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Inferring work by quantum superposing forward and time-reversal evolutions
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The study of thermodynamic fluctuations allows one to relate the free energy difference between two
equilibrium states with the work done on a system through processes far from equilibrium. This finding plays a
crucial role in the quantum regime, where the definition of work becomes nontrivial. Based on these relations,
here we develop a simple interferometric method allowing a direct estimation of the work distribution and the
average dissipative work during a driven thermodynamic process by superposing the forward and time-reversal
evolutions of the process. We show that our scheme provides useful upper bounds on the average dissipative work
even without full control over the thermodynamic process, and we propose methodological variations depending
on the possible experimental limitations encountered. Finally, we exemplify its applicability by an experimental
proposal for implementing our method on a quantum photonics system, on which the thermodynamic process is
performed through polarization rotations induced by liquid crystals acting in a discrete temporal regime.
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I. INTRODUCTION

While microscopic dynamical physical laws of both clas-
sical and quantum physics are time symmetric, and hence
reversible, the dynamics of macroscopic quantities exhibit a
preferred temporal direction. The physical law formalizing
this concept is the second law of thermodynamics, whereby
the “arrow of time” [1] is associated with a production of
entropy [2]. According to this law, for instance, if we take
a vessel divided by a wall and put a gas in only one-half of
the vessel, when we remove the wall we will observe with a
near-unity probability the gas expanding and occupying the
whole vessel. Because of its unidirectional temporal evolu-
tion, this phenomenon has often been used to differentiate
between past and future. There is, however, a nonzero prob-
ability that at a given time all the molecules may happen to
visit one-half of the vessel. In this regard, the development
of so-called “fluctuation theorems,” both for classical [3-7]
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and quantum [8—18] systems, has led to the sharpening of our
understanding of the second law as a statistical law, where the
entropy of a system away from equilibrium can spontaneously
decrease rather than increase with nonzero probability. As
specified by those theorems, the ratio between the probability
of entropy-decreasing events and that of entropy-increasing
ones vanishes exponentially with the size of the fluctuations
and can hence be neglected in the macroscopic limit [6].

The fundamental and empirical basis for the study of en-
tropy production and thermodynamic irreversibility in driven
systems is typically provided by the notion of dissipative
work, Wyiss = W — AF (namely, the work invested in a ther-
modynamic transformation between equilibrium states having
a free energy difference AF, which cannot be recovered by
reversing the driving protocol) [4,5,19-21]. The fluctuations
of the dissipative work in the process can be characterized
by constructing the work probability distribution, P(W), as-
sociated with the observation of a particular value of W in a
single realization of the driving protocol. Such fluctuations are
constrained by a refined version of the second law: namely, the
Crooks fluctuation theorem, according to which

PW

~ W) — eﬂWauss7 (1)

P(—W)
where P(—W) is the probability of performing work W in

the time-reversal dynamics, 8 = 1/kgT is the inverse tem-
perature of the surrounding thermal environment, and kg is
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the Boltzmann constant. According to Eq. (1), this probability
ratio decreases exponentially with the amount of dissipative
work, Wyiss, in the realization. Furthermore, Eq. (1) implies the
famous Jarzynski equality (e~#Was) = 1, where the brackets
denote the statistical average with respect to P(W). Jarzyn-
ski’s equality has severe implications by itself, such as the
exponential decay of the probability of observing negative
values of Wy;ss in the forward dynamics [explicitly, P(Wgiss <
—¢) < e P forany ¢ > 0] [6].

Work fluctuations have been measured in small classical
systems leading to both testing of the Crooks theorem and the
Jarzynski equality and the development of applications such
as measurements of free energy [22-27]. In quantum physics,
since work is not associated with any observable [28], its defi-
nition becomes more complex, and it usually demands the use
of the so-called “two-point measurement (TPM) scheme” [9].
In the TPM scheme, work is represented as the difference be-
tween the initial and final energies of the system, obtained by
performing two projective measurements of the Hamiltonian
at the beginning and at the end of the forward process as well
as the time-reversal process. Extensions to nonideal measure-
ments [29-31] and variants of the TPM scheme [32-37] have
been also considered recently. The TPM approach has been di-
rectly implemented in several experiments [38—42]. However,
since implementing projective energy measurements before
and after an arbitrary process may be challenging in certain
experimental scenarios, and the measurement might annihi-
late the system measured, alternative methods for extracting
the work distribution were proposed to circumvent this re-
quirement. For example, in Refs. [43,44], a scheme based
on Ramsey interferometry using a single probe qubit was
proposed, and subsequently implemented [45,46], to extract
the characteristic function of work in a nuclear magnetic
resonance (NMR) platform. A similar method to sample the
work probability distribution from a generalized measurement
scheme was introduced in Refs. [47-49] and tested experi-
mentally on an ensemble of cold atoms [50]. Despite their
many advantages and proven efficacy, previous schemes of-
ten involve indirect measurements requiring postprocessing
of data, or experimentally demanding entangling operations.
Developing new accurate and simple methods to directly esti-
mate the work probability distribution and irreversibility (thus
refraining from using the TPM scheme) is therefore of prime
interest in quantum thermodynamics.

