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We investigate the validity of the weak-Painlevé property as an integrability criterion. We present
an example of a time-dependent Hamiltonian system which possesses a weak-Painlevé type

expansion, while presenting a chaotic behavior. However, this system presents also critical fixed
singularities. The importance of the latter, as far as integrability is concerned, is discussed here.

I. INTRODUCTION

The singularity analysis has been resurrected in the past
few years as an integrability criterion. Introduced a century
ago, this method, usually associated to the name of Painle-
vé,! has been initially used in order to investigate integra-
bility of nonlinear first- and second-order ordinary differen-
tial equations (ODE’s). The recent use of this method
concerned the integrability of nonlinear partial differential
equations (PDE’s).? However, as the original formulation of
the Ablowitz-Ramani-Segur (ARS) conjecture dealt with
ODE reductions of the PDE’s, it was most natural to use this
singularity analysis as a tool for the investigation of the inte-
grability of dynamical systems described by ODE’s. In that
context, the most natural extension of the ARS conjecture
would read like this: “A system of coupled nonlinear ODE’s
is integrable whenever it possesses the Painlevé property,
i.e., the only movable singularities of the solutions in the
complex # plane are poles.” Several works have been devoted
to the study of dynamical systems using the Painlevé proper-
ty.>*567 New integrable systems have thus been discovered
and confirmed the particular usefulness of the Painlevé crite-
rion. Whenever a system exhibits the Painlevé property it is
integrable (although the precise meaning of integrability
must be specified).

The reciprocal proposition seems less well-established.
Starting from trivial examples, (e.g., Hamiltonian systems in
one dimension), one can convince oneself that integrability
can sometimes exist independently of a “nice” singularity
structure. During the course of our investigations, we have
discovered that some systems possess a particular intermedi-
ate status.®

They are integrable and, although they do not possess
the full Painlevé praperty, they exhibit a simple singularity
expansion in powers of (¢ — #,)'/”, with 7 an integer. We have
called this property “weak-Painlevé.” Several integrable sys-
tems have been discovered ranging from the initial 2-D
Hamiltonians to N-dimensional systems® and even PDE’s.'®

However, recent findings, by one of us'! make manda-
tory the examination of the weak-Painlevé property as inte-
grability criterion. Namely the question we address our-
selves to in this paper is whether the weak-Painlevé property
is always sufficient for integrability.
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Il. PAINLEVE AND WEAK-PAINLEVE PROPERTIES
ASSOCIATED TO INTEGRABILITY

In our initial work,®'*!3 we have concentrated on au-
tonomous systems (in fact, two-dimensional time-indepen-
dent Hamiltonian systems). These systems present only mo-
vable singularities, and no fixed ones. For these systems, we
believe that the weak Painlevé property suffices for integra-
bility (although it is not always necessary).'* When we turn
now to time-dependent systems, two situations can arise:
Either the fixed singularities are “nice,” or they are not. The
latter case is far from being an abstract one.

Consider the very simple case of the Riccati equation

x=x>+1(t) (1)
The movable singularities of this equation are pure poles.
However, if f (¢ ) has singularities at finite values #; of ¢, x has
fixed singularities at these values, these singularities depend-
ing on the behavior of f near ¢,. One can easily choose fin
order that these singularities be critical (i.e., not poles). It is

- enough for f to have double poles:

flit)=a/t?

a not of the form n(n — 1) with » integer.

However, whatever fis, this equation can be reduced to
the second-order linear equation

y=rit)y, (2)
by x = y/y.

This equation is considered integrable because it is lin-
ear, independent of what the singularities of fare. In general,
one cannot express y explicitly (except for very special
choices of /), even if f has nosingularities at finite ¢;’s, but still
this is considered as an integrable case.

In fact, linearization can even accommodate critical
singularities which are movable in some sense. Consider a
time-independent system where one integration is explicitly
possible. This reduces the original system to a new one with
one less degree of freedom and a possible explicit time depen-
dence.

In an earlier paper,'® we have presented such a system
starting from

x= —x*+axy+ax+By+4, ()
y=—y +bxy+yx+8 +p
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We are interested ing =0, 8 =0.
In this case the first equation for x separates:

x=—-x*+ax+A. (4)

It is of Riccati type and, of course, it has the full Painlevé
property.!
Integrating it, we obtain

x(t) = (r; + cre” =) /(1 4 cel> =),

with r,, 7, solutions of # —ar — 4 =0.

