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Abstract

This paper shows a practical and easy to compute generalization of the
linear dynamic model, made by assuming a continuous elliptical joint distri-
bution for the parameters and errors. Updated distribution and probabilis-
tic characteristics of the current and future vector of state and observations
are given. As a particular simple submodel, the one with a multidimen-
sional exponential power initial distribution is developed. An example to
show its use is given.

Key words and phrases: continuous elliptical distribution; multidimensional

exponential power distribution; global vector; vector of state; prior distribution;

updated distribution.
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1. Introduction

In this paper we study a generalization of the Harrison and Stevens (1976) linear

dynamic model, made by assuming a continuous elliptical joint distribution for

the parameters and errors of the model.

The linear dynamic model was developed from the Bayesian viewpoint by

Harrison and Stevens (1976) by making use of the normal distribution, but there

are many situations where the assumption of normality is not realist, thought

the hypothesis of symmetry is adequate. So, several distributions have been em-

ployed in this sense with further developments that include mixtures of normal

distributions (Girón et al. (1989)) and t distributions (Meinhold and Singpurwalla

(1989)). The general elliptical distribution was first used by Chu (1973) and this

model was later developed by Girón and Rojano (1994) within the framework of

the Bayesian analysis.

Here, we use continuous elliptical distributions and, particularly, the exponen-

tial power distribution. Continuous elliptical distributions exhibit a broad range

of symmetrical forms and the exponential power family, as a particular case of

these, includes all the most important distributions, as the normal, the multivari-

ate double exponential and the multivariate uniform distributions. These families

contains distributions with higher or lower tails than the normal one and, besides,

allows to test the normality of the errors and to deal even with models in which

the normality is not acceptable.

So, we extend the linear dynamic models by using elliptical and, in particular,

exponential power distributions, and thus replacing the independence assumption

with the weaker assumption of uncorrelation. We take an absolutely continuous

elliptical prior and show that the posterior is of the same kind and determine its
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parameters. We also establish the updated distribution and probabilistic charac-

teristics of the current and future vectors of state and observations. We study in

particular the models with a multidimensional exponential power initial distribu-

tion as an intermediate case, more general than the normal case but less than the

elliptical one.

Throughout this paper properties of the absolutely continuous elliptical dis-

tribution and the multidimensional exponential power distribution are used. For

a general exposition of the elliptical distributions, including the non-continuous

ones, see Fang and Zang (1990) and Cambanis et al. (1981). For the multidimen-

sional exponential power distribution see Gómez et al. (1998). The exponential

power distribution is a particular case of the Kotz’ type distributions (see Section

3.2 of Fang, Kotz and Ng (1990)).

The elliptical model can be used as an instrument to see the suitability of the

normal model. It is possible to fix a number of stages and apply the elliptical

model taking as functional parameter the corresponding to the normal model,

and finally see the obtained posterior distributions. If these distributions are far

from normality we continue applying the elliptical model. By the opposite, if the

posterior distributions are close to the normal distribution, the normal model can

be systematically used and the elliptical one rejected.

In Section 2 continuous elliptical model is defined. In Section 3 it is shown

that the updated distribution remains being continuous elliptical and so the model

is permanent over time. In Sections 4 and 5 the updated characteristics of the

current and future states and observations are given. In Section 6 the model with

a multidimensional exponential power initial distribution is developed. Finally, in

Section 7 an application of the model to a pair of economic variables is studied.

5



2. Definition of continuous elliptical model

The linear dynamic model is characterized by the next two relations, called ob-

servation equation and state equation, for t = 1, ..., n:

Yt = F 0
tθt + vt,

θt = Gtθt−1 + wt,

where, for each t, θt is r-dimensional vectors of state and Yt is s-dimensional

vectors of observations; vt and wt are vectors of errors with s and r dimensions

respectively; Ft is a fixed r× s matrix of regressors and Gt is a fixed r× r matrix

relating two consecutive states. A detailed interpretation of the linear dynamic

model can be found, for example, in West and Harrison (1997).