In this paper, we propose a simple interferometric method
for quantifying the work distribution and the average dis-
sipative work associated with a given driving protocol A
during a thermodynamic process. The method enables one
to directly read out the relevant transition probabilities be-
tween eigenstates of the initial and the final Hamiltonians,
which are needed to build the work probability distribution
and the relative entropy (or Kullback-Leibler divergence)
between the density operators in forward and time-reversal
dynamics. Remarkably, our method requires no entangling
operations with separate auxiliary systems, no measurement
of the thermodynamic system, and no data postprocessing,
and running it is twice as fast as running the complete protocol
A. More precisely, in the proposed method we superpose two
interferometric paths: Along one path the system is driven
following the first half of the driving protocol A (i.e., from

t =0 to t = t/2), while along the other path the system is
affected by the time-reversal version of the second half of
the protocol (from ¢ = t/2 tot = 7). We show that the fringe
visibility in the interferometer allows one to quantify both the
full work probability distribution associated with an arbitrary
protocol A and the relative entropy between the states in the
forward and the time-reversal dynamics at any instant of time,
assuming that the initial and final Hamiltonians are known.
Moreover, in the case of limited control over preparations,
our scheme still provides useful upper bounds on the average
dissipative work.

Since single photons provide advantages in interferometric
schemes due to their robustness, individual addressability, and
the intrinsic mobility, we propose a photonic implementation
of our scheme where the Hamiltonian of the thermodynamic
system is represented by the polarization of a single pho-
ton. Other platforms that may be used to realize the scheme
include ultracold atoms [48,50] or NMR spectroscopy of nu-
clear spins [45,46]. Also a methodologically related scheme
was proposed recently to investigate the thermodynamic ar-
row of time in a quantum superposition of the forward and
time-reversal processes [51].

II. PROCEDURE OVERVIEW

Consider a thermodynamic system S that is driven
by a time-dependent Hamiltonian H[A(#)] depending on
some control parameter A(f) which varies from =0
to t = 7, according to a protocol A = {A(#):0<1t <t}
The system starts the evolution in a thermal state pf' =
exp[—B(Hy — Fp)] in equilibrium with a thermal reservoir
at inverse temperature 8, where Fj is the free energy cor-
responding to the initial Hamiltonian Hy = H[A(0)]. The
system is then isolated from the environment, and the
driving protocol A is applied, bringing the system to an
out-of-equilibrium state p(1) = U(z,0) p U'(z,0), where
U(,0) = T exp{—£ [o HIA(t)]dt'Y, T being the so-called
“time-ordering” operator resulting from the Dyson decom-
position. Once the driving protocol is ended at time 7, the
system may eventually equilibrate again from p, = p(7) to
the reservoir temperature, thereby reaching the thermal state
p;h = exp[—B(H; — F;)], corresponding to the final Hamilto-
nian H; = H[A(7)] and the free energy F.

Together with the above thermodynamic process, we
consider its time-reversal twin. In the reverse process, the
system starts the evolution at time ¢t =0 with Hamilto-
nian ©H,0" in equilibrium with the thermal reservoir,
that is, pf' = ©p"O" = exp[—B(OH, O — F;)]. Here, ©
is the (antiunitary) time-reversal operator, responsible for
changing the sign of observables with odd parity (such
as momentum, or spin under time reversal). The time-
reversal operator fulfills ® 1i = —1i® and @' = 0T O =
1. The system is then driven according to the time-reversal
protocol A={A)=AGr—-1):0<r< 1), corresponding
to the inverse sequence of values of the control pa-
rameter. This brings the system out of equilibrium to
the state p(t) =U(t,0)p U'(¢,0) at intermediate times,

where now U (¢, 0) = T exp{—% 0’ OH[A({)]0tdr'}. After
completing the protocol A, the system may return back
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FIG. 1. Diagrammatic representation of the forward and time-
reversal evolutions of the thermodynamic system. An initial thermal
state p! with Hamiltonian Hj is driven into a final, nonequilibrium
state p.. It then eventually equilibrates at the reservoir temperature,
reaching the thermal state p'™. (If the driving process was reversible,
quasistatic, the system would have ended in the state p;h, immedi-
ately after the drive.) Along the driving process the Hamiltonian is
changed from H, to H,. Analogously, in the process’ time-reversal
twin a thermal state ' = p with Hamiltonian H, evolves into a
state p,, and then it eventually equilibrates to the state p" = pff.

to equilibrium at time 7 = 7, reaching p" = © o' O =
exp[—B(OH,O" — Fy)] (Fig. 1).

