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We present an analysis of the transverse-velocity fluctuations in an isothermal liquid layer with a uniform
shear rate between two parallel horizontal boundaries as a function of the wave number and the Reynolds
number. The results were obtained by solving a stochastic version of the Orr-Sommerfeld equation subject to
no-slip boundary conditions in a second-order Galerkin approximation. We find that the spatial Fourier trans-
form of the transverse-velocity fluctuations exhibits a maximum as a function of the �horizontal� wave number
q�. This maximum is associated with a crossover from a q�

−4 dependence for larger q� to a q�
2 dependence for

small q�. The q�
−4 dependence at larger wave numbers is independent of the boundary conditions, but the small-

q� behavior is strongly affected by the boundary conditions. The nonequilibrium enhancement of the intensity
of the transverse-velocity fluctuations remains finite for all values of the Reynolds number, but increases
approximately with the square of the Reynolds number. The relation between our results and those obtained by
previous authors in the absence of boundary conditions is elucidated.
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I. INTRODUCTION

During the past two decades it has become evident that
thermally excited fluctuations in fluids in nonequilibrium
steady states, even in the absence of convection or turbu-
lence, are always spatially long ranged, as reviewed else-
where �1–3�. As a consequence, thermal nonequilibrium fluc-
tuations in fluids are affected by the presence of boundaries.
In some previous publications �4,5�, we have evaluated such
finite-size effects on the static structure factor of liquid layers
subjected to a stationary temperature gradient, sometimes re-
ferred to as the Rayleigh-Bénard problem. It is the purpose
of this paper to consider the effect of the presence of bound-
aries on the velocity fluctuations in a liquid with uniform
shear flow. Specifically, we shall consider the transverse-
velocity fluctuations that are most strongly affected by the
presence of shear.

A number of previous investigators have studied fluctua-
tions in sheared fluids in the absence of boundary conditions
�6–12�. Several authors �6–8� have arrived at the conclusion
that the nonequilibrium autocorrelation functions should de-
cay as r−1 with the distance r. Lutsko and Dufty �9–11� have
argued that the autocorrelation functions should actually ex-
hibit a crossover from an r−1 decay to a stronger algebraic
power-law decay for larger values of r. Specifically, the
transverse-velocity autocorrelation function should exhibit a
dependence on the distance r proportional to r−5/3 �11�.

It turns out that not only the intensity of the fluctuations in
sheared fluids but also the range of the correlation functions
strongly depends on the direction of the wave vector of the
fluctuations. It is well known that the long-ranged contribu-
tion that decays as r−1 vanishes when the wave vector is in
the direction of the fluid-velocity gradient. However, fluctu-
ating hydrodynamics predicts this contribution to vanish also

for fluctuations with a wave vector perpendicular to the
fluid-velocity gradient �7,9,10�, in which direction one would
expect the effect of the shear on the fluctuations to be sig-
nificant. The particular case of velocity fluctuations with
wave vector in the direction of the flow has been considered
by Wada and Sasa �12�, who concluded that the spatial spec-
trum of these velocity fluctuations should exhibit a crossover
from a q−4 dependence for larger wave numbers q to a q−4/3

dependence for small q.
Generally, fluctuations in fluids in steady nonequilibrium

states can be obtained from fluctuating hydrodynamics with
a local application of the fluctuation-dissipation theorem
�2,13�. This approach was proposed by Ronis and Procaccia
�14� as an alternative to the original derivation of Kirkpatrick
et al. �15� for fluctuations in fluids subjected to a temperature
gradient, and the validity of the extension of fluctuating hy-
drodynamics to nonequilibrium steady states has been con-
firmed experimentally �2�. We shall show that, for the case of
transverse-velocity fluctuations in sheared liquids, the deri-
vation can be greatly simplified by starting from a stochastic
version of the Orr-Sommerfeld equation. The deterministic
version of the Orr-Sommerfeld equation is frequently used in
fluid mechanics in the analysis of planar Couette or Poi-
seuille flows �16,17�. Using this procedure without imposing
boundary conditions, we shall not only recover expressions
for the transverse-velocity fluctuations that are completely
consistent with previous results obtained by Lutsko and
Dufty �9–11�, but also obtain an explicit expression for the
velocity fluctuations with wave vector perpendicular to the
fluid-velocity gradient in agreement with the predictions of
Wada and Sasa �12�. The main point of our present paper is
to show that boundary effects cause a pronounced modifica-
tion of the wave-number dependence of the spatial Fourier
transform of the velocity fluctuations.

We shall proceed as follows. In Sec. II we explain how a
stochastic version of the Orr-Sommerfeld equation for the
velocity fluctuations can be obtained from the full set of
fluctuating hydrodynamics equations previously used by
other authors. In Sec. III we present a simple procedure for
solving this stochastic Orr-Sommerfeld equation in the ab-
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sence of any boundary conditions and show how this simple
procedure reproduces all physical aspects of the velocity
fluctuations noticed by previous investigators. In addition,
this solution allows us to elucidate explicitly the anisotropic
nature of the velocity fluctuations in a liquid under steady
shear. In Sec. IV we study the modification of the velocity
fluctuations due to the presence of boundaries. This is done
by solving the stochastic Orr-Sommerfeld equation for the
amplitude of the transverse-velocity fluctuations by taking
into account the appropriate boundary conditions for the ve-
locity fluctuations. In the presence of realistic boundary con-
ditions, an exact solution would have to be obtained numeri-
cally. However, we are able to obtain explicit analytical
expressions for the amplitude of the nonequilibrium velocity
fluctuations as a function of the wave number by employing
a second-order Galerkin approximation, which appears to
yield an excellent approximation to the exact solution for the
nonequilibrium fluctuations. We conclude the paper with
some discussion of the physical meaning of the results in
Sec. V.