For each t = 1, ..., n we denote Yt = (Y
0
1 , ..., Y

0
t )
0 , the vector of past observa-

tions, whose dimension is st, the scalar dt = r+(n−t)(r+s) and the current global
vector Ht =

¡
θ0t, v

0
t+1, w

0
t+1, ..., v

0
n, w

0
n

¢0
, whose dimension is dt.We denote, in gen-

eral, X ∼ En (µ,Σ, g) if a n-dimensional vector X has the absolutely continuous

elliptical distribution with parameters µ, Σ, g as defined in Johnson (1987).

Definition 2.1. (Elliptical Linear Dynamic Model). The continuous ellip-

tical linear dynamic model is defined as a linear dynamic model where the initial

global vector H0 = (θ
0
0, v

0
1, w

0
1, ..., v

0
n, w

0
n)
0
, whose dimension is d0 = r + n(r + s),

has an absolutely continuous elliptical distribution:

H0 ∼ Ed0

¡
µH0 ,Σ

H
0 , g

H
0

¢
, (2.1)

where µH0 =
³
m0
0,0

0
(d0−r)×1

´0
, with m0 ∈ Rr; ΣH

0 is a block-diagonal matrix whose

diagonal components are symmetrical positive definite matrices C0, V1, W1, . . . ,

Vn, Wn, of r, s, r, ..., s, r orders respectively; gH0 is a non negative measurable

Lebesgue function such
R∞
0

t
d0
2
−1gH0 (t)dt <∞.
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The elliptical model is clearly a generalization of the usual normal model,

which is obtained from the former by taking gH0 (z) = exp
©−1

2
z
ª
.

In order to apply the elliptical model to a process with an indefinite number

of stages it is possible to use first the model for a large number n of stages and,

after that, to use it again for another block of n stages, and so on. In this way we

can utilize the information yielded by each block of n stages to adjust the initial

distribution of the next block.

3. Permanence of the model over time

In this section we show the permanence over time of the continuous elliptical

linear dynamic model. The updated distribution of the current global model Ht

conditional to Yt remains being continuous elliptical as it was the initial global

vector H0; then, this model behaves as the usual normal model in the sense of the

maintenance of the initial distribution. We obtain a theorem about the updated

distribution of the current global vector.

We will use the next statement, which is a special case of Lemma 1.3 of Fang,

Kotz and Ng (1990): If a > 0, b > 0, t ≥ 0 and g is a non-negative measurable

function defined in [0,∞), thenZ ∞

0

Z ∞

0

xa−1yb−1g(t+ x+ y)dxdy = Beta(a, b)

Z ∞

0

xa+b−1g(t+ x)dx. (3.1)

Theorem 3.1. (Conditional distribution of the current global vector).

For each t = 1, ..., n and each possible value yt = (y01, ..., y
0
t)
0 of Yt, the conditional

distribution of Ht when Yt = yt is

(Ht | Yt = yt) ∼ Edt

¡
µHt ,Σ

H
t , g

H
t

¢
, (3.2)
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where µHt =
³
m0

t, 0
0
(dt−r)×1

´0
; ΣH

t is a block-diagonal matrix whose diagonal com-

ponents are the matrices Ct, Vt+1,Wt+1, . . . , Vn,Wn; and gHt is expressed as

gHt (z) =

Z ∞

0

w
rt
2
−1gH0 (z + qt + w) dw, (3.3)

where mt, Ct and qt are defined as

mt = Gtmt−1 +RtFtQ
−1
t e0t,

Ct = Rt −RtFtQ
−1
t F 0

tRt,

qt = qt−1 + e0tQ
−1
t et,

with

Rt = GtCt−1G0
t +Wt,

Qt = F 0
tRtFt + Vt,

et = yt − F 0
tGtmt−1

and q0 = 0.

Proof. For each t = 0, 1, ..., n let Yt = (Y
0
0 ,Y

0
t)
0 = (Y 0

0 , Y
0
1 , ..., Y

0
t )
0 , where Y0 is

an arbitrary random vector independent of all the vectors appearing in the linear

dynamic model. Then (3.2) is equivalent to¡
Ht | Yt = yt

¢ ∼ Edt

¡
µHt ,Σ

H
t , g

H
t

¢
, (3.4)

for each t = 1, ..., n, where y0t = (y
0
0,y

0
t)
0 = (y00, y

0
1, ..., y

0
t)
0 , and y0 is an arbitrary

possible value of Y0.

