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RESUMEN 

Introducción 

Las inmunodeficiencias primarias (IDP) son trastornos genéticos que ocasionan 

disfunción del sistema inmune y predisposición a infecciones. Las tecnologías de 

secuenciación de nueva generación han recientemente revolucionado el campo de las 

IDPs, identificando sus bases moleculares y orientando el diseño de nuevos 

tratamientos. De igual forma, el estudio de IDP monogénicas ha ayudado a descifrar el 

funcionamiento del sistema inmunológico, teniendo gran impacto en las áreas de 

autoinmunidad y cáncer.  

 

Mediante el uso de secuenciación de nueva generación, nuestro grupo ha recientemente  

identificado una nueva IDP asociada a mutaciones hipomórficas con pérdida de función 

de la proteína de señalización Janus Associated Kinase 1 (JAK1). Las manifestaciones 

clínicas del paciente se caracterizaron por la presencia de infecciones recurrentes por 

micobacterias atípicas y carcinoma transicional de vejiga de alto grado, que ocasionó el 

fallecimiento del paciente durante la tercera década de vida.   

 

JAK1 pertenece a una familia de tirosín quinasas esenciales para la transducción de 

señal a través de varios grupos de receptores de citoquinas, donde miembros de la 

familia JAK (JAK1, JAK2, JAK3 y TYK2) se asocian a receptores específicos con 

funciones no redundantes a nivel celular. La unión al receptor inicia la actividad quinasa 

de JAK que resulta en el reclutamiento y fosforilación de transductores de señal 
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y activadores de la transcripción (STAT), con la consiguiente inducción de expresión de 

genes específicos. Gracias al estudio de IDPs en modelos animales y en humanos se ha 

podido descifrar el rol de los diferentes miembros de la familia JAK.  

 

La deficiencia de JAK1 no ha sido descrita previamente en humanos y los modelos en 

ratón han proporcionado poca información debido a la mortalidad perinatal por 

complicaciones neurológicas. Se conoce que JAK1 coopera con JAK3 en la 

transducción de receptores de citoquinas (IL-2, IL-4, IL-6, IL-7, IL-9, IL-15 e IL-21), y 

coopera con JAK2 y TYK2 en la señalización del IFNγR e IFNαR respectivamente, 

pudiendo desempeñar un importante rol en la defensa frente micobacterias y virus. 

 

La susceptibilidad mendeliana a infecciones por micobacterias (MSMD) constituye un 

heterogéneo grupo de IDPs caracterizado por la predisposición a infecciones por 

micobacterias atípicas o de poca virulencia como la vacuna Micobacterium bovis 

Bacillus Calmette-Guerin (BCG). Se han descrito mutaciones en los genes IFNGR1, 

IFNGR2, IL12B, IL12RB1, STAT1, ISG15, IRF8, IKBKG, CYBB, NEMO, TYK2, 

RORc/RORcT, SPPL2A y JAK1, asociadas a MSMD. Se ha observado que dichas 

mutaciones afectan a la producción o la respuesta al  IFNγ, directa o indirectamente, 

indicando que la integridad de la vía del IFNγ/IL-12 es importante para el control de la 

infección de microorganismos intracelulares como micobacterias. Sin embargo, aún no 

se ha podido identificar la etiología de un considerable número de pacientes. 
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El IFNα/β es esencial para el desarrollo de inmunidad anti-viral en humanos, a través de 

la vía de señalización JAK/STAT. En vista del rol de JAK1 en esta vía de señalización, 

resulta sorprendente que el paciente mostrara relativamente escasa susceptibilidad frente 

a virus. La susceptibilidad a infecciones virales ha sido previamente observada en 

defectos de la vía de señalización del IFNα/β, como son la deficiencia de IFNAR, 

STAT1, TYK2 y STAT2.  

 

Hasta la fecha no se han descrito otros casos de carcinoma uroterial en pacientes con  

IDP asociada a defectos de la vía JAK1/STAT. Sin embargo se han reportado otros 

tipos de tumores en pacientes con defectos de la vía de señalización del IFNγ, 

incluyendo carcinoma cutáneo de células escamosas diseminado. Recientemente se ha 

asociado la presencia de mutaciones somáticas en el gen JAK1 en algunos tipos de 

cáncer ginecológico y de vejiga, sugiriendo que defectos en la vía JAK1/STAT podría 

jugar algún rol en la patogénesis de cánceres epiteliales. En tal sentido, se postuló que 

defectos de la vía de señalización del IFNγ podría afectar funciones en las células 

uroteliales y en el desarrollo de mecanismos de evasión inmune tumoral.  

 

El receptor de peroxisoma-proliferador-activado gamma (PPARγ) es un factor de 

transcripción implicado en mecanismos de diferenciación en células uroteliales. Se ha 

descrito que PPARγ opera mediante la inducción de transcripción de los factores de 

transcripción intermediarios FOXA1 e IRF1. IRF1 es miembro de la familia de factores 

de transcripción reguladora del IFN, pudiendo proporcionar un enlace entre la 

señalización de JAK1 y la función de las células uroteliales. 
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El propósito del proyecto consiste en determinar cómo la deficiencia de JAK1 conlleva 

el deterioro de la función de las células inmunes en humanos, abordando 

específicamente las funciones de JAK1 en la protección frente a micobacterias y virus, 

así como en la patogénesis del cáncer urotelial. 

 

Materiales y métodos 

A fin de investigar el rol de JAK1 durante la infección por micobacterias en células 

mieloides, se modeló la deficiencia de JAK1 en células THP1  mediante la utilización 

de vectores lentivirales que expresan secuencias de shRNA. Se analizó la capacidad de 

fibroblastos y células B inmortalizadas del paciente con deficiencia de JAK1, de 

desarrollar una respuesta anti-viral in vitro con cepas de virus  parainfluenza 5 (PIV5), 

cepas atenuadas de PIV5 (PIV5VΔC) y virus de la estomatitis vesicular (VSV). A fin de 

investigar si la deficiencia de JAK1 podría promover el desarrollo de carcinoma 

urotelial mediante la afectación  de diferentes mecanismos de evasión inmune tumoral. 

Se generó una línea celular urotelial hTERT con deficiencia de JAK1 mediante técnicas 

de shRNA. Además se investigó la expresión de factores de transcripción implicados en 

la diferenciación de células uroteliales  humanas. 

 

Resultados y discusión: 

Se observó una reducción significativa en la fosforilación de STAT1 en las líneas 

celulares con deficiencia de  JAK1 posterior a la estimulación con IFNγ, así como 
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menor inducción de la expresión de genes regulados por el IFNγ, demostrando 

disminución de la función de JAK1. 

 

Mediante el uso de modelos de infección in vitro con BCG, se observó un incremento 

en la supervivencia micobacteriana posterior a la estimulación con IFNγ, en las células 

con deficiencia de JAK1 en comparación con el control, lo que se correlaciona con el 

fenotipo clínico del paciente. Los macrófagos activados por IFNγ son más resistentes a 

la infección por micobacterias mediante mecanismos de eliminación bacteriana como la 

inducción de apoptosis y maduración de fagosomas, los cuales se encontraron reducidos 

en la línea celular knock down (KD) posterior a la estimulación con IFNγ. 

 

Se observó una respuesta anti-viral conservada posterior a la estimulación con IFNα 

tanto en fibroblastos del paciente con deficiencia de JAK1 como en el control. Estos 

resultados son consistentes con la ausencia de infecciones virales clínicamente graves 

en nuestro paciente, sugiriendo que la actividad residual de JAK1 podría ser suficiente 

para el control de la replicación viral. Sin embargo, células B inmortalizadas del 

paciente con deficiencia de JAK1 mostraron falta de protección posterior a la 

estimulación con IFNα, estableciendo un defecto en la respuesta al IFN tipo I, que varía 

entre diferentes tipos celulares. 

 

En vista de que el paciente fue diagnosticado de carcinoma metastásico de vejiga a 

temprana edad, se postuló que la deficiencia de JAK1 podría predisponer al desarrollo 
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de carcinoma urotelial mediante la afectación de mecanismos de evasión inmune 

tumoral. Mediante la utilización de un modelo de células uroteliales  con deficiencia de 

JAK1, se observó que la pérdida de la función de JAK1 afecta la inducción de apoptosis 

en respuesta al IFNγ. Las células KD también demostraron disminución en los niveles 

de expresión de la molécula de adhesión intracelular ICAM-1 en la superficie celular y, 

en menor medida, el complejo mayor de histocompatibilidad (MHC) I, posterior a  la 

estimulación con IFNγ. Estos hallazgos se asociaron con resistencia a la lisis celular 

mediada por linfocitos, que es dependiente de la expresión de estas moléculas. Además 

se observó el requerimiento de JAK1 en la expresión de MHC II, involucrado en la 

presentación de antígenos tumorales. Estos hallazgos  sugieren que las células 

uroteliales con deficiencia de JAK1 son más resistentes a la inducción de apoptosis 

mediada por IFNγ, al reconocimiento por parte de células del sistema inmune y muerte 

celular.  

 

Las células KD demostraron disminución en los niveles de expresión del ligando 1 de 

muerte programada (PD-L1). Se ha reportado que mutaciones somáticas en la vía de 

señalización de IFNγ están asociadas con metástasis y una mayor resistencia a 

tratamientos bloqueantes anti-PD-L1/ PD-1 en varios tipos de tumores. Consistente con 

esto, nuestros hallazgos sugieren que mutaciones asociadas a la pérdida de la función de 

JAK1 constituyen un factor de riesgo para la menor expresión PD-L1 en células 

uroteliales tumorales, lo que podría interferir con la capacidad de respuesta al 

tratamiento con anti-PD-1. 
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Además de las funciones relacionadas con el sistema inmunitario, se observó un papel 

potencial de JAK1 en el proceso de diferenciación de células uroteliales. La 

estimulación con IFNγ mostró un efecto significativo en la inducción de los factores de 

transcripción IRF1 y FOXA1 en células uroteliales humanas. Dichos factores  se han 

asociado al proceso de diferenciación de células uroteliales dependiente de la activación 

de PPARγ. En particular, IRF1 representa un mediador común  para las vías de 

señalización de PPARγ e IFNγ, pudiendo afectar tanto en el fenotipo de diferenciación 

urotelial como las interacciones  con el sistema inmunitario. 

 

Conclusión 

Estos hallazgos sugieren que la deficiencia parcial de JAK1 puede afectar diferentes 

vías de señalización, presentando un defecto dominante en la vía del IFNγ que resulta 

en susceptibilidad a infecciones por micobacterias.  A pesar de evidenciar 

susceptibilidad frente a virus in vitro, ésta se presentó de forma variable dependiendo 

del tipo celular. Los hallazgos además  resaltan funciones previamente desconocidas de 

JAK1 en el reconocimiento inmune y el proceso de diferenciación de las células 

uroteliales, proporcionando una plataforma para el desarrollo de nuevos biomarcadores 

y tratamientos dirigidos para el carcinoma urotelial. 
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SUMMARY 

Primary immunodeficiencies (PIDs) are genetic disorders where components of the 

immune system are missing, predisposing to infection, autoimmunity and malignancy. 

Next generation genetic sequencing (NGS) has revolutionised the field of PIDs, 

identifying the molecular basis of inherited immune disorders. Using NGS, we recently 

reported the first description of hypomorphic loss of function mutations in human Janus 

Kinase 1 (JAK1) in a patient with recurrent atypical mycobacterial infections, early 

onset fatal high-grade urothelial carcinoma, and relatively minor viral infections. 

 

JAK1 belongs to a family of widely expressed tyrosine kinases essential for signal 

transduction through different cytokine receptors. Individual family members (JAK1, 

JAK2, JAK3 and TYK2) have non-redundant roles in cell biology. Receptor binding 

initiates JAK kinase activity resulting in recruitment of signal transducers and activators 

of transcription (STAT) proteins and transcription of responsive genes. The roles of 

several members of the JAK family for immune cell function have been clarified 

through investigation of human deficiency states and murine models. 

 

Selective susceptibility to weakly virulent mycobacteria, such as Mycobacterium bovis 

Bacillus Calmette-Guerin vaccine (BCG) or environmental mycobacteria species, is a 

genetically heterogeneous group of rare PIDs associated with mutations in the genes 

IFNGR1, IFNGR2, IL12B, IL12RB1, STAT1, ISG15, IRF8, IKBKG, CYBB, NEMO, 

TYK2,RORc/RORcT, SPPL2A and JAK1 that have been shown to cause mendelian 

susceptibility to mycobacterial disease (MSMD). These mutations impair the production 
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of or the response to interferon-gamma (IFNγ), indicating that human IL-12/IFNγ 

mediated immunity, is essential to control intramacrophagic infections, such as 

mycobacteria. However, no clear genetic etiology has been identified for a number of 

patients. 

 

IFNα/β is essential for the protective immunity to viruses in humans via JAK/STAT 

signalling. Susceptibility to viral infection has been observed in genetic defects of the 

IFNα/β signalling pathway (IFNAR, STAT1, TYK2 and STAT2). Given the reported 

role of JAK1 in signalling from IFNαR, it is surprising that our patient had relatively 

little susceptibility to viral infection.  

 

To date, urothelial carcinoma has not been described as a feature of JAK-STAT 

pathway PIDs. However, other tumours have been reported in patients with defects in 

the IFNγ pathway, including cutaneous squamous cell carcinoma. Recently, somatic 

mutations in JAK1 were seen in high-risk bladder cancer and gynaecological 

carcinomas, supporting the idea that defective JAK1 signalling could play a role in the 

pathogenesis of some epithelial cancers. We hypothesised that reduced IFNγ signalling 

may intrinsically impair urothelial cell functions and tumour immune 

evasionmechanisms. Peroxisome proliferator activated receptor gamma (PPARγ) is a 

transcription factor implicated in urothelial cell differentiation that operates by 

transcription of the intermediary transcription factors FOXA1 and IRF1. IRF1 is a 

member of the interferon regulatory transcription factor family that is responsive to 
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IFNγ stimulation and could provide a link between JAK1 signalling and urothelial cell 

function. 

 

This project aimed to understand the disease mechanisms of JAK1 deficiency and 

specifically address the roles of JAK1 in host protection from intracellular bacterial, 

viral infections and the pathogenesis of bladder cancer. 

 

Materials and methods 

We investigated the role of JAK1 in myeloid cells during mycobacterial infection using 

a JAK1 deficient THP1 cell line generated using lentiviral vectors expressing short 

hairpin RNA (shRNA) sequences. We studied the ability of skin fibroblasts and EBV B 

cells from the patient with JAK1 deficiency to develop antiviral response in vitro, using 

parainfluenza virus 5 (PIV5), a highly attenuated recombinant strain of PIV5 

(PIV5VΔC) and vesicular stomatitis virus (VSV). In order to investigate if JAK1 

deficiency may promote urothelial carcinoma affecting different tumour immune 

evasion mechanisms, we generated a JAK1 deficient hTERT urothelial cell line using 

shRNA. We also investigated the expression of transcription factors involved in 

urothelial cell differentiation in normal human urothelial cells (NHU). 

 

Results and discussion 

JAK1 deficient cells exhibit reduced STAT1 phosphorylation following IFNγ 

stimulation and reduced induction of expression of interferon-regulated genes, 
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demonstrating loss of JAK1 function. Using in vitro infection models with BCG and 

salmonella, JAK1-deficient THP1 cells supported enhanced bacterial survival after 

IFNγ stimulation compared to control. IFNγ-activated macrophages were more resistant 

to mycobacterial infection by the induction of different mechanisms that promote 

mycobacterial killing, such as expression of IFNγ inducible genes (IRF1 and CIITA), 

phagosome maturation and apoptosis, which were found to be reduced in the knock 

down (KD) cell line after IFNγ stimulation.   

 

Given the reported role of JAK1 in signalling from IFNαR, we studied the ability of 

skin fibroblasts to develop antiviral response in vitro. We observed suppression of viral 

infection after IFNα stimulation in both patient and control fibroblasts. These results are 

consistent with the lack of clinically severe viral infections in our patient, suggesting 

that residual JAK1 activity may be sufficient to develop antiviral immunity.  However, 

the patient’s EBV-B cells showed lack of protection after stimulation with IFNα, 

establishing a failure of the type I IFN response that varies between cell types.  

 

Considering that our patient presented metastatic bladder carcinoma at an early age, we 

postulated that JAK1 deficiency may also promote urothelial carcinoma affecting 

tumour immune evasion. Using a JAK1-deficient urothelial cell model, we observed 

that loss of JAK1 function impaired induction of apoptosis in response to IFNγ. KD 

cells also demonstrated reduced surface expression levels of ICAM-1 and to a lesser 

extent MHC class I following IFNγ stimulation, which was associated with resistance to 

lymphocyte-mediated cell lysis that is known to correlate with cell surface expression of 

these molecules. JAK1 was also required for expression of MHC class II that mediates 
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tumour and self-antigen presentation in non-professional antigen presenting cells. 

Together these data suggest that JAK-deficient urothelial cells are less susceptible to 

IFNγ-mediated apoptosis, immune cell recognition and immune-mediated cell death. It 

has been reported that damaging mutations in the IFNγ signalling pathway are 

associated with metastasis and higher resistance to the checkpoint blocking therapy with 

anti-programmed death-ligand 1 / programmed death-ligand 1 (PD-L1/PD-1) in a 

number of tumour types. Our data suggest loss of function JAK1 mutations are a risk 

factor for lower tumour cell PD-L1 expression in urothelial cells, which could impair 

responsiveness to anti-PD-1 therapy. 

 

In addition to immune-related functions, we observed a potential role for JAK1 and 

IFNγ signalling in urothelial cell differentiation. We showed that IFNγ had a significant 

effect on the induction of the transcription factors IRF1 and FOXA1 in NHU, both 

known to be involved in urothelial cell differentiation induced by PPARγ activation. In 

particular, IRF1 is a common downstream mediator for PPARγ and IFNγ signalling 

pathways influencing both urothelial differentiated phenotype and immune cell 

interactions.  

 

Conclusion 

These findings suggest that the predominant effect of partial JAK1 deficiency is on the 

IFNγ pathway resulting in mycobacterial susceptibility. Although viral susceptibility 

was also observed in vitro, this varied according to cell type. The findings also highlight 

previously unknown roles for JAK1 in urothelial cell immune recognition and 
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differentiation, providing a platform for further development of novel biomarkers and 

targeted therapy for urothelial carcinoma. 
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INTRODUCTION 

1. Primary immunodeficiency diseases  

Primary immunodeficiencies (PID) are inherited disorders where components of the 

immune system are missing, predisposing to infection, autoimmunity and malignancy. 

Next generation sequencing (NGS) has allowed the identification of new monogenic 

forms of PID and around 320 different gene defects in humans has been described (1). 

Most of PIDs present with increased susceptibility to infection that could be restricted to 

a certain pathogen (e.g. Candida sp, Mycobacterium sp, etc) or extend to various 

pathogens. Nevertheless, with the increasing number of identified PIDs and better 

management of the infectious complications, many PIDs have been associated with 

additional clinical presentations such as autoimmunity and malignancy. 

 

The classification of PIDs is constantly revised and updated by international societies’ 

expert committees. In the last update, PIDs were classified into nine major categories on 

the basis of the affected immunological compartment: immunodeficiencies affecting 

cellular and humoral immunity, combined immunodeficiencies (CID) with syndromic 

features, antibody deficiencies, diseases of immune dysregulation, defects of the innate 

immunity, defects of phagocytes, auto-inflammatory disorders, defects of the 

complement system, among others (1). 

 

We recently identified a new PID associated with compound heterozygous loss of 

function mutations in the signalling protein Janus-Associated Kinase 1 (JAK1) (2). This 

is the first reported case of human JAK1 deficiency.  The clinical phenotype was 
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characterized by recurrent atypical mycobacterial disease and aggressive urothelial 

carcinoma that was fatal in the third decade of life. Recurrent atypical mycobacterial 

disease was the dominant immunodeficiency phenotype, grouping JAK1 deficiency 

with other diverse genetic defects of the IFNγ pathway as a cause of mendelian 

susceptibility to mycobacterial disease (MSMD). 

 

In view of this, I specifically investigated the impact of partial JAK1-deficiency on 

interferon (IFN) signalling in immune cells in order to study the role of JAK1 on 

mycobacterial and viral susceptibility, and predisposition to bladder cancer. Subsequent 

sections will introduce the mechanisms and consequences of JAK/STAT signalling 

pathway in the immune system, with special emphasis on defects associated with 

MSMD, viral infection and malignancy.  

 

2. Responses to cytokines and interferons that depend upon JAKs and signal 

transducers and activators of transcription (STAT) proteins 

Cytokines have been found to play critical roles in cell growth and differentiation, 

metabolism, hematopoiesis, host defense, and immunoregulation. The type I and type II 

cytokine-receptor superfamily encompasses receptors that bind interferons, interleukins 

and colony-stimulating factors. These cytokines use the JAK/STAT pathway, which is 

recognized as an evolutionarily conserved signalling cascade involved in signalling and 

transcriptional regulation (3). The widely expressed JAK family of tyrosine kinases are 

essential for signal transduction through multiple cytokine receptors that signal through 

combinations of four JAKs (JAK1, JAK2, JAK3 and Tyrosine kinase 2 (TYK2)) and 
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seven STAT proteins (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and 

STAT6). 

 

JAKs bind cytosolic domains of the cytokine receptors and signalling through the 

JAK/STAT pathway is initiated when a cytokine binds to its corresponding receptor. 

This leads to conformational changes in the cytoplasmic portion of the receptor 

initiating the activation of JAKs, which phosphorylate each other as well as the 

intracellular tail of the receptor subunits, creating docking sites that recruit downstream 

signalling molecules. This results in recruitment and phosphorylation of STATs and 

transcription of STAT-responsive genes (4). Upon activation, STATs bind to 

phosphorylated cytokine receptors and undergo tyrosine phosphorylation, allowing 

them to dimerize and translocate to the nucleus. This promotes nuclear accumulation of 

the STATs, DNA binding and activation of gene transcription. Once activated, STATs 

play a critical role in regulating innate and acquired host immune responses (4). 

 

The JAK/STAT pathway regulates multiple cellular functions including growth, 

differentiation and homeostasis, although individual JAK/STAT molecules play specific 

roles in different cell types (3). JAK1 is involved in signalling by members of the IL-2 

receptor family (IL-2R, IL-7R, IL-9R and IL-15R), the IL-4 receptor family (IL-4R, IL-

13R), the gp130 receptor family (IL-6R, IL-11R, LIF-R, OSM-R CT-1R, CNTF-R, 

NNT-1R/BSF- 3R and Leptin-R) and class II cytokine receptors (type I IFN-R, type II 

IFN-R, IL-10R (4).  
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JAK1 is a ubiquitously expressed and is activated by a wide variety of cytokines, having 

impact beyond the immune system. The effect of complete JAK1 deficiency has been 

revealed by perinatal lethality in JAK1 knock out murine models, possibly as a result of 

neurological defects. The results from analyses of cells and tissues derived from JAK1 

deficient mice demonstrated that JAK1 plays a critical role in mediation of biological 

responses to the major cytokine receptor subfamilies, and identified  profound defects in 

the biological response to type I and type II IFNs  in the context of complete JAK1 

deficiency (5).  

 

3. Lessons from JAK family knock out mice 

The study of knock out (KO) mice has substantially advanced our understanding of the 

importance of different JAK family members in vivo.  Findings in JAK family KO mice 

have demonstrated obligate relations between specific cytokine receptors and their JAK 

effectors although functional redundancy also exists. In specific circumstances, the 

absence of one JAK family kinase can be compensated for by another family member 

fulfilling the same signalling function, highlighting the complexity of the JAK-STAT 

pathway. 

 

TYK2 and JAK3 KO mice are viable and fertile, but display significant defects of 

immunity. Specifically, TYK2-deficient mice show prominently high sensitivity to 

infections and defective tumour surveillance. TYK2 cooperates with JAK1 and/or 

JAK2. In contrast with inactivation of other JAK family members, which completely 
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abrogates cytokine receptor signalling, loss of TYK2 reduces but preserves partial 

responses to cytokines including IL-12, IFNα/β and IFNγ (6,7). 

