j<i<minfgn},
J Layey H2 eyt Ly, =i Ve Ve e
ey Tyepto ey —7
1§51<52<“'<lj§i7j+1
{7ey o1 €40,1,2,..,5}

where

(i) =5
Yoy Ves Ve Yo Mye, e vey!

denotes the permutations pbbjects of whichy,, are of one kindsy,, are of a second kind, .., are of
ajth kind.
So that, one has
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Theorem 4 (Explicit Villarreal formula) ~ The first coefficients of the expansi@a) are given by

b(): ag

bi = Cl,n_Z al_lai + < >al_2 ( >awl a’YZZ
s ()ata () X (2 )ara

L1vey Hl2 Ve, =1
Yey Fve,=2
1<, <l <i—1
{7e, Yoo €{0,1,2}

+ (n a6_3 Z 3 Vg2 g
3 nYeYes) b
L1Yey H2 Yoy +L3 Yoy =1 Ve Ve

Yey +Yeq +ve3 =3
1<l <la<l3<i—2
{76, }i=1€{0,1,2,3}

ny i—j J Yey Ve Ve
+{ . )ag’ ( )a a, % q,’
(]) 0 2 Yove ) R

Luvey Ho ey +oo G ve; =i
Yey Fveg ooty =5
1<l <l <<l <i—j+1
{ve, =1 €{0,1,2,...,5}

+(. nl)%(i ~ 1)ai2a; + (”)1} iti=1,2,...,min{g,n}.
i — 1
Thus

i .

i n — i J Yey Ve Ve
b, =al ™" (,)al J ( )a ta, % aq,’ 38
5 (1 XD SN (U o e

Cryey H2 eyt HLye, =i
Yoy FYeg o Ave; =7
1<ty <l2<"-<f]‘ <i—j+1
{vey, Mhe1 €10,1,2,0,5}

fori =0,1,2,...,min{q, n}. In particular, whem > ¢ the formula38) provides the firs§+1 coefficients

of (34).

SKETCH OF THE PROOF. The obtainment of(38) requires awful computations basettansfinite induc-
tion arguments. In order to simplify, we only are going toabtg in terms of the coefficientsbj}?:0
given in Remark™0. By assumingin{q,n} > 6, from definition, one has

be = 6%‘0 [((n—i— 1)(6 —0) — 6)a6bo + ((n+ H6-1)— 6)a5b1 + ((n+ 1)(6-2) - 6)a4b2

+ ((n+ 1)(6 — 3) — 6)a3b3 + ((n+ 1)(6 — 4) — 6)a2b4 + ((n+ 1)(6 — 5) — 6)a1b5]

5n—1

2n —1 n(n—1)
-1 -2 -3 2
=na; as + nay” “aias + 3 ag napag + ————=aj |aq

2
(n—1)(n—2) azl,)) o

n—1 n(n—1 n
+ ag 4(na%a3 + g 2apa1as +

2 2 6
-2 -1 -1 -2
+ i 3 %175 (na8a4 + % a%(2a1a3 + a%) + M 3a0a%a2
n(n—1)(n—2)(n —3)
+ 21 ail as
- 1 “1(n-2
+ 0 G > ag ™" (nag% + % 2a3(araq + azaz) + % 3a3(aas + aja3)
- 1n-2)(n-3 - 1n—-2)(n—-3)(n—4
R P
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Then by arrangement one proves

5n —1 -5 2n — 1 -2 -1
b6_a36[na8a6+< i —|—n6 )naéa1a5+< i +n3 >naéa204+%a§ag

6 3
Mm—1 n—5 1 -1 n-2 n-5
+< n3 +n3 >n(n2 )a8a§a4+<n2 _|_n3 +n6 )n(n—l)agalazag
n—2n(n—1) n—2 n—-5\nn-—1)(n-2)
+ 3 Tagag-i-( 3 + 5 ) 9 agatay
n—1 n-=5\nn-1)(n-—2)
+( Lyn ) ) a2aday
n—2 2n—10\ n(n—1)(n —2)(n —3)
+( 5+t ) o agaias
nn—1)(n—2)(n—3)(n—4)(n—5) 4
+ ax
720

n n n
= ag—G [(1) agag + (2) aé(2a1a5 + 2a0a4 + a3) + (3) ag(3aiay + 6ajasas + aj)

n n n
+ (4) ag(6ata3 + 4ataz) + (5) Sagaias + (6>a?} ,

which corresponds with (38) wheneviet 6. o

Certainly without loss of generality we may assume# 0. Then, multiplying byx—" we derive
q n qn
(S err) =X o,
j=0 j=0
whencey = z ! satisfies
q A\ " qan . )
<Z 5ij) => by’ (G =ay #0)
j=0 j=0
fora; =aq—;, 7=0,1,...,n, andgj =bgn—j, j =0,1,...,qn. Therefore[(3B) enables us to conclude