II. STOCHASTIC ORR-SOMMERFELD EQUATION

We consider an isothermal liquid with a uniform density
�0 and with a mean velocity v0= ��̇0z ,0 ,0� in the x direction,
with �̇0 representing a constant shear rate in the z direction,
so that the x, y, and z coordinates represent the velocity, the
vorticity, and the the velocity-gradient directions, respec-
tively. In fluid mechanics this arrangement is referred to as
the case of �isothermal� planar Couette flow. We note that
some other investigators in the field have chosen the z axis in
the vorticity direction �6–12�, but we adopt here the nomen-
clature of Drazin and Reid �16�, sometimes referred to as the
meteorological convention �18�. We prefer this convention to
remain consistent with our previous analysis of finite-size
effects in the Rayleigh-Bénard problem, where the tempera-
ture gradient was also taken to be in the z direction �2–5�.
Without loss of generality, we can assume the mean velocity
to be in the positive x direction for z�0 and in the negative
x direction for z�0 �16�. The fluctuations ���r , t� and
�v�r , t� of the density and the velocity around their mean
values �0 and v0, respectively, depend on the location r and
the time t. As documented in the literature, the spatial-
temporal evaluation of the fluctuations satisfies fluctuating-
hydrodynamics equations which can be linearized in fluctu-
ating fields, if one assumes the fluctuations to be small �19�.
For the present case one thus obtains for ���r , t� and �v�r , t�
the following set of linearized fluctuating-hydrodynamics
equations �2,6–11�:

�t���� + �̇0z�x���� + �0 � · �v = 0,

�t��v� + �̇0z�x��v� + �̇0�vzx̂

=
− ���

�0
2�T

+ ��2��v�

+
1

�0
�	v +

	

3
	 � �� · �v� +

1

�0
� ��
� , �1�

where �T is the isothermal compressibility, 	 the shear vis-
cosity, 	v the bulk viscosity, and �=	 /�0 the kinematic vis-
cosity. We refer the reader to the relevant literature for fur-
ther discussion of Eqs. �1�, in particular to Eqs. �11.2� in Ref.
�2�.

The formulation of these fluctuating-hydrodynamics
equations is completed with the specification of the correla-
tion function among the various components of the random
stress �
, which is the only natural intrinsic source of sto-
chastic forcing, usually referred to as thermal noise, in our
isothermal problem. These correlation functions are given by
the fluctuation-dissipation theorem �FDT�, which for an iso-
thermal fluid is given by �2,19,20�


�
ij�r,t� · �
kl�r�,t���

= 2kBT��r − r����t − t���	��ik� jl + �il� jk�

+ �	v −
2

3
		�ij�kl
 , �2�

where kB is Boltzmann’s constant and T the average local
temperature.

While several previous investigators �2,6–11� have con-
sidered the full set of fluctuating-hydrodynamics equations,
we show how by a series of approximations Eqs. �1� can be
reduced to a single stochastic partial differential equation
�the stochastic Orr-Sommerfeld equation� for the transverse-
velocity fluctuations. This formulation represents some sim-
plification, but will turn out to capture all essential physical
features of the fluctuations in a liquid under steady shear
flow. The approximations are identical to those adopted in
the fluid-dynamics literature in the derivation of the deter-
ministic version of the Orr-Sommerfeld equation �16�.

Our main hydrodynamic approximation is that we are
dealing with divergence-free flow. As explained by Landau
and Lifshitz �19�, this assumption is justified as long as the
fluid flow velocity is much smaller than the sound velocity,
which is certainly the case for flow velocities encountered in
laminar Couette flow. This simplification is more conve-
niently implemented if we switch from density to pressure
fluctuations, �p�r , t�=−1 / ��0�T����r , t�, as the relevant fluc-
tuating variable. Then, instead of �1�, we obtain

�T�t��p� + �T�̇0z�x��p� + � · �v = 0,

�t��v� + �̇0z�x��v� + �̇0�vzx̂

= −
��p

�0
+ ��2��v� +

1

�0
�	v +

	

3
	 � �� · �v�

+
1

�0
� ��
� . �3�

Next, as usual in the fluid-dynamics literature �16�, we ex-
press the working equations in dimensionless variables, de-
fined in terms of the half height L of the liquid layer, the
shear rate �̇0, and the density �0:

r̃ =
r

L
, t̃ = �̇0t, �p̃ =

�p

�0L2�̇0
2 ,
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�ṽ =
�v

L�̇0

, �
̃ =
�


�0L2�̇0
2 . �4�

In terms of dimensionless variables we thus obtain

�Re2��t��p� + z�x��p�� + � · �v = 0,

�t��v� + z�x��v� + �vzx̂ = − ��p +
1

Re
�2��v� +

1

Rv
� �� · �v�

+ ���
� , �5�

where the Reynolds and the other dimensionless numbers
appearing above are given by

Re =
�̇0L2

�
, Rv =

�0�̇0L2

�	v +
	

3
	 , � = �0�T�2L . �6�

Notice that in Eq. �5� we have dropped the tildes in the
notation for the various fields, since in the remainder of this
paper we shall always use dimensionless variables. Next, we
take the limit �→0 for a fluid with uniform density � in the
set of equations �5�, as is usually done in the literature on
hydrodynamic stability �16�. Hence, the dimensionless
fluctuating-hydrodynamics equations we shall consider in
this paper are

� · �v = 0, �7a�

�t��v� + z�x��v� + �vzx̂ = − ��p +
1

Re
�2��v� + ���
� .

�7b�

To further simplify the system of differential equations �7a�
and �7b�, we take a double rotational in Eq. �7b�, so as to
eliminate the pressure fluctuations from the problem. Then,
by using Eq. �7a�, we obtain a single closed equation for the
vertical velocity component �vz�r , t�, to which we refer as
the stochastic Orr-Sommerfeld equation

�t��2�vz� + z�x��2�vz� −
1

Re
�4��vz� = �� � � � ����
���z.

�8�

The stochastic Orr-Sommerfeld equation �8� will be the start-
ing point for our evaluation of the nonequilibrium
transverse-velocity fluctuations. The specification of the
random-noise term on the right-hand side �RHS� can be
readily obtained from Eq. �2�, as discussed below.

In the case of a liquid subjected to a stationary tempera-
ture gradient, the long-ranged nonequilibrium fluctuations
are caused by a coupling of the temperature fluctuations with
the transverse-velocity fluctuations through the temperature
gradient. Hence, to determine these nonequilibrium fluctua-
tions one needs to solve two partial differential equations
simultaneously �2,21�. However, as pointed out by Lutsko
and Dufty �9,10�, the long-ranged nonequilibrium fluctua-
tions in a liquid under steady shear are caused not by a cou-
pling of two different hydrodynamic modes with the same
wave vector, but by a coupling of viscous modes with differ-

ent wave vectors through the velocity gradient. Hence, in the
present case the fluctuations of the velocity in the direction
of the shear gradient can be determined from a single partial
differential equation, namely, Eq. �8�.