 

In contrast with the ubiquitous expression of TYK2, JAK3 expression is confined to 

haematopoietic tissues, myeloid and lymphoid cells and deletion of JAK3 causes 

lymphopoietic defects that significantly impact lymphocyte development and manifest 

as severe combined immunodeficiency disease (SCID) in these mice (8,9). JAK3 

cooperates with JAK1 for the signalling through the γc-cytokines (IL-2, IL-4, IL-7, IL-

9, IL-15 and IL-21), which play distinct and non-redundant roles in the development 

and differentiation of T lymphocytes (10). While JAK3-deficiency in mice and humans 

causes comparable phenotypes, there is an interesting discrepancy between the 

phenotypes of the TYK2 KO mice and humans lacking TYK2, suggesting differences 

interspecies. Cells derived from TYK2 KO mice and TYK2 deficient human exhibited 

defective IL-12, IL-23 and IFNα/β signalling, but additional severe defects in IL-6 and 

IL-10 signalling that were not observed in the mouse (11). These may indicate an 

evolutionary divergence in the receptor specificity or the capacity for compensatory 

signalling in different organisms (9). 

 

Unlike TYK2 or JAK3, complete loss of JAK1 or JAK2 causes perinatal lethality
,
 

attributed to neuronal defects in JAK1 KO mice (5) and absence of definitive 

haematopoiesis in JAK2 KO  models (12). It is remarkable that like JAK1 and TYK2, 

JAK2 is ubiquitously expressed, but defects in JAK2 signalling are confined to HSC, 

erythroid and thrombopoietic signalling (9). Perhaps not surprisingly, neither complete 

germline JAK1 nor JAK2 deficiencies have been described in humans.  
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Although perinatal lethality severely limited examination of the signalling pathways 

mediated by JAK1 in vivo, some useful information has been determined. JAK1-

deficient mice displayed reduced numbers of thymocytes, pre-B cells, and mature T and 

B lymphocytes but did not show alterations in other hematopoietic lineages. Embryonic 

fibroblasts derived from JAK1 null mice were unresponsive to IFNα or IFNγ, showing 

impaired major histocompatibility complex (MHC) class I expression and antiviral 

activity. Neither IFNα nor IFNγ protected JAK1 null fibroblasts from viral infection 

with vesicular stomatitis virus (VSV). Macrophages from JAK1 nulle embryos did not 

produce nitric oxide (NO) in response to either IFNα or IFNγ. The gp130 receptor 

family members also failed to provoke a biologic response in primary cardiomyocytes 

and neurons. No apparent structural heart abnormalities were found at the time of the 

perinatal death. In contrast, neurons from mice with JAK1 deficiency unable to respond 

to the ligands of the gp130 receptor family died by apoptosis, which could be the cause 

of the perinatal lethality observed (5). Together these findings suggest that other JAKs 

may be able to compensate to some degree for the absence of JAK1 in specific 

signalling cascades, but this compensation is insufficient to preserve full function in all 

cell types. Loss of JAK1 in conditional mice models has also shown that JAK1 is 

crucial for NK cell development and significantly affects NK cell-mediated tumour 

surveillance (13).  
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Figure 1. Type I and II cytokine receptors pathways (Adapted from Winthrop KL 

et al. Nat Rev Rheumatolo. 2017) 

 

4. Consequences of JAK-STAT signaling in the immune system and human disease 

The roles of several members of the JAK family for immune cell function have been 

clarified through investigation of human and murine deficiency states. Inherited 

variations in the JAK/STAT genes have  been associated with increased risk of 

immune-mediated disease (14). To date, germline mutations in Janus kinases (JAK1, 

JAK3 and TYK2) and STATs (STAT1, STAT5B, STAT3) have been found in PID 

patients (15–19), providing answers to key questions about the function of these 

molecules. 

 



 

 

31 

 

In addition, somatic variations in JAKs and STATs have been associated with a variety 

of human diseases. JAKs have critical roles in hematologic cancers, mainly associated 

with the constitutive activation of JAKs and STATs (14). Somatic gain-of-function 

(GOF) mutations in the JAK2 kinase-like domain are associated with myeloproliferative 

diseases, including polycythemia vera, essential thrombocytopenia and myelofibrosis. 

Constitutive activation of JAK1, JAK2, JAK3, and TYK2, through GOF mutations or 

by constitutive cytokine production has been associated with a variety of 

haematological and solid organ malignancies (3,20–23).  

 

4.1 Inborn Errors of Human JAKs and STATs 

Loss-of-function mutations (LOF) of JAK3 underlie severe combined 

immunodeficiency (SCID) 

SCID is a genetically heterogenous group of conditions characterized by a lack of 

autologous T cells and extreme susceptibility to infections caused by a broad range of 

pathogens. The initial description of SCID was associated with null mutations in IL2Rγ, 

an X-linked SCID (X-SCID) (24). The IL-2RG or common gamma chain is a shared 

receptor subunit of the receptors for IL-4, IL-7, IL-9, IL-15 and IL-21. These cytokines 

direct the growth and maturation of natural killer (NK), T, and B cells. Their ability to 

mediate signal transduction upon ligand binding is dependent on the activation of JAK1 

and JAK3 (25). Patients with either JAK3 deficiency or X-SCID fail to generate T and 

NK cells and have nonfunctional B cells. This highlights the importance of JAK3 

signalling from common gamma chain (γc)-containing IL receptors for development of 

these lineages (15,16,26,27). Hematopoietic stem cell transplantation (HSCT) or gene 
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therapy offer a cure. However, a long-term risk of severe cutaneous human papilloma 

virus (HPV) infections persists, possibly related to persistent γc-deficiency in other cell 

types (28).  

 

Whereas null mutations in IL2Rγ and JAK3 are responsible for SCID, hypomorphic 

mutations in the same genes may cause other immunodeficiencies, ranging from life-

threatening Omenn’s syndrome to milder combined immunodeficiencies (29), which are 

even associated with prominent clinical features of immune dysregulation, including 

lymphoproliferation and autoimmunity (30,31).  

 

Inborn errors of TYK2 immunity 

TYK2 deficiency has been associated with increased susceptibility to mycobacterial and 

viral disease, as a result of impaired signalling from the IL-12/IL-23 and INFα/β 

receptors respectively. TYK2 deficiency was considered to be a genetic aetiology of  

hyper IgE syndrome (HIES), based on the observation that the first patient with 

inherited complete autosomal recessive (AR) TYK2 deficiency had atopy, susceptibility 

to cutaneous staphylococcal diseases and high serum concentrations of IgE, as seen in 

other genetic forms of HIES. However, another patient with TYK2 deficiency was 

susceptible to intramacrophagic bacteria, such as BCG and viral diseases, including 

recurrent cutaneous herpes simplex virus (HSV) and none features of HIES (17,18). 

These patients are immunologically and clinically similar to patients with a partial form 

of AR STAT1 deficiency, displaying impaired, but not abolished IFNγ and IFNα/β 

immunity and a particular susceptibility to diseases caused by intracellular bacterial and 
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viral pathogens. TYK2 is important for cellular responses to IL-12 and IFN-α/β, 

providing a plausible basis for the susceptibility to mycobacteria and viral infections 

(31).  

 

It has been recently described that homozygosity for the TYK2 P1104A variant in 

humans impaired cellular responses to IL-23 affecting IFNγ production, making these 

patients prone to tuberculosis infection and identifying TYK2 P1104A as a more 

common cause of MSMD. However the response to IFNα was only slightly reduced and 

the response to IL-12 was normal. These findings suggest that hypomorphic mutations 

can have different impact on JAK partner activation and also depend on the cytokine 

receptor and STAT involved. They also highlight the complexity of the JAK-STAT 

signalling, where redundancy and residual activity could induce a normal gene 

expression pattern, depending on the affected pathway and cell type (32). 

 

JAK1 GOF causes immune dysregulatory and hypereosinophilic syndrome 

The p.A634D JAK1 GOF mutation was reported to cause a systemic immune 

dysregulatory condition, including skin inflammation, hepatosplenomegaly, 

autoimmunity and eosinophilia with eosinophilic infiltration of the liver and 

gastrointestinal tract, associated to activation of the JAK/STAT pathway. This GOF 

mutation was previously identified as a somatic mutation in malignant conditions (19). 

At baseline and following stimulation, patient cells showed high levels of downstream 

pSTAT1 activity through STAT1 phosphorylation; and treatment with ruxolitinib 

significantly decreased this responsiveness. After one month of treatment with 
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ruxolitinib, patients showed clinical resolution of the dermatitis and 

hepatosplenomegaly, and had significantly reduced eosinophilia. 

 

Inborn errors of STAT1 immunity 

STAT1 is a transcription factor involved in cellular responses mediated by cytokines 

including IFNs. Human STAT1 is a key molecule required for cellular responses to 

IFNα/β and IFNγ pathways (33). Different forms of inherited STAT1 deficiency have 

been described in humans: bi-allelic mutations cause AR complete or partial STAT1 

deficiency; mono-allelic mutations cause autosomal dominant (AD) STAT1 deficiency 

or AD STAT1 gain of activity (34,35).  

 

AR complete STAT1 deficiency is characterized by the absence of protein expression 

and abolished cellular responses to antimycobacterial IFNγ and antiviral IFNα/β and 

IFNλ. The patients’ cells did not respond to IFNγ and IFNα in terms of GAF and 

interferon-stimulated gene factor 3 (ISGF3) activity. The cells were unable to control 

the replication of the viruses tested in vitro, following treatment with IFNα. Patients 

with AR complete STAT1 deficiency have a life-threatening susceptibility to both 

mycobacteria and viruses (36–38). Partial recessive (PR) STAT1 deficiency is conferred 

by hypomorphic mutations of STAT1. The response to IFNγ and IFNα is impaired but 

not abolished, and patients are susceptible to both intracellular bacteria and viruses 

(39,40). AD LOF mutations of STAT1 were shown to be associated with the impairment 

of IFNγ responses and MSMD (41,42). This partial STAT1 deficiency affects the IFNγ 

signaling pathway, which resulted in susceptibility to mycobacterial infection but 
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normal viral control. Whereas AR complete STAT1 deficiency blocks both IFNγ and 

IFNα signaling, resulting in susceptibility to viral and mycobacterial infections, patients 

with partial STAT1 deficiency are broadly susceptible to viruses, including HSV 

infections (37,43). Unlike MSMD patients with STAT1 mutations, whose outcome is 

favorable, patients with complete STAT1 deficiency died in the absence of HSCT. 

 

On the other hand, heterozygous GOF mutations in STAT1 have been associated to 

fungal diseases, mainly chronic mucocutaneous candidiasis (CMC) (44,45). These 

mutations are GOF, in terms of phosphorylation and gamma-activating sequence 

(GAS)-binding activity; the cells of patients display a stronger response to IFNγ, IFNα 

and IL-27 (46). Excessive STAT1 activation causes exaggerated responses to IFNγ and 

antagonize STAT3-mediated induction of IL-17, inhibiting the development of IL-17- 

producing T cells, that are important for host defence against Staphylococcus aureus 

and fungal infections (47). These patients are also susceptible to other infections, 

autoimmunity and malignancy (14). STAT1 is an example of a gene for which LOF 

mutations have been shown to cause certain infectious diseases, whereas GOF 

mutations cause other infectious diseases (31). 

 

Inborn errors of STAT3  

Germline heterozygous LOF mutations in STAT3 cause HIES that is characterized by 

eczema, staphylococcal infections, pneumonias, CMC and high levels of IgE, along 

with nonimmunologic features (48,49). STAT3 was initially recognized as a signal 

transducer for IL-6 and epidermal growth factor (EGF). STAT3 is directly involved in 
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signalling from a multitude of haematological and extrahaematological receptors, 

especially those using the common β-chain, gp130 (50).  Other classes of receptors are 

known to activate STAT3, which has been implicated in the signal transduction 

pathways involving γc-dependent cytokines, type I and II IFNs, the IL-10 family of 

cytokines, IL-12 and IL-23, receptor tyrosine kinases, and other stimuli, depending on 

the cell type (51). STAT3 is also required for the development of T-helper (Th) 17 cells 

( IL-17 CD4 T cells) and thus is profoundly impaired in patients with HIES (52).  

 

Germline LOF mutations in STAT3 cause immunodeficiency, whereas somatic GOF 

mutations in STAT3 are associated with large granular lymphocytic leukemic, 

myelodysplastic syndrome, and aplastic anemia (31). Recently, germline heterozygous 

GOF activating mutations in STAT3 have been described to cause early-onset 

autoimmune syndromes and autoimmune lymphoproliferative disease. Patients 

exhibited a variety of clinical features, with most having lymphadenopathy, 

autoimmune cytopenias, multiorgan autoimmunity (lung, gastrointestinal, hepatic, and 

endocrine dysfunction), infections, and short stature. Functional analyses demonstrate 

that these GOF mutations lead to secondary defects in STAT5 and STAT1 

phosphorylation and the regulatory T-cell compartment. This is consistent with reports 

showing that STAT3 can antagonize some of the functions of STAT5 related to 

regulatory T (Treg) cell differentiation. Treatment targeting a cytokine pathway that 

signals through STAT3 led to clinical improvement in some patients (53,54). 
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Inborn errors of STAT5B, immunodeficiency and immune dysregulation 

Patients with STAT5B homozygous mutations have been reported in association to 

short stature and growth hormone (GH) insensitivity syndrome (GHIS), dysmorphism, 

severe susceptibility to various pathogens including opportunistic infections, 

autoimmune manifestations and eczema. These patients have variable lymphocyte 

counts and normal levels of immunoglobulins (55).The STAT5B gene encodes a key 

component of the IL-2R signalling pathway and has non-redundant functions in growth 

and immunity in humans. The association of immunodeficiency and autoimmunity in 

patients with STAT5B homozygous mutations reflects the biological role of IL-2-

mediated signalling (56). 

 

5. Innate and adaptive immunity 

The human immune system can be divided into two broad components: the innate 

immune system and the adaptive immune system, which work in tandem to provide 

resistance to infection. Innate immunity refers to non-specific protective mechanisms 

that act as the first line of defense against pathogens. All nucleated cells have anti-

infective mechanisms that can be amplified by cytokines such as IFNs.  

 

Innate immunity includes neutrophils, macrophages, dendritic cells (DC), NK cells, and 

NK T cells in conjunction with natural barriers (mostly skin and gastrointestinal and 

respiratory mucosa), as well as antimicrobial agents, opsonins and cytokines. Innate 

immune cells develop immune responses through the recognition of diverse pathogens 

by different pattern-recognition receptors. 
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Adaptive immunity implies a highly specific immune response to infection, but it 

requires up to several days to generate a response. Adaptive immunity exhibits antigenic 

specificity against the pathogen and has the ability to develop memory against 

previously encountered pathogens, responding more rapidly upon a second exposure. 

The two major cell types that that participate in adaptive immunity are the T and B 

lymphocytes, T cells play a central role in cell-mediated immunity and B cells mediate 

humoral immunity (57).   

 

Cytokines acting through the JAK-STAT pathways are critical for the development and 

function of diverse lymphoid cell subsets. In particular, different members of the 

common gamma chain cytokine receptor family that utilise JAK1 and JAK3 are 

important for development, homeostasis and function of T, B and innate lymphoid cells.  

The common γ-chain (γc), involved in the signalling of the cytokines IL-2, IL-4, IL-7, 

IL-9, IL-15 and IL-21, plays essential roles in T cell development and differentiation. 

Both CD4 helper T-cells and CD8 cytotoxic T-cells depend on JAK3/JAK1 signalling 

for development and loss of JAK3 leads to SCID (58).  IL-7 is essential for T cell 

development and survival, but other γc cytokines also play critical roles in T cell 

development at later stages. IL-2 signalling is important for Foxp3+ regulatory T cell 

development (59) and IL-4 signalling plays a critical role in the development of innate 

CD8 T cells in the thymus (60). IL-15 signalling is necessary for memory T cell 

differentiation (61) and IL-21 signalling promotes development of effector CD4 T cells, 

such as follicular helper T cells and IL-17-producing Th17 cells (10,62). 
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During their development, B-cells undergo specification, followed by expansion and 

selection. These processes are mediated by regulated gene expression programmes and 

rearrangements of immunoglobulin (Ig) genes. Many of these processes are initiated by 

cytokines, chemokines, and cell–cell contacts, involving the PI3K, MAPK or JAK-

STAT signalling pathway. Il-7 is essential for commitment to the B-cell lineage and for 

orchestrating the Ig recombination machinery (63). This suggests that although B-cell 

development proceeds in patients lacking specific components of the IL-7R pathway 

(common γc, JAK3 or IL7Ra), function is impaired. 

 

Innate lymphoid cells (ILCs) are a group of lymphocytes that lack antigen specific T or 

B-cell receptors. ILC have the ability to regulate and amplify the immune response 

through a variety of effector functions (64,65) and they can be divided into three groups 

based on their pattern of cytokine expression (66). NK cells and other IFNγ-producing 

fall in the group type 1, type 2 consist of cells producing IL-13 and IL-5, and the type 3 

group comprises cells producing IL-22 and/or IL-17. Generation and development of 

ILC functional diversity depends on a complex network that controls both ILC and Th 

cell differentiation (67). A common feature of ILCs is the requirement for IL-15 and IL-

7 (65). The non-redundant function of these two cytokines makes the JAK-STAT 

pathway the main signalling cascade involved in ILC development. Supporting this, no 

ILCs have been found in patients with JAK3 deficiency, highlighting the importance of 

the JAK-STAT pathway on the development of multiple lymphocyte subsets (58). 
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5.1 Interferons  

IFNs were the first cytokines discovered, characterized and used therapeutically (68,69). 

IFNs play a major role in promoting the transition from innate to adaptive immune 

responses and have profound immunomodulatory activity (70). IFNs drive the 

upregulation of class I MHC molecules and components of the antigen-presenting 

machinery. IFNs also help to activate NK cells by complex processes including the 

upregulation of perforin and granzymes (71). IFNs are often profoundly cytostatic, 

inducing a growth arrest and apoptosis in target cells (72,73); and this helps to eliminate 

infected cells (74).  

 

There are three types of IFNs: Type I, II and III. Type I IFN includes IFN-α, IFNβ and 

others (IFNε, IFNκ, IFNω, IFNδ, and IFNτ) of unknown significance in humans. Most 

nucleated cells can produce IFN α/β and respond to it through the ubiquitously 

expressed type I IFN receptor. IFNγ is the only member of type II IFNs. IFNγ is 

predominantly synthesized by T cells and NK cells in response to the recognition of 

infected cells, and can act on broad ranges of cells that express the IFNγ receptor. Type 

III comprises IFNλ and this IFN signal through a receptor complex consisting of IL-

10Rβ and IL-28Rα chains. Type III IFN is directly induced by virus infection and 

triggers similar antiviral effects to type I IFN (75).
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Table 1. Comparison of human type I, type II and type III IFNs 

Properties Type I IFN 

(IFNα/β) 

Type II IFN (IFNγ) Type III IFN 

(IFNλ) 

Members IFNα, IFNβ, IFNε, 

IFNκ, IFNω 

IFNγ IFNλ1/2/3/4 

Producing cells All nucleated cells T,B,NK,NKT cells 

and APCs 

All nucleated cells 

Responding cells All nucleated cells All nucleated cells Lung, intestine and 

liver epithelial cells 

Stimuli DAMPs and 

PAMPs 

IL-12/15/18, type 

IFN and PAMPs 

DAMPs and 

PAMPs 

Signalling 

molecules 

TYK2, JAK1, all 

STATs 

JAK1, JAK2, 

STAT1, STAT3 

TYK2, JAK1, 

STAT1, STAT2 

Transcription 

factor binding 

site 

ISRE (canonical) 

GAS (non-

canonical) 

GAS (canonical) 

ISRE (non-

canonical) 

ISRE 

Functions Antiviral, 

antiproliferative, 

regulation of cell 

survival and 

immunoregulation 

Antiviral, 

antiproliferative, 

immunomodulatory 

and antitumour 

response 

Antiviral response, 

mucosal immunity 

 

Adapted from Castro et al. Front Immunol. 2018 

 

5.1.1 IFNγ signalling 

IFNγ is one of the most important endogenous mediators of immunity and 

inflammation. IFNγ plays a key role in macrophage activation, inflammation and host 

defense against intracellular pathogens, Th1 responses and tumor surveillance. IFNγ 

orchestrates leukocyte attraction and directs growth, maturation and differentiation of 

many cell types, in addition to enhancing NK cell activity and regulating B cell 

functions such as immunoglobulin (Ig) production (76–81).  
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IFNγ signals mainly through the JAK/STAT pathway to achieve transcriptional 

activation of IFNγ-inducible genes. STAT1 is the major STAT protein activated by 

IFNγ. Many IFNγ functions are mediated by direct activation of immune effector genes 

by STAT1, including genes encoding anti-viral proteins, microbicidal molecules, 

phagocytic receptors, chemokines, cytokines, and antigen presenting molecules (82,83).  

 

IFNγ signals through the IFNγ receptor, a heterodimer encoded by genes IFNGR1 and 

IFNGR2. This membrane-bound receptor is composed of 2 chains (IFNγR1 and 

IFNγR2) which are constitutively bound to their respective JAKs, JAK1 and JAK2. The 

intracellular region of IFNγR1 includes a JAK1 constitutively binding site and a STAT1 

docking site when it is phosphorylated. The intracellular region of IFNγR2 contains a 

JAK2 binding site, which associates with JAK2 constitutively (84). After IFNγ binding, 

two IFNγR1 subunits form a homodimer and the two IFNγR2 subunits are recruited to 

the IFNγR1 dimer. The binding of IFNγR2 to IFNγR1 brings the two Janus tyrosine 

kinases into physical proximity and initiates the tyrosine kinase activity, which 

phosphorylates and activates the STAT1 docking site, resulting in the activation of 

JAK1 and JAK2. Upon activation, JAKs trans-phosphorylate each other at tyrosines 

within the kinase domain and phosphorylate the cytoplasmic tail of the receptor. This 

allows recruitment of STAT1, which exists in a latent state in the cytoplasm. The 

phosphorylated STAT1 dissociates from the IFNγ receptor complex. The SH2 domain 

of each STAT1 binds with the phosphorylated tail of the other STAT1 (83,85), and the 

active STAT1 homodimer translocates to the nucleus leading to a complex that can bind 

nuclear DNA and regulate the transcription of IFNγ-induced genes. The STAT1 

homodimer binds GAS in the genome (86,87), driving gene expression. 
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One of the major primary response genes induced by STAT1 signalling is the 

transcription factor interferon-regulatory factor 1 (IRF1), a member of the IFN 

regulatory transcription factor family (88). IRF1 leads the transcription of a large 

number of secondary response genes (89). The JAK/STAT signalling pathway is 

regulated at several levels by positive and negative mechanisms. In particular, 

deregulation or inhibition of the JAK/STAT pathway leads to lowered immunity and is 

often associated with increased tumorigenesis or metastatic dissemination (75,90,91). 

Transcriptional activity of STAT1 is augmented by MAPK-mediated phosphorylation 

of a serine residue in the carboxy-terminal transcription activation domain, and the 

amplitude of activation is fine tuned by feedback inhibition mediated by various 

negative regulators of JAK/STAT signaling such as the suppressor of cytokine 

signalling (SOCS) 1 (82).   

 

5.1.2 IFN-α/β signalling 

Most nucleated cells can produce IFN α/β and respond to it through the ubiquitously 

expressed type I IFN receptor. Type I IFNs are secreted by infected cells and constitute 

the major component of the innate immune system protecting against viral infection. 

IFN α/β production is induced after the sensing of microbial products by pattern 

recognition receptors (PRRs) and by cytokines. They induce cell-intrinsic antimicrobial 

states that limit the spread of infectious pathogens, particularly viruses. They modulate 

innate immune responses to promote antigen presentation and NK cell functions, and 

activate the adaptive immune system promoting the development of high-affinity 

antigen-specific T and B cell responses (74,92).  
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IFNα/β binds a heterodimeric transmembrane receptor, the IFNα receptor (IFNAR), 

which is composed of IFNαR1 and IFNαR2 subunits. IFNαR engagement was shown to 

activate the receptor-associated JAK1 and TYK2, which phosphorylate the latent 

cytoplasmic STAT1 and STAT2 (93,94). The phosphorylated STAT1 and STAT2 

dimerize and translocate to the nucleus, where they assemble with IFN-regulatory factor 

9 (IRF9) to form a trimolecular complex called IFN-stimulated gene factor 3 (ISGF3). 

