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  ABSTRACT 

 Asymptotic inferences about a linear combination of K independent binomial 

proportions are very frequent in applied research. Nevertheless, until quite recently research 

had been focused almost exclusively on cases of K2 (particularly on cases of one proportion 

and the difference of two proportions). This article focuses on cases of K>2, which have 

recently begun to receive more attention due to their great practical interest. 

 In order to make this inference, there are several procedures which have not been 

compared: the score method (S0) and the method proposed by Martín et al. (W3) for adjusted 

Wald (which is a generalization of the method proposed by Price and Bonett) on the one hand 

and, on the other hand, the method of Zou et al. (N0) based on the Wilson confidence interval 

(which is a generalization of the Newcombe method). The article describes a new procedure 

(P0) based on the classic Peskun method, modifies the previous methods giving them 

continuity correction (methods S0c, W3c, N0c and P0c respectively) and, finally, a simulation 

is made to compare the eight aforementioned procedures (which are selected from a total of 

32 possible methods). The conclusion reached is that S0c method is the best, although for 

very small samples (ni  10, i) the W3 method is better. The P0 method would be the 

optimal method if one needs a method which is almost never too liberal, but this entails using 

a method which is too conservative and which provides excessively wide confidence 

intervals. The W3 and P0 methods have the additional advantage of being very easy to apply. 

 A free programme which allows the application of the S0 and S0c methods (which are 

the most complex) can be obtained at http://www.ugr.es/local/bioest/Z_LINEAR_K.EXE. 

 

KEY WORDS: Confidence interval; linear combination of proportions; Peskun method; score 

method; Wald method; Wilson method. 
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1. INTRODUCTION. 

 Asymptotic inferences about a linear combination (L=ipi) of K independent 

binomial proportions pi are very frequent in applied research (Tebbs and Roths, 2008). In 

particular, cases with K2 have received a great deal of attention since many years ago. When 

K=1 and 1=1, the objective is to make inferences about one proportion (as in Agresti and 

Coull, 1998). When K=2, there may be several objectives: the difference between the two 

proportions if 1=1 and 2=+1 (as in Agresti and Caffo, 2000); the sum of two proportions if 

1=+1 and 2=+1 (as in Pham-Gia and Turkkan, 1994); the ratio  of two proportions if 

1= and 2=+1 (as in Agresti, 2003); or a linear combination of two proportions with 1<0 

(as in Phillips, 2003). Cases with K>2 are historically rather less frequent, although in recent 

years they have received more and more attention due to their great practical interest 

(Newcombe, 2001; Price and Bonett, 2004; Schaarschmidt et al. 2008; Tebbs and Roths, 

2008; Agresti et al., 2008; Zou et al., 2009 and Martín et al., 2010). 

 On some occasions, the linear combination L is a contrast (i=0); in this case, it is 

normally interesting to carry out the test for H: L=0 or determine the confidence interval (CI) 

for L, which can be obtained through inversion of the test for H: L=. This is the case with the 

study made by Cohen et al. (1991) referred to by Schaarschmidt et al. (2008) which noted 

the presence or absence of tumours in four groups of 30 rats given four diets (high or low fat 

and with or without fiber). Table 1 shows the data and the three contrasts which are 

interesting to assess the effect of the fiber (L2), the fat (L3) or the interaction between both 

effects (L1). 

On other occasions, the linear combination L is not a contrast (i0); thus, it is 

normally interesting to determine a CI for L, which can also be obtained through inversion of 

the test for H: L=. This is the case with the multicenter clinical trials (Table 2) referred to by 

Tebbs and Roth (2008) where the aim was to assess the efficiency of a reduced-salt diet in the 

treatment of male infants for acute watery diarrhea. One of the characteristics measured was 

the number of infants who had fever when admitted or during the trial. The aim is to estimate 

the pooled proportion of subjects who respond to treatment. Since the level of participation is 

likely to be different depending on the location, a natural estimate of the pooled proportion is 

the average of the response probabilities from the K=6 sites, i.e. L=βipi with βi=ni/nh 

It has been observed that cited asymptotic inferences may refer to the application of a 

hypothesis test regarding L (H: L= vs. K: L, where  is a constant so that 
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   ) or to the determination of a CI for L. As the CI can be obtained 

through inversion of the test and the test can be carried out through the CI, in practice the 

procedure used is the most comfortable one. Nonetheless, both types of inference will be 

explained. 

