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Abstract. We consider non-perturbative effects in M-theory compactifications on a seven-manifold of
G2 holonomy arising from membranes wrapped on supersymmetric three-cycles. When membranes are
wrapped on associative submanifolds they induce a superpotential that can be calculated using calibrated
geometry. This superpotential is also derived from compactification on a seven-manifold, to four dimen-
sional anti-de Sitter spacetime, of eleven dimensional supergravity with non-vanishing expectation value
of the four-form field strength.

1 Introduction

The theory of minimal surfaces has been for a long time
an area of active research in mathematics. A deep novelty
was the theory of calibrations, introduced by Harvey and
Lawson [1] in 1982. A calibration is a closed k-form ψ on a
Riemannian manifold M such that its restriction to each
tangent plane of M is less than or equal to the volume
of the plane. Submanifolds for which equality holds are
said to be calibrated by ψ, and they have least volume in
their homology class. With this defining property, minimal
p-surfaces, or calibrated submanifolds, can be naturally
employed to construct supersymmetric configurations of
Dirichlet p-branes in string theory, as in [2–17], an ap-
proach which is also probably able to shed some light [18,
19] on the study of the moduli space of calibrated sub-
manifolds [20,21], whose global structure seems difficult
to understand [22,23].

Motivated by [15], where BPS solitons in the effec-
tive field theory arising from compactification of type IIA
string theory, with non-vanishing Ramond–Ramond
fluxes, on a Calabi–Yau fourfold, were identified by Gukov
with D-branes wrapped over calibrated submanifolds in
the internal Calabi–Yau space to provide a simple and
geometrical derivation of the superpotential in the two
dimensional field theory [24,25], in this paper we will con-
sider compactification of M-theory on a seven-manifold of
G2 holonomy, which leads to a four dimensional field the-
ory with N = 1 supersymmetry, and apply ideas, as in
[15], of the theory of calibrations to understand the su-
perpotential.

Superpotentials induced by membrane instantons in
M-theory on a seven-manifold have previously been con-
sidered from the point of view of geometric engineering of
field theories by Acharya in [26], where fractional mem-
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brane instantons, arising from compactification on Joyce
orbifolds, are argued to generate a superpotential and,
more recently, by Harvey and Moore in [14], where mem-
branes wrapped on rigid supersymmetric three-cycles are
shown to induce non-zero corrections to the superpoten-
tial, that can be expressed in terms of topological invari-
ants of the three-cycle. In this paper we will argue how the
allowed calibrations in G2 holonomy seven-manifolds im-
ply that the only contributions to the superpotential in the
four dimensional field theory will come from membranes
whose worldvolume has been wrapped on supersymmetric
three-cycles of the internal manifold, and exclude possi-
ble corrections from eleven dimensional five-branes, in the
same way as in [15] various D-branes in type IIA string
theory are shown to contribute to the superpotential in
the two dimensional N = (2, 2) field theory, when wrap-
ping calibrated submanifolds in the Calabi–Yau fourfold.
However, we will not consider compactifications to four
dimensional Minkowski spacetime, as in [14], but to four
dimensional anti-de Sitter space, to avoid the constraint
that the fourth-rank tensor field strength must be vanish-
ing [27]. This will allow for a nice geometrical picture for
the superpotential.

Relevant notions on calibrated geometries, and its re-
alizations in supersymmetric compactifications, are de-
scribed in Sect. 2. Section 3 is devoted to the construc-
tion of the superpotential induced by membrane instan-
tons, identifying instantons in the four dimensional field
theory with membranes whose worldvolume is wrapped
over associative submanifolds in the G2 holonomy seven-
manifold. The expression for the superpotential is justified
in Sect. 4 by compactification of eleven dimensional super-
gravity, with non-trivial fourth-rank tensor field strength,
on a manifold with G2 holonomy to a four dimensional
anti-de Sitter spacetime. In Sect. 5 we present some con-
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cluding remarks and possible implications of the work pre-
sented here.