We denote by |E(?) the initial energy eigenstates of the
system in the forward process and by p© = e FE~F)
the probability that the system has energy E”. Analogously,
the initial eigenstates of the system in the time-reversal
process read O|E), with p© = ¢~ FE~F) being the cor-
responding probabilities of measuring the energy E(”. The
work probability distribution in the TPM scheme is then [9]

PW) =3 p pun (W — (B —E\)). ()

where we introduced the conditional probabilities py,, =
KE(D|U(x, O)|E,£0)>|2 of finding the system in the eigen-
state |E(”)) in the second projective energy measure-
ment after the unitary evolution U(r,0), given that
it was found to be in |E(®) in the first measure-
ment. Likewise, the work distribution in the time-reversal

process reads P(W) =3, PO b, s(W — (EY — E{)),

~ 2
for which py, = (E?|©TU(z,0)®|E)| . The microre-
versibility relation for nonautonomous systems [9] reads

Ut —1,000 =U"(1,1). 3)

Using the microreversibility relation (3), we obtain p,, =
DPmin- This relation is the key property to obtain the Crooks
theorem in Eq. (1) [52]. Furthermore, we assume that the
Hamiltonian is invariant under time reversal [i.e., ®H(t) =
H(t)®]. As a consequence, the relations © |E(?) = |E(”) and
@ |E") = |EP)) are also verified.

In Refs. [19,20], the authors derived an important relation
closely connected to the Crooks theorem linking the dissipa-
tive work produced during the protocol A with the relative
entropy between the density operators in forward and time-
reversal dynamics at any intermediate instant of time #:

B(Wiaiss) = S(p(t) || ©7p(r — 1) ©), )

V' N
0) + [1)
V2 V2

»

0) — [1)

FIG. 2. Schematic representation of the interferometric tech-
nique to directly estimate the work dissipation. A thermodynamic
quantum system S is prepared in the state |[E®) (|E(”)) when
the auxiliary system is in |0), (|1),) at time # = 0. The operation
U(t/2,0) is then applied to S when traveling along the path |0),,
while the operation U (t /2, 0) followed by the time-inversion opera-
tion © is applied to S along the path |1),. The resulting state is as
in Eq. (7). The two quantum superposed amplitudes are then allowed
to interfere with each other, and the auxiliary system is measured in
the {(|0),4 £ |1)A)/\/§} basis. The same setup can be used in the case
of a limited preparation, in which case the input state is the thermal
state o () for 0), (11),).

where S(p|lo) := Tr[pIn(p) — pIn(o)] > 0 is the relative
entropy between two generic states p and o. Reversible
processes for which the state in the forward dynamics is
statistically indistinguishable from the one generated in the
time-reversal dynamics do not dissipate work, (Wgiss) = O,
and therefore all the work performed during the protocol
A, (W) = AF, can be recovered again by implementing the
time-reversal protocol A. Importantly, the equality in Eq. (4)
is obtained in the case of a closed system following unitary
dynamics, as in the TPM scheme presented above. For open
systems, the equality above is instead replaced by an inequal-
ity after tracing out environmental degrees of freedom [19,20].

In the following, we present an interferometric scheme that
allows us to directly measure the conditional probabilities p,,|,
(and therefore p,,,) without implementing the TPM scheme,
but resorting to the visibility of fringes in the interferometer.
This enables us to construct P(W) and P(W), and hence the
relative entropy S(p(t) || ©®Tp(r —¢) ®) in Eq. (4).

III. INTERFEROMETRIC SCHEME

The main idea of our scheme is to entangle the system of
interest with a two-level “auxiliary system” and implement
different dynamics (forward and time reversal) on each of the
two states of the auxiliary system. To fix ideas, we assume
that the auxiliary system is the path of a single photon in
a Mach-Zehnder interferometer such as the one depicted in
Fig. 2 and denote by {|0), , |1) 4} the basis of the two possible
paths. (We stress, however, that this auxiliary system does
not have to be encoded in the path, but can be any degree
of freedom which can be suitably controlled.) Suppose now
that, in one of the two states of the superposition (say, |0),),
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the system is prepared in the state |[E?), while in the other
state of the superposition (|1),) the preparation is |E ") for a
certain choice of n and m. Consequently, the initial state is the
pure state

L
V2

The operation U (t /2, 0) is then applied to S in the path |0),,
while, on the path |1),, the operation U(r /2, 0) is performed,
followed by the time-inversion operation ®. The total evolu-
tion is given by

1004 (014 ® U(/2,0) + 1), (1], ® ©'T(¢/2,0).  (6)

W O)sa = —=[1004 [EL)+ 14 [E)]. 5

Therefore, at the time 7/2, the state of system and path
degree of freedom will read

Ps,.A(T/2)
= 3{10)4 (0L, ® U(x/2,0) [EPNEL U (z/2,0)
+ 1004 (1, ® U(r/2,0) [EOVED| T (x/2,0)©
+ 1), (0, ® ©'T(1/2,0) [ESVEL | UT (2 /2, 0)
+ D (1, ® O'T(1/2,0) [ESVVEY | T (1/2,0) ©}.
(7