ISGF3 binds to the IFN-stimulated response elements (ISREs), and activate the 

transcription of ISGs. ISG-encoded proteins restrain pathogens by several mechanisms, 

including the inhibition of viral transcription, translation and replication, the 

degradation of viral nucleic acids and the alteration of cellular lipid metabolism (92).  

 

The canonical type I IFN signalling pathway components IFNAR, JAK1, TYK2, 

STAT1, STAT2 and IRF9 are widely expressed and thus most cell types are competent 

to mount type I IFN-dependent responses. Immune cells can respond rapidly to low 

levels of type I IFNs, a capacity that is maintained under homeostatic conditions in 

which small amounts of IFNβ maintain high basal expression levels of STAT1 and 

IRF9 that rapidly mobilize effective antimicrobial programmes (92). The magnitude of 

basal IFNαR signalling is restrained by opposing mechanisms that limit expression of 

IFNαR-JAK-STAT signalling components. These suppressive mechanisms include the 

pausing of RNA polymerase II (Pol II) at genes that encode IFN pathway components 

and the induction of microRNAs (miRNAs) that destabilize or suppress translation of 

the corresponding transcripts (95,96). It has been shown that the relative expression of 

STATs is an important determinant of the pattern of IFNαR-induced STAT activation, 

for example STAT3 restrains STAT1-mediated inflammatory signalling downstream of 
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IFNAαR. Shifts in the balance of activation of distinct STAT complexes downstream of 

IFNαR mediates its context-dependent function by altering the balance between 

antiviral, pro-inflammatory, suppressive and anti-proliferative functions (92). 

 

6. Protective immunity to mycobacterial infection  

Tuberculosis infects close to 2 billion people globally and causes about 10 million 

active cases with about 3 million deaths per year (97). In contrast, the nontuberculous 

mycobacteria (NTM), organisms of low intrinsic virulence, cause an unrecognized 

number of infections and the majority are controlled by the host immune system. Severe 

infections caused by the NTM are a signal of significant immune defects (98). The 

integrity of the IFNγ circuit is necessary for an effective immune response to intra-

macrophagic pathogens, especially Mycobacteria. Some patients display a selective 

susceptibility to poorly virulent mycobacteria such as BCG vaccines and environmental 

NTM, and more rarely by other intra-macrophagic pathogens such as Salmonella sp 

(99–101). 

 

The innate immune system of the host and the virulence of mycobacteria are two key 

components that determine the outcome of the mycobacterial infection. Facultative 

intracellular bacteria can survive and replicate inside host cells, most frequently 

macrophages. This group includes Salmonella, Shigella, Listeria monocytogenes, 

Francisella tularensis and Mycobacterium sp. (102). Depending on host and bacterial 

factors, the mycobacteria will multiply and destroy the infected macrophages and infect 

more cells, or be eliminated by the macrophage phagosomes. The host invasion by 



 

 

46 

 

replicating pathogens demands a rapid response provided by components of the innate 

immune system that consists of non-phagocytic cells, phagocytic cells in the circulation 

and tissues, complement and plasma proteins. These components play different 

complementary roles in host defense against intracellular microbes (102).  

 

Microbes are first recognized by PRRs at the plasma membrane of immune cells, 

followed by phagocytosis and the gradual maturation of the phagosome into a 

phagolysosome, where microbes are digested. PRRs recognize and facilitate 

internalization of microbes through phagocytosis in macrophages, DCs, and 

neutrophilic granulocytes. Receptor-mediated opsonic or non-opsonic phagocytosis may 

occur depending on whether or not the microbe is coated by soluble PRRs like 

complement and antibodies (103). The recognition of mycobacterial components by 

innate immune cells through different PPRs induces a cytokine response that can 

promote early control of the infection (104). Subsequently, infected macrophages 

migrate to the lymph nodes, present bacterial antigens through the MHC class II 

molecules to naïve CD4+ T-lymphocytes, and activate Th1 adaptive cellular immunity 

(83).  

 

IFNγ is essential for the activation of phagocytic cells to kill mycobacteria. IFNγ 

activates innate responses by augmenting inflammatory cytokine and chemokine 

production, microbial killing and antigen presentation by mononuclear phagocytes such 

as macrophages. Immune cell activation by IFNγ is dependent on its activation of the 

transcription factor STAT1, which activates transcription of ISGs that play a key role in 

IFNγ-mediated functions (105). IFNγ is the most important cytokine during the early 
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phase of infection with intracellular pathogens; it acts synergistically with bacterial 

products to activate various effector bactericidal or bacteriostatic mechanisms in 

infected phagocytic and non-phagocytic cells. The induction of a functional Th1 

response is dependent on IL-12, which is produced by antigen-presenting cells (APCs) 

after exposure to the pathogen at the initiation of the immune response (102). IFNγ can 

be produced by CD4 and CD8 T cells, NK cells and infected macrophages, creating a 

positive loop between T cells and APC, which enhances the microbicidal capacity (106–

108). 

 

6.1 Mycobacterial killing mechanisms  

The macrophage is the site of elimination and bacillus replication, and different immune 

intracellular killing mechanisms mediate the elimination of intracellular pathogens. The 

main mycobacterial killing mechanisms are phagocytosis, production of cytokines, 

reactive oxygen and nitrogen species, phagosome maturation and cell 

death. Intracellular bacteria such as Mycobacterium and Salmonella typhi can survive 

inside mononuclear phagocytes (109), and within cells, bacteria are protected from 

humoral attack mechanisms.  

 

Phagosome maturation 

Following phagocytosis by host cells, mycobacteria are localized in membrane-bound 

vesicles, the phagosomes. The newly formed phagosome proceeds through numerous 

steps of maturation. Phagosomes mature into late phagosomes, and then into 

phagolysosomes via sequential fusion with pre-existing lysosomes (102). Antimicrobial 
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mechanisms of the mature macrophage phagosome include acidification, production of 

AMPs, activation of the inducible nitric oxide synthase 2 (NOS2) and NADPH oxidase 

(NOX2), and degradative enzymes, such as cathepsins. Low pH, oxidative stress, and 

nutrient deficiency in the maturing phagosome act as antimicrobial pathways (103,110). 

 

Within the lysosomal vacuoles are potent hydrolytic enzymes that function optimally at 

acidic pH (4.5-5.0) and are capable of degrading microorganisms. The lysosomal acidic 

environment is maintained by a membrane adenosine triphosphate (ATP)-dependent 

proton pump that is recruited to phagosomes to facilitate luminal acidification and to 

activate lysosomal hydrolases and cathepsins that degrade phagolysosomal content.  

The degradation of intracellular microorganisms by intralysosomal acidic hydrolases 

constitutes a significant antimicrobial mechanism of phagocytes. In addition, the 

process of microbial degradation by lysosomes results in the generation of antigenic 

peptides suitable for presentation by class II MHC molecules and activation of CD4+ T 

lymphocytes (102).  

 

Reactive oxygen and nitrogen species (ROS and RNS) production 

Phagocytosis of microbes activates NOS2 and NADPH oxidase that results in the 

production of RNS/ROS respectively (111). In the phagosome, NO and ROS can 

spontaneously react to generate highly reactive intermediates that destroy microbial 

membrane lipids, DNA, and thiol- and tyrosine residues by oxidation. In humans, 

polymorphisms in the NOS2 or CYBB (coding for gp91phox) genes have been 

associated with an increased susceptibility to TB (103,112). The role of NO as a 
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primary antimicrobial effector molecule in macrophages and non-phagocytic cells has 

been established in vitro in murine models. However, much less is known about the role 

of NO in protection of humans against intracellular bacteria (102). Recently it has been 

shown that IFNγ induced apoptosis in mycobacteria-infected macrophages could be NO 

dependent  and results in the killing of intracellular mycobacteria (113). 

 

Apoptosis 

Macrophage apoptosis represents an important innate defense mechanism against 

intracellular mycobacterial infection. Previous publications have shown that IFNγ is 

involved in apoptosis of immune cells during infection with mycobacteria (114,115). 

Apoptosis is programmed cell death characterized by cytoplasmic shrinking, cell 

rounding, chromatin condensation, DNA fragmentation and membrane blebbing. 

Apoptosis can be initiated by cell extrinsic pathways (which are mediated by death 

receptors) or cell intrinsic (mitochondrial) pathways, both of which culminate in the 

activation of the effector caspases. Apoptosis can also be initiated by cytotoxic T 

lymphocytes (CTLs) or NK cells that deliver granzymes, which activate apoptotic 

caspases. Apoptosis has been considered intrinsically bactericidal. IFNγ induced NO-

mediated apoptosis has been described as a defense mechanism of activated 

macrophages against M. tuberculosis (116).  
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Mendelian susceptibility to mycobacterial disease (MSMD) mutations in the IFNγ 

signalling genes  

MSMD is included in the PID classification by the IUIS (International Union of 

Immunology Societies) in the VIth group of defects in intrinsic and innate immunity 

(117). There are different genetic aetiologies of MSMD, mainly associated to defects in 

genes encoding proteins involved in IFNγ immunity.  These mutations impair the 

production of or the response to IFNγ, either directly or indirectly, indicating that the 

IFNγ pathway is critical for the confinement of mycobacterial infection in humans (31). 

Patients with defects of the IFNγ pathway may display a selective susceptibility to 

poorly virulent mycobacteria such as BCG vaccine and environmental NTM, and other 

intra-macrophagic pathogens (101,106,118). Nevertheless, genetic aetiology in 

approximately half of patients with MSMD remains unknown (119).  

 

There is high genetic heterogeneity and to date mutations in different genes (IFNGR1, 

IFNGR2, IL12B, IL12RB1, STAT1, ISG15, IRF8, IKBKG, CYBB, NEMO, TYK2, 

RORc/RORcT, SPPL2A and JAK1) have been shown to cause MSMD (106,120,121). 

There are different types of MSMD depending on which gene is affected, the impact of 

the mutation (null or hypomorphic), the mode of transmission in the family (dominant 

or recessive), the expression of the mutant allele (absent or detectable), or the function 

affected by the mutation (one domain or another, in the case of a detectable protein). 

The most severe forms of MSMD lead to early-onset, disseminated, life threatening 

mycobacterial disease, with an outcome that leads to death if HSCT is not performed, 

whereas the mild forms can have a late onset or even remain clinically silent because of 

incomplete penetrance and clinical manifestations are highly variable (63,65). 
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Mycobacterial infections are the most common infections in patients with MSMD. 

However, the clinical phenotype extends to syndromic MSMD, including other 

infections associated with a more complex cellular phenotype. Some examples such as 

AR STAT1 and TYK2 deficiencies include infections caused by other intramacrophagic 

bacteria, fungi and parasites. Viral infections have also been reported (cytomegalovirus 

(CMV), human herpes virus 8 (HHV8), parainfluenza virus type 3 (PRV-3), respiratory 

syncitial virus (RSV) and varicella zoster virus (VZV)). Some cases of malignancies, 

namely B-cell lymphoma, esophageal carcinoma, cutaneous squamous cell carcinoma, 

Kaposi sarcoma, liver cancer and pineal germinoma have also been reported (Table 2) 

(101,122–126).
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 Table 2. Clinical diseases allelic with MSMD at the STAT1 IFNγR1, IFNγR2 and 

TYK2 loci 

Disease Mycobacterial Viral Other pathoges Malignancy 

STAT1 LOF 

AR 

-Complete 

 

-Partial 

 

+++ 

 

++ 

 

++ 

 

+ 

 

+ 

 

STAT1 LOF 

AD 

++   Liver carcinoma 

IFNγR1 LOF 

AR 

-Complete 

 

-Partial 

 

+++ 

 

+ 

 

++ 

 

+ 

 

+ 

 

B cell lymphoma 

Pineal germinoma 

IFNγR1 LOF 

AD 

++    

IFNγR2 LOF 

AR 

-Complete 

 

-Partial 

 

+++ 

 

+ 

   

Cutaneous squamous 

carcinoma 

IFNγR2 LOF 

AD 

+    

TYK2 LOF AR ++ + +  

 

Adapted from Bustamante et al. Semin Immunol. 2014. 
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Figure 2. Cells producing and responding to IFNγ  

Proteins for which mutations in the corresponding genes have been identified and 

associated with Mendelian susceptibility to mycobacterial diseases (MSMD) are 

indicated in blue. MSMD-causing mutations of IFNGR1, IFNGR2, STAT1, IRF8 and 

CYBB impair the action of IFNγ. MSMD-causing mutations of IL12B, IL12RB1, ISG15, 

IRF8 and NEMO impair the production of IFNγ (Adapted from Bustamante J. et al. 

Semin Immunol. 2014). 

 

7. Anti-viral immunity 

IFNα/β upregulates the expression of several genes inducing an antiviral state. A subset 

of genes is required to limit viral replication, these genes encode enzymes dsRNA-

dependent protein kinase R (PKR), oligoadenylate synthetase (OAS) and Mx, which 

show antiviral activity (74,127,128). PKR and OAS are enzymes whose activities are 

dependent upon viral co-factors such as dsRNA, when the co-factors are provided; the 

enzymes can produce changes in cellular function through translational arrest. Mx 

encodes GTPases with antiviral activity against a wide range of RNA viruses, 

preventing the transport of the viral nucleocapsids into the nucleus and viral replication 

(129). Other IFN-inducible factors promote the presentation of viral antigens to the 

adaptive immune response by upregulating MHC class I and the antigen-processing 
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machinery. IFNα/β also has immunomodulatory functions, by promoting the maturation 

of DCs, upregulating the activities of NK cells and CD8+ T cells (74). 

 

There are different ways by which viruses evade the IFN response: interfering globally 

with host cell gene expression and/or protein synthesis, minimizing IFN induction by 

limiting the production of viral pathogen-associated molecular patterns (PAMPs) and/or 

by specifically blocking IFN-induction cascades, inhibiting IFN signalling blocking the 

action of IFN-induced enzymes with antiviral activity; and having a replication strategy 

that is insensitive to the action of IFN. 

 

7.1 PIDs associated to susceptibility with viral diseases  

Some immunodeficiencies enhance susceptibility to disease with a specific virus or 

family of viruses, whereas others predispose to diseases with viruses and other 

microbes. Susceptibility to severe viral diseases is encountered in PID with deficient 

innate and/ or adaptive immune responses (130). Theses PIDs can be divided into two 

categories: disorders caused by defects in the adaptive immune system (lymphocyte-

derived cellular and antibody responses) and those caused by defects in the innate 

immune system (Toll-like receptors (TLRs), IFNs and NK cells). 

 

7.1.1 PIDs resulting from defects in the IFN pathway  

PIDs involving the IFN pathway include those that affect the production of IFN and 

those that affect the response of cells to IFN (mutations associated to defects in the IFN 
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receptor and signalling molecules). These immunodeficiencies predispose individuals to 

infection with intracellular pathogens, such as viruses, mycobacteria, and salmonella 

(131). X-linked recessive anhidrotic ectodermal dysplasia with immunodeficiency 

results from mutations in NEMO. Defects in this protein predispose individuals to 

infections with viruses and bacteria. The viral infections in these patients have been 

caused primarily by herpesviruses (CMV, HSV) (132). STAT1 mutations result in 

failure of type I IFNs to induce expression of IFN inducible genes. Patients with AR 

complete STAT1 deficiency had disseminated BCG disease and fatal disseminated viral 

infections, as a consequence of impaired IFNγ and IFNα/β signalling that fails to inhibit 

virus replication. Patients with partial AR STAT1 deficiency also had severe CMV and 

VZV infections (37,133). TYK2 deficiency is associated with recurrent cutaneous viral 

infections, BCG lymphadenitis, and disseminated salmonella bacteraemia, due to 

defects in IL-12 and IFNα/β signalling (17). Patients with STAT2 deficiency usually 

present a mild phenotype with susceptibility to some viral infections, predominantly 

disseminated vaccine-strain measles. Mutations within STAT2 drive a profound 

defective innate IFN response. However, the viral-susceptibility phenotype of human 

STAT2 deficiency has been considered milder than in patients with AR STAT1 

deficiency (38,134).This suggest that type I IFN signaling may be not essential for host 

defense against the majority of common viral infections (135). 

 

8. Cancer immunity  

Cancer remains one of the leading causes of death globally; with an estimated 12.7 

million cases around the world. The immune system interacts intimately with tumours 
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over the process of disease development, progression and metastasis. This complex 

cross talk between immunity and cancer cells can both inhibit and enhance tumour 

growth (136,137).  

 

The immune system is naturally capable of detecting and eliminating cancer cells 

through immune surveillance (138–140). Tumour development involves the interplay 

between cancer cells and host defence mechanisms. Other factors such as infection, 

chronic inflammation or disease-induced stress may also contribute to tumour growth or 

tumour suppression (141,142). CTL, NK cells and CD4 Th1 cells are the effector arms 

of the anti-tumour immune responses, and can stop cancer development via different 

mechanisms involving the production of IFNγ and cytotoxins (136,143,144).   

 

DCs are the most potent APCs, their interaction with the T cells signal cascades result 

in the transcriptional activation of genes for T cell differentiation and proliferation. 

These activated T cells can then act on tumour cells. The engagement of the TCR with 

the MHC antigen complex on tumour cells triggers lytic granule mobilization and 

tumour cell lysis. In this context, CTL and NK cells use the same lytic process for the 

induction of target cell death, but triggering occurs via different receptors (144–146).
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8.1 IFNs in Cancer  

IFNs regulate the expression of many genes that directly affect tumour cell growth, 

proliferation, differentiation, survival, migration and other specialized functions. IFNs 

can target tumour cells directly to inhibit proliferation, alter the cell cycle and induce 

apoptosis, and activate antitumour immunity (147). Endogenous IFNs has also been 

shown to modulate the antitumour immune response. The molecular mechanisms 

associated with the immunoregulatory effects of IFNs include the regulation of tumour 

antigens on tumour cells as well as antigen presentation by MHC and ligands for 

receptors of immune checkpoints such as those in the programmed cell death protein 1 

(PD1) pathway. Another mechanism of IFN regulation of immunity in cancer is 

stimulation of the release of secondary mediators such as chemokines, cytokines and 

interleukins (76,147,148). 

 

The role of type II IFN is known to play a pivotal function on cancer immune 

surveillance, stimulating antitumor immunity and promoting tumour recognition and 

elimination (75,149–153). The first reports pointing to the relevance of IFNγ in 

antitumor immunity came from studies with cancer cell lines. These cell lines, which 

lack the expression of the IFNγR1 subunit and are refractory to IFNγ signalling, 

displayed enhanced tumorigenicity compared with control cells, suggesting that IFNγ 

plays an important role in tumour cell elimination (75). Mouse models showed that 

IFNγ and lymphocytes are important in reducing the incidence of carcinogen-induced 

sarcoma and spontaneous epithelial carcinomas (154). Patients with spontaneously 
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regressing melanoma showed signs of tumour-specific clonal T-cell expansion 

providing evidence of immune surveillance (138). 

 

Under physiological conditions, the constitutive expression of type I and II IFNs is 

tightly controlled, remaining localized to tissues (155–157). Upregulation of cell surface 

MHC class I by IFNγ is crucial for the host response to intracellular pathogens and 

tumour cells, due to cytotoxic T cell activation, promoting cell-mediated immunity (75). 

One of the main effects of IFNs is the upregulation of the MHC molecules. 

Furthermore, in some tumour types, IFNγ can also upregulate the MHC class II 

transactivator (CIITA) that leads to MHC class II expression (158). Thus, IFNγ initiates 

an immune-antigenic exposure program in the target cells, and this ensures the rapid 

recognition of stressed tissues. IFNγ also upregulates cell surface MHC class II on 

APCs, thus promoting peptide-specific activation of CD4 T cells (159,160). In addition, 

IFNγ activates macrophages toward a pro-inflammatory profile, inducing polarization 

toward a tumoricidal phenotype (75).  

 

Separately, IFNγ is involved in antiproliferative, anti-angiogenic and pro-apoptotic 

effects established against neoplastic cells (75,161–163). The mechanisms by which 

IFNγ exerts its antitumor effects depend on multiple processes. IFNγ acts as an 

antiproliferative agent that regulates the expression of cyclin-dependent kinase inhibitor 

1 (p21) through STAT1 activation in tumour cells (164). Moreover, IFNγ is able to 

promote tumour cells apoptosis by upregulating the expression of caspase-1, -3, -8 and 

by enhancing the secretion of FAS and FAS ligand and tumour necrosis factor (TNF)-
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related apoptosis-inducing ligand (165–167). Recent studies showed that IFNγ also 

induces its tumoricidal effects through a form of regulated necrotic death (168). IFNγ is 

critical for T cell, NK and NKT cell trafficking into the tumours through chemokine 

induction (169) and can upregulate intercellular adhesion molecule 1 (ICAM-1) which 

promotes NK: target cell interaction for an efficient lysis (170).  

 

8.2 Immune evasion in cancer 

The immune system is capable of distinguishing between tumour and self, but cancer 

still develops in immunocompetent individuals. Due to the high mutation frequency of 

tumours, they can avoid the original immune response but be attacked as a consequence 

of immune response adaptation. However, eventually the tumour may escape in a 

process termed “immune editing” and grows despite the immune response (138). 

During cancer immune editing, the immune system is able to recognize and destroy 

cancer cells that present tumour antigens. However, constant tumour cell division can 

generate reduced immunogenicity, enabling tumours to impair the capacity of the 

immune system to eradicate them by immune suppressive effects or by loss of target 

antigen expression (136). 

 

8.2.1 Mechanisms of Tumour Immune Evasion 

It has been demonstrated that the dysfunction of the host’s immune system represents 

one of the major mechanisms by which tumours evade immunosurveillance. In addition, 

escape from immunosurveillance can also be linked to tumour-related factors, including 
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secretion of immunosuppressive cytokines, resistance to apoptosis, and deficient 

expression of immunomodulatory molecules and MHC class I antigens. Host and 

tumour-related mechanisms can lead to a failure of the anti-tumour-specific immune 

response, and these are key factors in the success of cancer immunotherapy (144).  

 

The presentation of antigen in the context of MHC molecules is crucial both during T 

cell priming and during the effector phase of an adaptive immune response. Alterations 

in the MHC class I and MHC class II antigen processing and presentation machinery 

have been demonstrated in different tumours. The MHC class I antigen presentation 

pathway is disrupted as a consequence of mutations and/or dysregulation of one or 

several genes (144,171). Down-modulation of the antigen processing machinery and 

expression of tumour antigens is associated to enhanced tumour incidence and 

metastasis because CTL can not recognize target antigens on the tumour cells (136,172). 

 

T cell and NK cell responses to tumour antigens can be also diminished by resistance to 

FAS or TRAIL- induced apoptosis, inhibition of cytotoxic activity via expression of NK 

cell inhibitory receptors, and a tumour environment not permissive to T cell infiltration 

(144). Most tumour cells fail to express costimulatory molecules and induce anergy or 

tolerance in T cells by engaging the T cell receptor in the absence of costimulation. 

Tumours are also known to evade immune attack by shifting the balance from Th1 to 

Th2 (immune deviation). Tumour expression of inhibitory molecules like PD-L1 has 

been shown to cause deletion or anergy of tumour reactive cells (136,173,174). Immune 

suppression in the tumour microenvironment could be mediated by Tregs  through cell-
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mediated chemokine production (136). CTL function could be affected through the 

production of several immunosuppressive cytokines, either by the cancer cells or cells 

present in the tumour microenvironment (136). 

 

8.3 Defects in the IFN gamma signalling pathway involving cancer susceptibility 

Immune evasion can operate through tumour cells losing responsiveness to IFNγ 

signalling to avoid its antiproliferative, pro-apoptotic, and immunoregulatory actions. 

This has been demonstrated in tumour cells losing the receptor for IFNγ or a component 

of JAK/STAT signalling (161). Cellular defects on IFNγR1 and of JAK proteins and 

may explain the ability of many tumour cells to evade the immune response. Recently, 

JAK1/2 deficiency was demonstrated to protect melanoma cells from antitumor IFNγ 

activity and resulting in T-cell-resistant melanoma lesions (75,175).  