Choosing a solution for x, we can write the second equa-
tion as

y= —y + (bx(t) + 8y + (yx(t) + ). ()
This equation is again a Riccati for y and its movable singu-
larities at given x are poles. However, the Riccati for y could
a priori have a “fixed” singularity which is worse than a pole.
But this “fixed” singularity is really a movable singularity of
the original system (3) because the pole of x is movable.

In Ref. 15, we have presented a detailed analysis of the
conditions for the system (3) to possess the Painlevé proper-
ty. However, what is clear from what we said above is that
this is by no means essential for integrability: the two Riccati
equations can be integrated in cascade, through the usual
local linearization procedure one applies to the Riccati equa-
tions. So here we see a case where critical singularities that
are fixed or even movable in the original system (although
fixed in the reduced one) do not hinder integrability.

As a matter of fact, we do not know of any case of sys-
tems of nonlinear ODE’s which possesses fixed critical sin-
gularities and is integrable otherwise than through a lineari-
zation.

Again let us recall that, according to the currently ac-
cepted definition of integrability, a linear ODE with variable
coefficients is considered as integrable even if it presents
critical fixed singularities. However, this does not necessar-
ily mean that fixed critical singularities are not revelant for
integrability. They may well be acceptable only whenever
the system is linearizable.

In a recent work,'" one of us has investigated the singu-

larity structure of one-degree-of-freedom nonautonomous .

systems. One-degree-of-freedom, Hamiltonian, time-depen-
dent systems fall in the class examined in detail by Painlevé
and Gambier. There, the full-Painlevé property leads to inte-
grability (although, sometimes at the expense of introducing
new transcendents).

How about the weak Painlevé? The study of a system
due to Sitnikov'® has revealed that the weak-Painlevé prop-
erty does not preclude chaotic behavior of the system. The
equations of motion of the Sitnikov case are

3= —z/[2 + }(1 —€ecos 2t)]P2 (6)

The singularity expansion of z can be written as (7 = ¢ — #,)

z=2zy+ iakfk’s, (7)
k=4

withz, = + (i/2)(1 — € cos 2¢,), £, free, and g free (associat-
ed to the two resonances — 1 and 6). A calculation of the first
terms of the series yields

a, = (625/128 z,)'/%, as= +iesin2t, a,=0.
The above analysis concerns the movable singularities of (6).
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We turn now to the fixed singularities.
It is clear that z in (6) can have a singular behavior
whenever

€cos 2, = 1. (8)
Expanding 1 — € cos 2t, around £, we obtain
(1—€ecos2tP=4B7>+ ...,
with B=¢*— 1.
The leading behavior is, in this case,
z=pr*3,
with 8% =3.
Looking for the resonances we find them at — 2 and 3.
The compatibility condition at § is not satisfied. Thus, a loga-

rithmic term enters the expansion at n = §. However, this
critical singularity is fixed since 7, is not free but given by (8).

IIl. CONCLUSION

So we are in the presence of an equation of motion (one
dimensional, Hamiltonian, nonautonomous) which has a
weak-Painlevé expansion around a movable singularity and
which possesses a fixed critical singularity. Moreover, the
solutions of this equation are known to exhibit chaotic be-
havior which makes them incompatible with integrability.

This could mean one of the two following things: Either
allowing fractional powers is too weak a criterion in order to
ensure integrability, or fixed singularities must also be taken
into account. Our findings do not allow us to draw a clear
conclusion at this stage. We can remark however that the
predictive power of the weak-Painlevé property for time-
independent systems (where fixed singularities do not arise)
has been well established to date. On the other hand, up to
second order, the full Painlevé property, i.e., movable poles
only, does ensure integrability even in the presence of fixed
critical singularities (e.g., Riccati), but then integrability is
obtained through linearization. For higher order, however,
it has not been proved yet that movable poles lead to integra-
bility in the presence of fixed critical singularities.

It might turn out that even fixed critical singularities
are not compatible with integrability for higher-order equa-
tions. One must acknowledge, at this point, Painlevé’s pow-
erful intuition. In his initial project'’ (always motivated by
integrability), he was interested in equations with no critical
singularities at all, although he devoted the major part of his
work to equations with just no movable critical singularities.
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