2 Supersymmetry and the calibration bound

In this section we will review some generalities about cali-
brated geometry1, and its relation to supersymmetric
compactifications, and introduce some results and defi-
nitions relevant to the rest of the paper.

Given a Riemannian manifold M , with metric g, an
oriented tangent k-plane V on M is a vector subspace
V of the tangent space TpM to M , with dim(V ) = k,
equipped with an orientation. The restriction g|V is the
Euclidean metric on V , and allows to define, together with
the orientation on V , a natural volume form VolV on the
tangent space V .

A closed k-form ψ is said to be a calibration on M if
for every oriented k-plane V on M it is satisfied

ψ|V ≤ VolV , (2.1)

where by ψ|V we mean

ψ|V = α .VolV (2.2)

for some α ∈ R, so that condition (2.1) holds only if α ≤ 1.
Now let N be an oriented submanifold of M , with di-

mension k, so that each tangent space TpN , for p ∈ N , is
an oriented tangent k-plane. The submanifold N is called
a calibrated submanifold with respect to the calibration ψ
if

ψ|TpN = VolTpN (2.3)

for all p ∈ N . It is easy to show that calibrated man-
ifolds have minimal area in their homology class [1]; to
see this, let us denote by [ψ] the de Rham cohomology
class, [ψ] ∈ Hk(M ;R), and by [N ] the homology class,
[N ] ∈ Hk(M ;R). Then,

[ψ] . [N ] =
∫
p∈N

ψ|TpN . (2.4)

But condition (2.1) implies
∫
p∈N

ψ|TpN ≤
∫
p∈N

VolTpN = Vol(N), (2.5)

so that Vol(N) ≥ [ψ] . [N ]. Equality holds for calibrated
submanifolds [1].

In this paper we will be interested in calibrated ge-
ometries in seven dimensional Joyce manifolds with G2
holonomy so that M , in what follows, will be a compact
seven-manifold, M = X7, with a torsion free structure,
that we will denote by Ψ (3) (the holonomy group of the
metric associated to Ψ (3) is G2 if and only if π1(X7) is
finite [29]).

1 For a more detailed and formal treatment on calibrated
geometry we refer the reader to the original reference [1], or
[28] for a collection of results

The covariantly constant three-form Ψ (3) constitutes
the associative calibration, with respect to the set of all as-
sociative three-planes, which are the canonically oriented
imaginary part of any quaternion subalgebra of O. Cal-
ibrated submanifolds with respect to Ψ (3) will, in what
follows, be denoted by SΨ , and referred to as associative
submanifolds. The Hodge dual to the associative calibra-
tion is a four-form ∗Ψ (4), known as the coassociative cali-
bration, responsible for coassociative submanifolds.

The existence of associative submanifolds, volume min-
imizing, can be directly understood from the point of view
of compactifications of M-theory on manifolds with G2
holonomy [3]. Let us see how this comes about. The low
energy limit of M-theory is expected to be eleven dimen-
sional supergravity, which is a theory that contains mem-
brane solutions, described by the action [30,31]2

SMembrane =
∫

d3σ
√
h

[
1
2
hαβ∂αX

M∂βX
NgMN

− 1
2

− iθ̄Γα∇αθ (2.6)

+
i
3!

εαβγCMNP∂αX
M∂βX

N∂γX
P + · · ·

]
,

where XM (σi) represents the membrane configuration, θ
is an eleven dimensional Dirac spinor and hαβ is the in-
duced metric on the worldvolume of the membrane (upper
case latin indices are defined in eleven dimensions, while
Greek indices α, β, γ label coordinates on the worldvol-
ume).