 

In addition, somatic mutations in JAK1 were seen in high-risk bladder cancer and 

gynaecological carcinomas (176,177), supporting the idea that defective JAK1 

signalling could play a role in the pathogenesis of some epithelial cancers. LOF 

mutations in JAK1/2 were associated to resistance to anti-PD-1 therapy in human 

melanoma cell lines, through the lack of reactive PD-L1 expression and response to 

IFNγ (178). Acquired resistance to PD-1 blockade immunotherapy has also been 

described  in patients with melanoma, inducing insensitivity to its antiproliferative 

effects on cancer cells (179). Primary and acquired resistance limit the application of 

PD-1/PD-L1 blockade therapy (178–180). Regarding the importance of IFNγ in cancer 
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diagnostics, IFNγ-associated signatures have a predictive value in several cancer 

immune phenotypes (55,153,154). 

 

8.4 Other roles of IFN in tumour biology 

IFNs are cytokines with plethoric functions in different cell types, affecting cell growth, 

proliferation, differentiation, survival, among other specialized functions (147). IRF1, a 

member of the IFN regulatory transcription factor family, is an essential transcription 

factor in the regulation of the cornified envelope genes during keratinocyte 

differentiation and is a primary response gene in myeloid differentiation. In epithelial 

cells, IFNs themselves have been shown to modulate keratinocyte differentiation and 

the expression of genes regulating growth and differentiation (183–185). IFNγ has also 

been described to induce neuroendocrine (NE)-like differentiation of human prostate 

basal-epithelial cells (186). 

 

The nuclear receptor peroxisome proliferator activated receptor gamma (PPARγ) is 

highly expressed in different tissues including the developing and mature urothelium 

(187), and is implicated in the induction of differentiation of normal human urothelial 

(NHU) cells. Activation of PPARγ in urothelial cells leads to production of the 

intermediary transcription factors FOXA1 and IRF1, involved in mediating the 

uroepithelial differentiation programme (188). IRF1 is a member of the IFN regulatory 

transcription factor family and is one of the major primary response genes induced by 

IFNγ/STAT1 (75,88). Urothelium is an epithelial barrier tissue and play a role in innate 

and adaptive immunity through the induced expression of immunoregulatory cytokines 
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and adhesion molecules (189). The urothelium is prone to chronic inflammatory 

conditions, epithelial damage and reversal of differentiation. In view of this, it is 

conceivable that PPARγ-mediated induction of IRF1 may play a dual role in promoting 

differentiation and modulating inflammation (188).
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HYPOTHESIS, JUSTIFICATION AND OBJECTIVES 

 

Hypothesis: 

JAK1 is non-redundant for the normal function of human immune cells via cytokine 

receptor signalling. 

 

Justification: 

We have identified a novel immunodeficiency associated with hypomorphic LOF 

mutations of JAK1 in a patient with recurrent atypical mycobacterial disease and fatal 

bladder carcinoma. The purpose of the project is to determine how JAK1 deficiency 

leads to impaired function of immune cells in humans. 

 

Objectives: 

- Aim 1: To generate JAK1-defective cell lines. 

- Aim 2: To examine the effect of JAK1 deficiency on signalling through IFN 

cytokine receptors. 

- Aim 3: To investigate the effect of JAK1 deficiency on mycobacterial 

susceptibility. 

- Aim 4: To investigate the importance of JAK1 in anti-viral protection. 

- Aim 5: To investigate the importance of JAK1 in cancer susceptibility. 
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MATERIALS AND METHODS 

Patients and human cell lines 

THP1 cells from American Type Culture Collection (ATCC #TIB-202) were 

maintained in RPMI-1640 medium containing 10% heat-inactivated fetal calf serum 

(FCS) and 1% penicillin-streptomycin (P/S). Patient and control fibroblasts as well as 

293T cells were cultured in DMEM medium and 10% heat-inactivated FCS and 1% 

P/S. For the different experiments fibroblasts were detached using Accutase® solution 

(A6964, Sigma Aldrich). Regular checks for Mycoplasma spp contamination were 

performed. JAK1-complented stable clones were kept in the presence of puromycin 

(3ug/ml). Patient and healthy control Epstein-Barr Virus (EBV)-immortalized B cell 

lines were derived from peripheral blood mononuclear cells (190). Informed written 

consent was obtained in accordance with the Declaration of Helsinki and ethical 

approval from the Great Ormond Street Hospital for Children NHS Foundation Trust 

and the Institute of Child Health Research Ethics Committee (Reference Number: 

06/Q0508/16). 

 

Normal and immortalised human urothelial cell culture 

Blood samples and biopsies were obtained with ethical approval (National Research 

ethics numbers 08/H0720/46, 99/095 and 02/208) and informed consent from all 

subjects in accordance with the Declaration of Helsinki. Normal human urothelial 

(NHU) cells obtained ethically with appropriate informed consent and Research Ethics 

Committee approvals were maintained in vitro as non-immortalized (finite) cell lines, 

using protocols detailed in full elsewhere (191). For routine culture, NHU cells were 
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grown as adherent monolayers on Primaria™ plasticware (BD Biosciences) in low 

calcium (0.09 mM) keratinocyte serum-free medium (KSFM) containing bovine 

pituitary extract and recombinant epidermal growth factor (Life Technologies) 

supplemented with 30 ng/ml cholera toxin (KSFMc).  NHU cell lines were sub-cultured 

by trypsinisation at just-confluence and used in experiments between passages 3-5.  

Experiments described here were performed on five independent NHU cell lines.  Due 

to the finite nature of these lines, no genotyping of individual cell lines was performed. 

Differentiation of NHU cells was induced in just-confluent cell cultures using 1 μM 

troglitazone (TZ) as PPARγ ligand with concurrent 1 μM PD153035 to block epidermal 

growth factor receptor (EGFR) activation, as previously described (192). An 

immortalized NHU subline produced by retroviral transduction with human telomerase 

reverse transcriptase (hTERT) cells as detailed elsewhere (193), was used in this study.  

The line, referred to as Y235hTERT, was previously characterized at passage 40 against 

the pre-immortalised parental line (passage 7) using comparative genomic 

hybridization.  The Y235hTERT cells for this study were used within 20 passages of the 

comparative genomic hybridization (CGH) analysis. JAK1 knock down (KD) and 

scrambled control (Sc) hTERT urothelial cell lines were generated using lentiviral 

vectors expressing short hairpin RNA (shRNA) sequences. Cultures were tested 

regularly for contamination by Mycoplasma spp. using polymerase chain reaction-based 

kits and DNA-intercalating fluorescent stains for presence of extranuclear DNA.   

 

Lentivirus preparation and transductions 

JAK1 knock down (KD) and scrambled control (Sc) hTERT urothelial cell lines were 

generated using lentiviral vectors expressing short hairpin RNA (shRNA) sequences.  
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pGIPZ vectors carrying the short hairpin RNA against 

JAK1(TAGTACACACATTTCCATG) or scrambled control 

(TGAACTCATTTTTCTGCTC) sequences as well as puromycin resistance cassette and 

turbo-GFP marker for selection were supplied by University College London Open 

Biosystems (London UK). Lentivirus stocks were prepared by transfection of 293T cells 

(80-90% confluence) cultured in DMEM medium and 10% heat-inactivated fetal bovine 

serum, with the envelope plasmid 17.5ug pMD.G2 (VSV-G/envelop), 32.5ug p8.74 

plasmid (gag-pol) and 25ug vector construct with the transfection reagent PEI/Optimen 

following the manufacture instructions.  Medium was replaced 5h post transfection and 

medium was harvested after 24 and 48 hours, cleared by centrifugation (4000 rpm, 5 

min), filtered through 0.22-µm filters and left to spin for 2h 4ºC 50,000g. Viruses were 

tittered on 293T cells by scoring green fluorescent protein (GFP) positive cells by flow 

cytometry 3 days post transduction. Virus stocks were stored at -80°C. Transductions of 

the cells were carried out by infection at a multiplicity of infection of 1:10 for 6h, and 

then the virus containing media was replaced by fresh media. Cells were selected in 

puromycin-containing medium (3ug/ml for THP1 cells and 1ug/ml for hTERT 

urothelial cell) and the efficiency of transduction was assessed as percentage of GFP 

positive cells by flow cytometry. Lack of JAK1 expression in JAK1-deficient cells was 

verified by reverse transcription polymerase chain reaction (RT-PCR).  
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Determination of mRNA levels by real time-quantitative polymerase chain 

reaction (RT-qPCR) and reverse transcription polymerase chain reaction (RT-

PCR) 

Cells were left unstimulated or stimulated with the given concentrations of IFNγ 

(Invitrogen) or IFNα (Roche) for different time points (detailed in the legends). Total 

RNA from cells was extracted using RNAeasy kit (Qiagen). RNAs were converted to 

cDNA by reverse-transcription using Quantitect reverse transcription kit (Qiagen). 

Determination of mRNA level was performed by RT-PCR using specific primers (table 

S1) and QuantiTect SYBR® Green PCR Kit (Qiagen) according to manufacturer’s 

instructions. Fold changes were calculated using the DDCT2 (-Delta Delta C(T)) 

method and results were normalized with respect to the values obtained for the 

endogenous Actin and GAPDH cDNA.



 

 

69 

 

Table 3. Primers used for RT-qPCR and RT-PCR 

Target Forward (5’  3’) Reverse (5’  3’) 

JAK1 TGGATCTCTTCATGCACCGGA ATGAATGGGCCACACTCACTG 

IRF1 CAGAGAAAAGAAAGAAAGT CATCAGAGAAGGTATCAG 

CIITA ATG CGC TGA GTG AGA ACA AGA 

TC 

 

GGAAGCGGAGGTGAGGAGATT 

 

MX1 TCACCAGAGAATAACAGAGG GGCATTAACTTTATCTATCAGG

AA 

GAPDH GAGCCACATCGCTCAGACAC CATGTAGTTGAGGTCAATGAA

GG 

Beta-

Actin 

CAGCAAGCAGGAGTATGACG AAAGCCATGCCAATCTCATC 

FOXA1 CAAGAGTTGCTTGACCGAAAGTT TGTTCCCAGGGCCATCTGT 

PPARγ GAACAGATCCAGTGGTTGCAG CAGGCTCCACTTTGATTGCAC 

 

RT-qPCR= Real time quantitative polymerase chain reaction, RT-PCR= Reverse 

transcription polymerase chain reaction, JAK1= Janus associated kinase 1, IRF1= 

Interferon regulatory factor 1, GAPDH= glyceraldehyde-3-phosphate dehydrogenase, 

FOXA1= Forkhead box protein A1, PPARγ= Peroxisome proliferator-activated receptor 

gamma. 

 

Surface staining and analysis of STAT1 phosphorylation Flow Cytometry 

For surface staining, Sc and KD hTERT urothelial cells, +/- addition of the given 

concentrations of IFNγ (detailed in the legends) for different time points, were detached 

using Accutase® solution (A6964, Sigma Aldrich), labelled with fluorescent-conjugated 

antibodies (see Table S2) and washed with phosphate buffered saline (PBS). For 

STAT1 phosphorylation analysis, cells were stimulated with the given concentrations of 
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IFNγ or IFNα (detailed in the legends) for 10 min, or not stimulated, then fixed and 

permeabilized using fix buffer I and Perm Buffer III (BD Biosciences) for 30 min at 

4ºC, washed with PBS and labelled with 5µL anti-pSTAT1 antibody (pY701. BD 

Biosciences) for 60min in the dark. For all flow cytometry (BD LSRFortessa) 

experiments 10,000-30,000 gated events were collected and analysed using FlowJo 

software.  

 

Table 4. Antibodies used for flow cytometry 

Antibody Catalog No. Supplier 

anti-HLA-ABC (FITC) IM1838U Beckman Coulter 

Immunotech 

anti-CD119 (IFNGR1) (PE) 558937 BD Bioscience 

anti-CD54 (ICAM-1) (APC) 559771 BD Bioscience 

anti-CD274 (PD-L1) (PE) 329705 BioLegend 

anti-HLA-DR (PerCP) 347402 BD Bioscience 

Anti-STAT1 (pY701) (Alexa Fluor 

467) 

612557 BD Bioscience 

 

HLA= Human leukocyte antigen, IFNGR= Interferon gamma receptor, ICAM-1= 

Intracellular adhesion molecule 1 (CD54), PD-L1= Programmed death-ligand 1, 

STAT1= Signal transducer and activator of transcription, FITC= Fluorescein-5-

isothiocyanate, PE= Phycoerythrin, APC= Allophycocyanin, PerCP= Peridinin-

Chlorophyll-protein. 

 

Infection models with bacteria in vitro  

The Mycobacterium bovis Calmette–Guérin (BCG) Pasteur strains (ATCC® 35748™), 

BCG expressing-mCherry (kind gift from Prof. Brian Robertson Imperial College of 

London, London, U.K) and Salmonella typhimurium (ATCC 14028) (kind gift from Dr 

Dagmar Alber, UCL, London, U.K) were used in the study. Mycobacteria were grown 
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to mid-log phase (optical density (OD) between 0.6-1) in Middlebrook 7H9 medium 

supplemented with 10% OADC enrichment medium (BD Biosciences), plus 50 μg/ml 

hygromycin for BCG expressing-mCherry. Stock cultures were maintained in glycerol 

at –80 C until later use. Viable cell counts in thawed aliquots of BCG were determined 

by plating serial dilutions of cultures onto supplemented Middlebrook 7H11 agar plates 

followed by incubation at 37ºC for 14-21 days. Salmonella was grown to mid-log phase 

in LB broth overnight with agitation. 

 

THP1 cells were differentiated in macrophages using 10ng/ml of phorbol myristate 

acetate (PMA) for 48h and then were left unstimulated or stimulated with IFNγ 50ng/ml 

for 18h before infection. Cells were infected using stocks (BCG) or bacteria in mid-log 

grow phase (salmonella), using a multiplicity of infection (MOI) of 20:1 for BCG 

expressing-mCherry and 10:1 for BCG and salmonella. The MOI calculation was 

performed using the following conversion: OD of 1 = 1 x 10
8
 colony forming units 

(cfu)/ml for BCG and OD of 1 = 10
9
 cfu/ml for salmonella. Bacteria were washed and 

suspended in RPMI medium and 10% heat-inactivated FCS. Monolayers were 

incubated for 4 h with BCG and 30 min with salmonella at 37ºC in 0.5% CO2. Infected 

cells were washed to remove extracellular bacteria. Cells were also incubated in 

complete medium with gentamicin (100µg/ml) for two hours after salmonella infection, 

in order to kill extracellular bacteria.  Subsequently, macrophages were incubated in 

fresh complete medium, in the presence or absence of IFNγ (50 ng/ml) for different 

time points (detailed in the legends). 
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Harvest of infected macrophage lysate for cfu plating  

Cells were lysed at 24h for salmonella and 3 days for BCG infection with 0.05% SDS 

w/v in H2O and serial dilutions were plated out on Middlebrook 7H11 agar plates 

followed by incubation at 37ºC for 14 days for BCG infection. After salmonella 

infection, serial dilutions were plated out on LB agar plates to count the number of 

cfu/ml after 12hr at 37ºC. 

 

Quantification of the infected cells by Flow Cytometry 

Macrophages differentiated from the scrambled control and KD THP1 cell lines using 

PMA, were left unstimulated or stimulated with IFNγ (50ng/ml) before infection with 

BCG expressing-mCherry strains. After phagocytosis, cells were washed and incubated 

in complete medium in the presence or absence of IFNγ (50 ng/ml) for the given time 

points. Cells were removed from the plate using Accutase® solution (A6964, Sigma 

Aldrich), washed with PBS, fixed in 4% paraformaldehyde (PFA) for 10 min and 

analysed by flow cytometry (BD LSRFortessa) using FlowJo. 

 

Microscopy 

200,000 THP1 cells were differentiated on 35mm glass bottom dishes (Fluorodish). 

After phagocytosis of BCG expressing-mCherry, cells were washed and incubated in 

complete medium in the presence or absence of IFNγ (50 ng/ml) for the given time 

points. Subsequently, cells were incubated with 50nM LysoTracker Deep Red (Life 

Technologies) for 30min, washed and then fixed in 4% paraformaldehyde (PFA) for 10 

min. Nuclei were stained with 5µg/ml DAPI for 10 min, cells were then washed and 

kept on PBS. Cells were acquired using Leica inverted fluorescent microscope equipped 
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with 60x oil objective for quantification of infected cells or Nikon Eclipse Ti-E confocal 

microscope equipped with 40x objectivefor colocalisation analysis.  Infected cells were 

counted manually and at least 100 cells per experiment were analysed. Images were 

processed using ImageJ (National institute of health) and Imaris image analysis 

software. 

 

pH sensitivity of pHrodo-labelled BCG 

BCG-lux were labelled with pHrodo™ (Invitrogen) at a concentration of 25mM 

according to the manufacturer’s instructions, except for omission of the 100% methanol 

step. Approximately 100,000 cfu were resuspended in 500 µl buffer at pH 7. Samples 

were then acquired on a BD Fortessa flow cytometer (BD LSRFortessa), and pHrodo 

fluorescence was measured in the PE-Texas Red channel, and analysed using FlowJo. 

  

Cell viability and Apoptosis assays 

Sc and KD hTERT urothelial cells were stimulated with IFNγ using different time 

points and concentrations. Alamar Blue® (AB), diluted 1:10 with KSFMc, was added to 

urothelial cells grown in 96-well plates (5,000 cells/100ul). After 3 hours incubation at 

37°C, absorbance was measured at 560 and 620 nm. AB reduction was calculated 

according to manufacturer's instructions (AbD Serotec, Kidlington, UK).  

 

Apoptosis was determined by flow cytometry using APC Annexin V apoptosis 

detection kit with Propidium Iodide (PI) according to manufacturer’s instructions 

(BioLegend 640932). For apoptosis assays, macrophages differentiated from scrambled 
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control and JAK1-deficient THP1 cell lines were left unstimulated or stimulated with 

the given concentrations of IFNγ (detailed in the legends) before BCG infection (MOI 

10:1); and then incubated in complete medium in the presence or absence of IFNγ for 

the given time points (detailed in the figure legends). Sc and KD hTERT urothelial cells 

were left unstimulated or stimulated with the given concentrations of IFNγ (detailed in 

the legends). Percentage of apoptosis was determined using APC Annexin V apoptosis 

detection kit with PI (BioLegend 640932) according to manufacturer’s instructions by 

flow cytometry (BD LSRFortessa), and analysed using FlowJo.  

 

Viral assays 

For the plaque assays, control and patient fibroblasts were grown in six-well dishes and 

infected with different dilutions of PIV5VΔC and PIV5 for 1h. Subsequently, 0.1% 

Avicel (FMC Biopolymer) was included in the overlay medium and cells were 

incubated for 5 days at 37ºC in 0.5% CO2. Plaques were visualized by immunostaining 

using a pool of monoclonal virus-specific antibodies for the viruses as described 

previously (194,195), together with alkaline phosphatase-conjugated secondary 

antibody by using SIGMAFAST BCIP/NBT as the substrate.  

 

Control and patient fibroblasts were grown on 13 mm diameter coverslips in individual 

wells of 24-well plates and then were left unstimulated or stimulated with different 

concentrations of IFNγ or IFNα overnight. Cells were infected with PIV5 at a 

multiplicity of infection of 10pfu/cell. The inoculum was adsorbed for 1 h and then cells 

were incubated in complete medium in the presence or absence of IFN for 24h. 
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Monolayers were incubated in fixing solution (5 % formaldehyde and 2 % sucrose in 

PBS) for 15 min at room temperature, then permeabilized (0.5 % Nonidet-P40 and 10 % 

sucrose in PBS) for 5 min, and washed three times in PBS containing 1 % FCS and 

0.1 % azide (PBS, 1 % FCS, 0.1 % azide). To detect the proteins of interest, cell 

monolayers were incubated with 10–15 μl of an antibody used to detect PIV5 (196). 

Cells were subsequently washed (PBS, 1 % FCS, 0.1 % azide). In addition, cells were 

stained with the DNA-binding fluorochrome DAPI (0.5 μg ml−1; Sigma-Aldrich) for 

nuclear staining. Following staining, monolayers were washed with PBS, mounted 

using Mowiol and examined using a Nikon Microphot-FXA immunofluorescence 

microscope. 

 

EBV-B cells viral assays were performed as previously described (134). EBV–B cells 

were either left untreated or were treated with 10,000 IU/ml IFNα for 18 h. The kinetics 

of VSV growth in EBV-B was determined by resuspending the cells in RPMI medium 

containing the virus inoculum and incubating for 1 h (VSV MOI = 1), washing with 

PBS and resuspending in fresh complete medium. Virus-containing supernatants were 

then collected at the indicated time points. VSV titers were determined by calculating 

the 50% end point (TCID50), as previously described (197), after the inoculation of 96-

well plates with Vero cell cultures. 

 

Lymphocyte Cytotoxicity Assay 

Healthy donor peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll 

gradient and frozen in 10% dimethyl sulfoxide (DMSO). To control for differences in 
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the frequency of lymphocyte subsets between donors, PBMCs were collected from a 

single donor buffy coat and used for all killing assays shown. PBMC were thawed and 

re-suspended in RPMI (Invitrogen) with 10% heat-inactivated fetal bovine serum and 

monocytes removed by plastic adherence (1h, 37 °C). Urothelial cells were cultured in 

96-well plates +/- IFNγ (5 ng/ml) for 30h and subsequently co-cultured overnight with 

interleukin-2 (IL-2) (Roche) + monocyte-depleted PBMCs (50:1). Cells were detached 

using Accutase® solution, washed with PBS and resuspended in 200 µl DNA staining 

solution (NKTEST, Glycotope Biotechnology). Urothelial cells were gated based on 

GFP expression and analysed by flow cytometry.  

 

Statistical analysis  

Statistical analysis was performed using Graphpad Prism 5.1 Software. Associations 

between JAK1-deficient and control cells were tested using one-way ANOVA and 

appropriate post-test, or a two-tailed Mann Whitney U test. A p value of <0.05 was 

considered significant. 
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RESULTS 

Chapter I – Role of partial JAK1 deficiency in mycobacterial susceptibility 

 

Description of the patient with JAK1 deficiency 

A 23-year-old male from Pakistan was born from a consanguineous marriage. The 

patient presented at the age of 3 years with a history of recurrent respiratory tract 

infections, cervical lymphadenopathy and developmental delay. The patient had 

received childhood vaccines including BCG at birth and had normal-course chicken pox 

at age 3 with one subsequent episode of shingles. A skeletal survey was performed 

demonstrating lytic lesions affecting long bones, vertebrae and facial bones. Biopsies 

were unremarkable and no pathogens were isolated from either tissue. Mycobacterial 

skin tests were performed, showing strongly positivity for Mycobacterium malmoense 

and Mycobacterium scrofulaceum.  In view of these findings, the patient received 

treatment for systemic atypical mycobacterial infection, resolving the multifocal 

osteomyelitis after 12 months 

 

The immunology investigations demonstrated normal numbers of T and B cells, 

reduced naive CD4 and CD8 T cells and normal proliferation after phytohemagglutinin 

(PHA) stimulation, normal immunoglobulin levels and specific antibody responses after 

vaccinations. Over the time, the IgM levels fell below the normal range with persistent 

mild T-cell lymphopenia and impaired responses to PHA stimulation. At the age of 16 

presented with cardiomyopathy and computed tomography imaging revealed a 

mediastinal mass. Biopsies showed pleural and mediastinal fibrosis with patches of 

macrophage infiltration in lung tissue. No granulomas were seen and Quantiferon TB 
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Gold test was negative. In view of his previous history he received empiric treatment for 

atypical mycobacteria with reduction of the mass. He had no recurrence or further 

mycobacterial infections on long-term antibiotic prophylaxis. However, he had a 

number of skin infections, including planar warts in the forehead, fungal infections of 

his nails and severe Norwegian scabies. 

 

At the age of 21 years the patient developed significant anaemia. Thickening of the 

bladder wall was noted on magnetic resonance imaging and cystoscopy showed an 

extensive fungating tumour. Biopsies of the tumour and lymph nodes confirmed a high-

grade metastatic transitional cell carcinoma. The patient received treatment with 

chemotherapy, but died at the age of 23 years. 