Whatever the situation, the inferences about L can be carried out through diverse 

procedures. Price and Bonett (2004) and Schaarschmidt et al. (2008) improved the classic 

Wald method through the increase in data of a certain number of successes and failures 

(adjusted Wald methods). These procedures originate in similar proposals made by Agresti 

and Coull (1998) in the case of one proportion and by Agresti and Caffo (2000) in the case of 

the difference between two proportions. Martín et al. (2010) solved the problem through the 

score method, propose new adjusted Wald methods, justified that all of them are an approach 

to the score method and, finally, compared the methods obtained. These authors concluded 

that the score method was the best, closely followed by a modification and generalization of 

the method proposed by Price and Bonett. Finally, Newcombe (2001) for K=4 and i=0, and 

Zou et al. (2009) for any value of K and of i, suggest substituting the proportions of the 

Wald method with the boundaries of Wilson’s CI (1927).  

This article has two objectives (both are limited to the relatively unstudied case of 

K>2): proposing new methods and comparing them to the best methods proposed in the 

literature (with the aim of the selecting the best one). In general, we will consider that the best 

method is the one which gives CIs whose coverage is not normally excessively lower than the 

nominal one, while also having an average coverage which is close to the nominal one and a 

small average length (for more details see Section 3.1). 

 

2. METHODS TO PERFORM INFERENCES. 

2.1. Generalities regarding the basic test to be used. 

 Let K be independent binomial random variables xi~B(ni, pi) with i=1, 2,…, K, and let 

L=ipi be the parameter of interest (with the proportions pi unknown and the parameters βi 

known). As the statistic L =Σ i ip , with ip =xi/ni, is asymptotically normal with a mean 

L=ipi and variance  2
i piqi/ni, where qi=1–pi, then in order to test H: L= vs. K: L 

(where 
0 0i i

i i 
  

 
   ) it is necessary to compare in the classic manner the statistic 
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with 2
2/z  (where z/2 is the α/2-upper percentile of the typical normal distribution). The 

inversion of the test, i.e. making 2 2
2exp /z z  and clearing λ, gives (1–α)-CI (L1; L2) for L. These 

expressions have no use until the unknown pi proportions are substituted with some of their 

estimations. From now on, let n=ni, B
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2.2. Estimation of the unknown proportions pi: the inference procedures involved. 

 The simplest and most well known option is to substitute pi with ip  in expression (1). 

This leads to the following classic Wald statistics and Wald CI (where 1i iq p  ): 
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thus we obtain what we will now call procedure W. 

 Another more complicated option is that proposed by Zou et al. (2009), who  

theoretically justify and generalize the procedure proposed by Newcombe (1998, 2001) for 

certain special cases of K=2 and K=4. The procedure (which we will henceforth refer to as the 

N procedure) consists of substituting the unknown proportions pi with an appropriate limit ip  

of the Wilson CI (1927) for the same ones:  
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 The two previous procedures are based on estimators of the proportions pi which are not 

restricted by the null hypothesis H: L=. Martín et al. (2010) proposes substituting the pi with 

the maximum likelihood estimators ip̂  under H, obtaining the CI through inversion of the 

test. This leads to the procedure S (since, as the aforementioned authors have demonstrated, 

the method is equivalent to the score method), and it consists of solving the equation: 

                                    y=n+(B–2λ)C–Ri=0 where C= 2
Sz /( L –λ)                                           (4) 

with 2 2 2 2 2i i i i i iR n C n b C     and bi=1–2 ip . When the objective is to carry out the test (in 

which case λ is known) and L ≠ λ, then 2
Sz  is the only solution 2

Sz ≠0 for equation (4); when 

L =λ it is assumed that 2
Sz =0. When the objective is to obtain the CI L1<L<L2 (in which case 

2
Sz = 2

2/z  is known), then Li are the only two solutions i for equation (4). 

 The argumentation which now follows -which is based on the criteria of Sterne (1954) 

and was used by Peskun (1993) in the case of the difference in proportions- gives the new 

procedure P based on a new estimation ip


 of the proportions pi subject to H (see the 

appendix). The score test for H: ipi= will be significant if 2 2
S 2/z z  in all of the pi values 

so that βipi=λ. Consequently, the objective should be to determine the minimum value of 2
Sz , 

i.e. the maximum value of V= 2
i piqi/ni, subject to the condition βipi=λ. In the appendix, it 

is demonstrated that the new statistic and the new CI are, respectively: 
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2.3. Original data and increased data. 

 Price and Bonett (2004), encouraged by the results of Agresti and Coull (1998) and 

Agresti and Caffo (2000) in the case of one proportion and the difference in proportions 

respectively, found that the Wald CI improves substantially if expression (2) is obtained based 

on the data xi+hi, yi+hi y ni+2hi, where hi=2/K, i.e. if we add to the original data 2/K successes 

and 2/K failures. This leads to the adjusted Wald method W1 in contrast to the original Wald 

method W0. More recently, Martín et al. (2010) found that best option for the adjusted Wald 

method is given by the method W3, which is obtained developing in a Maclaurin series 

expression (4), in which:  
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although a good alternative is method W2 based on hi=
2

2 2/z / K . It can be observed that 

when 0<xi<ni (i) then W2=W3, and if =5% is chosen then 2
2 2/z / K  2/K and 

W1W2=W3. When xi=0 or xi=ni in any value of i (i.e. when some observed data is found on 

the bound of the sample space), the calculations of method W3 become complicated since in 

this case the value of hi is different depending on if we are going to determine the lower 

bound L1 (when L  ) or the upper bound L2 (when L  ). 