If now we marginalize on the path degree of freedom (i.e., we
trace out the thermodynamic system), we obtain

pa(t/2)
= Trs[ps,a(t/2)]
= 1{1004 (OLs + [1)4 (114
+10)4 (115 Trs[U /2, 0) |ELOVEST | U (1/2,0) O]
+11)4 O, Trs[€7 U (z/2,0) [E;PNE | U (z/2,0)]}.
®)

Similarly, if we trace out the auxiliary system, we achieve
a mixture between the state of the driven system at time t/2
in forward and time-reversal processes:

=pu(t/2)
ps(t/2) = U (x/2,0) [EPVEL | UT(x/2,0)
+0"U(r/2,0)[EPY(ET10(1/2,000]. (9)

=0 pu(t/2)©

We see that the state of the system is a mixture of p,(t/2)
(i.e., the state resulting from the forward evolution during a
time interval t/2 with initial condition |E{”)) and p,(t/2)
(which is the state resulting from the time-reversal evolution
during a time interval t /2 with initial condition |E,f10>)).
Ultimately, our aim is to relate the information gained by
measuring the output ports of the interferometer to the work
statistics and the “degree of reversibility” of the thermody-
namic processes. This degree of reversibility is related to the
distinguishability of the two possible paths followed by the
auxiliary system in the interferometer. If we measure the final
state ps(t/2) in the basis (|0), £ |1>A)/\/§ (see Fig. 2), the

probability to get each of the two possible results is
P+ = 5 £ Re((0l4 pa(t/2) [1)4). (10)

In an interferometer, the difference |p. — p_|/2 is called in-
terferometric visibility or fringe and is related to our capacity
to identify the path followed by the auxiliary system [53]:

Vinn = 1014 pa(t/2) [1)4 |
= [Trs[U(z/2,0) |EC)NED | TT(/2,0)0]|.  (11)

Now, we crucially apply the microreversibility relation in
Eq. (3), to realize that ®" U(7/2,0)® = U(t, t/2). Insert-
ing this into Eq. (11), and using the cyclic property of the
trace, we obtain the main result of our proposal:

Vin = [Trs[U(z, 0 [EV)ED]]]
= |[(EXL| U@ 0) [EP)| = /Prm: (12)

where, in the last equality, we identified the expression of the
conditional probabilities p,,;, of the TPM scheme, and where
we identified U(t, 7/2)U(t/2,0) = U(z, 0).

Running this scheme for the N? different initial states,
n,m=1,2,...,N (where N is the dimension of the system
Hilbert space), and assuming that we know the eigenenergies
E© and E(") and the equilibrium free energies Fy and F; (or,
equivalently, the initial probabilities p® and p’), we can
readily reconstruct the full probability distribution in Eq. (2),

PW) =3 pVad(W —(ES —EY).  (13)

and its time-reversal twin P(W). We notice that in practice
only (N — 1)? of the N2 initial preparations need to be consid-
ered, since the properties of the conditional probability imply
Zm V,%w = lforalln=1,..., N, and for any unital process
Pmjn becomes doubly stochastic; thus we also have ) me =
1forallm=1,...,N, as also noticed in Ref. [50]. Further-
more, we can rewrite the right-hand side of Eq. (4) in terms of
known quantities:

B(Waiss) = S(p(t) || ©7p(r — 1) ©)
=> pOmp? > pPve mpy.  (14)

m,n

which can be alternatively obtained from the average
of the work probability distribution in Eq. (13), (W) =
/ fooo WP(W)dW, and the free energy difference between the
initial equilibrium states, AF = F; — Fy. As a consequence,
this scheme allows, through Eqgs. (13) and (14), the direct esti-
mation of the work dissipation and the testing of the Jarzynski
equality.

IV. LIMITED PREPARATION AND BOUNDS ON WORK
DISSTPATION

In the previous section, we assumed that we have the ability
to prepare a superposition of pairs of energy eigenstates of the
initial and final Hamiltonians of the system. Nonetheless, it
could be the case that, due to technical limitations, one may
not be able to prepare these pure states in the laboratory. For
instance, if we do not have full control over the system in its
preparation stage, and cannot isolate it from the reservoir, we
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may only be able to prepare the thermal states pi and p!".
In the following we explore what we can still learn about the
work dissipation by exploiting our interferometric scheme in
such a situation. We anticipate that, although the full work
probability distribution is no longer recoverable in this case,
we are still able to provide useful upper bounds on the dissi-
pative work done in the process.