On the membrane fields, global fermionic symmetries
act as

δηθ = η,

δηX
M = iη̄ΓMθ, (2.7)

where η is an eleven dimensional constant anticommut-
ing spinor. But the theory is also invariant under local
fermionic transformations,

δκθ = 2P+κ(σ),

δκX
M = 2iθ̄ΓMP+κ(σ), (2.8)

with κ some eleven dimensional spinor, and P+ a projec-
tion operator [32]; the operators P± are defined as

P± =
1
2

(
1 ± i

3!
εαβγ∂αX

M∂βX
N∂γX

PΓMNP

)
, (2.9)

and can be easily shown to satisfy P 2
± = P±, P+P− = 0

and P+ + P− = 1.
As bosonic membrane configurations break all the

global supersymmetries generated by η, unbroken super-
symmetry remains only if there is a spinor κ(σ) such that

δκθ + δηθ = 2P+κ(σ) + η = 0, (2.10)

2 We will chose units such that the eleven dimensional Planck
length is set to one
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or, equivalently,

P−[2P+κ(σ) + η] = P−η = 0. (2.11)

If the eleven dimensional theory is compactified on a
seven-manifold of G2 holonomy, finding a covariantly con-
stant spinor η satisfying condition (2.11) is equivalent to
the existence of a supersymmetric three-cycle in the seven-
manifold, which is precisely the associative submanifold
[3]. To prove this, we will formally write the covariantly
constant three-form (the associative calibration) as

Ψ (3) =
1
3!

ψmnpdXm ∧ dXn ∧ dXp, (2.12)

and decompose the eleven dimensional spinor η in terms of
a four dimensional spinor, ε, and the covariantly constant
spinor ξ on the manifold with G2 holonomy (this spinor
is unique up to scale),

η = ε ⊗ ξ. (2.13)

Now, if we chose a normalization such that the action of
the seven dimensional gamma matrices on the covariantly
constant spinor of the internal manifold is

γmnp ξ = ψmnp ξ, (2.14)

the condition (2.11) for unbroken supersymmetry becomes

1
2

(
1 − i

3!
εαβγ∂αX

m∂βX
n∂γX

pψmnp

)
ξ = 0, (2.15)

which is equivalent to [3]

1
3!

∂[αX
m∂βX

n∂γ]X
pψmnp = εαβγ , (2.16)

so that the pull back of the three-form is proportional to
the volume element3.

Condition (2.16) implies that the membrane worldvol-
ume, wrapped on the three-cycle calibrated by Ψ (3), has
been minimized, as can be easily seen from the inequality

∫
d3σ

√
h(P−ξ)†(P−ξ) ≥ 0, (2.17)

as in [2]. Using the projector (2.9), and the fact that P †
−P−

= P−, (2.17) becomes
∫

d3σ
√
hξ̄ξ ≥

∫
d3σ ξ̄

i
3!

εαβγ∂αX
m∂βX

n∂γX
pψmnpξ,

(2.18)
or V3 ≥ ∫

SΨ
Ψ (3). The bound is saturated if and only if

P−ξ = 0, which is precisely the condition for unbroken
supersymmetry.

3 An identical condition can be similarly derived for the coas-
sociative calibration [3],

1
4!
∂[αX

m∂βX
n∂γX

p∂δ]X
qψmnpq = εαβγδ

3 Associative calibrations and superpotential
for M-theory compactifications

M-theory compactification on a seven-manifold with G2
holonomy produces a four dimensional field theory with
N = 1 supersymmetry. At low energy, trusting eleven di-
mensional supergravity as an approximation to M-theory,
the effective four dimensional supergravity theory describ-
ing the massless modes is N = 1 supergravity coupled to
b2 vector multiplets, and b3 chiral multiplets, where b2 and
b3 are Betti numbers of X7 [33]. However, in this paper
we will not be interested in this, from the point of view
of physics, relatively poor spectrum, or possible items of
more interest when singularities are allowed in the seven-
manifold, as in [26]. What we will wonder about is the
generation of a non-perturbative superpotential, arising in
the effective four dimensional field theory from M-theory
effects, applying the ideas in [15].