Of course, for a determination of the fluctuations of all
three components of the velocity, additional information will
be needed. The appropriate additional partial differential
equation, complementing Eq. �8�, can be obtained by taking
a single curl of Eq. �7b�, so as to obtain an equation for the
component of the vorticity fluctuations parallel to the shear
gradient �
z=�y�vx−�x�vy:

�t��
z� + z�x��
z� − �y�vz −
1

Re
�2��
z� = �� � ����
���z.

�9�

Equations �8� and �9� form a pair of coupled stochastic dif-
ferential equations that would need to be solved simulta-
neously for the fluctuating fields �vz and �
z with appropri-
ate boundary conditions. The deterministic version of Eq. �9�
is commonly referred to in the fluid-mechanics literature as
the Squire equation �17�. The random-noise terms on the
RHS of the stochastic Orr-Sommerfeld Eq. �8� and the sto-
chastic Squire equation �9� act as additive thermal noise,
whose correlation functions immediately follow from the
FDT for the random stress, given by Eq. �2�. However, to
elucidate the physical nature of the transverse-velocity fluc-
tuations, use of the single partial differential equation �8� will
suffice.

III. NONEQUILIBRIUM VELOCITY FLUCTUATIONS
IN THE ABSENCE OF BOUNDARY CONDITIONS

The fluid mean velocity cannot grow indefinitely in the
positive and negative z directions, and in reality the liquid
layer is confined between two horizontal boundaries. How-
ever, to make contact with the work of previous investiga-
tors, we shall first solve Eq. �8� for the velocity fluctuations
without accounting for any boundary conditions. As usual in
the derivation of so-called bulk nonequilibrium fluctuations
�2�, we apply a full spatiotemporal Fourier transform to the
appropriate stochastic differential equation, which in the
present case is Eq. �8�. We thus obtain

q2�i
 +
q2

Re
	�vz�
,q� − qx

�

�qz
�q2�vz�
,q�� = Fz�
,q� ,

�10�

where 
 and q are the frequency and the wave vector of the
fluctuations, respectively, while Fz�
 ,q� represents a random
noise term that corresponds to �minus� the Fourier transform
of the combination of derivatives of the random stress that
appears on the RHS of Eq. �8�. Next, to solve Eq. �10� for
�vz�
 ,q�, we adopt the approach of Lutsko and Dufty
�9–11�, and express the solution in terms of a Green’s func-
tion:

�vz�
,q�,qz� = �
−�

�

du G�
,q�,qz,u�Fz�
,q�,u� , �11�

where the Green’s function G�
 ,q� ,qz ,u� is the solution of
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q2�i
 +
q2

Re
	G�
,q�,qz,u� − qx

�

�qz
�q2G�
,q�,qz,u��

= ��qz − u� , �12�

with q� = �qx ,qy� representing the projection of the wave vec-
tor q of the fluctuations onto the plane perpendicular to the
shear gradient, i.e., onto the horizontal xy plane.

To evaluate the autocorrelation function of the vertical-
velocity fluctuations we assume that the fluctuation-
dissipation theorem �2�, originally derived for fluctuations in
a fluid in equilibrium, continues to hold for nonequilibrium
steady states with the physical properties to be taken at their
mean values. The validity of this assumption has been veri-
fied experimentally for the case of the Rayleigh-Bénard
problem �2�. As already anticipated, the autocorrelation

Fz

��
 ,q�Fz�
� ,q��� can be easily obtained from the rela-
tionship of Fz�r , t� with the random stress and from the FDT
�2�; see Refs. �2,4,5�. To simplify this calculation it is con-
venient to employ the divergence-free approximation �7a�,
which allows us to effectively neglect the term proportional
to the bulk viscosity in the FDT �2�; see Ref. �2�. In terms of
the dimensionless variables used in this paper,


Fz
��
,q�Fz�
�,q���

�2��42S̃
= q�

2q4��
 − 
����q − q�� , �13�

where the dimensionless strength S̃ of the thermal noise is
given by

S̃ =
kBT

�̇0
3L7

�

�0
=

kBT

�0L3

1

�̇0
2L2

1

Re
. �14�

Next, from Eqs. �11� and �13�, we readily evaluate the
autocorrelation function of the vertical-velocity fluctuations.
It can be expressed in the form


�vz
��
,q��vz�
�,q��� = Czz�
,q�,qz,qz���2��3��
 − 
��

���q� − q��� , �15�

where

Czz�qz,qz�� = 4�S̃q�
2�

−�

�

�q�
2 + u2�2G��qz,u�G�qz�,u�du .

�16�

Here, to simplify the notation, we dropped the implicit 
 ,q�

dependence of all quantities appearing in Eq. �16�, retaining
explicitly only the qz dependence �or qz and qz� for the
Green’s function�. To proceed with the calculation of the
velocity autocorrelation function, we need first to discuss the
explicit form of the Green’s function.

A. Explicit form of the Green’s function

We can solve Eq. �12� for G�
 ,q� ,qz ,u�, to obtain from it
explicit expressions for the autocorrelation function of veloc-
ity fluctuations parallel to the shear gradient. Since it is a
linear equation, the procedure is simple and, at least for-
mally, the Green’s function can be expressed as

G�qz,u� =
1

q�
2 + qz

2�
0

�

exp�− ��qz,�����qz − u + qx��d�

�17�

with

��qz,�� =
qx

2

3Re
�3 +

qzqx

Re
�2 + �i
 +

q�
2 + qz

2

Re
	� . �18�

Equations �17� and �18� are valid for both positive and nega-
tive values of qx.

At this point, it is worthwhile to digress a little bit to
discuss a technical issue. In principle one can add to Eq. �17�
for the Green’s function any solution of the homogeneous
problem corresponding to Eq. �12�. However, the actual ex-
pression �17� is the “correct” Green’s function in the sense
that, when qx→0, it reduces to the well-known equilibrium
Green’s function �22–24�, namely,

G�qz,u� →
qx→0 1

q�
2 + qz

2

��qz − u�

i
 +
q�

2 + qz
2

Re

, �19�

while the addition of any particular solution of the homoge-
neous problem to �17� would not yield the correct asymptotic
behavior given by Eq. �19�.