 It can be observed that procedure W gives four methods (W0, W1, W2 and W3) based 

on the increases hi=0, 2/K, 2
2 2/z / K and the one indicated in expression (6), respectively. The 

same can be done with the other three procedures (S, N and P), thus obtaining 16 methods 

W0,..., W3, S0,..., S3, N0,..., N3, P0,... and P3 which are going to be compared in this article. 

 

3. SIMULATION STUDY. 

3.1. Selection of the best methods. 

The initial objective of this section is to compare the 16 methods proposed Wx, Zx, Sx, 

Px, where x=0, 1, 2 or 3. The comparison can be made from a double perspective: from the 

perspective of hypothesis tests or from the perspective of the CIs. As the evaluations are 

equivalent (if both are carried out to the same nominal error of α), in this section the 

comparison will be made from the perspective of the CIs (as they are the most habitual 

inferences in this context). In this sense, it is necessary to take into account the fact that in 

order to assess a CI, it is normal to use the parameters of real coverage and mean length, and 

to assess a test, it is normal to use the parameters of real error and power. As the real coverage 

and the real error add up to 1 and, moreover, the greater the power of the test the lower the 

length of the CI which is obtained through inversion, the consequence is that both evaluations 

are equivalent. 

For the 100(1)% CI, the actual probability of coverage R and the expected interval 

length l  for fixed pi values are defined by: 

  
1 2
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where I(x1, x2, ..., xK)=1 if the CI (LI, LS) which causes the observations (x1, x2, ..., xK) contains 

L=ipi and I(x1, x2, ..., xK)=0 in another case. For each set of values (ni, i) of Tables 3 (K=3 and 

=5%) and 4 (K=4 and =5%), 10,000 sets of pi´s were randomly generated from the uniform 

[0, 1] distribution, and those of the previous methods were used to compute l and R. The mean of 

R (Rmean) and l (lmean) and the percentage of R that fell below 93% (R<93) in the 10,000 sets 

of pi´s were computed for 1=95%. The selection of the optimal method will be made based on 

the following rules (listed in order of importance): (i) the method must have few liberal 

“failures” (i.e. its R<93 value must be as small as possible); (ii) the method must have an Rmean 

as near as possible to 95% (the method will be conservative if Rmean>95%, and liberal if 

Rmean< 95%); (iii) the method must have an lmean which is as small as possible. These rules 

must not be applied in an excessively strict manner since, in an extreme case, it is of no use if the 

method gives an R<93 value equal to zero if its Rmean=100%. 

 Tables 3 and 4 show the results for the best method of each family (the four methods W3, 

N0, S0 and P0) and for a confidence of 95%. The rest of the data can be requested from the 

authors. It is observed that: 

(1) The N0 method has Rmean values which are very close to the nominal 95% (on average it 

is slightly conservative), but it fails a great deal and in all circumstances (since its R<93 

values are usually too large) and, therefore, it must be rejected. 

(2) The P0 and W3 methods are both very conservative (the Rmean values are much greater 

than 95%) and very imprecise (high lmean values), although the W3 method is less 

extreme in these two aspects. Both methods fail very little (their R<93 value is small), 

although the P0 method fails somewhat less. Therefore, in overall terms, the W3 method 

is preferable to the P0 method. 

(3) The S0 method has the best Rmean values (they are the most balanced around 95%) and 

lmean values (they are the smaller than those of the P0 and W3 methods) and only fails 

too much on some occasions in which ni=10 (i), and thus it can be deduced that it is the 

best method when the samples are not excessively small. 

Therefore, it is deduced that S0 is the best method, although if the samples are very small (ni 

 10, i) the W3 method is the best. It is also observed that the W3 method is a much simpler 

alternative to the S0 method, although it is somewhat conservative, with some mistakes and it 

leads to wider CIs than those of the S0 method. Finally, the P0 method would be the optimal 

method if we require a method that almost never fails, although this implies using a method 

that is too conservative and that leads to excessively wide CIs. These conclusions also hold in 
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general for confidences of 90% and 99% (the data can be requested from the authors), although 

the W3 and P0 methods are now very similar when K=4. It can also be observed that the same 

conclusions hold in the case of a contrast (i=0), and the only difference is that now the W3 

method practically never fails. 