In [15], the generation of a superpotential in the two
dimensional theories obtained when compactifying type
IIA string theory on Calabi–Yau fourfold with background
Ramond–Ramond fluxes was considered, identifying BPS
solitons in the field theory with D-branes wrapped over
calibrated submanifolds in the internal manifold. In this
section, following the same reasoning, we will wrap the
M-theory membrane worldvolume over some associative
submanifold in the seven-manifold X7, SΨ ∈ H3(X7,Z),
which is a supersymmetric three-cycle, defined through
condition (2.16). This state, from the point of view of the
four dimensional field theory, is an instanton. The flux of
the fourth-rank antisymmetric field strength, F = dC, as-
sociated to the membrane, over the “complement” (SΨ )⊥
in X7, which will be some four dimensional manifold, Y4,
jumps by one when crossing the membrane. To understand
this, two points P and Q can be chosen to lie at each side
of the three-cycle SΨ , with the membrane worldvolume
wrapped on it. If T is a path joining these two points, and
it is chosen to intersect the membrane at a single point,
the five-manifold Y4 × T will also intersect the membrane
at a single point. Now, as dF/(2π) is a delta function for
the membrane, ∫

Y4×T

dF
2π

= 1, (3.1)

or, once Stoke’s theorem is employed,∫
Y4×P

F

2π
−

∫
Y4×Q

F

2π
= 1. (3.2)

Hence, the field theory vacua connected by the instanton
solution will correspond to different four-form fluxes, F1
and F2; the variation∆F/(2π) is then Poincaré dual to the
homology class of the supersymmetric three-cycle, [SΨ ].
But the amplitude for the configuration of the membrane
is proportional to the volume of the associative submani-
fold, SΨ , ∫

SΨ

Ψ (3), (3.3)

the constant of proportionality being simply the mem-
brane tension. If we denote the superpotential in the field
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theory by W , the amplitude of the instanton connecting
two vacua will be given by the absolute value of ∆W ; then,
when (3.2) is taken into account, (3.3) becomes

∆W =
∫
SΨ

Ψ (3) =
1
2π

∫
X7=SΨ ×Y4

Ψ (3) ∧ ∆F (4), (3.4)

so that we expect a superpotential

W =
1
2π

∫
X7

Ψ (3) ∧ F (4) (3.5)

for compactification of M-theory on a seven-manifold of
G2 holonomy. Expression (3.5) is the analogous of the un-
twisted and twisted chiral superpotentials obtained in [15]
for compactification of type IIA string theory in a Calabi–
Yau fourfold with non-vanishing Ramond–Ramond fluxes.

We could now also wonder about the possible contri-
bution of M-theory five-branes to the superpotential. In
fact, the result that π1(X7) is finite if and only if the
holonomy is in G2 [29], implies that H6(X7;Z) is also fi-
nite, so that we might expect instanton effects coming
from the five-brane. However, there is no six dimensional
calibrated submanifold in X7, because the only calibra-
tions are Ψ (3) and ∗Ψ (4), so that there will be no BPS
five-brane instanton contribution to the superpotential.

4 Eleven dimensional supergravity
on seven-manifolds

In this section we will present evidence for the superpo-
tential (3.5) from supersymmetric compactification of M-
theory on AdS4 × X7. Compactification of eleven dimen-
sional supergravity on a seven-manifold is very restrictive,
because the four dimensional non-compact spacetime is a
supersymmetric Minkowski space only if all components
of the fourth-rank antisymmetric field strength vanish,
F = 0, and the internal manifold is Ricci-flat [27]. How-
ever, if some of these conditions are relaxed, more general
compactifications can be performed. In [34,35], compacti-
fication of eleven dimensional supergravity to four dimen-
sional anti-de Sitter spacetime was shown to allow for a
four-form field strength proportional to the cosmological
constant of the external space, and which therefore van-
ishes for compactifications to Minkowski spacetime. The
requirements on the four-form F , assuming that super-
symmetry remains unbroken, with zero cosmological con-
stant, for compactification of M-theory with a warp fac-
tor on a Calabi–Yau fourfold have been obtained in [36],
and extended to a three dimensional anti-de Sitter exter-
nal space in [25]. The analysis of this section, where com-
pactification of M-theory to a four dimensional spacetime,
with non-vanishing cosmological constant, on an internal
manifold with G2 holonomy will be considered, will hence
follow closely those in [36,25,15].