 

Exome sequencing revealed two separate homozygous JAK1 missense mutations that 

were predicted to be probably damaging, leading to amino-acid changes from proline to 

leucine (p.P733L) and from proline to serine (p.P832S). STAT phosphorylation was 

tested in the patient’s lymphocytes, observing significantly reduced but not abolished 

STAT3, STAT5, STAT6 and STAT1 phosphorylation after IL-2, IL-4, IL-10, IFNα and 

IFNγ stimulations indicating a broad impact on cytokine signalling (Fig. 1). In cell lines 

models, both mutations were demonstrated to contribute to full JAK1 function, with the 

P733L mutation conferring the larger loss of function effect (2) (Appendix). In 

summary, hypomorphic recessive germline JAK1 mutations induced a functional partial 

JAK1 deficiency, affecting multiple signalling pathways that clinically manifested with 

atypical mycobacterial infections and increased susceptibility to cancer (2).  



 

 

79 

 

 

 

 

     



 

 

80 

 

 

 

Figure 1. JAK1 mutations and functional defects found in the patient. (A) Patient’s 

family tree. (B) Sequence chromatograms showing two mutations in JAK1 gene. (C) 

Flow cytometry gating for pSTAT1 after IFNα and IFNγ stimulation is shown. (D) 

Percentage of cells positive for the presence of phosphorylated STAT proteins were 

measured by flow cytometry after 10 min stimulation of whole blood of the patient 

(open circles) and compared with a healthy control (black dots). Blue lines show 

geometric means. Unpaired two-tailed Student t-test with Welch’s correction. (Adapted 

from Eletto et al. Nature communications. 2016. (Appendix)) 

 

Partial JAK1 deficiency impairs STAT1 phosphorylation and expression of IFNγ-

inducible genes in THP1 cells. 

As our patient with hypomorphic JAK1 deficiency presented predominantly with 

MSMD, we sought to establish a model to examine the role of JAK1 in myeloid cells 

during mycobacterial infection. As patient blood was not accessible, for this study we 

generated a THP1 myeloid cell line with sub-total JAK1 KD to mimic partial JAK1 

deficiency using lentiviral vectors expressing shRNA sequences. Compared to control 

shRNA JAK1 shRNA substantially reduced JAK1 messenger RNA expression for 3 out 
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of 4 hairpins tested (Fig.2A). THP1 cells transduced with JAK1 shRNA #3 were utilised 

for further studies. Demonstration of JAK1 knock down at the protein level by 

immunoblotting was unsuccessful using several antibodies (including the one used in 

Eletto et al). To test whether the level of mRNA reduction was sufficient to impair 

JAK1 protein function, we studied JAK1-mediated activation of STAT1 in response to 

IFNγ stimulation, using flow cytometry. We observed a significant decrease in STAT1 

phosphorylation following IFNγ stimulation in the KD cell line compared to 

untransduced and scrambled control shRNA lines (p<0.05) (Fig.2B,C). STAT1 

phosphorylation in response to IFNα stimulation also showed a trend towards reduction 

although this did not reach significance (Fig.2D,E), suggesting that partial loss of JAK1 

function affects predominantly the type II IFN response in this model.  Following 

stimulation with IFNγ, upregulation of IRF1 and CIITA mRNA was significantly lower 

in the KD than Sc lines, indicating impaired downstream gene transcription in JAK1 

deficiency (Fig.2F,G). 
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Figure 2. STAT1 phosphorylation and expression of IFNγ inducible genes is 

impaired in JAK1-deficient THP1cells.  

(A)RT-PCR analysis of JAK1 expression in THP1 WT and transduced cell lines 

(constructs shRNA 1, 2, 3, 4 and Scrambled control). Data is representative from two 

independent experiments. (B,C) Analysis of JAK/STAT signalling by flow cytometry in 
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Sc and KD THP1 cells after stimulation with IFNγ (50 ng/ml) for 10min. (D,E) 

Analysis of JAK/STAT signalling by flow cytometry in Sc and KD THP1 cells after 

stimulation with different concentrations of IFNα for 10min. B and D display a 

representative experiment, C and E are from three independent experiments. Two-tailed 

Mann Whitney test. (F,G) RTqPCR analysis of IRF1 and CIITA expression from KD 

and Sc THP1 cells after stimulation with IFNγ (50ng/ml) for 24h. Data is from four 

independent experiments. Two-tailed Mann Whitney test. Graphs show mean values ± 

SE and regulation of the expression compared to untreated. *P <0.05. Error bars 

represent the SE. 

 

 

Partial loss of JAK1 function promotes mycobacterial and salmonella survival in 

myeloid cells 

To test the impact of reduced JAK1 function on IFNγ-mediated host defense to 

intracellular pathogens we utilized BCG as a well-established model for mycobacterial 

infection. Macrophages differentiated from the JAK1 KD and Sc cell lines were 

infected with BCG, with or without prior IFNγ stimulation. THP1 cell lines were 

capable of internalizing BCG, as seen by confocal microscopy (Fig. 3A). Three days 

after BCG infection, a trend towards a lower percentage of infected cells was observed 

in the Sc cell lines after IFNγ stimulation (Fig.3B). In contrast, no difference was seen 

in JAK1 KD lines in response to IFNγ (Fig. 3B). Using confocal analysis and a 

lysotracker dye which increases fluorescent intensity in low pH (198), both Sc and 

JAK1 KD cell lines were observed to traffic a proportion of internalised BCG into 

acidified compartments (Fig. 3C). It was not possible to compare the number of 

intracellular BCG by confocal analysis because of bacterial clumping. 

 

Therefore, to better quantitate BCG infection, cells were co-cultured with mCherry-

expressing BCG and analyzed by flow cytometry. Similar levels of bacteria were 
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internalized by KD and Sc lines at 4 hours and this was largely unaffected by IFNγ 

stimulation (Fig. 3A,B), indicating that loss of JAK1 does not significantly impact 

phagocytosis. As expected, at both 24 and 72 hours, IFNγ stimulation significantly 

reduced mCherry fluorescence in Sc lines consistent with lower bacterial survival. In 

contrast, IFNγ had no significant impact on mCherry levels in KD lines (Fig, 4A,B). To 

confirm that JAK1 deficiency promotes intracellular BCG survival, KD and Sc lines 

were lysed on culture plates after infection and surviving bugs quantitated by counting 

colony forming units (cfu/ml). As seen in flow cytometry assays, BCG survival was 

higher in KD lines indicating an important role for JAK1 in controlling mycobacterial 

infection (Fig. 4C). Similar findings were obtained with Salmonella typhimurium (Fig. 

4D), another intracellular pathogen known to require IFNγ signaling for control of the 

bacterial infection, with significantly higher bacterial survival seen in KD than Sc cells. 

Together these results demonstrate that JAK1-deficient myeloid cells permit enhanced 

intracellular mycobacterial and salmonella survival in vitro. 
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Figure 3. BCG is internalised and localised into acidified compartments in control 

and JAK1-deficient THP1 cells 

(A, B) Internalisation of mCherry-BCG by macrophages differentiated from the 

scrambled control and KD THP1 cell lines, unstimulated or stimulated with IFNγ 

(50ng/ml). (C) Acidified phagosomes containing mCherry-BCG (arrow). A and C 

display a representative experiment, B is from 3 independent experiments. 
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Figure 4. JAK1-deficient THP1 cells show increased mycobacterial and salmonella 

survival after IFNγ stimulation. 

(A,B) Flow cytometry quantitation of mCherry-BCG in macrophages differentiated 

from the Sc and KD THP1 cell lines using PMA, with or without prior IFNγ (50ng/ml) 

stimulation; mCherry fluorescence was measured in the PE-Texas Red channel. Black 

line – BCG infected cells, gray line – BCG infected cells + IFNγ stimulation. A displays 

a representative experiment, B is from five independent experiments. (C,D) Bacterial 

survival in macrophages differentiated from Sc and KD THP1 cell lines, infected with 

BCG or salmonella strains, with or without prior IFNγ (50ng/ml) stimulation. Data is 

from six and four independent experiments respectively. Two-tailed Mann Whitney test. 

*P <0.05. Error bars represent the SE. 

 

Partial JAK1 deficiency impairs IFNγ-induced phagosome acidification and 

apoptosis in myeloid cells. 

To further explore the mechanisms promoting enhanced bacterial intracellular survival 

in myeloid cells with reduced JAK1 function, phagosome acidification and apoptosis 

were tested as these are key IFNγ-dependent steps in the control of mycobacterial 

infection (102,103,114,199–201). Following infection of THP1 cell lines with pHrodo-

labelled BCG, phagosomal acidification was measured by measuring fluorescence 

which is released in the context of low pH. Even in the absence of IFNγ stimulation, 

both Sc and KD THP1 cells had relatively high levels of pHrodo fluorescence (Fig. 

5A,B). Fluorescence intensity was increased after IFNγ-stimulation in Sc cells lines 

consistent with additional IFNγ-mediated induction of acidification (Fig. 5A-C). In 

contrast there was no increase in the KD cell line following IFNγ stimulation. 

 

To test whether partial JAK1-deficiency is sufficient to impair IFNγ-induced apoptosis 

Annexin V/PI staining was measured by flow cytometry. Sc control and KD THP1 cells 

had similar baseline levels of apoptosis which was not significantly increased 5 days 

after BCG infection alone (Fig. 5D-F). In contrast, IFNγ pre-treatment of Sc control 
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cells induced significant apoptosis compared with untreated control cells at both 3 and 5 

days after BCG infection (Fig. 5D-F). Significantly less apoptosis was seen in KD cells 

3 and 5 days after BCG infection following IFNγ pre-treatment, compared with control 

cells (p <0.05) (Fig. 5D-F). Together our data suggest that defective intracellular 

bacterial killing in myeloid cells with reduced JAK1 function is at least in part due to 

impaired IFNγ-induced phagosome maturation and apoptosis. 
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Figure 5. Phagosome acidification and apoptosis is reduced in JAK1-deficient 

THP1 cells. 

(A-C) Flow cytometry measurement of phagosome acidification using detection of 

pHrodo-labelled BCG 24h post infection of macrophages differentiated from Sc and KD 
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THP1 cell lines using PMA, with or without prior IFNγ (50ng/ml) stimulation. A 

displays a representative experiment; B is from six independent experiments. Graphs 

show mean values ± SE and regulation of the acidification compared to untreated. Two-

tailed Mann Whitney test. *P <0.05. Error bars represent the SE. (D-F) Percentage of 

apoptosis quantified by flow cytometry using annexin V / PI staining in macrophages 

differentiated from the Sc and KD cell lines at different time points following BCG 

infection, with or without prior IFNγ (50ng/ml) stimulation. D displays a representative 

experiment, E and F are from four independent experiments. Two-tailed Mann Whitney 

test. *P <0.05. Error bars represent the SE.
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Chapter II – Role of partial JAK1 deficiency in anti-viral immunity 

 

Variable impact of partial JAK1 deficiency on STAT1 phosphorylation and 

expression of IFNα-inducible genes in EBV-B cells and fibroblasts 

Next, we sought to examine the functional effect of partial JAK1 deficiency on anti-

viral response as our patient showed surprisingly mild viral susceptibility given the 

important role of IFNα for the protective immunity to viruses in humans 

(74,134,135,202). We studied JAK1-mediated activation of STAT1 proteins in response 

to IFN stimulation in EBV-immortalized B cells and fibroblasts of the patient with 

partial JAK1 deficiency and healthy controls, as these lines have been previously 

utilized for the study of viral susceptibility in patients with PID. 

 

STAT1 phosphorylation was significantly reduced following IFNγ stimulation in skin 

fibroblasts of the patient with partial JAK1 deficiency but, surprisingly, comparatively 

preserved in response to IFNα-stimulation (Fig. 6A,B). In keeping with this finding, we 

observed no difference in mRNA upregulation of the IFNα-inducible gene, MX1, 

following IFNα-stimulation (Fig. 6C). By contrast, EBV-B cells from the patient 

demonstrated significantly impaired STAT1 phosphorylation in response to IFNα-

stimulation with a trend towards less MX1 mRNA upregulation (Fig. 6D,E). IFNγ-

responses were not tested in EBV-B cells as this cell type is resistant to IFNγ-

stimulation, requiring extremely high concentrations of IFNγ. Together, our data 

indicate that impaired IFNα signalling was more profound in EBV-B cells than 

fibroblasts with partial loss of JAK1 function.  
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Figure 6. Impaired STAT1 phosphorylation and expression of IFNα inducible 

genes in EBV-B cells and fibroblasts of the patient with JAK1 deficiency 

 (A,B) Analysis of JAK/STAT signalling by flow cytometry in control and JAK1 

deficient fibroblasts after stimulation with IFNγ (100ng/ml) and IFNα (10
3
 IU/ml) 

respectively. (D) Analysis of JAK/STAT signalling by flow cytometry in control and 

JAK1 deficient EBV-B cells after stimulation with IFNα (10
5
 IU/ml). (C,E) RTqPCR 

analysis of MX1 expression from control and JAK1 deficient EBV-B cells and 

fibroblasts after stimulation with IFNα for 24h. (A,B,D) Data are from three 

independent experiments. (C,E) Data are from four independent experiments. Two-

tailed Mann Whitney test. Graphs shows mean values ± SE and regulation of the 

expression compared to untreated. *P <0.05. Error bars represent the SE. 
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Partial JAK1 deficiency impairs anti-viral response in EBV-B cells but not in 

fibroblasts 

To test the degree of viral susceptibility in JAK1 deficient cells, we utilised established 

viral infection models in both fibroblast and EBV B-cells (134,135). We used PIV5 and 

highly attenuated recombinant strains of PIV5 (PIV5VΔC) that lack defined functional 

IFN antagonists (33,34). This virus is weakly virulent forming only pinpoint plaques in 

cells that produce and respond to IFN but with ability to form large plaques if the IFN 

system is impaired. As previously shown (135), fibroblast monolayers from patients 

with STAT2  deficiency supported the formation of large plaques (infected cells) of 

PIV5 and PIV5VΔC, demonstrating uncontrolled viral infection resulting from failure 

of the type I IFN response (Fig. 7A). Fibroblast monolayers from healthy control and 

the patient with partial JAK1 deficiency prevented large viral plaque formation 

indicating successful viral control (Fig. 7A).  

 

We also tested whether partial JAK1 deficiency altered the capacity of fibroblasts to 

respond to exogenous addition of IFNα and IFNγ treatment to control PIV5 infection. 

Using immunostaining to visualize intracellular virus, loss of viral fluorescence was 

seen during successful suppression of viral infection in healthy control fibroblasts 

treated with IFNα (Fig. 7B). Comparable viral suppression was mediated by patient 

fibroblasts after IFNα stimulation supporting our observation of preserved IFNα 

responses in fibroblasts with reduced JAK1-fucntion. Similarly, a lower degree of viral 

suppression seen after IFNγ stimulation in healthy control fibroblasts was not impacted 

by partial JAK1 deficiency over a range of IFNγ doses (Fig. 7B). 
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To further test the impact of partial JAK1 deficiency on host viral protection we used a 

separate model in which EBV-B cells are infected with VSV. As expected, healthy 

control EBV-B cells controlled viral infection when treated with exogenous IFNα, 

evidenced by lower viral titers compared with untreated cells at 24h and 48h after 

infection (Fig. 7C). In contrast, EBV B-cells from the patient with partial JAK1 

deficiency exhibited no reduction in viral titers in the presence of IFNα indicating a 

significantly reduced response to IFNα. In this assay VSV titers in infected patient 

EBV-B cells were comparable to STAT1-deficient EBV B-cells after 24h and 48h of 

infection (Fig. 7C). Together these results suggest that partial JAK1 deficiency results 

in impaired viral protection with variable impact according to the cell type involved. 
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Figure 7. Impaired in vitro antiviral response in EBV-B cells but not fibroblasts of 

the patient with JAK1 deficiency  

(A) Relative plaque sizes of PIV5 and the IFN-sensitive PIV5VΔC virus visualised by 

immunostaining in fibroblasts from patients with JAK1 deficiency, STAT2 deficiency 

and healthy control 5 days post infection. (B) Visualisation of PIV5 virus-infected cells 

by immunofluorescence in control and JAK1 deficient patient fibroblast monolayers, 48 

hours post infection with or without IFNα (105 IU/ml) pre-treatment. (C) Determination 

of VSV viral load (expressed as log10TCID50/ml) at 24 and 48 h in EBV–B cells from 

the patient with JAK1 deficiency, a patient with complete STAT1 deficiency, and two 

healthy controls (C1 and C2), with or without pre-treatment with 105 IU/ml IFNα. Data 

A and B display a representative experiment, C is from three independent experiments. 

Significance bars are shown when p <0.05 (the experiments related to data C were 

performed by Michael Ciancanelli in St. Giles Laboratory of Human Genetics of 

Infectious Diseases, Rockefeller University, NY, USA)
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Chapter III – Role of partial JAK1 deficiency in cancer susceptibility 

 

Partial JAK1 deficiency impairs STAT1 phosphorylation and expression of IFNγ-

inducible genes in hTERT urothelial cells 

We used a JAK1-deficient cell model to examine JAK1 function in hTERT-

immortalized urothelial cells. We generated a JAK1 KD cell line using lentiviral vectors 

expressing shRNA sequences. Compared to Sc shRNA, JAK1 shRNA substantially 

reduced JAK1 mRNA expression (Fig. 8A). To confirm functional knock down of 

JAK1, we studied JAK1-mediated activation of STAT1 proteins in response to IFNγ 

stimulation, using flow cytometry. We observed a significant decrease in STAT1 

phosphorylation following IFNγ stimulation in the KD cell line compared to non-

transduced and Sc shRNA lines (p<0.05) (Fig. 8B,C). IRF1  mRNA expression, was 

also significantly lower in KD than Sc lines following stimulation with IFNγ, indicating 

impaired downstream gene regulation in JAK1 deficiency (Fig. 8D). Reduced responses 

to IFNγ were not due to alteration in expression of the IFNγR as Sc and KD hTERT 

urothelial cells displayed comparable IFNγR surface expression both at baseline and 

following IFNγ stimulation (Fig. 8E). 
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Figure 8. STAT1 phosphorylation and expression of IRF1 is impaired in JAK1-

deficient hTERT urothelial cells.  

(A) hTERT urothelial cells were transfected with vectors expressing JAK1 shRNA and 

scrambled control. RT-PCR analysis of JAK1 expression. Data representative from two 

independent experiments. (B,C) Analysis of JAK/STAT signalling by flow cytometry in 

untransduced (Unt), Sc and KD hTERT urothelial cells after stimulation with IFNγ 

(1ng/ml) for 24h. Data B is from a representative experiment, data C is from three 

independent experiments. Two-tailed Mann Whitney test. (D) RTqPCR analysis of 

IRF1 expression from KD and Sc hTERT urothelial cells after stimulation with IFNγ 
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(1ng/ml). Data is from four independent experiments. Two-tailed Mann Whitney test. 

*P <0.05 Error bars represent the SE. (E) IFNγR basal expression and after stimulation 

with IFNγ (5ng/ml) for two days. Data is from three independent experiments. One-way 

ANOVA with Tukey's Multiple Comparison post-test.*P <0.05. Error bars represent the 

SE. 

 

JAK1 deficiency alters MHC, ICAM-1 and PD-L1 expression in hTERT urothelial 

cells  

It was previously shown that IFNs regulate expression of MHC, ICAM-1 and PD-L1 in 

cancer cells (9–11). We examined the expression of these cell surface molecules in 

JAK1-deficient and Sc hTERT urothelial cells before and after IFNγ treatment (Fig. 9). 

While basal expression of MHC II was undetectable in both KD and Sc cells, IFNγ 

induced expression of MHC II in control cells that was significantly lower in the KD 

cells  (p<0.05) (Fig. 9A,B).  As described for gynecological cancer cells bearing 

somatic JAK1 mutations (17), we also observed a trend towards lower surface MHC I 

expression on the cell surface of by JAK1-deficient hTERT urothelial cells compared 

with control cells both at baseline and after IFNγ stimulation, however, MHC I was 

upregulated by both control and KD cells although this did not achieve with no 

statistical significance significant difference (Fig. 9C,D).  Expression of ICAM-1 was 

slightly reduced in KD cells at baseline and expressed at significantly lower levels after 

IFNγ stimulation compared with Sc control (p<0,05. Fig. 9E,F). In keeping with the 

effects of other reported somatic mutations associated with IFNγ resistance in cancer 

cells (22,23), we observed reduced PD-L1 expression after IFNγ stimulation in KD cells 

compared to Sc (p<0,05. Fig. 9G,H). Together these data indicate that JAK1 functions 

regulate the expression of multiple immunomodulatory cell surface molecules in 

urothelial cells and that JAK1-deficiency alters urothelial cell phenotype. 
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Figure 9. Analysis of MHC I/II, ICAM-1 and PD-L1 expression in hTERT 

urothelial cells by Flow Cytometry.  

KD and Sc hTERT urothelial cells were stimulated with IFNγ for two days and IFNγR 

expression was analysed by flow cytometry.  Data is from three independent 

experiments. (A,B) MHCII expression in KD and Sc hTERT urothelial cells after 

stimulation with IFNγ (5ng/ml) for three days. Data is from four independent 

experiments. (C,D) MHC I and (E,F) ICAM-1 basal expression and in response to IFNγ 

(5ng/ml) after 24h. Data are from four independent experiments. (G,H) PD-L1 basal 

expression and after stimulation with IFNγ (5ng/ml) for two days. Data is from three 

independent experiments. One-way ANOVA with Tukey's Multiple Comparison post-

test. Graphs show mean values ± SE and regulation of the expression compared to 

untreated.*P <0.05. Error bars represent the SE. 

 

 

JAK1 deficiency impairs apoptosis in response to IFNγ in hTERT urothelial cells 

JAK1 KD had no effect on basal growth kinetics of immortalized hTERT cells assessed 

using an Alamar Blue (AB) reduction assay. In both Sc and KD cell lines, the culture 

biomass increased steadily over 4 days, indicating a similar increase in cell number over 

time.  IFNγ stimulation significantly inhibited cell growth in the control cell line (Fig. 

10A; p <0.05), in keeping with an anti-proliferative effect and/or increased cell death. 

By contrast, growth kinetics of the JAK1-deficient hTERT urothelial cell population 

showed no significant change following IFNγ treatment (Fig. 10A). To further 

investigate this, we tested whether JAK1-deficient cells are resistant to IFNγ-induced 

apoptosis.  IFNγ induced apoptosis in Sc hTERT urothelial cells which was 

significantly lower in the JAK1-deficient cell line (p <0.05) (Fig. 10B,C), indicating 

that JAK1 is required for IFNγ-mediated apoptosis in urothelial cells. Together, our data 

support a requirement for JAK1 in regulating the urothelial cell response to IFNγ. 
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Figure 10. JAK1-deficient hTERT urothelial cells demonstrate preserved 

population growth and reduced apoptosis in response to IFNγ.  

(A) Cells were cultured with Alamar Blue (AB) dye and stimulated with IFNγ (5ng/ml) 

for the given time points. The capacity of viable cells to reduce AB dye was used as a 

proxy for cell number. Data A is from five independent experiments. (B,C) KD and Sc 

hTERT urothelial cells were stimulated with different concentrations of IFNγ for 5 

days. Percentage of apoptosis was quantified with Annexin V/PI apoptosis detection kit 

by flow cytometry. Data B is from five independent experiments, data C is from a 

representative experiment. One-way ANOVA with Tukey's Multiple Comparison post-

test. Error bars represent the SE. 
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Defective lymphocyte-mediated killing of JAK1-deficient hTERT urothelial cells 

after IFNγ stimulation 

We next sought to establish whether the reduced MHC class I and ICAM-1 levels 

observed would impair immune cell recognition of JAK1-deficient hTERT urothelial 

cells (205–208). We tested this using a lymphocyte assay where killing can be mediated 

by NK or CD8+ T cells through shared a perforin-granzyme and death receptor/death 

ligand mechanisms. IFNγ pre-treatment of the Sc hTERT cell line resulted in significant 

enhancement in urothelial cell lysis by third party, IL-2 expanded primary lymphocytes 

(measured as necrotic cells, p <0.05. Fig. 11A,B).  Importantly, lymphocyte mediated 

cell death was significantly reduced in KD compared to Sc cells following IFNγ pre-

treatment (p <0.05. Fig. 11C), suggesting that JAK1 deficiency confers resistance to 

immune cell killing.  
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Figure 11. JAK1-deficient hTERT urothelial cells showed reduced lymphocyte-

mediated killing in response to IFNγ.  