 

3.2. Continuity correction methods. 

 The second objective of this article is to check whether continuity correction (‘cc’ from 

now on) manages to improve the performance of the methods selected in the previous section 

(W3, S0 and P0). It is well known (Cox, 1970) that it is useful to make a cc when the 

distribution of a discrete random variable (such as the variable xi) is approximated through a 

continuous variable (such as the normal variable). Haber (1980) proposed that a cc should 

consist of adding to or subtracting from the variable half of its average jump. In our case, the 

variable is L  (the contrast statistic) and, as B L B    (since 0 ip 1), its total jump will be 

i and half of its average jump, i.e. the cc, will be    2 1ic / N   , with 

 1iN n   , since N is the total number of points (x1, ...  , xK) of the sample space. In the 

case of one proportion, the classic cc c=1/2n is obtained. In the case of the difference between 

two proportions, c=1/(n1n2+n) is obtained, which is the cc of Martín and Herranz (2004). 

 In order to determine the 2
expz  statistic of expression (1) with cc it is sufficient to 

redefine it in the following way: 2
cz =0 if L c   and    2 22 2

c expz z L c / L      if 

L c  . This gives rise to the new statistics 2
Wcz , 2

Ncz  and 2
Pcz  obtained through expressions 

(2), (3) and (5), respectively. In the case of the score test, the statistic 2
Scz  is obtained changing 

the 2
Sz  value of expression (4) for the value     2

2
Scz L / L c    , when 2

Scz  is the 

unknown quantity of said equation. In a similar way, in order to determine the CI of 

expression (1) with cc, it is sufficient to add to it the term ±c. This gives rise to the new 

intervals CIWc, CINc and CIPc obtained through expressions (2), (3) and (5) respectively. In the 

case of the CISc of the scores, it is sufficient to change the 2
Sz  value of expression (4) for 

    2
2

2/z L / L c      and to determine its two i solutions with 1B L c     and 

2L c B    . Whatever the case (CI or test), the introduction of the cc leads to four new 

procedures Wc, Nc, Sc y Pc and 16 new methods Wxc, Nxc, Sxc and Pxc, with x=0, 1, 2 y 3. 
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 It is clear that cc is not useful in the case of the W and P procedures since, as the cc 

causes the p-value to decrease, the Wc and Pc procedures will be even more conservative and 

more imprecise than the originals. Therefore, Table 5 (for K=3 and =5%) only considers the 

N0, N0c, S0 and S0c methods. It must be taken into consideration that, in the interests of 

comparability, this new table has been obtained for a different sequence of 10,000 sets of pi´s; 

therefore, the data for S0 and N0 are not exactly the same as in Tables 3 and 5. Observing Table 

5 it is deduced that: 

(1) As was to be expected, in all cases the S0c and N0c methods have a lower or equal 

number of failures than those of the S0 and N0 methods respectively. 

(2) The S0 and S0c methods are the same in all of the parameters, except when ni=10 (i) in 

which S0c is somewhat better than S0 as it has fewer failures. Nevertheless, in this last 

case, S0c is still not competitive in relation to the W3 method selected in the previous 

evaluation. 

(3) The N0c method is slightly better than the N0 method in regard to the number of failures, 

although this is in exchange that N0 is slightly better than N0c in terms of Rmean and 

lmean. As this does not imply that N0 improves its performance in order to be competitive 

with the optimal methods S0c and W3, it is deduced that the cc has no interest in this case. 

Thus, it can be observed that, when K=3, cc is only useful to slightly improve the S method when 

the samples are small. As the cc decreases sharply with K, it is deduced that its interest will be 

even greater in the case of K>3. 

 

3.3. Final selection. 

 From the aforementioned information, it is deduced that: (1) if ni  10 (i), W3 is the 

best method; (2) in another case, S0 is the best, but a much simpler alternative is method W3 

(although is rather conservative, has some failures and causes CIs which are broader than S0); 

(3) if we need a method which never fails, we can choose the method P0 (but it is too 

conservative and gives excessively broad CIs); (4) if we need to use the same method, the 

best option is method S0c. 

 

4. EXAMPLES. 

 For the data in Table 1, the Sc method applied to the contrasts L1, L2 and L3 provides 

the values zSc = 0.412, 2.424 and +2.803, respectively, which indicates that the effects of 

fiber and fat are significant but there is no interaction between them. In order to quantify the 
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magnitude of the effects of L2 and L3, it is necessary to determine the CI for each one of them. 

Alternatively, the aforementioned tests can be carried out through the CI for L1, L2 and L3 (as 

in the next paragraph). 

 Table 6 contains the 95%-CIs for all of the contrasts in Table 1 and the combination of 

that of Table 2 made by the methods selected in the previous section (S0c, W3 and P0) and 

through the N0 method. It can be observed that all of the methods indicate that the contrasts 

L2 and L3 are significant to an error of 5% (since its CIs do not contain the value 0), but that 

the contrast L1 is not (since its CIs contain the value 0). Nevertheless, in the evaluation of the 

magnitude of the different values of L there are some differences between the methods. It is 

observed that the N0 method gives narrower CIs than those of the other methods, although the 

advantage is only apparent: the simulation study indicated that the N0 method had many 

failures (it is excessively liberal on too many occasions). It is also observed that the P0 

method provides excessively wide CIs, except when the sample sizes are large (as in the case 

of L). Finally, it is observed that the W3 method provides CIs of a similar width to that of the 

S0c method, although its centers are rather different (except in the case of L, once again due 

to the high values of ni). 