The bosonic form of the eleven dimensional effective
action looks like

S =
1
2

∫
d11x

√
g

[
R − 1

2
F (4) ∧ ∗F (4)

− 1
6
C(3) ∧ F (4) ∧ F (4) − C(3) ∧ I(8)

]
, (4.1)

where the gravitational Chern–Simons correction, associ-
ated to the sigma-model anomaly of the six dimensional
five-brane worldvolume [37], can be expressed in terms of
the Riemann tensor [38],

I8 = − 1
768

(trR2)2 +
1
192

trR4. (4.2)

The complete action is invariant under local supersymme-
try transformations [39]

δηe
A
M = iη̄ΓAψM ,

δηCMNP = 3iη̄Γ[MNψP ], (4.3)

δηψM = ∇Mη − 1
288

(ΓPQRSM − 8δPMΓQRS)FPQRSη,

where eAM is the elfbein, ψM the gravitino, η an eleven
dimensional anticonmuting Majorana spinor, and ∇M the
covariant derivative, involving the Christoffel connection.

A supersymmetric configuration exists if and only if
the above transformations vanish for some spinor η. If
the background is Lorentz covariant in the four dimen-
sional spacetime, the background spinor ψM must vanish,
so that eAM and CMNP are unchanged by the supersym-
metry transformation. Hence, the only constraint that re-
mains to be imposed is

∇Mη − 1
288

(ΓPQRSM − 8δPMΓQRS)FPQRSη = 0. (4.4)

The most general metric, maximally symmetric, for com-
pactification on X7,

ds2
11 = ∆(xm)−1(ds2

4(x
µ) + ds2

7(x
m)), (4.5)

includes a scalar function called the warp factor, ∆(xm),
depending on the internal dimensions. We are now choos-
ing a notation such that the eleven dimensional upper case
indices split into four dimensional Greek indices, while
Latin indices label the set of coordinates tangent to the
internal manifold. With the choice (4.5) for the metric,
condition (4.4) becomes [36],

∇Mη − 1
4
ΓNM∂N (log∆)η

−∆3/2

288
(ΓPQRSM − 8δPMΓQRS)FPQRSη = 0. (4.6)

Now, let us decompose the gamma matrices in the con-
venient 11 = 7 + 4 split,

Γµ = γµ ⊗ I,

Γm = γ5 ⊗ γm, (4.7)

where γ5 = (i/4!)εµνρσγµγνγργσ is the four dimensional
chirality operator, so that (γ5)2 = +I, and γm are chosen
such that (i/7!)g1/2εm1...m7γ

m1 . . . γm7 = +I. We will also



R. Hernández: Calibrated geometries and non-perturbative superpotentials in M-theory 623

choose, as in [35], the most general covariant form for the
fourth-rank antisymmetric tensor field strength4

Fµνρσ = mεµνρσ,

Fµνρs = Fµνrs = Fµnrs = 0, (4.8)

with
Fmnpqarbitrary, (4.9)

where m can depend upon the extra (internal) dimensions,
and we have a decomposition for the supersymmetry pa-
rameter, η = ε ⊗ ζ.

With the split (4.7), and the above ansatz for F , the µ-
component of the supersymmetry condition (4.6) becomes

∇µη − 1
4
γµγ

5 ⊗ γn∂n(log∆)η − ∆3/2

288
γµγ

mnpqFmnpqη

+
1
6
∆3/2imγ5γµη = 0. (4.10)

When ε is a four dimensional anti-commuting Killing
spinor satisfying ∇µε = (Λ/2)γµε, (4.10), with the de-
composition η = ε ⊗ ζ, leads to the solution

144Λζ = ∆3/2Fmnpqγ
mnpq ζ,

m ζ = iγn∂n∆−3/2ζ. (4.11)

Similarly, with the decomposition (4.7), the m-compo-
nent of condition (4.6) becomes, after some gamma ma-
trices algebra5,