Corollary 1 Whena, # 0 the last coefficients of the expansi@@) are given

[ .
. n . Ye
bq"*i = ag ’ Z < >alzl ! Z < ’ >a3[_1€1a3[_2€2 . 'aq—]@'
-7 J o\ Ve, "'7@ J
Jj=1 Lryey H2vep Ly, =i
Yoy Yoo+ Hve; =4
1<l <l <<l <i—j+1
{7e), }1—1€{0,1,2,....5}

(39)

fori =1,2,...,min{q,n}. In particular, whenn > ¢ the formula(39) provides the lasy + 1 coefficients

of @) O

Appendix B: Expanding the power of the auxiliar sub and super solu-
tions

As it was pointed out, the proof of Theoréin 1 uses the poweuitdlsle polynomials relative to certain
auxiliar sub and supersolutions. So we get back to the foexydnsion

M,
Vi(z) = Co(d(z) )" <1 +) Cu(x)(d(z) F 5)”>
n=1
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for which "
(VE@)™ = C (@) T 0) ™ (1 +3 Cu@) (@) T a)")
n=1
M,
= Cp(d(z) F6) " <Z Cn(z)(d(z) F 5)”1>
n=1
where

Since the Taylor expansion of functidngives

26 = X (500

n>0
we get
m Mr o1 n
V" = 50) " (M) (X et a@ 70 ) @l 0)"
n>0 k=1
due to
%Cf;f (0) = (:) (d(z) F0)" = mm = 1)- .é!(m —n+l) (d(z)¥4)", meR
On the other hand, we may write
Mr o1 n Mr—1 i n (M7—1)n .
(Z Cr(@)(d(z) T )" ) _ ( S Copa () (d(@) 7 ) ) = Y Bua@)(d@) T0) (40)
k=1 k=0 =0
where
1 i—1 . ' -
TNEs) ; ((i = 0)(n +1) — i) Ci—py1(2)Ben(), ifi=1,2..., M, —1,
i—1
LS (=0 +1) = )Ci 1 (@)Ben(x), Hi=M,. .., (M, — 1)
S v i

(seel(3V) in the Appendix A above).

Remark 11 The coefficientsB; ,,(x), fori = 0,1,..., n andn € N are obtained by straightforward
computations. For instance

Bone) = ()" ()
Bile) = (€a(a)" " () Cate
Ba(e) = (G0)" | () r@)ato + (§) (2t

Banla) = (€10)"*| (1) (@) st + ()20 @)Ca(01Ca(o) + ) (Ca)°],

Byn(z) = (Ci(z))" " G‘) (Ci(2)) °Cs(x) + (Z) (Ci(x))” (204(:c)02(x> + (Cs(x))2>
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Adjusting the formulal(38) (see again the Appendix A), by meaf a transfinite induction argument, we
obtain the explicit expression df (41)

[ .
n n—j J! e e
(o) =32 () €0) 2 T (Ca@) " (o)™
Jj=1 L1y 2oy ool e =iy J
Yoy Voo Hve; =5
2§E1<"'<Zj§ifj+2
{'Yék};:1c{0)1 ~~~~~ .7}

(42)
fori=1,2,...,n. .
Then one has
(M;—1)n _
(Vi)™ =Cp(d(z) F0) ™ > ( > B;..(2)(d(z) F )"
n>0 z:O
= (d(x) F o) " (Do(:c) + Z D, (x)(d(x) Z D, («)(d(z) T 0) )
n=1 n=M,+1 43)

where .
Z( > n—iyi( n=12 ... (44)

i=1

Remark 12 In order to illustrate we note that the first five coefficiebts(x) are

Do) = ("7 )Boale) = (€a(2))” = 1.
Die)= ('} )Bosto) = () ato)
Da(e)= ('3 )Boate) + (77 )Brsto) = (5 ) (@) + (77 ) Cato)
Dy () = (Z‘) Bos(z) + <g‘) B () + <T) By, (z)
= (1) @)+ (320t + (7 cato
Da(z) = (Z‘) Bo.(z) + <7§) Bis(z) + < 2)3272(1:) + (”f) Bs.i(z)
= (1)@ + (3 e’ e + (5 ) o + €o)’] + (1) eua
providedM, > 4. 5

Choosingr = 1 in (@0) we deduce
Bi)l(l') ZCH_l(,T), i=0,1,2,...,M7_1,

so that, from[(4}4), we obtain

D, (z) = ( > +Z< > n—ii(z), 1<n <My, (45)

whence, in[(4b), eac,,(z), 1 < n < M,, does not appear iB,,_; ;(x), ¢ # 1. Certainly all coefficients
C,(z), 1 <n < M., areinvolved in the othdD,, (z), M, + 1 < n.
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Remark 13 Whenm is an integer number one has

1d"®
(0) = (m> =0, n>m,

n! dsm n

therefore the Taylor expansion is finite. So, equality (43)dmes

M- mM -
(Vi)™ = C(d(z) F0) "™ (Do(:c) +> Du(@)(d(z) F6)"+ > Du(x)(dx) F 5)”>
n=1

n=M;,+1
(46)
where the coefficientd,, () are given in[(44). o
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