 

5. CONCLUSIONS. 

 Asymptotic inferences (tests or CIs) about a linear combination (L=ipi) of K 

independent binomial proportions pi are very frequent in applied research (Tebbs and Roths, 

2008). Historically, literature in this field has paid special attention to the case of K2 (which 

contains the cases with one proportion and the difference or ratio for two proportions), but 

there is increasing interest in the case of K>2 (Newcombe, 2001; Price and Bonett, 2004; 

Schaarschmidt et al. 2008; Tebbs and Roths, 2008; Agresti et al., 2008; Zou et al., 2009 and 

Martín et al., 2010). The linear combination L may be a contrast (i=0), in which case it is 

usually interesting to carry out the test for H: L=0 or to determine a confidence interval for L, 

or may not be (i0), in which case it is usually interesting to determine a CI for L; therefore 

this article has concentrated on the diverse procedures to carry out the test H: L= vs. K: L 

or to obtain a CI for L through inversion of the previous test. 

In order to make the previous inferences, there are various procedures that have not 

been compared with each other: the S0 score method and the W3 Wald adjusted method 

defined by Martín et al. (2010) on the one hand, and the N0 method defined by Zou et al. 

(2009) on the other. The article has defined the new P0 method, based on the Peskun method 
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(1993), which is given by expressions (5). Additionally, the article modifies the previous 

methods giving them cc (the S0c, W3c, N0c and P0c methods, respectively) and demonstrates 

that the previous methods, which are different to those based on the Wald statistic, do not 

improve because of increasing the successes and failures in determined quantities. Finally, in 

the article, a simulation experiment is performed to compare the eight cited procedures (S0, 

W3, N0, P0, S0c, W3c, N0c and P0c) and it is concluded that S0c is the best method, 

although for very small samples (ni  10, i), the W3 method is the best. The P0 method 

would be the best if we need a method that almost never fails, but is also an excessively 

conservative method and provides CIs that are too wide. The W3 and P0 methods have the 

additional advantage of being very easy to apply. The optimal S0c method has the 

disadvantage of requiring an iterative process; at http://www.ugr.es/local/bioest/Z_LINEAR_ 

K.EXE a free programme can be obtained for the S0 and S0c methods. 
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APPENDIX: Obtaining the Sterne-Peskun procedure 

 For what follows the following inequalities will be useful (where B=i): 

                                             –|βi| ≤ B–2λ, B–2 L  ≤ +|βi|                                                  (A1) 

which are because 
0 0

 
i i

i iB , L B
 

   
 

      since  λ=βipi, L =βi ip  and 0≤ 

pi, ip ≤+1. 

 As was indicated in Section 2.2, the objective is to determine the maximum value of 

V= 2
i piqi/ni subject to the condition λ=βipi. The condition implies that dpK/dpi=–βi/βK 

(i≠K), so that iV = dV/dpi = (∂V/∂pi)–(βi/βK)(∂V/∂pK) = βi{βi(1–2pi)/ni–βK(1–2pK)/nK}=0 

(iK) when βi(1–2pi)/ni=γ (i), with γ a constant that has yet to be determined. As niγ= βi–

2βipi, then adding in i it holds that nγ=B–2λ, where |B–2λ|≤|βi| through expression (A1). 

Therefore, V reaches a bound in: 
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                      0

1 2
1   where      and   

2
ii

i i
i

| |n B
p p | |

n n

  


  
     

 


                   (A2) 

This bound is a maximum since d2V/d 2
ip =(∂V′/∂pi)–(βi/βK)(∂V′/∂pK) = –2 2

i (1/ni+1/nK)<0, 

and its value will be V0 =  2
i pi0qi0/ni = { 2

i /ni–nγ2}/4, with qi0=1–pi0. This leads to the first 

expression (5). 

 In order for V0 to be a valid value it is necessary for V0≥0. In order to see this, let 

f=4V0= 2
i /ni–nγ2. As df/dβi = 2βi/ni–2γ = 0 when βi/ni=γ  and as 2 2d d if /  =2(nni)/nni>0, 

then f reaches a minimum when βi=niγ (i) and therefore f ≥
i

min f= 0. 