As before, we prepare our auxiliary degree of freedom in
a quantum superposition \%(|O)A +|1)4) at t < 0. The ini-
tial states for the system in the two branches will now be,
in general, the mixed thermal states p(‘)h and pih. Howeyver,
hereinafter we will make use of their “purifications,” which
can be considered as useful mathematical tools and may corre-
spond physically to all the environmental degrees of freedom
E, such that the overall joint state of the system and these
degrees of freedom is pure. (Notice that here the environ-
ment includes, but is not limited to, the thermal reservoir.
Furthermore, our scheme does not require that we have access
to the environmental degrees of freedom.) We denote the
purifications of the thermal states as @)z and [ @)z,
respectively, and they verify Tre[|y@)gz (v V1521 = o
and Trg [| V) p (T Ol 1 = A = ol

Again, we perform the operation U(t/2,0) in the path
|0),, according to the protocol A, and U(t/2,0) in the path
[1), according to A, followed by ®7. Notice that the unitaries
U(t/2,0) and l7(r/2, 0) only act on the system of interest,
with no effect on the environment. We can then compute the
global state of the system, the environment, and the auxiliary
system at 7/2 similarly to how we computed it before, and
obtain the marginal states for the auxiliary degree of freedom
and the composite system consisting of the system and envi-
ronment. For the latter, we obtain a mixture over the states
of the system and the environment at 7/2 in the forward and
time-reversal dynamics:

ps.e(t/2) = S[SH + oS, (15)
where
ps = U (/2.0)® 1) [y V)5 (Vs
x (UT(2/2,0) ® 1g), (16a)
/0§7E) = (@T 0(7/27 0)®1E) |1Z(0)>S,E (¢(0)|S,E
x (U(r/2,0)0 ® 1f). (16b)

The corresponding state of the system only will be then an

equal probability mixture of the states ps(t/2) = Trg [,oéjg)

and O ps(7/2) © = Trg[pg 1.
The visibility, determined by the off-diagonal elements of
the auxiliary degree of freedom, reads in this case
V= TrselU (/2,00 @ 1p) [ Vs (F s
(07(z/2.0) © ® 1p)]|
=10 U@ 0@ LE) Y V)gp . a7

which can no longer be related to the different outcomes of
a TPM scheme. This notwithstanding, as we will shortly see,
one can still make use of this information in an alternative
way.

From Ref. [53], we know that the visibility V of the inter-
ferometer fringes and the distinguishability D(p, o) between
two “which-path detector states” p and o (i.e., two states from
which we can optimally deduce the which-path information if
we perform a measurement to distinguish them) are mutually
exclusive. In particular, it has been shown that these two
quantities respect the complementarity relationship

V2+D*p,0)< 1 (18)

and that this relation becomes an equality if the “detec-
tor states” are in pure states, as they are in our case. The
distinguishability between the two states is given by the trace-
norm distance between them, i.e., D(p, o) := %||,o —ol| =
3Ty (p — o) (p — 0)]

In our case, D(péfg), pé_;)) gives us an estimation of how
well one can distinguish between the two paths in the in-
terferometer by measuring the system and the environment.
However, we are interested in the trace-norm distance be-
tween the marginal states of the system only. We can therefore
use the fact that the trace distance is nonincreasing under a
partial trace, i.e., D(,oéjg), ,oé’_E)) > D(ps(7/2), OF ps(t/2) ©),
to get

V2 + D*(ps(t/2), O ps(z/2) ©)

<V D5 os) = 1. (19)

Finally, we relate the distinguishability between the system
states at /2 in the forward and time-reversal dynamics with
the relative entropy in Eq. (4), and hence to the average
dissipative work during the protocol A. This can be done
using the upper bounds obtained in Eqgs. (17) and (19) of
Ref. [54]. Minor manipulations of these equations lead to the
formulation of the following theorem:

Theorem. Let p and o be two strictly positive density
operators in a finite-dimensional Hilbert space H. Then

llo—oll3 _llp—oll?
g 9
Ay %

S(pllo) <

(20)

where o, € (0, 1] is the smallest eigenvalue of o, and ||o]|, =
VTr[o" o] denotes the Frobenius (or Euclidean) norm, which
verifies [|o]]2 < [loll-

Furthermore, setting the dimension of the Hilbert space to
dim(H) = d, we also have

S(plle) < llp —ollIn(d/y/as) + e
=D(p,0)In(d?*/ay) +e ' (1)

Combining Egs. (19) and the bounds (20) and (21), we ob-
tain the following two bounds for the dissipative work during
the original thermodynamic process:

(Waiss) < kgT 4(1 — V) /a = B, (22)
(Waiss) < kgT [V 1 = V2 In(@*/a) + e '] = Bog, (23)

where we have used the relation between the dissipative work
and the relative entropy in Eq. (4). Additionally, we denoted
o = apr) = opn = e P where ET s the maxi-
mum eigenvalue of the Hamiltonian H,. This follows from

the fact that the states ps(t/2) and ps(0) = ,o;h have the same
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spectrum due to their unitary equivalence, that is, ps(t/2) =
U(t/2,0)ps(0)UT(x/2,0).

We notice that the bounds (22) and (23) cannot be saturated
in general when the initial state of the system is mixed due
to the complementarity relation in Eq. (19), which involves a
partial trace over the environmental degrees of freedom. (Con-
versely, saturation would require either measuring the whole
environment or a pure initial state of the system as in the
previous sections.) Nevertheless, there is a single case where
the bound B, in Eq. (22) is saturated, namely, by verifying the
reversibility conditions (quasistatic evolution) where V — 1
and (Wgiss) — 0. On the other hand, the bound in Eq. (23) is
not saturated even in the reversible case, since it is designed
to work better in irreversible conditions for V < 1 and o — O,
where Eq. (19) becomes a strict inequality.