∇mη − Λ

2
γmη +

1
4
∂m(log∆)η − 3

8
∂n(log∆)γnmη

+
∆3/2

24
Fmpqrγ5γ

pqrη = 0, (4.12)

where we have made use of (4.11). As in [36,25], the trans-
formed quantities

g̃mn = ∆−3/2gmn,

ρ = ∆1/4η, (4.13)

lead (4.12) into the simpler form

∇̃mρ− Λ

2
∆3/4γ̃mρ+

1
24

∆−15/4Fmpqrγ̃5γ̃
pqrρ = 0. (4.14)

4 In compactifications of string theory or M-theory on a
Calabi–Yau fourfold a global anomaly, given by the Euler num-
ber of the Calabi–Yau fourfold, arises [40,41]. This anomaly
can be cancelled if non-zero background fluxes are allowed,
and/or strings or membranes are introduced filling, respec-
tively, two or three dimensional spacetime, for compactification
of string theory or M-theory. These strings, or membranes, are
represented by maximally symmetric tensor fields. However, for
seven-manifolds there is no such interpretation for the ansatz
of the first equation in (4.8)

5 A complete collection of commutators and anticommuta-
tors, and useful gamma matrices identities, can be found in
the appendices in [27] and [42], where the 11 = 7 + 4 split is
also considered

Now, if we decompose the eleven dimensional spinor ρ as
ξ ⊗ ε, with ξ chosen to be the covariantly constant spinor
on the seven-manifold of G2 holonomy, and we use the
fact that the associative calibration Ψ (3) satisfies relation
(2.14), γpqrξ = ψpqrξ, then the components of (4.14) re-
produce, when integrated over the volume of X7, the form
of the superpotential proposed in (3.5), with a coefficient
related to the warp factor, depending hence on the in-
ternal dimensions, as a consequence of the ansatz (4.8),
and with the cosmological constant Λ identified with the
vacuum value of the superpotential, W , in the same way
as the mass, and the twisted mass, are identified in [15]
with the vacuum values of W and W̃ . Note, however, the
appearance of the chirality operator in expression (4.14).

5 Conclusions

In this paper we have investigated the generation of a non-
perturbative superpotential in the four dimensional field
theories obtained from compactification of M-theory on a
seven-manifold with G2 holonomy. The allowed calibra-
tions in these manifolds imply that the only BPS instan-
tons are those obtained wrapping the worldvolume of the
M-theory membrane over associative submanifolds, which
are the analogous of special Lagrangian cycles in Calabi–
Yau manifolds, while instantons coming from five-branes
wrapping six-cycles in the seven-manifold are not BPS
states. An analysis relying on calibrated submanifolds can
also be used to study compactification of M-theory on
a Calabi–Yau fourfold, where five-branes wrapped over
(complex) codimension one divisors D are, however,
known to contribute to the superpotential in the three
dimensional field theory arising upon compactification of
M-theory on the fourfold if the divisor satisfies the topo-
logical requirement that χ(OD, D) = 1 [43]. This precise
condition can probably be related to the fact that fourfolds
with SU(4) holonomy admit, besides Cayley calibrations,
what are known as Kähler calibrations, which are obtained
when considering powers of the complexified Kähler form,

Ψ =
1
p!

Kp, (5.1)

because the fact that K is covariantly constant ensures
that Ψ , as defined in (4.13), is also covariantly constant.
Submanifolds calibrated by Ψ are complex submanifolds,
of dimension p, so that five-branes will become BPS in-
stantons once they are wrapped over some (complex) three
dimensional manifold, calibrated by (1/3!)K3.

In [23], singularities of special Lagrangian three-cycles
and their compactness properties were studied in detail,
and a topological invariant, counting special Lagrangian
homology three-spheres, was proposed. If an equivalent
analysis can be repeated on seven-manifolds with G2
holonomy, then an analogous topological invariant can
probably be constructed, counting associative submani-
folds or, which is more interesting physically, counting
the number of membranes, or instantons, in the homology
class [SΨ ], an idea closely related to the Gromov–Witten
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invariants, counting pseudo-holomorphic curves in sym-
plectic manifolds. We hope to address this study in a sub-
sequent paper.
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