 In order for the inference to be coherent, it is necessary for the statistic 2
Pz  to be 

decreasing (increasing) in λ when λ< L  (λ> L ) so that the p-value is increasing (decreasing) in 

λ. As d 2
Pz /dλ = –( L –λ)g/(2 2

0V ), with g = 4V0+2( L –λ)γ =  2
i /ni–(B–2 L )(B–2λ)/n, the 

condition demanded will be verified if g≥0. When (B–2 L ) and (B–2λ) has different signs, 

g≥0 without doubt. In another case, g =  2
i /ni–|B–2 L ||B–2λ|/n ≥  2

i /ni–(|βi|)
2/n = h for 

expression (A1). Deriving h in |βi| it is observed that h reaches a minimum when |βi| = 

ni(|βi|)/n (i). As this minimum is 0, then h≥0. 

 Expression (5) is based on the pi0 values of expression (A1), values that will be 

legitimate if 0≤ pi0≤1, i.e. if |γ| ≤ |βi|/ni or, equivalently if: 

                                                    
1

2
i

i

| |
B

n


 

  
 

                                                             (A3) 

When pi0<0 o pi0>1, it seems appropriate to substitute them for pi0=0 or pi0=1, respectively. If 

this is done so, pi0qi0=0 and those terms do not contribute to the V0 value. This provides the 

new statistic (which is just as simple as the previous one): 

                    
 2

2
2

0

0

1
   where      and   

4
i i

iP
I Ii i

L | |
z V n I i | |

V n n

   
            

    
      (A4) 

Making 2 2
2/Pz z  and clearing λ, the (1–α)-CI is obtained for L: 

                       
22 2 2 2

2 2 2
2 2 2 2P

2

2
CI :   

2 2
/ / /

/

n nz B z n nz B L
L S n

n nz n n n
  



            
              (A5) 

with iI
n n  and 2

i iI
S / n . It should be observed that expression (A5) contains the 

first expression (5). The problem with this new CI is that its determination may require the 
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application of expression (A5) several times. In order to obtain the previous 
P

CI , it is 

necessary to carry out the following steps: (i) Make I={1, 2, …, K} and obtain the two λI and 

λS values which provide expression (A5); (ii) If λI and λS verify expression (A3) iI, the 

process finishes; (iii) In another case, the bound that has failed must be obtained again for a 

new I set which is obtained eliminating from the previous one all of the r values so that |βr|/nr 

= MiniI |βi|/ni; (iv) This must be done successively until the process finishes, i.e. until λI and 

λS verify expression (A3) all of the iI values, when I is the set associated with the λI or λS 

value considered. In this article, the current P  procedure is discarded since, as it is more 

complicated than the P procedure, it does not improve the results (data can be requested from 

the authors). 
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Table 1: Diet and tumor study 

 Fiber No Fiber 

 High Fat Low Fat High Fat Low Fat 

Sample size (ni) 30 30 30 30 

Rats showing cancer (xi) 20 14 27 19 

Effect Β1 Β2 β3 β4 

L1=Fiber×Fat +1 –1 –1 +1 

L2=Fiber +1 +1 –1 –1 

L3=Fat +1 –1 +1 –1 

 

Table 2: Multicenter clinical trial data 

Location Sample size (ni) Fever cases (xi) Coefficients (βi) 

Bangladesh 

Brazil 

India  

Peru 

Vietnam 

Total 

158 

107 

175 

092 

143 

675 

73 

32 

44 

34 

104 

287 

158/675 

107/675 

175/675 

092/675 

143/675 

1 
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Table 3: Mean coverage values (Rmean), mean length values (lmean) and percentage of coverages 

which are lower than 93% (R<93) for 95%-CI obtained through the W3, N0, S0 and P0 methods (K=3). 

 
Method: W3 N0 S0 P0 

n1/n2/n3 Rmean  lmean R<93 Rmean lmean R<93 Rmean lmean R<93 Rmean  Lmean R<93 

i = (1/3, 1/3, 1/3) 

10/10/10 

30/30/30 

30/10/10 

30/20/10 

 

97.0 

95.6 

96.7 

96.4 

 

0.30 

0.17 

0.26 

0.23 

 

0.1 

0.0 

0.0 

0.0 

 

95.3 

95.2 

95.3 

95.3 

 

0.27 

0.16 

0.24 

0.21 

 

5.2 

0.3 

0.9 

0.3 

 

94.3 

94.8 

95.0 

95.1 

 

0.27 

0.16 

0.24 

0.22 

 

7.1 

0.0 

0.0 

0.0 

 

97.4 

97.3 

97.6 

97.5 

 

0.31 

0.19 

0.29 

0.26 

 

0.1 

0.0 

0.0 

0.0 

i = (1, 1/2,1/2) 

10/10/10 

30/30/30 

30/10/10 

30/20/10 

 

96.9 

95.6 

96.5 

96.2 

 

0.64 

0.36 

0.47 

0.43 

 

0.0 

0.0 

0.0 

0.0 

 

95.3 

95.2 

95.2 

95.2 

 