For t = 0 in (3.4), the expression becomes clearly true. Let it now be true for

t− 1, that is, ¡
Ht−1 | Yt−1 = yt−1

¢ ∼ Edt−1
¡
µHt−1,Σ

H
t−1, g

H
t−1
¢
. (3.5)
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We have µ
Yt
Ht

¶
= AtHt−1, (3.6)

where At is the block matrix defined as

At =



F 0
tGt Is F 0

t 0 · · · 0 0
Gt 0 Ir 0 · · · 0 0
0 0 0 Is · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · Is 0
0 0 0 0 · · · 0 Ir


.

So (Y 0
t , H

0
t)
0 is an affine transformation ofHt−1. Then from (3.5) and (3.6) it follows

(see Marín (1998)) thatµµ
Yt
Ht

¶¯̄̄̄
Yt−1 = yt−1

¶
∼ Es+dt

¡
Atµ

H
t−1, AtΣ

H
t−1A

0
t, g

∗
t

¢
, (3.7)

with

g∗t (z) =
Z ∞

0

w
r
2
−1gHt−1(z + w)dw.

The distribution of Ht conditional to Yt = yt is the same as the distri-

bution of Ht in (3.7) conditional to Yt = yt. This distribution is (see Marín

(1998)) Edt

¡
µHt ,Σ

H
t , g

H
t

¢
, with µHt and ΣH

t as in (3.4) (and (3.2)) and gHt (z) =R∞
0

w
r
2
−1gHt−1

¡
z + e0tQ

−1
t et + w

¢
dw with Qt = F 0

tRtFt + Vt. The expression (3.3)

for gHt is easily obtained from the previous one by induction on t, starting from

t = 1 and making use of (3.1).

4. Updated distribution and characteristics of the current
vector of state

Theorem 4.1. (Updated distribution of the current vector of state).

With the same hypotheses and notations of theorem 3.1, for each t = 1, ..., n
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the conditional distribution of θt when Yt = yt is

(θt | Yt = yt) ∼ Er

¡
µθt ,Σ

θ
t , g

θ
t

¢
, (4.1)

where µθt = mt, Σ
θ
t = Ct and

gθt (z) =

Z ∞

0

w
dt+rt−r

2
−1gH0 (z + qt + w) dw. (4.2)

Proof. The conditional distribution of θt, obtained as the marginal distribution

of θt in (3.2), results to be the elliptical (4.1) with the above values for µθt and Σθ
t

and with gθt (z) =
R∞
0

w
dt−r
2
−1gHt (z + w) dw (see Marín (1998)). Expression (4.2)

is obtained from the previous one for gθt , by taking g
H
t as in (3.3) and making use

of (3.1).

In the next corollary we show some updated probabilistic characteristics of

the current vector of state. In the rest of this article we use the kurtosis measure

γ2 [X] defined by Mardia et al. (1979) as

γ2 [X] = E
h¡
(X −E [X])0 V ar [X]−1 (X − E [X])

¢2i
;

we shall also use the notations

φ (u) =

Z ∞

0

wugH0 (qt + w) dw,

τ (u) =

Z ∞

0

wu exp

½
−1
2
(qt + w)β

¾
dw.

Corollary 4.2. (Updated characteristics of the current vector of state).

With the same hypotheses and notations as in theorems 3.1 and 4.1, if we addi-

tionally suppose that Z ∞

0

z
d0+3
2 gH0 (z)dz <∞, (4.3)
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then, for each t = 1, ..., n, the mean vector, covariance matrix and kurtosis measure

of vector θt conditional to Yt = yt do exist and they are

E [θt | Yt = yt] = µθt , (4.4)

V ar [θt | Yt = yt] =
1

dt + rt

φ
¡
dt+rt
2

¢
φ
¡
dt+rt
2
− 1¢Σθ

t , (4.5)

γ2 [θt | Yt = yt] =
r (r + 2) (dt + rt)

dt + rt+ 2

φ
¡
dt+rt
2
− 1¢φ ¡dt+rt

2
+ 1
¢¡

φ
¡
dt+rt
2

¢¢2 . (4.6)

Proof. From the stochastic representation X d
= µ+A0RU (n) of a generic elliptical

vector X ∼ En (µ,Σ, g) (see Cambanis et al. (1981) and Marín (1998)), it can be

proved that E[X] = µ, V ar[X] = 1
n
E [R2]Σ and γ2[X] = n2 E[R4]

(E[R2])2
, the moments

of the modular variable R being E[Rj] =
R∞
0 z

n+j
2 −1g(z)dzR∞

0 z
n
2−1g(z)dz

.