Further practical limitations on the ability to split the
protocol or to implement the time-reversal operation ® are
addressed in Appendix A.

Although in our discussion we supposed that the aux-
iliary degree of freedom is the path of the particle which
encodes the system of interest, this is not a requirement of
our proposal. The only three requirements on the auxiliary
degree of freedom are the following. (1) The state in Eq. (5)
should be initially prepared. (2) Depending on the state of this
auxiliary degree of freedom, the forward and time-reversal
evolutions should then be implemented. (3) Finally, the aux-
iliary degree of freedom should be measured in the basis
{\/% 10), + \%e’”’ [1),}, while scanning the phase ¢ to esti-
mate the visibility. This auxiliary degree of freedom could
be encoded in the same particle, perhaps in additional en-
ergy levels of an atomic system, in which case the visibility
measurement would take the form of atomic interferometry.
Alternatively, a second particle could be used to condition the
forward and time-reversal evolution. For example, if the target
system is a qubit encoded in a single trapped ion, one could
place a second ion in the trap and then couple the two via the
collective vibrational mode. More concretely, Ref. [55] shows
explicitly how one can implement the controlled evolution of
different unitary operations using trapped ions. In this case,
the initial state [Eq. (5)] would require entangling operations
for its preparation, and the visibility could be easily measured
on the internal degree of freedom of the second ion.

V. EXAMPLE OF A PHOTONIC IMPLEMENTATION

We apply our scheme to an illustrative experimental setup
in which the thermodynamic system is represented by a single
qubit realized through the polarization degree of freedom of
a single photon, its thermality is given by the degree of en-
tanglement with an additional photon, the auxiliary qubit is
encoded in its path, and the time-dependent thermodynamic
process is performed in N discrete time steps #; by sending the
photon through a sequence of liquid crystal wave plates, each
executing a quench on the (time-independent) Hamiltonian
H[A(#)] withk =1, ..., N, as sketched in Fig. 3.

The Hamiltonian of the qubit system can be defined as

hw .
H(A) = — [1+cos(A)or + sin(A)oy],  (24)

where o is the qubit’s natural frequency and the control pa-
rameter implements N sudden changes in the range A(0) = 0
to A(t) = 7. Consequently, the Hamiltonian is given by the
spin operator within the x-z plane, which rotates by an angle of
5y ateach step around the y axis. At the initial and final times
of the protocol, the Hamiltonian is diagonal in the o, and o,
bases, respectively. Therefore |E(?) = {|z_), |z4)} with cor-
responding energies E(O) = {0, hw} and |E(f)) ={lx_), |x+)}
where |x_) = 1/«/_(|z —lz3)) and |xy) = 1/+/2(|z_)
|z+))), with the same elgenvalues E") = {0, iw}. This im-
plies that Fy = F; = —In(1 + e Py and thus AF = F, —
Fy = 0 such that Wy;ss = W.

In the kth step, the control parameter takes a fixed value
Ay = Qtk/N, where Q = T is the angular frequency of the
rotation. Therefore any initial state |1z (0)) evolves according
to

e—éHN At .. —*Hg Af

—HH AT 1 e(0)) (25)

where At = and foreachstepk =1,...,N

LA
2NQ?

He =211+ cos( 2 ) o, + sin( 2 (26)
k= cos| 5 ) oz +sinf 7 J ox |-

The Hamiltonian at each step Hk induces a rotation on the
system state of an angle 6 = 2N & around the axis whose di-

rection dk = (sm( )0, cos( 7)) changes from step to step.
This evolution can be 1mplemented by means of a sequence of
N liquid crystal wave plates (LCWPs). The kth LCWP rotates
the photon’s polarization about an axis dy, and the angle of
rotation is given by the retardance, which we can change by
an externally applied voltage. Hence, to implement the full
evolution, we can use a series of N LCWPs, each with an optic
axis set at ¥ = 4N € [0, 7 /2], and with the same retardance
for all LCWPs (i.e., 6).

Our scheme can be executed, following Fig. 3, by inserting
pairs of the eigenstates of the Hamiltonians Hy and Hy into the
interferometer. In particular, we take N = 7 and apply the dis-
cretized Hamiltonian H;, for k = 1, 2, 3 along path |0),, while
along path |1), we perform H; for k = 6,5, 4. In this case,
we recover the whole work probability distribution, together
with the average dissipative work during the process, which
can be used to test the fluctuation relations. We note that the
work evaluated does not correspond to the intrinsic photonic
energy (which is given by its frequency), but to the generator
of the evolution (24).