We now continue our calculation by substituting Eq. �17�
into Eq. �16� and then integrating it over the variable u, so as
to obtain

Czz�qz,qz�� =
4�S̃q�

2

�q�
2 + qz

2��q�
2 + qz�

2�
�

0

�

d��
0

�

d��q�
2

+ �qz� + qx��2�2��qx� − qx� + qz − qz��

�exp�− ���qz,�� − ��qz�,��� . �20�

Some simple algebra yields

���qz,�� + ��qz�,��

= − i
�� − �� +
1

Re
�qx

2

3
��3 + �3�

+ qx�qz�
2 + qz��

2� + q�
2�� + �� + �qz

2 + �qz�
2	 .

�21�

We could investigate the dependence of the velocity autocor-
relation function by applying to Eq. �20� a Fourier �anti�
transform in the frequency 
. Such an investigation was pur-
sued by Lutsko and Dufty �9,11�, who demonstrated that this
time correlation function has an interesting nonexponential
behavior. However, we are specifically interested in the
Fourier-transformed equal-time correlation function, which
determines the intensity of the fluctuations and which can be
related to what has been called energy amplification �25� in
the fluid-mechanics literature. As is well known, this corre-
lation function is proportional to the integral over the fre-
quency of Czz�
 ,q� ,qz ,qz��. In view of the simple 
 depen-
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dence of Eq. �21�, the integral over the frequency of �20� can
be readily performed, resulting in

1

2�
�

−�

�

d
 Czz�
,q�,qz,qz�� = Czz�q�2���qz − qz�� �22�

with

Czz�q� = 2S̃
q�

2

q4�
0

�

d��q�
2 + �qz + qx��2�2

�exp�− 2�

3Re
�qx

2�2 + 3�qxqz + 3q2�	 , �23�

in complete agreement with Wada and Sasa �12�. The fact
that the variables � and � are always positive has been used
to deduce Eq. �23�.

A simple integration by parts of Eq. �23� allows us to
display the intensity of fluctuations in the nonequilibrium
steady state as a sum of the equilibrium intensity and a non-
equilibrium enhancement, namely,

Czz�q� = Czz
�E��q��1 + C̃zz

�NE��q�� �24�

where

Czz
�E��q� = S̃ Re

q�
2

q2 , �25�

and

C̃zz
�NE��q� =

2qx

q2 �
0

�

d��qz + qx��

�exp�− 2�

3Re
�qx

2�2 + 3�qxqz + 3q2�	 . �26�

Expression �25�, of course, agrees with the equilibrium result
as discussed at length in several textbooks �22–24�. For such
a comparison we remind the reader that, when the noise is
thermal, its intensity is given by Eq. �14�, so that the product

S̃ Re is independent of the Reynolds number and propor-
tional only to ��̇0L�−2, which is the unit by which we have
made the actual correlation function dimensionless in accor-
dance with Eq. �4�.

Expression �24� has the typical structure of nonequilib-
rium fluctuations. Expressions similar to Eq. �24� have been
obtained for several other nonequilibrium states, like a sta-
tionary temperature gradient in one-component fluids �15� or
a stationary concentration gradient in fluid mixtures �26�.
Nowadays it is believed that the feature exhibited by Eq.
�24�, i.e., an enhancement of fluctuations, is a generic prop-
erty of nonequilibrium steady states �27�, even for systems
that are far from any hydrodynamic instability. The physical
origin of the nonequilibrium enhancement of thermal fluc-
tuations can be traced to coupling between hydrodynamic
modes caused by the presence of a gradient. In the particular
case considered here, the nonequilibrium coupling arises be-
tween velocity fluctuations with different values of the qz
component of the wave vector, as follows from the presence
in Eq. �10� of a derivative with respect to this variable �9,10�.

The integral �26� cannot be evaluated analytically. How-
ever, it is very simple to obtain the asymptotic expansions for
large and small wave numbers q. To specify these limits we
introduce spherical coordinates by substituting qz=q cos �,
q� =q sin �, and qx=q sin � cos � into Eq. �26�. After these
substitutions, the two limits mentioned above can be prop-
erly taken, and we obtain

C̃zz
�NE��q� →

q→0�2

3
	1/3

��2

3
	�sin � cos ��2/3Re2/3

q4/3 , �27a�

C̃zz
�NE��q� →

q→� Re

2q2 cos � sin 2� −
Re2

2q4 cos2 � cos 2� sin2 � ,

�27b�

in agreement with the limiting expressions obtained by Wada
and Sasa �12� for the particular case of fluctuations with
wave vector q in the direction of the flow ��=� /2, �=0�.
Numerical computation of the full nonequilibrium enhance-
ment given by Eq. �26� show that it represents a simple
crossover between the two asymptotic behaviors displayed in
Eqs. �27a� and �27b�, and does not exhibit any intermediate
structure. A crossover wave number qco may be defined from
the intercept of the two first terms in the asymptotic behav-
iors described by Eqs. �27a� and �27b�, given by

qco =
�3 cos �

2��� 2
3 ��3/2

��sin 2� cos ���Re. �28�

Hence, the crossover from a q−2 to a q−4/3 wave-number
dependence of the nonequilibrium enhancement of the fluc-
tuations occurs at a value qco of the wave number that is
proportional to the square root of the Reynolds number, in
agreement with an observation of Lutsko and Dufty �11�, and
confirmed by Wada and Sasa �12�.

From Eqs. �27a� and �27b� we conclude that we have
reproduced from the stochastic Orr-Sommerfeld equation the
prediction of Machta et al. �6� and of Tremblay et al. �7� that
Czz�q��q−2 �corresponding to r−1 dependence of the correla-
tion function in real space�, as well as a crossover to
Czz�q��q−4/3 �corresponding to an r−5/3 dependence of the
correlation function in real space�, as suggested by Lutsko
and Dufty �11�.