Then, the moments E [Rj] , for j = 1, ..., 4, of the modular variable R of θt

conditional to Yt are

E
£
Rj
¤
=

R∞
0

v
r+j
2
−1gθt (v) dvR∞

0
v
r
2
−1gθt (v) dv

(4.7)

=

R∞
0

v
r+j
2
−1
³R∞

0
w

dt+rt−r
2

−1gH0 (z + qt + w) dw
´
dvR∞

0
v
r
2
−1
³R∞

0
w

dt+rt−r
2

−1gH0 (z + qt + w) dw
´
dv

(4.8)

=
Beta

¡
r+j
2
, dt+rt−r

2

¢
Beta

¡
r
2
, dt+rt−r

2

¢ R∞0 w
dt+rt+j

2
−1gH0 (qt + w) dwR∞

0
w

dt+rt
2
−1gH0 (qt + w) dw

, (4.9)

where (4.9) follows from (4.8) by (3.1). The integral in the numerator of (4.9)

is finite because of (4.3); therefore the moments do exist. And now expressions

(4.4), (4.5) and (4.6) follow immediately.
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5. Updated distributions and characteristics of future states
and observations

Theorem 5.1. (Updated distribution of future states and observations).

With the same hypotheses and notations as in theorems 3.1 and 4.1, for each

t = 1, ..., n− 1 and for each k = 1, ..., n− t the following statements hold.

(i) The distribution of θt+k conditional to Yt = yt is

(θt+k | Yt = yt) ∼ Er

¡
µθt,k,Σ

θ
t,k, g

θ
t,k

¢
, (5.1)

where µθt,k and Σθ
t,k are given by the recurrence

µθt,k = Gt+kµ
θ
t,k−1,

Σθ
t,k = Gt+kΣ

θ
t,k−1G

0
t+k +Wt+k,

with µθt,0 = mt, Σ
θ
t,0 = Ct, and

gθt,k(z) =

Z ∞

0

w
dt+rt−r

2
−1gH0 (z + qt + w)dw. (5.2)

(ii) The distribution of Yt+k conditional to Yt = yt is

(Yt+k | Yt = yt) ∼ Es

¡
µYt,k,Σ

Y
t,k, g

Y
t,k

¢
, (5.3)

where

µYt,k = F 0
t+kµ

θ
t,k,

ΣY
t,k = F 0

t+kΣ
θ
t,kFt+k + Vt+k,

gYt,k(z) =

Z ∞

0

w
dt+rt−s

2
−1gH0 (z + qt + w)dw. (5.4)

Proof. (i) For each t = 1, ..., n− 1 and each k = 1, ..., n− t it is

Ht+k = At+kHt+k−1, (5.5)
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where At+k is the block matrix defined as

At+k =


Gt+k 0 Ir 0 · · · 0 0
0 0 0 Is · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · Is 0
0 0 0 0 · · · 0 Ir

 .

Now starting from (3.2) it is easily proved by induction on k that for k = 1, ..., n−t
it is

(Ht+k | Yt = yt) ∼ Edt+k

¡
µHt,k,Σ

H
t,k, g

H
t,k

¢
(5.6)

where µHt,k =
³¡
µθt,k
¢0
,
¡
0(dt+k−r)×1

¢0´0
; ΣH

t,k is the block-diagonal matrix whose

diagonal components are Σθ
t,k, Vt+k+1,Wt+k+1, ..., Vn,Wn; and

gHt,k(z) =

Z ∞

0

w
r+s
2
−1gHt,k−1(z + w)dw,

with gHt,0(z) = gHt (z).

The distribution of (θt+k|Yt = yt) is the corresponding marginal in (5.6); this

is elliptical (see Marín (1998)) with µθt,k and Σ
θ
t,k as location and scale parameters.