0.57 

0.34 

0.44 

0.41 

 

1.4 

0.1 

0.6 

0.3 

 

95.1 

95.0 

94.4 

94.6 

 

0.58 

0.34 

0.44 

0.41 

 

0.1 

0.0 

0.2 

0.0 

 

97.5 

97.4 

97.4 

97.4 

 

0.67 

0.40 

0.51 

0.47 

 

0.0 

0.0 

0.0 

0.0 

i = (1, 1/2, 2) 

10/10/10 

30/30/30 

30/10/10 

30/20/10 

 

96.9 

95.6 

96.7 

96.6 

 

1.18 

0.66 

1.09 

1.07 

 

0.1 

0.0 

0.6 

3.3 

 

95.3 

95.2 

95.3 

95.3 

 

1.05 

0.64 

0.98 

0.96 

 

1.6 

0.1 

0.8 

0.5 

 

95.4 

95.1 

95.5 

95.6 

 

1.07 

0.64 

0.99 

0.97 

 

0.1 

0.0 

0.1 

0.0 

 

97.5 

97.4 

97.6 

97.6 

 

1.25 

0.75 

1.22 

1.21 

 

0.0 

0.0 

0.0 

0.0 

i = (1, 1, 1) 

10/10/10 

30/30/30 

30/10/10 

30/20/10 

 

97.0 

95.7 

96.8 

96.4 

 

0.90 

0.51 

0.79 

0.69 

 

0.0 

0.0 

0.0 

0.0 

 

95.3 

95.2 

95.3 

95.3 

 

0.81 

0.49 

0.72 

0.64 

 

5.1 

0.3 

0.8 

0.4 

 

94.4 

94.8 

95.0 

95.1 

 

0.82 

0.49 

0.73 

0.65 

 

6.9 

0.0 

0.0 

0.0 

 

97.4 

97.4 

97.6 

97.6 

 

0.95 

0.57 

0.87 

0.77 

 

0.1 

0.0 

0.0 

0.0 
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Table 4: Mean coverage values (Rmean), mean length values (lmean) and percentage of coverages which 
are lower than 93% (R<93) for 95%-CI obtained through the W3, N0, S0 and P0 methods (K=4). 

 

Method:  W3 N0 S0 P0 

n1/n2/n3/n4 Rmean  lmean R<93 Rmean Lmean R<93 Rmean Lmean R<93 Rmean  lmean R<93 

I=(1/4,1/4, 1/4,1/4) 

10/10/10/10 

20/20/20/20 

20/20/10/10 

20/15/10/5 

 

97.2 

96.0 

96.8 

97.5 

 

0.27 

0.18 

0.23 

0.27 

 

0.0 

0.0 

0.0 

0.0 

 

95.2 

95.2 

95.2 

95.2 

 

0.24 

0.17 

0.21 

0.23 

 

4.5 

0.5 

0.5 

1.2 

 

93.8 

94.5 

94.4 

95.1 

 

0.24 

0.17 

0.21 

0.24 

 

7.2 

0.0 

0.0 

0.0 

 

97.7 

97.6 

97.7 

97.8 

 

0.28 

0.20 

0.25 

0.29 

 

0.0 

0.0 

0.0 

0.0 

i = ( -1, 1, 1, 1) 

10/10/10/10 

20/20/20/20 

20/20/10/10 

20/15/10/5 

 

97.1 

96.1 

96.7 

97.5 

 

1.06 

0.73 

0.91 

1.08 

 

0.0 

0.0 

0.0 

0.0 

 

95.2 

95.2 

95.2 

95.2 

 

0.94 

0.69 

0.82 

0.94 

 

5.2 

0.5 

0.6 

1.0 

 

93.8 

94.5 

94.4 

95.1 

 

0.94 

0.69 

0.83 

0.96 

 

6.8 

0.1 

0.0 

0.0 

 

97.7 

97.6 

97.7 

97.8 

 

1.13 

0.82 

1.00 

1.17 

 

0.0 

0.0 

0.0 

0.0 

I=(1/3, 1/3, 1/3, 1) 

10/10/10/10 

20/20/20/20 

20/20/10/10 

20/15/10/5 

 

96.9 

95.9 

96.7 

97.8 

 

0.60 

0.41 

0.57 

0.77 

 

0.0 

0.0 

0.4 

0.0 

 

95.2 

95.2 

95.2 

95.3 

 

0.53 

0.39 

0.51 

0.64 

 

1.3 

0.2 

0.6 

1.8 

 

95.3 

95.2 

95.5 

95.6 

 

0.54 

0.39 

0.51 

0.65 

 

0.0 

0.0 

0.0 

0.0 

 

97.6 

97.6 

97.7 

97.8 

 

0.65 

0.47 

0.64 

0.86 

 

0.0 

0.0 

0.0 

0.0 

i = (-3, -1, 1, 3) 