However, not only the intensity of the nonequilibrium
fluctuations but also the range of the fluctuations is strongly
anisotropic. First of all, it is evident that the nonequilibrium
enhancement of the fluctuations vanishes when �=0, i.e.,
when the wave vector is in the direction of the fluid-velocity
gradient. Furthermore, it should be noticed that the first term
in Eq. �27b� also vanishes when �=� /2, i.e., when the wave
vector is perpendicular to the velocity gradient. Therefore
there exists a competition between a q−2 and a q−4 wave-
number dependence of the amplitude of the fluctuations for
larger q, which depends on the angle �. When the wave
vector is not perpendicular to the velocity gradient, the shear
affects the transverse-velocity fluctuations only partially.
Only for wave vectors perpendicular to the velocity gradient,
i.e., when q=q� �or qz=0� can the fluctuations of the vertical
velocity �vz be fully identified with the fluctuations of the

TRANSVERSE-VELOCITY FLUCTUATIONS IN A LIQUID … PHYSICAL REVIEW E 77, 026306 �2008�

026306-5



transverse velocity. These transverse-velocity fluctuations
exhibit a crossover not from a q−2 to a q−4/3, but from a q−4

to a q−4/3 wave-number dependence, as previously noticed by
Wada and Sasa �12�. This behavior is represented by the
dashed curves in Fig. 1 for two values of the Reynolds num-
ber. The fact that these transverse-velocity fluctuations for
larger q vary with q−4, just like the thermal fluctuations in
fluids subjected to a stationary temperature gradient �15,21�,
means that the spatial range of these correlations is much
longer than correlations with a r−1 decay, as discussed in
previous publications �4,28�.

IV. NONEQUILIBRIUM VELOCITY FLUCTUATIONS
IN THE PRESENCE OF BOUNDARY CONDITIONS

Planar Couette flow cannot be maintained without two
bounding parallel plates that actually drive the fluid. Our
previous experience with liquid layers subjected to a tem-
perature gradient �5,29� has shown that the presence of
boundaries may dramatically affect the spatial spectrum of
nonequilibrium fluctuations. Encouraged by these previous
studies we investigate here the effects of confinement on
fluctuations in a liquid under steady shear. For this purpose
we consider no-slip boundary conditions at the two bounding
plates located at z= �1; thus

�vz = �z�vz = 0 at z = � 1. �29�

We remind the reader that we continue to use dimensionless
lengths scaled by the half height of the liquid layer, in accor-
dance with Eqs. �4�.

Our problem in this section is, again, to solve the stochas-
tic differential equation Eq. �8�, but subjected to the bound-
ary conditions �29� at z= �1. To accommodate the boundary
conditions, as usual �2,30�, we now apply a Fourier trans-
form in time and only in the plane perpendicular to the shear
gradient, arriving at

i�
 + zqx���z
2 − q�

2��vz�
,q�,z� −
1

Re
��z

2 − q�
2�2�vz�
,q�,z�

= Fz�
,q�,z� , �30�

where the stochastic forcing term Fz�
 ,q� ,z� is the �partial�
Fourier transform of the combination of derivatives of the
stress tensor appearing on the RHS of Eq. �8�.

In principle, one can solve Eq. �30� for �vz�
 ,q� ,z� sub-
jected to the boundary conditions �29� by expanding the so-
lution in a suitable set of eigenfunctions of the differential
operator in the LHS of Eq. �30�, as we have done previously
for the case of the Rayleigh-Bénard problem, for both slip-
free �4� and stick �2� boundary conditions. In the case of
planar Couette flow, the eigenfunctions of the hydrodynamic
operator �30� can be conveniently expressed in terms of Airy
functions �31�. We plan to address this issue in a future pre-
sentation. However, for the sake of simplicity, and also to
focus on the most relevant physical features of the problem
under consideration, we adopt here a simpler approach by
adopting a Galerkin approximation. The idea is to express
the solution to �30� in terms of a series:

�vz�
,q�,z� = �z2 − 1�2�
N=0

�

AN�
,q��zN. �31�

This expression for �vz�
 ,q� ,z� satisfies the boundary con-
ditions �29� for any set of coefficients AN�
 ,q��. The poly-
nomial �z2−1�2 that forces �vz�
 ,q� ,z� to satisfy the bound-
ary conditions is usually referred to as the Galerkin test
function. The coefficients AN�
 ,q�� are determined by pro-
jecting the stochastic differential equation �30� onto the ele-
ments of the polynomial basis Eq. �31� used to express �vz.
This requires solving the system of algebraic equations

�
M

XNM�
,q��AM�
,q�� = FN�
,q�� , �32�

where

XNM�
,q�� = �
−1

1

dz�z2 − 1�2zN��i�
 + zqx���z
2 − q�

2�

−
1

Re
��z

2 − q�
2�2	�z2 − 1�2zM
 , �33a�

FN�
,q�� = �
−1

1

dz�z2 − 1�2zNFz�
,q�,z� . �33b�

Of course, such a Galerkin approximation is practical only if
the series �31� can be truncated after a few terms, so that the
algebraic set of equations �32� has a low enough dimension-
ality to be readily inverted and solved for AN�
 ,q��. In this
paper we shall keep the first two terms in the series �31�, so
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FIG. 1. Nonequilibrium enhancement of the transverse-velocity
fluctuations as a function of the magnitude q� of the wave vector q�

in the direction of the flow. Top panel is for Re=20 and the bottom
panel for Re=300. The dashed curves represent the enhancement in
the absence of any boundary conditions. The solid curves represent
the enhancement that includes the effect of boundary conditions.
For large q� the nonequilibrium enhancement becomes independent
of the boundary conditions and the two curves coincide.

JOSÉ M. ORTIZ DE ZÁRATE AND JAN V. SENGERS PHYSICAL REVIEW E 77, 026306 �2008�

026306-6



as to obtain simple analytical solutions. We have checked
that inclusion of more terms does not change our final result
for the intensity of nonequilibrium velocity fluctuations par-
allel to the shear gradient �see below� by more than a few
percent. Furthermore, our determination of the exact �nu-
merical� solution confirms that the simple Galerkin approxi-
mation presented here represents qualitatively the exact so-
lution for the nonequilibrium fluctuations very well, while
differing quantitatively by just a few percent.

In addition, we have also made calculations with other
test functions, like a combination of trigonometric functions
or Chandrasekhar’s functions, and obtained similar results
with only very small quantitative differences. We have thus
concluded that if the polynomial �z2−1�2 is chosen as the

Galerkin test function a second-order approximation in ac-
cordance with Eq. �31� is sufficient to elucidate the effects of
the boundary conditions on the wave-number dependence of
the nonequilibrium enhancement of the transverse-velocity
fluctuations. The advantage of using the first two terms in the
test-function representation given by Eq. �31� is its simplic-
ity. We may also mention that in previous publications
�2,4,32� we have obtained Galerkin approximations for the
fluctuations in confined layers of liquids and liquid mixtures
subjected to a temperature gradient, with excellent results.