On the other hand, θt+k is an affine transformation ofHt, because θt+k = CHt+k =

CAt+kAt+k−1...At+1Ht, where C is the block matrix C = (Ir 0r×(dt+k−r)). Therefore

(see Marín (1998)), its functional parameter is gθt,k(z) =
R∞
0

w
dt−r
2
−1gHt (z+w)dw;

by (3.1), this is equivalent to (5.2).

(ii) For each k = 1, ..., n− t we obtain that

Yt+k = Bt+kHt+k−1, (5.7)

where Bt+k is the block matrix Bt+k =
¡
F 0
t+kGt+k Is F 0

t+k 0s×(dt+k−r)
¢
.

Since the conditional distribution of Ht+k−1 is the elliptical one given by (5.6)

(or (3.2), if k = 1), the conditional distribution of Yt+k is elliptical, with location
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and scale parameters µYt,k and ΣY
t,k given by

µYt,k = Bt+kµ
H
t,k−1 = F 0

t+kGt+kµ
θ
t,k−1 = F 0

t+kµ
θ
t,k,

ΣY
t,k = Bt+kΣ

H
t,k−1B

0
t+k = F 0

t+k

¡
Gt+kΣ

θ
t,k−1G

0
t+k +Wt+k

¢
Ft+k + Vt+k

= F 0
t+kΣ

θ
t,kFt+k + Vt+k.

Now, Yt+k is an affine transformation of Ht (see (5.7) and (5.5)). Therefore, its

functional parameter is gYt,k(z) =
R∞
0

w
dt−s
2
−1gHt (z + w)dw and, by (3.1), this is

equivalent to (5.4).

Corollary 5.2. (Updated characteristics of future states and observa-

tions). With the same hypothesis and notations as in theorem 5.1, if we addi-

tionally suppose (4.3), then the following statements hold.

(i) The mean vector, covariance matrix and kurtosis measure of θt+k condi-

tional to Yt = yt do exist and are

E [θt+k | Yt = yt] = µθt,k,

V ar [θt+k | Yt = yt] =
1

dt + rt

φ
¡
dt+rt
2

¢
φ
¡
dt+rt
2
− 1¢Σθ

t,k,

γ2 [θt+k | Yt = yt] =
r (r + 2) (dt + rt)

dt + rt+ 2

φ
¡
dt+rt
2
+ 1
¢
φ
¡
dt+rt
2
− 1¢¡

φ
¡
dt+rt
2

¢¢2 .

(ii) The mean vector, covariance matrix and kurtosis measure of Yt+k condi-

tional to Yt = yt do exist and are

E [Yt+k | Yt = yt] = µYt,k,

V ar [Yt+k | Yt = yt] =
1

dt + rt

φ
¡
dt+rt
2

¢
φ
¡
dt+rt
2
− 1¢ΣY

t,k,

γ2 [Yt+k | Yt = yt] =
s (s+ 2) (dt + rt)

dt + rt+ 2

φ
¡
dt+rt
2
+ 1
¢
φ
¡
dt+rt
2
− 1¢¡

φ
¡
dt+rt
2

¢¢2 .

Proof. The proof is analogous to that of corollary 4.2.
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6. Models with a multidimensional exponential power ini-
tial distribution

In this section we consider the class of elliptical models, in which the distribution

of the global initial vector H0 is multidimensional exponential power (for this

distribution see Gómez et al. (1998)), that is, H0 ∼ PEd0

¡
µH0 ,Σ

H
0 , β

¢
for some

β ∈ (0,∞). This distribution is obtained from (2.1) by taking

gH0 (z) = exp

½
−1
2
zβ
¾
. (6.1)

So, this is an intermediate case, more general than the normal one but less than

the elliptical one.

In this case the updated distribution of the current global vector Ht is the

elliptical (3.2) where the functional parameter gHt is

gHt (z) =

Z ∞

0

w
rt
2
−1 exp

½
−1
2
(z + qt + w)β

¾
dw. (6.2)

Since this distribution is not exponential power, there does not exist a closed

“exponential power model”. Nevertheless, the form (6.2) of the parameter gHt is

very related to the form (6.1) of the parameter gH0 , it maintains the same β as

exponent, and, besides, it is relatively simple.