JAK1-deficient and Sc hTERT urothelial cells were pretreated or not with IFNγ and 

kept in co-culture overnight with IL-2 + monocyte-depleted PBMCs. (A,B) Necrosis 

induction in urothelial cells. One-way ANOVA with Dunn's multiple comparisons post-

test. (C) Relative change of necrosis compared to untreated. Two-tailed Mann Whitney 

U test. Data is from five independent experiments. *P < 0.05. Error bars represent the 

SE. 

 

 



 

 

105 

 

Role of JAK1 in urothelial cytodifferentiation  

Histological examination of the invasive urothelial carcinoma found in the JAK1-

deficient patient revealed a suppressed urothelial differentiation phenotype. Given the 

dual role of IRF1 in both IFNγ signaling and PPARγ-mediated urothelial differentiation, 

this led us to test experimentally whether JAK1 has a role in urothelial cell 

differentiation. 

 

NHU cell cultures were induced to differentiate by coactivation of PPARγ and 

inhibition of EGFR signalling, using a combination of troglitazone and PD153035 

(TZ/PD) (191). These conditions induce gene expression changes associated with 

urothelial differentiation via the PPARγ-dependent induction of intermediary 

transcription factors, including FOXA1 and IRF1 (188). As IRF1 knock down limits 

uroplakin expression (188) and IRF1 induction was impaired in JAK1-deficient cells 

(Fig. 2b), we tested by RT-qPCR whether IFNγ modulates expression of genes 

associated with IFNγ signalling and urothelial cytodifferentiation pathways.  As 

expected, TZ/PD induced up-regulation of PPARG and FOXA1 transcripts (Fig. 

12A,B). IFNγ alone had a small effect resulting in a weak up-regulation of IRF1, 

PPARG and CIITA (Fig. 12A,C,D). Surprisingly however, stimulation with 

IFNγ+TZ/PD up-regulated all four genes and substantially increased expression of 

IRF1, FOXA1 and CIITA compared with TZ/PD alone (Fig. 12A-D). These data suggest 

that IFNγ not only induces MHC II expression but significantly enhances PPARγ-

mediated differentiation and supports a previously unknown role for JAK1 in regulating 

urothelial cytodifferentiation.  



 

 

106 

 

 

 

Figure 12. Expression of IFNγ-regulatory genes and intermediary differentiation 

transcription factors in NHU cells by RT-qPCR.  

RT-qPCR analysis of NHU cell gene expression, with or without IFNγ (200U/ml) 

and/or TZ (1 µM) + PD153035 (1 µM) stimulation for 48h compared with the vehicle-

only (0.1% DMSO) control. Data are from five independent experiments derived from 

five different donors.  One-way ANOVA with Tukey's Multiple Comparisons Test. 

*P<0.05. Error bars represent the SE. 
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Figure 13. Model for the role of JAK1 in immune recognition and 

cytodifferentiation of urothelial cells.   

JAK1 transduces signals from the IFNγ receptor through phosphorylation of STAT1. In 

co-operation with the PPARγ pathway, JAK1 signalling activates transcription of IRF1 

and FOXA1, regulating urothelial cell differentiation. In addition, JAK1 mediates 

urothelial cell upregulation of MHC I, MHC II, ICAM-1 and PD-L1 in response to 

exogenous the IFNγ, promoting immune recognition through T- and NK-cells 

interaction.  
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DISCUSSION 

The dissection of clinical and immunological phenotypes associated with germline 

mutations in JAKs and STATs has been essential to define the pathogenesis of the 

disorders of these genes. However, many of the immunological and clinical phenotypes 

seen in these patients remain unexplained at the molecular and cellular levels; possibly 

due to complex regulation and interactions of these signalling pathways.  

 

We recently reported the first case of human germline loss of function hypomorphic 

mutations in JAK1, which resulted in a functional JAK1 partial deficiency with 

impaired phosphorylation of several STATs, affecting signalling downstream multiple 

signalling pathways. The disease manifested clinically with syndromic susceptibility to 

atypical mycobacterial disease and early onset bladder carcinoma. It is likely that 

impaired phosphorylation of several STAT proteins contributed to the 

immunodeficiency manifested by the patient impacting multiple cell types.  

 

JAK1 is a ubiquitously expressed, having impact beyond the immune system. The 

results from analyses of cells and tissues derived from JAK1 KO mice demonstrated 

that there is an absolute requirement for JAK1 in mediating biologic responses to IFNα 

and IFNγ in certain cell types, but also it plays a role in mediating intracellular 

signalling from multiple other cytokine receptors (5).  JAK1-deficient mice failed to 

nurse and died perinatally, possibly as a result of neurological defects. These mice also 

had reduced numbers of thymocytes, pre-B cells and mature T and B lymphocytes, 

suggesting a role for JAK1 in immune cell development although the impact of JAK1 
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deficiency on immune cell function was not tested. No humans have been described 

with complete loss of JAK1 function, which may reflect an impact on development and 

function of essential non-immune tissues. Our patient presented with developmental 

delay and recurrent mycobacterial infections,  showing a less severe presentation that 

the mouse model, presumably because of the partial nature of the JAK1 deficiency (5).  

 

Impact of partial JAK1 deficiency on mycobacterial susceptibility 

IFNγ-activated macrophages are more resistant to mycobacterial infection by the 

induction of several discreet mechanisms that promote mycobacterial killing (209–212), 

such as phagosome maturation and apoptosis (102,114,200,213,214). An increasing 

number of rare disease-causing mutations are described to cause isolated or syndromic 

MSMD (119,121,215). Either directly or indirectly, all impair the production of or the 

response to IFNγ, indicating that IFNγ mediated immunity is essential to control 

intramacrophagic infections.  

 

We investigated the specific roles of JAK1 in myeloid cells during mycobacterial 

infection using a THP1 cell line with partial JAK1 deficiency generated using lentiviral 

vectors expressing shRNA sequences to mimic the hypomorphic JAK1-deficiency seen 

in our previously described patient (2). Using in vitro infection models with BCG, 

JAK1-deficient THP1 cells supported enhanced mycobacterial survival after IFNγ 

stimulation reminiscent of uncontrolled mycobacterial replication previously reported in 

IFNγR1-deficient human iPSC-Derived Macrophages (216). We observed similar 

findings using Salmonella typhimurium, another intracellular pathogen known to require 
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IFNγ signalling for control of the bacterial replication, suggesting that JAK1 defects 

may be important beyond mycobacterial infections. 

 

We identified a number of specific IFNγ-related functions that were impaired in THP1 

cells with partial JAK1-deficiency that are known to impact mycobacterial protection. 

Firstly, JAK1-deficient THP1 cells showed impaired IFNγ-mediated upregulation of 

CIITA, essential for transcriptional activity of the MHC II promoter, and IRF1, one of 

the major primary response genes induced by STAT1 signalling involved in the 

transcription of a large number of secondary IFN response genes (89). These results 

show impaired downstream gene transcription in partial JAK1 deficiency. Among the 

mechanisms promoting the control of mycobacterial infection in myeloid cells 

(102,103,114,199–201), we observed reduced phagosome acidification capacity and 

apoptosis in the JAK1 deficient cell line after IFNγ stimulation. Intracellular survival of 

pathogenic mycobacteria is dependent on inhibition of maturation of the phagosomes 

containing these pathogens into functional phagolysosomes. Mycobacteria can escape 

the macrophages’ bactericidal effectors by interfering with phagosome-lysosome fusion. 

IFNγ activation renders the macrophages capable of killing intracellular mycobacteria 

by overcoming the phagosome maturation block, exposure to microbicidal effectors, 

modulation of presentation of microbial antigens and induction of apoptotic cell death; 

mechanisms that could be affected in defects of the IFNγ pathway, leading to the 

absence of control of mycobacterial infection (33,114,116,217).  
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Therefore, we concluded that in myeloid cells, JAK1 is non-redundant for multiple 

aspects of the IFNγ-response required to control intracellular bacterial infection. Our 

findings suggest that impaired myeloid cell function was a key contributing factor to 

mycobacterial infection in our JAK1-deficient patient. Our data shows that partial 

disruption of JAK1 signaling is sufficient to impair anti-mycobacterial protection, 

which has implications for the increasing use of JAK1 inhibitors in other areas of 

medicine. It is intriguing that partial defects of three genes involved in the response to 

IFNγ (IFNGR1, STAT1 and JAK1) underlie the pathogenesis of osteomyelitis associated 

to mycobacterial disease (2,101,121). Despite susceptibility to weakly virulent 

mycobacteria, our patient did not succumb to infection but recovered through the use of 

prolonged antibiotic treatment and long-term antibiotic prophylaxis, suggesting partial 

preservation of host defense. Further work is required to determine what level of 

residual JAK1 is required to preserve immune competence.  

 

Impact of partial JAK1 deficiency on viral susceptibility 

Unusual viral infections are often a sign or complication of PID. This has been seen in T 

cell defects as well as defects of the myeloid compartment. Nearly all T cell disorders 

can be associated with increased susceptibility to warts; however, there is a small group 

of PIDs that have warts as a cardinal feature, presenting severe and recurrent warts. 

Chronic papillomavirus are particularly characteristic of PID and may predispose to 

cutaneous carcinoma (218). There are more than 200 strains of human papillomavirus 

(HPV) and the diverse strains have variable malignant potential and tissue tropism. Our 

patient presented with planar warts of the forehead that were chronic and resistant to 

imiquimod treatment. He did not have other clinically apparent HPV infection or other 
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severe viral infections. This was somewhat surprising, given the known role of JAK1 in 

signaling from IFNα/βR.  

 

Therefore, we set out to examine the ability of skin fibroblasts and EBV-B cells from 

our JAK1-deficient patient to develop antiviral responses in vitro. Surprisingly, we 

observed little reduction of IFNα-induced STAT1 phosphorylation in JAK1-deficient 

fibroblasts and no detectable susceptibility to viral infection, suggesting that residual 

JAK1 activity was sufficient to preserve the IFNα response for the control of viral 

proliferation in that cell type. These results were unexpected given the previous work 

done in fibroblasts of this patient which demonstrated a moderate reduction in IFNα-

induced pSTAT1 by western blotting and significant reduction in IFNα related genes at 

similar doses of IFNα (2) (Appendix). This finding led us to sequence the cells which 

confirmed presence of the expected mutations. The discrepancies may be explained by 

one of a number of possibilities. Firstly, the activity of IFNα in commercially available 

preparations differs which could reduce direct comparability between the two sets of 

experiments. Secondly, different techniques were used to determine pSTAT1 levels; 

flow cytometry was utilised here which may have a different sensitivity to detect 

moderate changes in pSTAT1. Thirdly, passage number can impact cell line function 

and fibroblasts of a higher passage number were utilised here compared with the earlier 

study.  Finally, MX1 was measured here as an interferon-responsive gene whereas a 

different set of downstream genes was measured in the Eletto study. The impact of the 

degree of reduced pSTAT1 demonstrated in the Eletto study on viral protection in vitro 

was not tested. Here we found that the relative preservation of STAT1 phosphorylation 

and signalling in the patient fibroblasts preserved functional antiviral immunity of these 
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cells mediated by IFNα in vitro. In contrast, EBV B-cells from our patient had a 

significantly lower degree of STAT1 phosphorylation compared with control EBV B-

cells. Consistent with a greater reduction in IFNα signaling, the patient’s EBV-B cells 

with JAK1 deficiency showed lack of viral protection, suggesting a more pronounced 

failure of the type I IFN response in hematologic cells. Our findings are in keeping with 

the previously reported uncontrolled viral replication in EBV-B cells from patients with 

AR TYK2 or AR STAT1 deficiency that present with both mycobacterial and viral 

infections (18,121,134). The unusual but not life-threatening viral infections seen in our 

patient remains surprising, such as the mild phenotype of human STAT2 deficiency 

(135), suggesting that possibly other mechanisms are involved in anti-viral protection in 

these disorders. The description of additional patients may broaden the phenotype of 

JAK1 deficiency in humans and provide opportunities to further assess the relative 

importance of JAK1 for viral protection in hematopoietic and non-hematopoietic cell 

types.  

 

Role for partial JAK1 deficiency in malignancy 

Many PIDs has been associated with elevated risk of cancer and the number of PID-

associated malignancies has increased during the last years together with the 

improvement of patient survival, due to the development of better treatments and 

management of infectious complications. Defective immunosurveillance mechanisms 

and infection with oncogenic viruses seem to have significant contributory roles; and it 

has been reported that around 20% of carcinomas in patients with PID are associated to 

infection (219). 
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JAK1 deficiency could be associated with viral susceptibility that could provide a 

trigger for neoplastic change in infected cell types. It is already known that some cases 

of bladder carcinoma may be associated with HPV and Polyomavirus infection (220–

222) demonstrating proof of principle that failure to eradicate infection can lead to 

malignancy in urothelial cells. The presence of HPV and EBV was excluded in the 

biopsy of the bladder of the patient with partial JAK1 deficiency. However, we can not 

fully exclude the presence of other viruses that were not specifically investigated, such 

as polyomavirus. Polyomavirus BK (BKV) infects around 70-100% of the human 

population, mainly in the urogenital tract, but it has not been associated with disease in 

immunocompetent individuals. However, in immunocompromised renal transplant 

recipients, BKV frequently reactivates and may cause nephropathy and ureteral stenosis. 

It has been reported one case of active BKV replication associated to metastasized 

bladder carcinoma, adding evidence for the possible implication of BKV in the 

pathogenesis of bladder cancer in the context of immunodeficiency (223).   

 

Some cancers in patients with PID are not known to be related to infectious agents, 

suggesting more complex interactions between factors such as genetically altered 

tumour suppression genes, impaired immunosurveillance and chronic inflammation. 

Combinations of these factors are thought to serve to increase the risk of malignancy 

and resistance to treatment in patients with PID (224,225). Upon tumour antigen 

recognition, T cells produce IFNγ, which through the IFNγR, JAK1/JAK2 and the 

STAT proteins, resulting the expression of a large number of IFN-stimulated genes with 
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beneficial antitumour effects, such as increased antigen presentation, direct tumour 

growth arrest and apoptosis (178).  

 

To date, urothelial carcinoma has not been described as a feature of JAK-STAT related 

PID although other tumours have been reported in patients with other defects in the IL-

12/IFNγ pathway; including disseminated cutaneous squamous cell carcinoma 

(122,123,125,126). Interestingly, somatic mutations in JAK1 are seen in high-risk 

bladder cancer and gynaecological carcinomas (176,177), supporting the idea that 

defective JAK1 signalling could play a role in the pathogenesis of some epithelial 

cancers. The early-onset and aggressive nature of the malignancy, along with the fact 

that JAK1 is a hotspot for damaging somatic mutations in bladder carcinoma (226), led 

us to investigate whether impaired JAK1 function could impact intrinsic urothelial cell 

function and be a specific predisposing factor for urothelial carcinoma. In order to test 

this hypothesis, we generated a cell model with partial JAK1-deficiency, generated 

using lentiviral vectors expressing shRNA sequences to mimic the hypomorphic JAK1-

deficiency seen in our previously described patient (2). 

 

IFNγ can target tumour cells directly, regulating the expression of genes involve in the 

inhibition of proliferation and apoptosis induction (75,147,161,163). We show that loss 

of JAK1 function impaired induction of apoptosis in response to IFNγ suggesting a role 

for JAK1 in regulating intrinsic urothelial cell homeostasis. In addition, IFNγ can 

upregulate MHC class I and ICAM-1, among other co-stimulatory molecules. JAK1-

deficient urothelial cells demonstrated reduced surface expression levels of ICAM-1 and 

to a lesser extent MHC class I following IFNγ stimulation, which was associated with 
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resistance to lymphocyte-mediated cell lysis that is known to depend on cell surface 

expression of these molecules (205–208).  

 

T cells and NK cells control tumour cells through releasing cytotoxic granules and 

proinflammatory cytokines, and have been shown to play a key role in the control of 

metastatic dissemination (227). IFNγ enhances NK cell cytotoxicity through up-

regulation of ICAM-1 expression in target cells, promoting their conjugate formation 

with NK cells (206). Defects in the IFNγ signalling may significantly impair 

NK cell lysis of target cells and in keeping with this, JAK inhibition has been reported 

to enhances metastasis in breast cancer models by decreasing NK-cell tumour 

immunosurveillance (228). Recently it has been described that ICAM-1 also enhanced 

the susceptibility of tumour cells to antigen-specific lysis by cytotoxic T-

lymphocytes (CTLs) (229), and reduced expression of MHC class I molecules by cancer 

cells represents a potential strategy to escape immune recognition, inducing resistance 

to T cell-mediated immune detection (230). Thus, impaired MHC class I expression 

could be involved in reduced tumour cell killing by CTLs. In addition, loss of JAK1 

was shown to reduce JAK/STAT1 signalling in tumour cells resulting in loss of tumour 

immunogenicity in mice. Both type I and II IFN pathways were impaired in the absence 

of JAK1 in tumour cells, resulting in suppression of anti-tumour T-cell responses by 

impairing antigen presentation (231). JAK1 is also required for expression of MHC 

class II that mediates tumour and self-antigen presentation in non-professional antigen 

presenting cells (232), and it was shown to be significantly reduced in JAK1-deficient 

urothelial cells after IFNγ stimulation. Together these data suggest that JAK-deficient 
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urothelial cells are less susceptible to IFNγ-mediated apoptosis, immune cell 

recognition and immune-mediated cell death.  

 

In addition to impacting immune-related functions, we observed a potential role for 

JAK1 and IFNγ signalling in urothelial cell differentiation. Urothelium is the 

transitional epithelium that lines the luminal surface of the bladder and urinary tract, 

where it acts as a urinary barrier. The urothelium is comprised of basal, intermediate 

and superficial cell zones, which may be distinguished on the basis of differential 

cytokeratin (CK) and claudin isotype expression profiles and by the expression of 

urothelium-specific uroplakins (UPK) by the superficial cells. However, very little is 

known of the signalling mechanisms that drive the process of urothelial 

cytodifferentiation (188,233–235). 

 

The nuclear receptor PPARγ is highly expressed in different tissues including the 

developing and mature urothelium (187), and is implicated in the induction of 

differentiation of NHU cells. It has been shown that in EGFR-inhibited NHU cell 

cultures, the activation of PPARγ results in the induction of a differentiation 

programme, leading to de novo expression of late/terminal differentiation markers, 

including UPK1a, UPK2, UPK3a, CK20 and claudin (188,192,234). 

 

It has been shown that NHU cells can be induced to differentiate using PPARγ ligands 

and concurrent EGFR inhibition, for example using TZ/PD (192). In this study, we 

show that IFNγ had a significant effect on the induction of the transcription factors IRF1 
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and FOXA1, both known to be involved in urothelial cell differentiation induced by 

PPARγ activation (188). In particular, IRF1 is a common downstream mediator for 

PPARγ and IFNγ signalling pathways influencing both urothelial differentiated 

phenotype and immune cell interactions. This suggests that IRF1 may be a potential 

novel target for modulating immunotherapy outcomes in urothelial cancer. Further 

research is needed to understand the mechanisms of IFNγ interaction with PPARγ and 

EGFR signalling in urothelial cell differentiation and tumorigenesis. These data 

demonstrate that JAK1 is important for multiple aspects of urothelial cell biology and 

highlight mechanisms by which loss of JAK1 function may promote tumorigenesis in 

this cell type. 

 

Relevance for PD-1/PD-L1 blockade therapy 

The upregulation of PD-L1 on the tumour cell surface seems to be one of the major 

ways that tumours appear to avoid immune surveillance (138,236). In order to enhance 

the immune response to cancer, immune therapies such as vaccination, oncolytic viruses 

and adoptive cell transfer, seek to induce immune responses to tumour specific antigens 

and promote a pro-inflammatory environment (138). To overcome the suppressive 

tumour microenvironment, checkpoint inhibitors have been investigated in order to 

overcome the immune suppression (237) by blocking the inhibitory pathways of the 

immune response. Anti-PD-1 and anti-CTLA-4 antibodies have been shown to have 

good therapeutic effects in many tumours and are currently approved for clinical use. 

PD-1 blocking immunotherapy has resulted in rates of long lasting anti-tumour activity 

in patients with metastatic cancers of different histology, including bladder cancer 

(178,238). We observed that JAK1-deficient urothelial cells demonstrated reduced 
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surface expression levels of PD-L1 following IFNγ stimulation. These findings are 

consistent with previously reported data that revealed damaging mutations in the IFNγ 

signalling pathway associated with metastasis and higher resistance to the checkpoint 

blocking therapy with anti-PD-L1/PD-1 in a number of tumour types, including bladder 

cancer (178,207).  

 

Despite the success with checkpoint inhibitors, many patients and tumour types have 

failed to show clinical responses. Recent reports suggest that loss of IFNγ pathway 

genes is associated with resistance to anti-PD-1 therapy. LOF somatic mutations in 

JAK1/2 were associated to resistance to anti-PD-1 therapy in human melanoma cell 

lines, through the lack of reactive PD-L1 expression and response to IFNγ (178). 

Acquired resistance to PD-1 blockade immunotherapy has also been described  in 

patients with melanoma, associated with defects in the pathways involved in IFNγR 

signalling and in antigen presentation, including JAK1 and JAK2 truncating mutations 

that resulted in a lack of response to IFNγ, including insensitivity to its antiproliferative 

effects on cancer cells (179). Thus, primary and acquired resistance becomes one of the 

major obstacles, limiting the effects of PD-1/PD-L1 blockade therapy (178–180). Our 

data specifically implicate loss of function JAK1 mutations as a risk factor for lower 

tumour cell PD-L1 expression which could impair responsiveness to anti-PD-1 

therapies used for advanced urothelial carcinoma (239).  

 

One important factor to consider is the heterogeneity between cancers. Classification of 

tumours according to the gene profile and immunogenicity has begun to help to predict 
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how they might respond to different immune based treatments (138,240,241). 

Regarding the importance of IFNγ in cancer diagnostics, IFNγ-associated signatures 

have a predictive value  (150,151,211) for the use of PD-1 or CTLA-4 blockade in 

various types of malignancies (75,243,244). These accumulating evidences highlight the 

importance to detect the patients’ genetic information of tumours and grade of patients’ 

IFNγ-responsiveness, which will help to establish individualized immunotherapy (179).  

 

Relevance for JAK inhibitor treatment  

Inhibition of JAK enzymatic activity has recently become a powerful tool for treatment 

of several immune, hematologic disorders and solid tumours.  JAKs inhibitors has been 

used for the treatment of myeloproliferative neoplasms, rheumatoid arthritis, 

inflammatory bowel disease, psoriasis, among others disorders associated to aberrant 

activation of the JAK/STAT signalling, such as the autoinflammatory interferonopathies 

and STAT1 GOF, where the inhibition of these associated signalling pathway seems to 

be effective (245–250). The adverse effects of JAK1 inhibitors are largely predictable 

based on their biological functions as signal transducers for Type I and Type II 

cytokines. Despite differences in selectivity between JAK inhibitors, a large overlap 

exists in their safety profiles, including infections and changes in laboratory parameters. 

Our findings contrast with the adverse effect profile published with early trails of the 

selective JAK1 inhibitors, filgotinib and upadacitinib, where viral infections 

(particularly herpes zoster and BK viremia) and not mycobacterial disease predominate 

(251–254). Although most infections associated with JAK1 inhibitors did not 

necessitate treatment discontinuation, severe and opportunistic infections such as 
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tuberculosis and osteomyelitis were also reported. Overall, the risk of serious infections 

appears to be similar to that seen with biological agents. Although increase risk of 

malignancy with JAK1 inhibitors has not been identified to date, long-term follow-up is 

needed to understand the risk of malignancy associated with these compounds 

(247,255). 

 

In view of these findings, sensible precautions  prior to the prescription of JAK1 

inhibitors could be a screening for latent TB as well as vaccination against herpes zoster 

such as in biological therapies (255). Close monitoring of possible viral infections and 

the development of malignancy during treatment would also be recommended. Longer 

experience with pharmacological JAK1 inhibition and identification of additional 

patients with germline JAK1 deficiency, including perhaps patients with more common 

and milder forms of JAK1 deficiency, will allow us to better understand the relative 

importance of JAK1 for specific cytokine pathways governing host protection and 

malignancy risk in vivo.  