If we truncate the series �31�, retaining only the first two
terms, we obtain for the matrix appearing on the LHS of Eq.
�32�

X�
,q�� =
− 256

3465 �11�i
�q�
2 + 3� +

2q�
4 + 12q�

2 + 63

2Re
	 iqx�q�

2 + 11�

iqxq�
2 i
�q�

2 + 11� +
2q�

4 + 44q�
2 + 495

2Re
� , �34�

which can be easily inverted.
Our goal in the present section is to evaluate the autocor-

relation function 
�vz
��
 ,q� ,z��vz�
� ,q�� ,z���. In view of the

representation �31� of �vz�
 ,q� ,z�, the solution will depend
on the correlation functions 
AN

� �
 ,q��AM�
� ,q����, which by
inverting Eq. �32� can be evaluated from the projection of the
random noise over the Galerkin polynomials Eq. �33b�.
Combining the fluctuation-dissipation theorem for the ran-
dom stress with the definition �33b� of FN

� �
 ,q��, as was
done in previous publications dealing with fluctuations in the
Rayleigh-Bénard problem �2,5,32�, we obtain


FN
� �
,q��FM�
�,q���� = �2��32S̃CNM�q����
 − 
����q� − q��� ,

�35�

where, as in Eq. �14�, S̃ again represents the dimensionless
amplitude of the thermal noise. The correlation matrix
CNM�q�� can be easily obtained by exactly following the pro-
cedure outlined in some of our previous publications
�2,5,32�. This procedure yields for the correlation matrix in
Eq. �35�

C�q�� =
128q�

2

315 �2q�
4 + 12q�

2 + 63 0

0
2q�

4 + 44q�
2 + 495

11
� .

�36�

Next, combining Eqs. �31� and �35� with the inverse of Eq.
�32�, we immediately obtain for the autocorrelation function
of interest


�vz
��
,q�,z��vz�
�,q��,z��� = 2S̃Czz�
,q�,z,z���2��3

���
 − 
����q� − q��� ,

�37�

with

Czz�
,q�,z1,z2� = �z1
2 − 1�2�z2

2 − 1�2CIJ�q��z1
Nz2

MXNI
−1�

��
,q��XMJ
−1 �
,q�� , �38�

where XNI
−1�
 ,q�� are the elements of the inverse of the ma-

trix defined in Eq. �34�, and where summation over repeated
indices is understood. The dynamics of the correlations can
be studied on the basis of Eq. �38�. However, for the purpose
of the present paper, i.e., to determine the amplitude of the
nonequilibrium transverse-velocity fluctuations, we need
only

Czz�q�� =
1

2�
�

−�

�

d

1

2
�

−1

1

dz1�
−1

1

dz2Czz�
,q�,z1,z2� ,

�39�

which represents the equal-time autocorrelation function of
the velocity-fluctuation component in the direction of the
shear gradient, averaged over the thickness of the layer. In
other words, it is the amplitude of the fluctuations of the
vertical velocity with a given horizontal wave vector q�

�again, averaged over the thickness of the layer�. This quan-
tity is related to the concept of energy amplification,
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discussed by other authors �25�. Then, substituting all the
relevant information into Eq. �39�, and performing all inte-
grals, some lengthy but otherwise straightforward calcula-
tions allow us to display Czz�q�� in a way similar to Eq. �24�
for the “bulk” fluctuations, i.e., as an equilibrium contribu-
tion plus some nonequilibrium enhancement:

Czz�q�� = Czz
�E��q���1 + C̃zz

�NE��q��� , �40�

where

Czz
�E��q�� =

7

10

q�
2

q�
2 + 3

S̃ Re, �41a�

C̃zz
�NE��q�� =

22qx
2Re2�q�

2 + 3�
�q�

2 + 11��2q�
4 + 44q�

2 + 495�
2q�

6 + 42q�
4 + 411q�

2 + 1089

11�2q�
4 + 12q�

2 + 63��2q�
4 + 44q�

2 + 495� + 4qx
2Re2q�

2�q�
2 + 11�

�41b�

with qx=q� cos �. Equations �41a� and �41b� represent the
final explicit expression in our second-order Galerkin ap-
proximation for the vertical-velocity fluctuations with a
given wave vector q� in the plane perpendicular to the shear
gradient. If the wave vector is in the horizontal xy plane, the
relevant transverse-velocity component affected by the shear
corresponds to the velocity component �vz. Hence, we con-
clude that Eqs. �41a� and �41b� represent the amplitude of
transverse-velocity fluctuations as a function of q�. To obtain
Eqs. �41a� and �41b�, the transverse-velocity fluctuations
with a given wave vector q� at a given time t, �vz�q� ,z , t�,
were first averaged over the height of the liquid layer and
then averaged over the probability distribution of the fluctua-
tions themselves.

Equations �41a� and �41b� incorporate the effects of con-
finement and it is interesting to compare them with the re-
sults, obtained in Sec. III, for the velocity fluctuations in the
absence of any boundary conditions. For such a comparison
we need to consider the results obtained in Sec. III for the
transverse-velocity fluctuations by taking qz=0 or, equiva-
lently, �=� /2. For instance, Eq. �41a� for the equilibrium
contribution Czz

�E� to the transverse-velocity fluctuations in
our Galerkin approximation needs to be compared with the
result given by Eq. �25� with qz=0. We then observe that,
except for a function that rapidly approaches unity as the
wave number q� increases, our Galerkin approximation
yields an amplitude for the equilibrium correlation function

that is 30% less than the exact value S̃ Re in Eq. �25�. We
consider this an acceptable result, since it is numerically
comparable to what we have obtained in similar calculations
for thermal fluctuations in the case of liquid layers subjected
to a steady temperature gradient �4,32�.