In addition, our scheme can also be used to test the upper
bounds on the dissipative work obtained in Eqs. (22) and (23)
by inserting the thermal states of the two Hamiltonians. More
precisely, we may insert a single photon from a pair of
photons in a partially entangled state |1//)})h =alzy) |z4) +
b|z_)|z—), where a,b € C. The state of the injected pho-
ton is obtained by tracing out the second photon, ,o(‘]h =
lal? |z4) (z4| + |b|* |z—) (z—|. This corresponds to a thermal
state for the choice |a|? = M and |b|? = -, with Zy =
1 4+ exp(—pBhw). Specifically, 1%T —0,p=|7_ 0) (z_|, while
if T — oo, p=1/2.

In Fig. 4(a), we show the expected work probability dis-
tribution associated with our discretized protocol with N =7
steps for a fixed inverse temperature f = 1.2(AiQ2)~', three
values of the frequency w = {0.5, 1.5, 3.0}<2 (yellow, light
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FIG. 3. Proposed experimental setup for the photonic implementation of the scheme. Single photon pairs are produced via a type-II
spontaneous parametric downconversion (SPDC) source. Photons in each pair are indistinguishable and entangled in polarization. To give
rise to pure (mixed) states, one of the two photons is detected with (without) polarization resolution. The remaining single photon is sent
through the setup to realize the quantum measurement scheme. In one arm of the Mach-Zehnder interferometer, the state |E(”) is prepared in
polarization [via a quarter-wave plate (QWP) and a half-wave plate (HWP)]; the unitary U (7 /2, 0) is then applied to such a state by means of
a sequence of liquid crystal wave plates (LCWPs). In the other arm of the interferometer, the photon is prepared in the state |E(™), and it is
then subjected to the unitary © U (t/2, 0). After the two paths are recombined on a beam splitter (BS), the interference fringes are measured
by varying the length of the trombone delay line positioned along one of the two interferometric paths. By preparing the initial state of the
photon from an entangled state in polarization, the present scheme can be adapted to operate with initial thermal states (as in Sec. IV). BBO,

beta barium borate.

blue, dark blue), and fixed duration 7 = 27 /2. Since the
eigenvalues of the Hamiltonian H (A) are constant, the work
probability distribution consists of three peaks placed at work
values W = {—/iw, 0, liw}. Low temperatures favor an asym-
metric distribution with a higher peak for positive work W =
hiw with respect to W = —hw, while for higher temperatures
the two lateral peaks approach equal heights. Moreover, as we
observe, for faster protocols the three peaks in the distribution
are comparable, while slower protocols w >> Q2 lead to the
suppression of lateral peaks in favor of a high central peak at
W = 0. In this case, we approach an adiabatic evolution where
the initial populations of Hamiltonian eigenstates remain al-
most constant in time, hence leading to zero energy changes
and zero work. In contrast, in the opposite limit w < 2, we
approach a sudden quench of the Hamiltonian. In this case,
the state of the system remains unchanged by the evolution
in Eq. (25), and the lateral peaks associated with the overlaps
[{x_|z+)| and |{x4|z—)| become maximal.

In Fig. 4(b) we show the performance of the bounds for
the dissipative work in Eqgs. (22) and (23). We assume the
equality in Eq. (19) and take a rotation frequency Q2 = 1.5w.
As can be appreciated in the plot, in the low-temperature
regime (right side) the logarithmic bound B;,, becomes the
best option, while B, diverges due to the exponential decrease
of ayn = e PEna=F ™1 with temperature. In contrast, when

the temperature is increased (left part), B, starts to perform
better as soon as kzT becomes higher than the system energy
splitting (kgT > hw). When increasing €2 (not shown in the
figure), logarithmic and quadratic bounds become tighter in
their respective temperature regimes of performance. In the
opposite limit of a near-adiabatic process (where the dissipa-
tive work vanishes), the quadratic bound still performs well
for high temperatures, but, contrary to the previous cases, the
logarithmic bound becomes the worst even in the limit of
small temperatures. Nevertheless, the bounds do not appear
to become saturated in any of the parameters’ regimes.

In the limit of many steps N >> 1 the discrete rotation
protocol can be approximated by a continuous rotation, with
A(t) = Qt for arbitrary 2 and ¢ € [0, ]. Experimentally,
this could be realized using “twisted nematic liquid crys-
tals” (TNLCs). These are devices where the optic axis is
continuously rotated (typically by 90°) along the beam prop-
agation [56]. For our proposal, we would require two devices
with 45° rotation, one for the forward arm and one for the
time-reversed arm. Note that one could directly implement the
final unitary operation using a set of three wave plates [which
can implement an arbitrary SU(2) operation]. However, this is
not a faithful implementation of the time-dependent Hamil-
tonian as the polarization state will not evolve correctly as
it traverses these wave plates. In such a case, the unitary
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FIG. 4. Work probability distribution and bounds on the dissipative work for the qubit system under the action of the discrete rotation
protocol. (a) Work probability distribution in Eq. (2) for three different protocol velocities corresponding to w = {0.5, 1.5, 3.0}<2 for a fixed
inverse temperature 8 = 1.2(AQ)~!. (b) Average dissipative work (W) as defined in Eq. (4) (orange solid line) and bounds B, in Eq. (22)
(green dashed line) and By, in Eq. (23) (blue dashed line) as a function of the inverse temperature 8 for the case w = Q. Work is expressed
in units of Zw. (c) Difference in the probability P(W = 0) between the continuous rotation protocol and the discrete one with N steps as a
function of N. The three different sets of points correspond to the protocol velocities (purple, blue, gray) corresponding to w = {0.5, 1.5, 3.0}Q
and B = 1.2(2)~". In all cases, the difference in probability distributions between the discrete and continuous systems is shown to decrease
as the number of steps increases. In this sense, the quench generated by a discrete series of time-independent Hamiltonians is an approximation