 

Limitations of the study 

For most of the experiments performed in this study, partial JAK1 deficiency was 

modeled using a knock down approach in order to investigate the impact of partial 

JAK1-deficiency on interferon (IFN) signalling in different cells types. The main reason 

for this approach was the lack of primary patient cells available, as disease was fatal in 

our patient and no other patients with germline JAK1 loss of function mutations have 

been described to date.  However, null mutations/knock down models may give 
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different results in some conditions to mutations that preserve protein expression with 

hypomorphic function (32). Future work could aim to re-express the patient mutations 

in KO cells or generate hypomorphic mutations using gene editing approaches (eg 

CRISPR/Cas9 with a mutated repair template). The description of new patients with 

hypomorphic mutations in JAK1 will help to validate the results of the experiments 

shown here and clarify the clinical spectrum of the disease. 

 

In summary, we provide the first evidence that partial JAK1 deficiency results in 

mycobacterial susceptibility by reducing multiple aspects of the IFNγ response in 

myeloid lineage cells. Our data suggest that the predominant effect of partial JAK1 

deficiency is on the IFNγ pathway. Although viral susceptibility was also observed in 

vitro, this varied according to cell type. The discovery of new inborn errors of known 

and unknown genes will shed light on the pathogenesis of the disorders involving the 

JAK/STAT pathway. 

 

Our findings also highlight previously unknown roles for JAK1 in urothelial cell 

immune recognition and differentiation.  Our data suggest that loss of JAK1 function 

through germline or somatic mutation promotes malignant transformation of urothelial 

cells which are intrinsically less immunogenic. Our results add further weight to 

arguments for sequencing urothelial cell tumours for clinical trials of immunotherapy 

agents to test whether the mutational burden of JAK1 and other IFNγ-related genes 

represent a biomarker for responsiveness to treatment in bladder cancer, which can 

more accurately predict the clinical outcome of these patients.
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CONCLUSIONS 

1. Effect of partial JAK1 deficiency on mycobacterial susceptibility 

- Partial JAK1 deficiency impairs STAT1 phosphorylation and expression of IFNγ-

inducible genes in myeloid cells. 

- Partial loss of JAK1 function promotes mycobacterial and salmonella survival in 

myeloid cells. 

- JAK1 deficient myeloid cells show altered IFNγ-dependent killing mechanisms, 

including impaired IFNγ-induced phagosome acidification and apoptosis in myeloid 

cells. 

 

2. Effect of partial JAK1 deficiency in anti-viral protection 

- Partial JAK1 deficiency induces variable impact on STAT1 phosphorylation and 

expression of IFNα-inducible genes in EBV-B cells and fibroblasts 

- Partial JAK1 deficiency impairs anti-viral response in EBV-B cells but not in 

fibroblasts 

 

3. Effect of partial JAK1 deficiency in cancer susceptibility 

- Partial JAK1 deficiency impairs immune surveillance mechanisms including altered 

MHC, ICAM-1 and PD-L1 expression and impaired apoptosis in response to IFNγ 

urothelial cells 
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- Partial JAK1 deficiency is associated with defective lymphocyte-mediated killing of 

JAK1-deficient urothelial cells after IFNγ stimulation. 

- JAK1 has a potential role in urothelial cytodifferentiation 

 

These findings suggest that the predominant effect of partial JAK1 deficiency is on the 

IFNγ pathway resulting in mycobacterial susceptibility. Although viral susceptibility 

was also observed in vitro, this varied according to cell type. The findings also highlight 

previously unknown roles for JAK1 in urothelial cell immune recognition and 

differentiation, providing a platform for further development of novel biomarkers and 

targeted therapy development for urothelial carcinoma.
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Mutations in genes encoding components of the immune system cause primary immuno-

deficiencies. Here, we study a patient with recurrent atypical mycobacterial infection and

early-onset metastatic bladder carcinoma. Exome sequencing identified two homozygous

missense germline mutations, P733L and P832S, in the JAK1 protein that mediates signalling

from multiple cytokine receptors. Cells from this patient exhibit reduced JAK1 and STAT

phosphorylation following cytokine stimulations, reduced induction of expression of inter-

feron-regulated genes and dysregulated cytokine production; which are indicative of signalling

defects in multiple immune response pathways including Interferon-g production. Recon-

stitution experiments in the JAK1-deficient cells demonstrate that the impaired JAK1 function

is mainly attributable to the effect of the P733L mutation. Further analyses of the mutant

protein reveal a phosphorylation-independent role of JAK1 in signal transduction. These

findings clarify JAK1 signalling mechanisms and demonstrate a critical function of JAK1 in

protection against mycobacterial infection and possibly the immunological surveillance of

cancer.
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P
rimary immunodeficiencies (PIDs) are genetic disorders
that cause immune dysfunction and predisposition
to infection. Selective susceptibility to weakly virulent

mycobacteria, such as M. bovis Bacillus Calmette-Guerin vaccine
or environmental mycobacteria species, is a genetically hetero-
geneous group of rare PIDs so far associated with mutations
in nine genes (IFNGR1, IFNGR2, IL12B, IL12RB1, STAT1,
ISG15, IRF8, IKBKG and CYBB)1. These mutations impair
the production of or the response to a cytokine Interferon-g
(IFN-g), either directly or indirectly, indicating that the IFN-g
pathway is critical for the confinement of mycobacterial
infection2. Nevertheless, genetic aetiology in approximately
half of patients with Mendelian susceptibility to mycobacterial
diseases remains unknown3.

IFN-g is a type II interferon that binds to the IFN-g receptor,
a heterodimer encoded by genes IFNGR1 and IFNGR2. Stimula-
tion of the IFN-g receptor results in the downstream activation
of two Janus kinases: JAK1 and JAK2. Upon activation, JAKs
trans-phosphorylate each other at tyrosines within the kinase
domain and phosphorylate the cytoplasmic tail of the receptor4.
This allows recruitment of the Signal Transducer and Activator
of Transcription 1 (STAT1) protein, which in turn is phospho-
rylated, forms homodimers, relocates to the nucleus, binds
the Gamma Activated Sequences in the genome and drives
the expression of genes implicated in cellular immunity, inclu-
ding antigen processing and presentation and activation
of microbicidal effector functions. Intracellular signalling of
type I interferons, for example, IFN-a and IFN-b, is mediated
by the Interferon-a receptor encoded by IFNAR1 and IFNAR2.
The receptor interacts with Janus kinases JAK1 and TYK2,
leading to phosphorylation of STAT1 and STAT2 proteins, which
then form a heterodimer that translocates to the nucleus, forms a
complex with Interferon Regulatory Factor 9 and induces the
expression of the interferon-stimulated genes5. Multiple other
cytokine receptors also signal through combinations of four
JAKs and seven STAT proteins, for example, JAK1 is also used
in signalling by IL-2, IL-4, IL-7, IL-9, IL-15, IL-21, IL-27, IL-6
family cytokines and IL-10 family cytokines4. To date, germline
mutations in two out of the four known Janus kinases, JAK3
and TYK2, have been found in PID patients6–9. Somatic
mutations in JAK2 have also been shown to cause clonal
myeloproliferative disorders, for example, polycythemia vera
and idiopathic erythrocytosis10,11, whereas somatic JAK1
mutations have been associated with gynaecologic cancers12.

Here, we report the identification of germline JAK1 mutations
that result in a functional JAK1 deficiency associated
with susceptibility to atypical mycobacterial infection and early-
onset bladder carcinoma. Furthermore, detailed analyses of the
mutant protein reveal phosphorylation-independent mechanism
of JAK1 in signal transduction.

Results
Immunodeficiency with susceptibility to mycobacteria.
We studied a 22-year-old male of Pakistani descent, the last
of four children born to a consanguineous marriage of
first cousins (Fig. 1a). The patient presented to paediatric
immunology at the age of 3 years with a history of global
developmental delay and recurrent ear and chest infections that
started during the first year of life and required multiple hospital
admissions. The patient had received childhood vaccines—
including Bacillus Calmette-Guerin vaccine at birth—and
had normal-course chicken pox at age 3 with one subsequent
episode of shingles. During examination, a skeletal survey
demonstrated lytic and sclerotic lesions affecting long bones,
vertebrae and facial bones. The patient also developed cervical

lymphadenopathy. Bone biopsy was unremarkable, lymph
node biopsy reactive and no pathogen was cultured from
either tissue. Considering that these features were associated
with failure to thrive, raised erythrocyte sedimentation rate (ESR)
(70–90 mm per hr), elevated polyclonal IgG (25–30 g l� 1), pla-
telets (600–700� 109 l� 1) and white cell count (20–
25� 109 l� 1), he was further investigated for infection. Myco-
bacterial skin tests for Mycobacterium avium and Mycobacterium
intracellulare were negative, but Mycobacterium tuberculosis
(Mtb), Mycobacterium malmoense and Mycobacterium scroful-
aceum skin tests were all strongly positive. As his relatively
indolent clinical course was not typical for tuberculosis and Mtb
had not been cultured from bone or lymph node, a clinical
diagnosis of systemic atypical mycobacterial infection was made.
He received anti-mycobacterial treatment (Isoniazid, Ethambutol
and Ciprofloxacin, as other agents were not tolerated) and his
condition improved over 12 months with catch-up growth (from
3rd to 25th centile), weight gain (25th to 50th centile) and
improvement in ESR, IgG, platelets and white cell count. His
bone X-rays also showed improvement with residual vertebral
collapse, supporting a diagnosis of resolving multifocal osteo-
myelitis caused by mycobacterial infection. The immunology
investigations demonstrated normal numbers of T and B cells,
reduced populations of naive CD4þ and CD8þ T cells
(Table 1) with normal proliferation after phytohemagglutinin
(PHA) stimulation, and mildly reduced responses to Candida and
purified protein derivative antigens. Total IgG and IgA levels were
increased, whereas IgM level was normal, as were specific
antibody responses after tetanus, Hib and pneumococcal vacci-
nations. The karyotype, metabolic screen and chromosomal
radio-sensitivity assays were normal.

The patient remained relatively well until the age of 16,
with mild developmental delay and short stature. His IgG levels
remained high and over time IgM levels fell below the normal
range (Table 1) with persistent mild T lymphopenia and impaired
responses to PHA stimulation. Normal CDR3 spectratyping
results in CD4þ and CD8þ T cells were found, with all
TCR Vb families represented with a Gaussian distribution. T-cell
receptor excision circles levels in CD4þ and CD8þ T cells
were normal.

At the age of 16 years the patient presented with unexplained
cardiomyopathy and a raised ESR (20–40 mm h� 1) and was
found to have a mediastinal mass on computed tomography
imaging. Biopsies showed pleural and mediastinal fibrosis
with patches of macrophage infiltration in lung tissue. No
granulomas were seen and Quantiferon TB Gold test was
negative. Mycobacterium gordonae was isolated from a single
sputum sample, but its relevance remained unclear. In view of his
previous history he received empiric treatment for atypical
mycobacteria (Rifampicin and Ethambutol, Clarithromycin
and Ciprofloxacin) with improvement of ESR, IgG level and
the mass but permanent presumed fibrotic occlusion of the
right pulmonary vein. He remained on long-term prophylaxis
with Clarithromycin and Ciprofloxacin and had no recurrence
or further mycobacterial infections. He had a number of
skin infections, including planar warts restricted to the forehead,
presumed fungal infections of his nails and severe Norwegian
scabies.

At the age of 21 years the patient developed significant
anaemia. He had a history of intermittent red blood per
rectum and no recent history of haematuria. Colonoscopy
revealed a large sessile polyp in his rectum, which was
histologically benign without dysplasia. Thickening of the bladder
wall was noted on magnetic resonance imaging and an extensive
fungating tumour was observed on cystoscopy. Biopsies of
the tumour and a supraclavicular lymph node confirmed
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high-grade metastatic transitional cell carcinoma. The patient
received treatment with chemotherapy including cisplatin and
gemcitabine, but died aged 23 years.

Exome sequencing identifies homozygous JAK1 mutations.
As the patient was born to a consanguineous family, we hypo-
thesized that his disease was caused by a recessive Mendelian
mutation and investigated this possibility by whole-exome
sequencing. The exome data contained 18,029 single nucleotide
variants and small insertions/deletions, including 230 very
rare ones that were not observed in the 6,500 NHLBI Exomes13,
1,000 Genomes database (April 2012 data release)14 and
2,500 exomes analysed internally using the same bioinformatics
pipeline. Five of these rare variants were homozygous
(Supplementary Table 1). Of these five, three were predicted
to be benign, whereas two missense mutations were predicted
to be probably damaging; both were located in the JAK1
gene, leading to amino-acid changes from proline to leucine
(p.P733L) and from proline to serine (p.P832S) (Fig. 1b).
We found no mutations in genes previously associated
with Mendelian susceptibility to mycobacterial disease, or other
genes involved in the JAK-STAT signalling pathways.
We confirmed both JAK1 mutations by Sanger sequencing
(Fig. 1b) and found that unaffected parents and all three
siblings were heterozygous carriers of both mutations (Fig. 1a).
We then designed genotyping assays for both JAK1 mutations,
screened 1,050 healthy subjects representing 51 populations
from around the world15 and found no healthy carriers.
The ExAC database that contains exome data from 4 60,000
subjects had no instance of the p.P733L mutation, whereas

p.P832S was detected in four heterozygous individuals
(frequency¼ 0.000033).

Similarly to other Janus kinases, JAK1 has FERM and
SH2 domains that are responsible for interaction with the
cytokine receptor, the pseudokinase (JH2) domain that regulates
kinase activity, and the kinase (JH1) domain16,17. The proline
residues at JAK1 positions 733 and 832 are located in the
pseudokinase domain (Fig. 1c). They are conserved within the
human Janus kinase family and in JAK1 across species (Supple-
mentary Fig. 1). We visualized both mutations by modelling
JAK1 pseudokinase and kinase domains on the published TYK2
structure18. Although P832S was located far from the kinase
domain, P733L mapped in the b7–b8 loop close to the inter-
domain interface and may affect interaction between the domains
(Fig. 1d). Taken together, these results suggest that the identified
JAK1 genetic variants, P733L in particular, could be recessive
pathogenic mutations rather than rare neutral polymorphisms.

Multiple affected JAK1-mediated pathways in immune cells. To
test the hypothesis that JAK1 P733L and P832S mutations are
pathogenic, we studied STAT phosphorylation in the patient’s
lymphocytes (Fig. 2a). STAT1 phosphorylation was significantly
reduced after IFN-a, IFN-g and IL-27 stimulations. STAT3
phosphorylation was reduced after IL-10—but not IL-6—stimu-
lation. Phosphorylation of STAT4 was reduced after IFN-a
stimulation, as were phosphorylation of STAT5 after IL-2
stimulation and of STAT6 after IL-4 stimulation (Fig. 2a).
Therefore, multiple signalling pathways mediated by JAK1 are
affected in the patient’s immune cells, suggesting a functional
JAK1 deficiency.
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Figure 1 | Two JAK1 mutations found in the patient. (a) Patient’s family tree. (b) Sequence chromatograms showing two mutations in the JAK1 gene.

(c) Domain structure of the JAK1 protein. (d) JAK1 pseudokinase (JH2) and kinase (JH1) domains modelled using the published structure of TYK2

pseudokinase and kinase domains (PDB 4OLI). Pro733 and Pro832 are shown in red and green, respectively.
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We then stimulated whole blood from the patient
and measured production of cytokines IFN-g, IL-12, IL-10,
TNF-a and IL-6. In assays normalized for T-cell counts we found
consistently low IFN-g production in response to PHA stimula-
tion and after co-stimulations with PHA/IL-12 or PHA/IFN-a
in comparison with healthy controls (Fig. 2b). However,
upregulation of IFN-g production after co-stimulations with
lipopolysaccharide/interleukin-12 (LPS/IL-12) or LPS/IFN-a
was normal. Also, the patient had low IL-10 production after
PHA stimulation and co-stimulation with PHA/IFN-a (Fig. 2c).
Production of IL-6 and TNF-a was increased after LPS
stimulation (Fig. 2d,e), whereas production of IL-12 was normal
(Fig. 2f). These results indicate that functional JAK1 deficiency is
characterized by a broad immune dysregulation.

Impaired phosphorylation of JAK1, partner JAKs and STATs.
To understand how the P733L and P832S mutations affect
JAK1, we next looked at IFN-a and IFN-g signalling in patient’s
primary fibroblasts. We first tested the hypothesis that mutations
impact on the stability of the JAK1 protein, affecting, in turn,
its intracellular levels. We measured JAK1 in fibroblasts
derived from the patient or from two healthy subjects
(Supplementary Fig. 2a), and in HEK-239T cells transiently
expressing the wild type JAK1WT, the patient-derived double-
mutant JAK1P733L/P832S or the kinase-dead mutant JAK1K908E

(Supplementary Fig. 2b). The patient-derived variant of JAK1
was expressed at a slightly lower level than the wild-type JAK1.

The JAK pseudokinase domain regulates activity of the kinase
domain. Hence, both engineered and naturally occurring
mutations in the pseudokinase domain of various JAKs, including
known somatic mutations in JAK1, can affect the kinase
activity19–22. To investigate functional effects of the P733L and

P832S mutations, we measured JAK1-mediated activation of
STAT1 and STAT2 proteins in response to stimulation
with cytokines IFN-a and IFN-g. The level of phosphorylation
of JAK1 upon exposure to IFN-a was profoundly reduced in
patient-derived fibroblasts as compared with control cells
(Fig. 3a). Phosphorylation of STAT1 and STAT2 was also
impaired (Fig. 3a). A reduced STAT1 phosphorylation was also
observed upon treatment with IFN-g (Fig. 3b). The induction of
expression of interferon-regulated genes was also lower in
the patient fibroblasts compared with control fibroblasts (Fig. 4
and Supplementary Fig. 3). These data demonstrate that not
only patient’s peripheral blood mononuclear cells, but also
primary fibroblasts show impaired JAK1 functions, leading to
reduced downstream STAT signalling; such fibroblasts therefore
provide a suitable model for the analysis of JAK1 functions.

The JAK1 pseudokinase domain keeps the basal activity of
the kinase in check and mediates the cytokine-inducible
activation of signalling20. The mutations found in the patient
could either affect the level of JAK1 phosphorylation or its onset
or decay, causing delayed or shortened cellular responses. We
studied responses to IFN-a and IFN-g in a time-course
experiment and observed reduced levels of phosphorylated
JAK1, as well as STAT1, with no effect on the duration or
the steepness of the activation/inactivation phases (Fig. 5a,b).
These results suggest that the phospho-transfer function of the
mutant JAK1 was impaired, whereas the basal kinetics of
phosphorylation and dephosphorylation were normal.

We then studied if the mutant JAK1 affected phosphorylation
of the partner Janus kinases TYK2 and JAK2 after stimulation
with IFN-a and IFN-g, respectively. We found that in patient’s
fibroblasts the amount of phosphorylated TYK2 was strongly
reduced, whereas the amount of phosphorylated JAK2 was only
slightly diminished (Fig. 6).

Table 1 | Immunological investigations.

Cell type/Ig class Patient (3 years 8
months)

Age-matched
control range

Patient
(10 years)

Age-matched
control range

Patient
(19 years)

Age-matched
control range

White cell count *26.8� 109 l� 1 5.0–15.0� 109 l� 1 4.95� 109 l� 1 4.5–13.5� 109 l� 1 7.8� 109 l� 1 4–11.9� 109 l� 1

Neutrophil count *17.78� 109 l� 1 1.0–8.5� 109 l� 1 2.47� 109 l� 1 1.8–8.0� 109 l� 1 4.9� 109 l� 1 2–7.5� 109 l� 1

Lymphocyte count 6.08� 109 l� 1 3.0–13.5� 109 l� 1 1.62� 109 l� 1 1.1–5.9� 109 l� 1 1.55� 109 l� 1 1–2.8� 109 l� 1

CD3þ T cells 49%,
3.0� 109 l� 1

39–73%,
1.8–8.0� 109 l� 1

*45%,
0.73� 109 l� 1

55–78%,
0.7–4.2� 109 l� 1

*29%,
*0.45� 109 l� 1

55–83%,
0.7–2.1� 109 l� 1

CD19þ B cells *45%,
2.7� 109 l� 1

17–41%,
0.6–3.1� 109 l� 1

*33%,
0.53� 109 l� 1

10–31%,
0.2–1.6� 109 l� 1

*40%,
0.62� 109 l� 1

6–19%,
0.1–0.5� 109 l� 1

CD16þCD56þ NK cells 3%,
0.2� 109 l� 1

3–16%,
0.1–1.4� 109 l� 1

20%,
0.32� 109 l� 1

4–26%,
0.09–0.9� 109 l� 1

28%,
0.43� 109 l� 1

7–13%,
0.09–0.6� 109 l� 1

CD3þCD4þ T cells 28%,
1.7� 109 l� 1

25–50%,
0.9–5.5� 109 l� 1

23%,
0.37� 109 l� 1

27–53%,
0.3–2.0� 109 l� 1

*16%,
*0.25� 109 l� 1

28–57%,
0.3–1.4� 109 l� 1

CD3þCD8þ T cells 23%,
1.4� 109 l� 1

11–32%,
0.4–2.3� 109 l� 1

16%,
0.26� 109 l� 1

19–34%,
0.3–1.8� 109 l� 1

12%,
*0.19� 109 l� 1

10–39%,
0.2–0.9� 109 l� 1

CD4þCD45RAþ T cells *12% 62–90 % 43%w 31–65%
CD8þCD45RAþ T cells *9% 46–85 % *24%w 42–73%
gdT-cell 2% o10%
IgG *38.8 g l� 1 3.1–13.8 g l� 1 *17.8 5.4–16.1 11.9 g l� 1 6.0–16.0
IgA *1.8 g l� 1 0.3–1.2 g l� 1 1.00 0.7–2.5 0.9 g l� 1 0.8–2.8
IgM 1.5 g l� 1 0.5–2.2 g l� 1 0.61 0.5–1.8 *0.45 g l� 1 0.5–1.9
IgG1 *12.9 3.6–7.3
IgG2 *0.82 1.4–4.5
IgG3 0.77 0.3–1.1
PHA stimulationz 172 Z70 *12.6 Z70 *3.32 Z14.4
Candida stimulationz *17.6 Z26.8
PPD stimulationz *26.2 Z41.5
CD3 stimulationz *3.2 Z7.6

*Denotes an abnormal result.
wResults are shown for the CD45RAþCD27þ cells.
zT-cell stimulation index calculated as maximum stimulation value/background value.
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P733L has stronger effect on signalling than P832S. To study
effects of each of the two patient’s mutations separately,
we cloned the wild-type JAK1 (JAK1WT) and introduced P733L,
P832S or P733L/P832S mutations by site-directed mutagenesis.