A comparison between the nonequilibrium enhancement
of the transverse-velocity fluctuations with and without the
effect of boundary conditions is shown in Fig. 1 for two
values of the Reynolds number. The top panel corresponds to
Re=20 and the bottom panel to Re=300. These are realistic
values for the Reynolds number, since in practice the flow is
expected to remain laminar for Reynolds numbers up to
about Re=350 �17,33�. The figures show the amplitude of
the nonequilibrium transverse-velocity fluctuations as a func-
tion of the wave number q� �with the azimuthal horizontal

angle �=0, i.e., for q� in the direction of the fluid flow�. The
dashed curves represent the solution in the absence of any
boundary conditions as given by Eq. �26� with qz=0. In the
absence of boundary conditions, the amplitude exhibits a
crossover from a q�

−4 to a q�
−4/3 wave-number dependence as

was discussed in Sec. III. The solid curves represent our
solution, given by Eq. �41b�, that includes the effects of the
boundary conditions due to the finite height of the liquid
layer. It can be seen that the dashed and solid curves have a
common asymptotic behavior for large q�, while the behavior
for intermediate and small wave numbers is completely dif-
ferent. From Eq. �41b� we can readily deduce the asymptotic
behavior of the nonequilibrium enhancement of the fluctua-
tions for small and large wave numbers in a confined liquid
layer:

C̃zz
�NE��q� →

q→0 2Re2

2079
q�

2 cos2 � + O�q�
4� , �42a�

C̃zz
�NE��q� →

q→�Re2

2q�
4 cos2 � + O�q�

−6� . �42b�

It is interesting to note that the asymptotic behavior for large
q� obtained from the Galerkin approximation exactly repro-
duces the bulk behavior: Eq. �27b� with qz=0. This confirms
the goodness of the Galerkin approximation adopted in this
investigation for the nonequilibrium fluctuations.

The intensity of the nonequilibrium enhancement of the
fluctuations exhibits a crossover from a q�

−4 to a q�
2 wave-

number dependence, leading to a maximum at an intermedi-
ate value q�m of q�. It follows from Eq. �41b� that q�m de-
pends on the Reynolds number and on the azimuthal angle
through the combination Re cos �. In the limit Re cos �
→0 the position of the maximum goes to q�m�2.123, while
for large Re cos � the location of the maximum goes to zero
as q�m�9.397�Re cos ��−1/2. We show in Fig. 2 a plot of the
position of the maximum enhancement as a function of
Re cos �, where the features mentioned above can readily be
observed.

A final observation to be mentioned is the presence of an
apparent intermediate region between the large and small
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limiting q� behaviors in Fig. 1, where it seems that the en-
hancement of the nonequilibrium fluctuations follows neither
a q�

−4 nor a q�
2 wave-number dependence. This phenomenon

is especially evident for larger Reynolds number. We suspect
that this intermediate behavior could be a residual of the
q�

−4/3 wave-number dependence predicted by other investiga-
tors �11,12�. However, to arrive at a more definite conclusion
we shall need to pursue more carefully an exact numerical
computation of the nonequilibrium enhancement of the fluc-
tuations, so as to exclude the possibility that it could be an
artifact of our Galerkin-approximation procedure.

V. DISCUSSION

In this paper we have considered velocity fluctuations in a
liquid layer under steady shear between two plane horizontal
boundaries. Specifically, we have evaluated the fluctuations
of the vertical velocity component. We have shown that these
fluctuations can be determined from a stochastic version of
the Orr-Sommerfeld Eq. �8�. In the absence of any boundary
conditions we have recovered the observations of previous
investigators �6–12� about the long-ranged nature of the non-
equilibrium fluctuations. The range of these fluctuations is
highly anisotropic. For a wave vector q� in the plane perpen-
dicular to the vertical shear gradient, the fluctuations in the
vertical velocity can be fully identified with the transverse-
velocity fluctuations. We find that the Fourier transform of
the nonequilibrium enhancement of these transverse-velocity
fluctuations in a liquid layer with finite height exhibits a
crossover from a q�

−4 wave-number dependence for larger q�

to a q�
2 wave-number dependence for small q� with a maxi-

mum enhancement at an intermediate wave number q�m. As
was shown in Fig. 1, for larger wave numbers the intensity of
the nonequilibrium fluctuations continues to vary with q�

−4

and is not affected by the boundary conditions, but for
smaller wave numbers the crossover behavior is profoundly

different from that for the fluctuations predicted in the ab-
sence of boundary conditions.

It is interesting to note that the mathematical dependence
of the intensity of the nonequilibrium transverse-velocity
fluctuations in a liquid layer under steady shear on the wave
number is similar to that found for thermal fluctuations in a
liquid layer in a stationary temperature gradient, where the
intensity of the nonequilibrium temperature fluctuations �5�
and the nonequilibrium concentration fluctuations �34� also
exhibit a crossover from a q�

−4 to a q�
2 wave-number depen-

dence. However, there are some physical differences. First,
in the case of a stationary temperature gradient, the nonequi-
librium enhancement is very large, covering many orders of
magnitude �5,35�. On the other hand, in the case of steady
shear the enhancement is only a factor of 10 or so for Rey-
nolds numbers corresponding to laminar flow, as can be seen
from Fig. 1. Second, in the case of a temperature gradient,
the intensity of the fluctuations not only increases with the
appropriate control parameter, namely, the Rayleigh number
Ra, but it diverges at a critical value of the Rayleigh number
corresponding to the onset of convection �5,29�. In the case
of steady shear, the intensity of the transverse-velocity fluc-
tuations does increase with the Reynolds number, approxi-
mately as Re2, but remains finite for any value of the Rey-
nolds number. Hence, unlike the case of a stationary
temperature gradient, the nonequilibrium enhancement of the
fluctuations in a liquid under steady shear does not lead to
any hydrodynamic instability, at least not at the linear
fluctuating-hydrodynamics level considered in this paper, in
agreement with the observation of previous investigators
�9,11,12�.

In principle, there is also a connection between the non-
equilibrium velocity fluctuations considered in this paper and
the concepts of “energy amplification,” “stochastic forcing,”
and “transient growth” in the fluid-mechanics literature
�18,25,36,37�. The difference is that in the fluid-mechanics
literature one tries to determine the nonequilibrium enhance-
ment of externally imposed noise, while we are dealing with
the nonequilibrium enhancement of thermal noise. For a
more complete treatment of the connection of these concepts
with our approach for dealing with nonequilibrium fluctua-
tions, we shall need to consider not only the fluctuations in
the velocity component parallel to the shear gradient, but
also those of the other components of the velocity. We hope
to address this issue in the future by complementing the so-
lution of the stochastic Orr-Sommerfeld equation with that of
the stochastic Squire equation �9�.