10/10/10/10 

20/20/20/20 

20/20/10/10 

20/15/10/5 

 

97.0 

95.9 

96.6 

97.7 

 

2.35 

1.61 

2.01 

2.55 

 

0.0 

0.0 

0.0 

0.0 

 

95.3 

95.2 

95.3 

95.3 

 

2.09 

1.53 

1.82 

2.17 

 

1.1 

0.2 

0.4 

1.1 

 

95.0 

94.7 

95.2 

95.6 

 

2.12 

1.53 

1.85 

2.23 

 

0.0 

0.0 

0.0 

0.0 

 

97.7 

97.6 

97.7 

97.8 

 

2.52 

1.82 

2.23 

2.83 

 

0.0 

0.0 

0.0 

0.0 
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Table 5: Mean coverage values (Rmean), mean length values (lmean) and percentage of coverages 

which are lower than 93% (R<93) for 95%-CI obtained through the S0, S0c, N0 and N0c methods (K=3). 

Method: S0 S0c N0 N0c 

n1/n2/n3 Rmean  lmean R<93 Rmean lmean R<93 Rmean lmean R<93 Rmean  Lmean R<93 

i = (1/3, 1/3, 1/3) 

10/10/10 

30/30/30 

30/10/10 

30/20/10 

 

94.4 

94.8 

95.0 

95.1 

 

0.27 

0.16 

0.24 

0.22 

 

7.2 

0.0 

0.0 

0.0 

 

94.4 

94.8 

95.0 

95.1 

 

0.27 

0.16 

0.24 

0.22 

 

6.7 

0.0 

0.0 

0.0 

 

95.3 

95.2 

95.3 

95.3 

 

0.27 

0.16 

0.24 

0.21 

 

5.4 

0.3 

0.7 

0.5 

 

95.3 

95.2 

95.3 

95.3 

 

0.27 

0.16 

0.24 

0.21 

 

5.0 

0.3 

0.7 

0.0 

i = (1, 1/2, 1/2) 

10/10/10 

30/30/30 

30/10/10 

30/20/10 

 

95.1 

95.0 

94.4 

94.6 

 

0.58 

0.35 

0.44 

0.41 

 

0.1 

0.0 

0.2 

0.0 

 

95.2 

95.0 

94.4 

94.7 

 

0.58 

0.35 

0.44 

0.41 

 

0.1 

0.0 

0.2 

0.0 

 

95.3 

95.2 

95.3 

95.2 

 

0.57 

0.34 

0.44 

0.41 

 

1.7 

0.1 

0.6 

0.4 

 

95.3 

95.2 

95.3 

95.3 

 

0.57 

0.34 

0.44 

0.41 

 

1.6 

0.1 

0.6 

0.4 

i = (1, 1/2, 2) 

10/10/10 

30/30/30 

30/10/10 

30/20/10 

 

95.3 

95.1 

95.5 

95.6 

 

1.07 

0.64 

0.99 

0.97 

 

0.0 

0.0 

0.1 

0.1 

 

95.4 

95.1 

95.5 

95.6 

 

1.07 

0.64 

0.99 

0.97 

 

0.0 

0.0 

0.1 

0.1 

 

95.3 

95.2 

95.3 

95.3 

 

1.05 

0.64 

0.98 

0.96 

 

1.7 

0.1 

0.9 

0.6 

 

95.3 

95.2 

95.3 

95.3 

 

1.06 

0.64 

0.98 

0.96 

 

1.4 

0.1 

0.8 

0.5 

i = (1, 1, 1) 

10/10/10 

30/30/30 

30/10/10 

30/20/10 

 

94.3 

94.8 

95.0 

95.1 

 

0.82 

0.49 

0.73 

0.65 

 

7.3 

0.0 

0.0 

0.0 

 

94.4 

94.8 

95.0 

95.1 

 

0.82 

0.49 

0.73 

0.65 

 

6.8 

0.0 

0.0 

0.0 

 

95.3 

95.2 

95.3 

95.3 

 

0.81 

0.49 

0.72 

0.64 

 

5.4 

0.3 

0.7 

0.4 

 

95.3 

95.2 

95.3 

95.3 

 

0.82 

0.49 

0.72 

0.64 

 

4.9 

0.3 

0.6 

0.4 
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Table 6: Analysis of the data in Tables 1 and 2 

             CI (Tables 1 and 2) = center  (first entry) ± radius (second entry) 

Method L1 L2 L3 L 

S0c .0719  .3164 .3934  .3162 .4581  .3161 .4256  .0349 

W3 .0646  .3162 .3876  .3162 .4522  .3162 .4256  .0348 

N0 –.0702  .3088 –.3834.3084 .4465  .3082 .4261  .0345 

P0 –.0646  .3520 –.3876  .3454 .4522  .3428 .4256  .0372 

 

 