The updated distribution of θt, θt+k and Yt+k, the current and future vectors

of state and observations, are the elliptical ones (4.1), (5.1) and (5.3), where the

functional parameters gθt , g
θ
t+k and gYt+k are

gθt (z) =

Z ∞

0

w
dt+rt−r

2
−1 exp

½
−1
2
(z + qt + w)β

¾
dw;

gθt,k(z) =

Z ∞

0

w
dt+rt−r

2
−1 exp

½
−1
2
(z + qt + w)β

¾
dw;

gYt,k(z) =

Z ∞

0

w
dt+rt−s

2
−1 exp

½
−1
2
(z + qt + w)β

¾
dw. (6.3)
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As for the updated probabilistic characteristics of the above vectors, they result

to be simple operations among integrals of the same form as those of (6.2) to (6.3)

and can be calculated by numerical integration. This characteristics are as follows.

The covariance matrix and the kurtosis measure of θt are

V ar [θt | Yt = yt] =
1

dt + rt

τ
¡
dt+rt
2

¢
τ
¡
dt+rt
2
− 1¢Σθ

t ,

γ2 [θt | Yt = yt] =
r (r + 2) (dt + rt)

dt + rt+ 2

τ
¡
dt+rt
2
− 1¢ τ ¡dt+rt

2
+ 1
¢¡

τ
¡
dt+rt
2

¢¢2 .

For the future vectors of state we obtain

V ar [θt+k | Yt = yt] =
1

dt + rt

τ
¡
dt+rt
2

¢
τ
¡
dt+rt
2
− 1¢Σθ

t,k,

γ2 [θt+k | Yt = yt] =
r (r + 2) (dt + rt)

dt + rt+ 2

τ
¡
dt+rt
2
+ 1
¢
τ
¡
dt+rt
2
− 1¢¡

τ
¡
dt+rt
2

¢¢2 .

And for the future observations we have

V ar [Yt+k | Yt = yt] =
1

dt + rt

τ
¡
dt+rt
2

¢
τ
¡
dt+rt
2
− 1¢ΣY

t,k,

γ2 [Yt+k | Yt = yt] =
s (s+ 2) (dt + rt)

dt + rt+ 2

τ
¡
dt+rt
2
+ 1
¢
τ
¡
dt+rt
2
− 1¢¡

τ
¡
dt+rt
2

¢¢2 .

The updated distribution ofHt, θt, θt+k and Yt+k are all of the formEd(µ,Σ, g),

where the functional parameter g is of the form

g(z) =

Z ∞

0

w
m
2
−1 exp

½
−1
2
(z + q + w)β

¾
dw,

where m is natural, q ≥ 0 and β ∈ (0,∞). This functional parameter is simi-
lar, both analytically and graphically, to the parameter g(z) = exp

©−1
2
zβ
ª
of

the exponential power distribution. This suggests that an exponential power dis-

tribution will be simplifying and fitted enough; and, on the other hand, it will
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give some “closedness” to the exponential power model. So, we now consider the

problem of finding the exponential power distribution PEd (µ
∗,Σ∗, β∗) which is in

some sense the closest one to the elliptical distribution Ed(µ,Σ, g).

As an easy to implement method to approach this problem we suggest the

usual method of the moments. This leads to choose the values of µ∗, Σ∗ and β∗

which solve the system of equationsµ∗ = E;
2

1
β∗Γ

³
d+2
2β∗

´
dΓ
³

d
2β∗

´ Σ∗ = V ar; d2
Γ
³
d+4
2β∗

´
Γ
³

d
2β∗

´
³
Γ
³
d+2
2β∗

´´2 = γ2

 ,

where E, V ar and γ2 are the mean vector, covariance matrix and kurtosis measure

of the distribution Ed(µ,Σ, g). The first member of the third equation is a strictly

decreasing function of β∗, therefore there is only a solution for β∗, and this value

can be easily calculated numerically: the values of µ∗ and Σ∗ are straightforward.

7. Example

We show an application of a linear dynamic model, as described in definition

2.1, with a exponential power distribution for vector H0, to the pair of quantities

activity ratio (Yt) and unemployment ratio (xt) in the Community of Valencia

(Spain).