As extensively discussed elsewhere �2�, mode coupling
always causes the presence of long-ranged fluctuations in
liquids in nonequilibrium steady states. The primary conclu-
sion of the present paper is that boundary conditions drasti-
cally modify not only the long-ranged nonequilibrium fluc-
tuations in a liquid layer under a stationary temperature
gradient, but also the long-ranged fluctuations in a liquid
layer under steady shear. In this connection we note that
Wada �38� has predicted a crossover from a q�

−4 to a q−4/3

wave-number dependence of the intensity of concentration
fluctuations in a binary liquid mixture subjected to a concen-
tration gradient in uniform shear flow. In this case also one
must expect that this crossover behavior will be severely
affected by finite-size effects �39�.
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FIG. 2. Wave number q�m corresponding to the maximum non-
equilibrium enhancement of the transverse-velocity fluctuations
�horizontal axis� as a function of Re cos � �vertical axis�. In the
limit Re cos �→0 the location of the maximum approaches q�m

�2.123. The dashed line indicates the asymptotic behavior for large
Re cos �→0 �see text�

TRANSVERSE-VELOCITY FLUCTUATIONS IN A LIQUID … PHYSICAL REVIEW E 77, 026306 �2008�

026306-9



ACKNOWLEDGMENTS

We have greatly appreciated stimulating discussions with
James W. Dufty, James F. Lutsko, and Bruno Eckhardt on the

topic of this research. We are also indebted to the Spanish
Ministerio de Educación y Ciencia for supporting J.V.S. dur-
ing a sabbatical leave in Madrid, where this work was com-
pleted.

�1� J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Annu. Rev.
Phys. Chem. 45, 213 �1994�.

�2� J. M. Ortiz de Zárate and J. V. Sengers, Hydrodynamic Fluc-
tuations in Fluids and Fluid Mixtures �Elsevier, Amsterdam,
2006�.

�3� J. V. Sengers and J. M. Ortiz de Zárate, J. Non-Equilib. Ther-
modyn. 32, 319 �2007�.

�4� J. M. Ortiz de Zárate and J. V. Sengers, Physica A 300, 25
�2001�.

�5� J. M. Ortiz de Zárate and J. V. Sengers, Phys. Rev. E 66,
036305 �2002�.

�6� J. Machta, I. Oppenheim, and I. Procaccia, Phys. Rev. A 22,
2809 �1980�.

�7� A. M. S. Tremblay, M. Arai, and E. D. Siggia, Phys. Rev. A
23, 1451 �1981�.

�8� J. Machta and I. Oppenheim, Physica A 112, 361 �1982�.
�9� J. Lutsko and J. W. Dufty, Phys. Rev. A 32, 3040 �1985�.

�10� J. W. Dufty and J. Lutsko, in Recent Developments in Nonequi-
librium Thermodynamics: Fluids and Related Topics, edited by
J. Casas-Vázquez, D. Jou, and J. M. Rubí, Lecture Notes in
Physics Vol. 253 �Springer, Berlin, 1986�, pp. 47–84.

�11� J. F. Lutsko and J. W. Dufty, Phys. Rev. E 66, 041206 �2002�.
�12� H. Wada and S. I. Sasa, Phys. Rev. E 67, 065302�R� �2003�.
�13� J. M. Ortiz de Zárate and J. V. Sengers, J. Stat. Phys. 115,

1341 �2004�.
�14� D. Ronis and I. Procaccia, Phys. Rev. A 26, 1812 �1982�.
�15� T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys.

Rev. A 26, 995 �1982�.
�16� P. G. Drazin and W. H. Reid, Hydrodynamic Stability, 2nd ed.

�Cambridge University Press, Cambridge, U.K., 2004�.
�17� P. J. Schmid and D. S. Henningson, Stability and Transition in

Shear Flows �Springer, Berlin, 2001�.
�18� B. Eckhardt and R. Pandit, Eur. Phys. J. B 33, 373 �2003�.
�19� L. D. Landau and E. M. Lifshitz, Fluid Mechanics �Pergamon,

London, 1959, 2nd revised English version 1987�.
�20� R. Schmitz and E. G. D. Cohen, J. Stat. Phys. 39, 285 �1985�.
�21� B. M. Law and J. V. Sengers, J. Stat. Phys. 57, 531 �1989�.
�22� J. P. Hansen and I. R. McDonald, Theory of Simple Liquids,

2nd ed. �Academic Press, London, 1986�.
�23� J. P. Boon and S. Yip, Molecular Hydrodynamics �McGraw-

Hill, New York, 1980/Dover, New York, 1991�.
�24� B. J. Berne and R. Pecora, Dynamic Light Scattering �Wiley,

New York, 1976/Dover, New York, 2000�.
�25� B. Bamieh and M. Dahleh, Phys. Fluids 13, 3258 �2001�.
�26� B. M. Law and J. C. Nieuwoudt, Phys. Rev. A 40, 3880

�1989�.
�27� T. R. Kirkpatrick, D. Belitz, and J. V. Sengers, J. Stat. Phys.

109, 373 �2002�.
�28� J. M. Ortiz de Zárate, R. Pérez Cordón, and J. V. Sengers,

Physica A 291, 113 �2001�.
�29� J. M. Ortiz de Zárate, J. A. Fornés, and J. V. Sengers, Phys.

Rev. E 74, 046305 �2006�.
�30� R. Schmitz and E. G. D. Cohen, J. Stat. Phys. 40, 431 �1985�.
�31� A. V. Dyachenko and A. A. Shkalikov, Funct. Anal. Appl. 36,

228 �2002�.
�32� J. M. Ortiz de Zárate and L. Muñoz Redondo, Eur. Phys. J. B

21, 135 �2001�.
�33� L. N. Trefethen, A. Trefethen, S. C. Reddy, and T. A. Driscoll,

Science 261, 578 �1993�.
�34� J. V. Sengers and J. M. Ortiz de Zárate, Rev. Mex. Fis. 48,

Suppl. 1, 14 �2002�.
�35� A. Vailati and M. Giglio, Phys. Rev. Lett. 77, 1484 �1996�.
�36� B. F. Farrell and P. J. Ioannou, Phys. Fluids A 5, 2600 �1993�.
�37� D. Biau and A. Bottaro, Phys. Fluids 16, 3515 �2004�.
�38� H. Wada, Phys. Rev. E 69, 031202 �2004�.
�39� J. M. Ortiz de Zárate and J. V. Sengers, Phys. Rev. E 73,

013201 �2006�.

JOSÉ M. ORTIZ DE ZÁRATE AND JAN V. SENGERS PHYSICAL REVIEW E 77, 026306 �2008�

026306-10