We then expressed these constructs in the human fibrosarcoma
U4A cells that lack endogenous JAK1 (ref. 23). The robustness of
this model relies on the fact that STAT1 and STAT2
phosphorylation after stimulation with interferons is totally

100

P < 0.0001 P = 0.0021 P = 0.0035 P = 0.0217 P < 0.0001 P < 0.0001 P = 0.0002NS

90

80

70

60

50

%
 p

os
iti

ve
 c

el
ls

C
ou

nt
s

C
ou

nt
s

40

30

20

10

0
Readout
stimulus

P = 0.004

P = 0.005
P = 0.02

P = 0.003
P = 0.04

IL
10

 (
pg

 m
l–1

)
10,000

1,000

100

10

1

IF
N

-γ
 (

pg
 m

l–1
)

T
N

F
 a

lp
ha

 (
pg

 m
l–1

)

100,000

10,000

1,000

100

IL
6 

(p
g 

m
l–1

)

IL
12

 (
pg

 m
l–1

)

100,000

10,000

1,000

100

10,000

1,000

100

10

1

100,000

10,000

1,000

100

10

1

0.1
PHA +

–
–
–

+
–
+
–

+
–
–
+

+
–
–
–

+
–
+
–

+
–

– – – – – –
+ + + + + +
– + – – + –
– – + – – +

–
+

LPS
IL12
IFNα

pSTAT1
IFN-α

pSTAT1
IFN-γ

pSTAT1
IL-27

pSTAT3
IL-10

pSTAT3
IL-6

pSTAT4
IFN-α

pSTAT5
IL-2

pSTAT6
IL-4

IF
N

-γ
IF

N
-α

S
tim

ul
at

io
n

Control Patient

pSTAT1

pSTAT1

pSTAT1

pSTAT1

70

0
MI MI

MIMI

100 101 102 103 104

100 101 102 103 104

100 101 102 103 104

100 101 102 103 104

70

0

70

0

100
80
60
40
20
0

PHA
IFNα – –

+++
+

+
+

PHA
LPS

IFNγ
LPS+

–
+
–

+ + + +
– + – +

–
+

–
+IFNγ

LPS + +
+

+ +
+– –

P = 0.002

P = 0.01

a

b c

d e f

Figure 2 | Impaired STAT phosphorylation and cytokine responses in the patient’s blood cells. (a) Left panel. Numbers of cells positive for the presence

of phosphorylated STAT proteins were measured by FACS after 10 min stimulation of whole blood of the patient (age 20 years) (open circles) and

compared with a healthy travel control tested under the same conditions (black dots). The assay was repeated either three times or six times (thrice on two

occasions, in which case two different travel controls were studied). Blue lines show geometric means. Unpaired two-tailed Student t-test with Welch’s

correction. Right panel. FACS gating for pSTAT1 after IFN-a and IFN-g stimulation is shown. (b–f) Cytokine responses measured after stimulation in whole

blood of the patient in independent assays (open circles) and compared with healthy controls tested under the same conditions (black dots). Numbers of

controls in different assays were: (b) LPS only n¼ 65, LPSþ IL-12 n¼40, LPSþ IFN-a n¼ 20, PHA only n¼60, PHAþ IL-12 n¼45, PHAþ IFN-a n¼ 20;

(c) PHA only n¼ 50, PHAþ IFN-a n¼ 20; (d–f) n¼ 30. Blue lines show geometric means. Two-tailed Mann–Whitney test.
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dependent on JAK1 and in U4A cells the signalling pathway
is rescued only upon re-expression of JAK1 (Fig. 7a,b)23,24.
We found that phosphorylation of JAK1P832S was similar to
that of JAK1WT, but phosphorylation of JAK1P733L/P832S was
completely abolished and that of JAK1P733L was either abolished
(Fig. 7a) or very strongly reduced (Fig. 7b), suggesting that
the amino-acid change P733L in the pseudokinase domain

impairs JAK1 function leading to the reduced phosphorylation
of tyrosines Y1034 and Y1035 in the activation loop of the kinase
domain (Fig. 7a,b). Nevertheless, all four JAK1 variants were able
to mediate STAT1 and STAT2 phosphorylation (Fig. 7a,b).

We then transduced primary patient fibroblasts with lentiviral
vectors expressing the wild-type and mutant JAK1 proteins
(Fig. 7c). Forced expression of JAK1WT significantly increased
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Figure 3 | Impaired JAK1-mediated signalling in the patient’s fibroblasts. (a,b) Primary fibroblasts from the patient or a healthy control were treated with

the indicated concentrations of IFN-a (a) or IFN-g (b) for 15 min and protein extracts were subjected to immunoblotting. Representative of three

independent experiments. Fold change of band densitometry is indicated (numbers below bands and bar graphs in Supplementary Fig. 6).
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Figure 4 | Patient’s fibroblasts show reduced induction of gene expression after IFN-a and IFN-c stimulation. Cells were stimulated with IFN-a for 15 h
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STAT1 phosphorylation after stimulation with IFN-a and IFN-g.
Forced expression of JAK1P832S rescued STAT1 phosphorylation
to a similar extent as JAK1WT, whereas expression of
the JAK1P733L or JAK1P733L/P832S proteins led to significantly
reduced STAT1 phosphorylation. Taken together, these results
indicate that the double-mutant JAK1P733L/P832S protein
is functionally deficient and that its defect is mostly caused by
the P733L mutation, whereas the contribution of P832S is
less pronounced.

JAK1 can mediate signalling independently of its phosphorylation.
It is known that overexpression of JAKs can lead to self-

phosphorylation and activation25. This explains the observation
that forced expression of JAK1WT or JAK1P832S in U4A cells
caused spontaneous self-phosphorylation of JAK1, as well as
phosphorylation of STAT1 and STAT2, even in the absence of
interferon stimulation (Fig. 7a,b). Unexpectedly we observed that
following interferon stimulation, JAK1P733L/P832S was able to
induce STAT1 and STAT2 phosphorylation even in the absence
of JAK1 phosphorylation (Fig. 7a,b). Similarly, JAK1WT and
JAK1P832S could induce STAT1 and STAT2 phosphorylation in a
dose-dependent manner in response to interferon stimulation,
despite the level of JAK1 phosphorylation remaining relatively
constant (Fig. 7a,b). These observations suggest that JAK1 has a
mode of function in interferon signalling that is independent of
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phosphorylation of tyrosines in its activation loop, for example,
providing a scaffold for the juxtaposed Janus kinase. This putative
JAK1 function could explain why such a profound defect in
JAK1 phosphorylation observed in the patient-derived fibroblasts
leads to only modest reduction in the downstream STAT
phosphorylation (Figs 3 and 5).

JAK1 pseudokinase domain is essential in IFN-c signalling. To
further study this hypothesis and to identify the domain
responsible for kinase-independent JAK1 function, we cloned
a series of its superfolder green fluorescent protein (sfGFP)-
tagged kinase-dead and deletion mutants (JAK1K908E, JAK1KinD,
JAK1CKinD, JAK1CKinD/K908E, JAK1KinD/CKinD; Supplementary
Fig. 4) and studied them alongside the patient mutation
(JAK1P733L/P832S). To ensure that the observed effects are not
artifacts of JAK1 activation due to massive overexpression
following cell transfection, we used JAK1-deficient Flp-In
U4C cells26, which, similarly to U4A, lack endogenous expression
of JAK1, and generated cell clones that stably expressed our
mutant JAK1 constructs inserted in the FRT sites. First, we used
live imaging of these stable U4C cell clones to look at the
subcellular localisation of the sfGFP-tagged mutant JAK1
proteins. The wild type and mutant JAK1 proteins were all
similarly associated with cell membrane (Supplementary Fig. 5).
Following IFN-a and IFN-g stimulations, the phosphorylation of
JAK1P733L/P832S and JAK1K908E was reduced, and
phosphorylation of JAK1CKinD and JAK1CKinD/K908E was
abolished (Fig. 8). After IFN-a stimulation STAT1
phosphorylation was strongly reduced in cells expressing the
kinase-dead mutant JAK1K908E or the mutant JAK1KinD lacking
the kinase domain; however, it was only slightly reduced in these

cells after IFN-g stimulation (Fig. 8). Cells expressing the mutant
JAK1CKinD protein lacking the pseudokinase domain showed
strong reduction in phosphorylated STAT1 both after IFN-a and
IFN-g stimulations (Fig. 8). Complete abrogation of STAT1
phosphorylation was observed in cells expressing either
JAK1KinD/CKinD, which lacked both pseudokinase and kinase
domains, or JAK1CKinD/K908E, a kinase-dead mutant lacking also
the pseudokinase domain. Taken together, these data
demonstrate that JAK1 has a mode of function, which is
independent of its kinase activity and its phosphorylation in the
kinase domain, but requires the presence of its pseudokinase
domain. This JAK1 function was particularly clear after IFN-g
stimulation: in the absence of its kinase domain, JAK1 with the
functional pseudokinase domain can still transmit signalling after
IFN-g stimulation leading to STAT1 phosphorylation.

Discussion
Here, we describe JAK1 signalling disruptions in a patient
exhibiting PID. In immune cells JAK1 mediates intracellular
signalling from multiple cytokine receptors27. Therefore, it
seems likely that impaired phosphorylation of several STAT
proteins contributed to the immunodeficiency manifested by the
patient. Impaired responses to IL-2 may have led to progressive
T lymphopenia, whereas increased IL-6 production could have
been responsible for the persistent increased serum IgG levels.
JAK1-deficient mice are runted at birth and have severely reduced
numbers of thymocytes, pre-B cells and mature T and
B lymphocytes28. Although JAK1-deficient mice died
perinatally, the disease in our patient has been less severe,
probably because his JAK1 deficiency is partial and cells have
retained ability to mediate STAT signalling. Nevertheless, the
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Figure 7 | P733L mutation impairs JAK1 function. (a,b) JAK1-deficient fibrosarcoma cells, U4A, were transfected for 24 h with vectors expressing
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patient exhibited clinically significant susceptibility to atypical
mycobacteria. This could be explained by a combination of T-cell
lymphopenia, reduced IFN-g production by the existing T cells,
and impaired JAK1-STAT1 signalling downstream of the IFN-g
receptor. We found that hypomorphic JAK1 mutations
have pleiotropic effects and affect multiple signalling pathways.
Nevertheless, the disease manifested clinically with recurrent
atypical mycobacterial infection, which suggests a dominant
effect on the IFN-g pathway.

Non-hematopoietic malignancy at a young age was a notable
feature in our patient. Recently, somatic loss-of-function muta-
tions in JAK1 have been associated with gynaecologic cancers12.
Tumours also have been reported in patients with other defects in
the IL-12/IFN-g pathway, including Kaposi sarcoma29, B cell
lymphoma30, disseminated cutaneous squamous cell
carcinoma31, oesophageal squamous cell carcinoma32

and pineal germinoma33. These observations and the findings
reported here demonstrate that impaired IL-12/IFN-g signalling
predisposes not only to mycobacterial infection, but also
to malignancy, probably owing to impaired immune surveillance.

JAK1 inhibitors, for example, small molecule tofacitinib
that inhibits JAK1 and JAK3, are used for treatment of
rheumatoid arthritis and are currently tested in other

immunological disorders, such as psoriasis and inflammatory
bowel disease. Serious infections, including tuberculosis, and
cancers have been reported in tofacitinib clinical trials34–37. These
observations are in line with the clinical presentation of
our patient, highlighting the phenotype associated with JAK1
deficiency, either pharmacological or genetic.

Although the JAK-STAT pathway has been studied extensively,
the mechanism of JAK activation upon cytokine stimulation
is not entirely clear. JAKs are activated through cytokine-
induced trans-phosphorylation. It was shown that at the IL-2
receptor both JAK1 and JAK3 can trans-phosphorylate each
other without being phosphorylated themselves38. Our data
show that at the IFN-g receptor JAK1 can transmit signalling
even in the absence of its kinase domain, which precludes
phosphorylation of JAK2 by JAK1. Instead, our findings suggest
that JAK1 pseudokinase domain is required for interaction
with JAK2, and this interaction, rather than JAK1 kinase activity,
is mandatory for JAK2 activation after IFN-g stimulation leading
to STAT1 phosphorylation. In contrast, IFN-a signalling requires
the presence of both kinase and pseudokinase domains of
JAK1 (Fig. 8). This may be explained by hierarchical trans-
activation of JAKs, where upon IFN-a stimulation JAK1 first
auto-phosphorylates and then phosphorylates TYK2, whereas
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upon IFN-g stimulation it is JAK2 that auto-phosphorylates
first and then phosphorylates JAK1; hence, functional JAK1
deficiency markedly impairs TYK2 phosphorylation, but has no
strong effect on JAK2 phosphorylation (Fig. 6). This hierarchy is
consistent with previous observations that JAK2 phosphorylation
does not require active JAK1, whereas JAK1 activation requires
active JAK2 (ref. 39).

Although no full-length crystal structure of JAK1 or any
other Janus kinase is currently available, 2D electron microscopy
averages and 3D reconstructions show that JAK1 domains
have conformational flexibility and that pseudokinase and kinase
domains are closely associated with each other40. In Janus kinases
the pseudokinase domain stabilises the inactive conformation of
the kinase domain41. In structural models of JAKs, many tumour-
associated activating mutations map to the interface between
the pseudokinase and kinase domains, presumably disrupting
interaction between them, which facilitates activation of
the kinase domain18,41. For example, an activating mutation
F734L in JAK1, found in a sample from a T-cell acute
lymphoblastic leukaemia patient42,43, maps in the b7–b8 loop
of the pseudokinase domain that interacts with the b2–b3 loop
of the kinase domain18,41. The P733L mutation that we found in
our patient maps in the same pseudokinase b7–b8 loop next
to F734L, however, as we have shown here, P733L reduces JAK1-
mediated signalling, suggesting that it may enhance auto-
inhibitory interaction between the pseudokinase and the kinase
domains.

In summary, hypomorphic recessive germline JAK1 mutations
that affect multiple signalling pathways were found in a PID
case that manifested with atypical mycobacterial infections and
increased susceptibility to cancer. This phenotype associated with
a long-term functional JAK1 deficiency predicts effects of
prolonged administration of JAK1 inhibitors. We also describe
a mechanism of JAK1 function in interferon signalling, which is
independent of phosphorylation of tyrosines in its activation loop
and its kinase function. These findings illustrate that discovery
of novel naturally occurring mutations can reveal the molecular
basis for human disorders, and also helps to understand
fundamental biological mechanisms, even in well-characterized
pathways such as the JAK-STAT pathway.

Methods
Ethics statement. Blood samples and skin biopsies were obtained with informed
consent from all subjects in accordance with the Declaration of Helsinki and with
approval from the ethics committee (NRES Committee London—Bloomsbury
06/Q0508/16).

Whole-exome sequencing. Library preparation, exome capture and sequencing
have been done according to the manufacturers’ instructions. For exome target
enrichment Agilent SureSelect 38 Mb kit was used. Sequencing was done using
Illumina HiSeq with 94 bp paired-end reads. Reads from raw FASTQ files were
aligned to the hg19 reference genome using Novoalign version 2.08.03. Duplicate
reads were marked using Picard tools MarkDuplicates. Calling was performed
using the haplotype caller module of GATK (https://www.broadinstitute.org/gatk),
creating genomic variant call format (gVCF)-formatted files for each sample. The
individual gVCF files were combined into gVCF files containing 100 samples each.
The final variant calling was performed using the GATK ‘GenotypegVCFs’ module
jointly for all cases and controls. Variants quality scores were then re-calibrated
according to GATK best practices separately for indels and SNPs. Resulting var-
iants were annotated using software ANNOVAR.

Sequence alignment and protein modelling. The known JAK1 protein sequences
from Ensembl (http://www.ensembl.org) were aligned using the Multiple Sequence
Alignment ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/). Modelling
of the pseudokinase (JH2) and kinase (JH1) domains of JAK1 was done by
I-TASSER44, using JAK1 sequence (AA 583–1153) and the three-dimensional
structure of TYK2 (PDB 4OLI) as a template. The model with the best
confidence score (C-Score) was visualized by Visual Molecular Dynamics
software (http://www.ks.uiuc.edu/Research/vmd/).

Cells. Cell lines U4A and 2fTGH were kindly provided by Dr George Stark.
Flp-In U4C (U4C-FRT) cells were kindly provided by Dr Claude Haan. Lack of
JAK1 expression in JAK1-deficient U4A and U4C cells has been verified by western
blotting. Cells were tested for mycoplasma contamination and were shown to be
mycoplasma-negative. The parental 2fTGH human fibrosarcoma cell line and
U4A and U4C-FRT cell lines, patient and control fibroblasts as well as 293T
cells were cultured in DMEM medium (E15–810,PAA) and 10% heat-inactivated
FCS fetal bovine serum (35 5500, Lot 001514, BD, Cowley, Oxford). Parental
Flp-In U4C (U4C-FRT) cells or JAK1-complented stable clones were kept in the
presence of 100 mg ml� 1 Zeocin (Invivogen) or 250mg ml� 1 Hygromycin B Gold
(Invivogen), respectively.

Determination of mRNA levels by relative real-time PCR. Total RNA
was extracted using RNAeasy Plus Mini kit (Qiagen) from fibroblast left unsti-
mulated or stimulated with 1–100 ng ml� 1 IFN-a for 15 h or 0.01–1 ng ml� 1

IFN-g for 8 h. 0.3–1 mg RNAs were then reverse-transcribed with Oligo-dT using
RevertAid Reverse Transcriptase (ThermoFisher). For the determination of the
mRNA levels of the target genes, we performed qPCR using gene specific
primers (Supplementary Table 2) and KAPA SYBR FAST qPCR (KK4602,
Kapa biosystems). Fold changes were calculated using the DDCT method
against house-keeping genes.

Cloning, mutagenesis and transfection. For cloning purposes hJAK1 gene was
cloned into the vector pcDNA3.1 (þ ) (Invitrogen), used as a template for PCR and
subcloned into a pHR-Ub-Em vector (4), using standard cloning procedures.
Myc-tagged or sfGFP-tagged JAK1 constructs were subsequently cloned in
pcDNA6A-myc-His (ThermoFisher, ref. V22120). Cloning of JAK1-sfGFP cDNAs
in pcDNA5/FRT/TO (ThermoFisher, V652020) was performed via ApaI/KpnI sites
(JAK1-sfGFP in pcDNA6A as donor plasmids). The mutations P733L, P832S,
P733L/P832S and K908E were introduced using QuikChange Site-Directed
mutagenesis strategy. JAK1 deletion mutants JAK1CKinD (del aa. 583–855),
JAK1KinD (del aa. 875–1153) and JAK1CKinD/KinD (del aa. 583–1153) were
generated via Golden Gate assembly, with outward primers carrying BsmbI
(New England Biolabs) sites. Transient transfections of U4A cells were carried
out using Lipofectamine reagent (ThermoFisher), following manufacturer’s
instructions. Stable clones of complemented U4C-FRT were generated by
contrasfecting the proper JAK1-sfGFP in pcDNA5/FRT/TO construct along with
pOG44 (ThermoFisher), followed by selection in Hygromycin-containing medium.
The primers used in the cloning and mutagenesis are summarized in the
Supplementary Table 2. sfGFP is a genetically modified form of GFP with reduced
dimerisation properties in comparison with the wild-type GFP45.

Lentivirus preparation and transductions. The lentivirus stocks were prepared
by transient transfection of 293T cells (75 cm2 flasks at 50% confluency) with:
the envelope plasmid pMD.G (4 mg), the packing plasmid CMV8.91 (4 mg) and the
expression plasmid pHR-UbEm (6mg) along with 35 ml the transfection reagent
Transit 2020 (5454, Mirus) following the manufacture instructions. 24 h post
transfection (hpt) the media was replaced and medium was harvested at 48
and 72 h post transfection, pooled, cleared by low-speed centrifugation
(1,200 rpm, 5 min), and filtered through 0.45-mm-pore-size filters, and titered
by limited dilution scoring for eGFP-positive cells 3–5 days after infection.
Virus stocks were stored up to 3 weeks at 4 �C for transduction experiments.
Transductions of patient fibroblast and U4A cells were carried out by infection
at a multiplicity of infection of 1–3 in the presence of 8 mg ml� 1 of Polybrene
(107689, Sigma) overnight, then the virus containing media was replaced by
fresh media, samples were stimulated and harvested 2–5 days after infection.

Cells stimulations and immunoblotting. STATs’ phosphorylation was tested
in complemented U4A cells, U4C-FRT cells or patient fibroblasts along with
appropriate control cells upon stimulation with IFN-a (11101–2, PBL) or IFN-g
(IF002, Millipore), in full growth medium at 37 �C. Then, the cells were trypsinized,
washed and lysed in cold radioimmunoprecipitation assay buffer supplemented
with phosphatases (P5726, Sigma) and protease inhibitors (11836153001, Roche)
for 30 min at 4 �C. The lyses were then centrifuged at 10,000g for 10 min at
4 �C, the supernatants were quantified and 10–50 mg of total protein was separated
by 10% SDS-PAGE and analysed by western blot. Membranes were cut horizon-
tally according to molecular size markers, and stripes were incubated with
different Abs. Immunoblots were developed with the enhanced chemiluminescence
western blotting Reagent (Amersham). The following Abs were used: anti-JAK1
(610231, BD Biosciences; 1/1,000 dilution), anti-pJAK1 Tyr1022/1023 (3331, Cell
Signaling Technology; 1/1,000 dilution), anti-JAK2 (Clone D2E12, 3230, Cell
Signaling Technology; 1/1,000), anti-pJAK2 Tyr1007/1008 (Clone C80C, 33776,
Cell Signaling Technology; 1:1,000), anti-TYK2 (Clone D4I5T, 14193, Cell
Signaling Technology; 1:1,000), anti-pTYK2 Tyr1054/1055 (Clone C80C, 9321,
Cell Signaling Technology; 1:1,000), anti-STAT1 (9172, Cell Signaling
Technology; 1:1,000), anti-pSTAT1 Tyr701 (Clone 58D6, 9167, Cell
Signaling Technology; 1:1,000), anti-STAT2 (4594, Cell Signaling Technology;
1:1,000), anti-pSTAT2 Tyr689 (07–224, Millipore; 1:2,000), anti-b-Actin
(Clone AC-15, A5451, Sigma-Aldrich; 1:10,000), anti-GFP (11814460001,
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Roche or ab290, AbCam; 1:2,000) and anti-Myc (clone 9B11, 2276, Cell
Signaling Technology; 1:1,000). Band densitometry was determined by Image
Studio Lite (Licor). Fold changes of phospho/non-phosphorylated proteins were
calculated against the indicated internal reference sample. Similarly, JAK1
protein levels in primary fibroblasts were determined after normalisation with
b-actin (loading control). Uncropped scans of western blots are shown in
Supplementary Fig. 11.

Microscopy. U4C cells complemented with sfGFP-tagged JAK1 mutants were
seeded at 50,000 cell per well on 24-well Sensoplates (662892, Greiner). Two
days later, living cells were rinsed twice in 1xPBS and imaged in Live Cell Imaging
Solution (A14291DJ, ThermoFisher). Nuclei were stained with NucBlue reagent
(R37605, ThermoFisher). Micrographs were acquired at a Leica SP5 confocal
microscope.

FACS analysis of STAT phosphorylation. Blood was collected in EDTA. In total,
100ml of blood was left unstimulated and 100ml was stimulated with indicated
cytokines for 10 min (IL-2, Chiron, 105 U ml� 1; IL-4, ImmunoTools, 1 mg ml� 1;
IL-6, R&D systems, Abingdon, England, 100 ng ml� 1; IL-10, R&D systems,
500 ng ml� 1; IFNg, R&D systems, 200 ng ml� 1; IFNa, PBL Interferon Source,
106 U ml� 1; IL-27, R&D systems, 500 ng ml� 1). Red cells were lysed and
phosphorylation state fixed using Lyse/Fix (BD Biosciences). Cells were permea-
bilised with Perm Buffer III (BD Biosciences) before being stained with 5 ml surface
antibodies: APC Anti-CD3 1:20 dilution, or PerCP Anti-CD4 1:20, and PE anti-
STAT1 (p701) 1:20, or Alexa Fluor 488 Anti-STAT5 (Y694) 1:20, or Alexa Fluor
488 Anti-STAT4 (Y693) 1:20, or Alexa Fluor 488 Anti-STAT3 (49/STAT3) 1:20, or
Alexa Fluor 488 Anti-STAT6 (Y641) 1:20 (all from BD Biosciences). Gating was
done on the following lymphocyte populations: total lymphocytes for the analysis
of STAT1 phosphorylation after IFN-a stimulation; CD3- lymphocytes for the
analysis of STAT1 phosphorylation after IFN-g stimulation and of STAT3
phosphorylation after IL-10 or IL-6 stimulations; CD3þ lymphocytes for the
analysis of STAT4 phosphorylation after IFN-a stimulation, of STAT5 phos-
phorylation after IL-2 stimulation and of STAT6 phosphorylation after
IL-4 stimulation; CD4þ lymphocytes for the analysis of STAT1 phosphorylation
after IL-27 stimulation. The stained cells were detected using a FACsCalibur
(BD Biosciences); 10,000 gated events were collected. Analysis was performed using
CellQuest software (Becton Dickinson).

Whole-blood cytokine production assays. Whole blood was diluted 1:5 in RPMI
into 96-well F plates (Corning) and activated by single stimulation with IL-12
(20 ng ml� 1; R&D Systems), PHA (10mg ml� 1; Sigma-Aldrich), LPS (1 mg ml� 1)
List Biochemicals, IFN-g (2� 10 IU ml� 1, Imukin, Boehringer Ingelheim), IFN-a
(2� 103 IU ml� 1, Intron A, Schering Plough, UK) or using co-stimulations as
indicated. Supernatants were taken at 24 h. Cytokines were measured using
standard ELISA according to the manufacturer’s recommendations (IFN-g,
Pelikine, Sanquin, NL), or multiplexed (TNFa, IL-12, IL-10, IL-6, RþD Systems
Fluorokinemap) on a Luminex analyser (Bio-Plex, Bio-Rad, UK). Data were
statistically analysed by the two-tailed Mann–Whitney test using Prism 6
(GraphPad Software).

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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