We suppose that a linear relation between activity ratio and unemployment

ratio exists such that the intercept and the slope can vary along the time (it is

equivalent to the variation of θt). So, we take F 0
t = (1, xt) in order to include

an independent term. We suppose that errors are uncorrelated among them and

that they follow a symmetrical distribution, so we modelize them by a exponential

power distribution that includes a wide range of symmetrical distributions.
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We had 23 pairs (yt, xt) of quarterly observations ranging from 1983 to 1988

available. This observations were contributed by J. M. Bernardo and are shown

in Girón et al. (1989). We used the seven first pairs to adjust the model and the

others to test the model.

First we made Gt = I because there are no reasons to assume a system-

atic trend in the evolution of θt. We adjusted the rest of the model by set-

ting its initial parameters in a non formal way, based on the regression line

between Yt and xt and on the simulation of a sequence of values of θt from con-

secutive pairs (xt, yt) , (xt+1, yt+1) . This lead us to employ m0 =

µ
50.78
−0.10

¶
,

C0 =

µ
780.73 −41.59
−41.59 2.22

¶
, β = 2.00; Vt = 0.26 and Wt =

µ
0.35 0
0 1.19

¶
.

Then we calculated the updated distribution of θt and the updated character-

istics of Yt. Table 1 shows the mean vector, the covariance matrix of θt as well as

the value β∗ of the closest exponential power distribution (in the sense of section

6) to the elliptical distribution obtained for θt.
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Table 1. Updated Distribution of θt

t Mean Covariance m. β∗ t Mean Covariance m. β∗

8 14.85 61.00 -2.89 1.03 16 19.23 81.05 -4.30 1.05
1.86 -2.89 1.37 1.56 -4.19 0.23

9 21.53 75.02 -3.51 1.04 17 19.67 82.09 -4.19 1.05
1.28 -3.51 0.16 1.51 -4.19 0.21

10 20.52 77.64 -3.81 1.05 18 19.82 83.14 -4.19 1.05
1.38 -3.81 1.87 1.55 -4.19 0.21

11 21.77 78.10 -3.62 1.04 19 18.86 82.99 -4.53 1.05
1.24 -3.62 0.17 1.72 -4.53 0.25

12 20.32 77.96 -3.94 1.04 20 18.31 84.44 -4.61 1.05
1.42 -3.94 0.20 1.78 -4.61 0.25

13 19.81 79.13 -3.99 1.05 21 18.01 85.55 -4.76 1.06
1.46 -3.99 0.20 1.83 -4.76 0.27

14 19.50 80.02 -4.11 1.05 22 18.10 86.79 -4.80 1.06
1.49 -4.11 0.21 1.82 -4.80 0.27

15 20.21 80.81 -4.02 1.05 23 17.36 86.95 -5.14 1.06
1.40 -4.02 0.20 1.98 -5.14 0.30

It can be observed that the independent term is more meaningful that the

slope and it is noticed that the covariance between them is negative: when the

one increases the other diminishes. The parameter β∗ is slightly greater than 1,

therefore the distribution is almost normal, though there is a little trend towards

more platykurtic distributions.

Table 2 shows, the updated mean and standard deviation of Yt, as well as the

prediction error (the difference between the mean and the real observation) and

the standard error (the ratio between the error and the standard deviation).

Table 2. Updated Characteristics of Yt

19



t Mean S. D. Error S. E. t Mean S. D. Error S. E.
8 48.75 1.46 -5.39 -3.70 16 46.65 0.61 2.03 3.33
9 54.53 0.22 -5.68 -25.76 17 49.84 0.43 -0.50 -1.15
10 47.59 0.46 0.96 2.10 18 49.67 0.26 0.79 3.01
11 50.17 0.56 -1.72 -3.06 19 48.13 0.73 2.31 3.16
12 46.27 0.76 2.06 2.73 20 50.42 0.24 0.41 1.69
13 48.36 0.23 0.31 1.35 21 50.23 0.30 0.70 2.38
14 48.19 0.28 0.38 1.38 22 51.17 0.26 -0.20 -0.77
15 49.53 0.38 -1.11 -2.94 23 48.83 0.65 1.97 3.02

The errors have no trend and the standard errors are a little large; it may

suggest that the value 0.26 chosen for Vt is too small. Nevertheless, the obtained

results show that the exponential power model provides good predictions and

that the distributions obtained in each time are a little more platykurtic than the

normal, so the adjusted model is different to the standard normal one.
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