to the quench generated by a continuous time-dependent Hamiltonian.

evolution reads (see Appendix B for details)

&

U(t,0) = ¢ 3 0e sl (o) =0t @7

The difference in the work probability distribution between
the discrete and continuous versions of the protocol decreases
as the number of steps N increases [Fig. 4(c)]. As before, the
ratio w/$2 determines the adiabaticity of the realized process.
Using TNLCs, the length of the liquid crystal cell sets €2 [56].
For optical wavelengths, standard TNLCs operate in the our
adiabatic regime, using long enough cells with a length of
~10 um. Reaching the nonadiabiatic regime would require
cells that are shorter than 2 xm, which should also be achiev-
able with current technology [57]. In the limit w/Q2 > 1, we
obtain a fully adiabatic process, where the populations of
Hamiltonian eigenstates remain constant through the entire
evolution (see Appendix B for a detailed analysis). Moreover,
since the Hamiltonian H[A(¢)] has the same eigenvalues at all
times, we conclude that, under adiabatic evolution, a system
starting in a thermal state at t = 0 will remain in equilibrium
at the same temperature at all later times.

VI. CONCLUSIONS

In this paper, we have developed a method based on inter-
ferometric tools to measure the work probability distribution
and the thermodynamic irreversibility of a generic driving
process acting on a quantum system. The method utilizes the
interference between two paths, one along which the system
is driven out of thermal equilibrium in the forward process,
and one where it is driven in the time-reversal process. We
demonstrated that inserting the energy eigenstates of the ini-
tial and final Hamiltonians of the system in the two paths of
the interferometer and measuring the fringe visibility enable
us to directly reconstruct the work distribution and the average
dissipative work. The latter is known to be equal to a produc-
tion of positive average entropy, and it is a measure of the
thermodynamic irreversibility.

Our proposal offers a faster implementation speed than
TPM schemes as it halves the duration of each execution. A
speed enhancement in each run is a considerable advantage
since, in TPM schemes, sufficient statistics must be acquired
to reconstruct the order of N2 instances (i.e., probabilities) of
the work probability distribution from the results of projective
measurements. Furthermore, in the TPM scheme the results
of the projective measurements are randomly sampled. Due
to finite-size effects in sampling, the TPM scheme can have
a significant delay in acquiring sufficient data, especially for
low-probability instances in the work distribution. In contrast,
in our scheme one can control which instance in the work
distribution to measure by choosing the appropriate input
states in the forward and time-reversal amplitudes, making
the scheme much less affected by finite-size statistics. Our
scheme also offers advantages over existing alternatives to
the TPM scheme [44—46] as it enables a direct measure of
the conditional probabilities that make up the work probabil-
ity distribution. For example, in Refs. [44-46], the proposed
scheme measures the characteristic function of work, i.e., the
Fourier transform of the work probability distribution, from
which the work probability distribution must then be recov-
ered indirectly. In the implementations of Refs. [45,46], this
problem required a large sampling of a continuous function
(the characteristic function) to recover a discrete probability
distribution with only a few peaks. In our proposal, these
drawbacks are overcome by directly obtaining the conditional
probabilities associated with the peaks.

In the case of limited experimental control, when only
the thermal states of the initial and final Hamiltonians of the
system can be prepared, our method provides useful upper
bounds on the average dissipative work. The scheme involves
no entangling operations with external auxiliary systems and
no energy measurements, and thus it offers an accessible
and versatile playground for studying the thermodynamics of
quantum processes.

To provide a concrete example of the implementation of
our scheme, we have developed an experimental proposal
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of our scheme using an all-optical platform and standard
tools for single- and entangled-photon manipulation. The
out-of-equilibrium quantum dynamics is realized via a series
of liquid crystal wave plates splitting the thermodynamic pro-
cess in a series of discrete time steps #;, each represented by
a liquid crystal with an optical axis set at a different angle of
rotation v.

Although here we have focused for simplicity on the case
of initial equilibrium states, we stress that our method can
be used to determine the work probability distribution for
generic nonequilibrium initial states. Systems with initial
coherence in the energy basis or composite systems shar-
ing quantum correlations can also be handled within our
method by measuring transitions from arbitrary eigenstates
Pmin = {EP|U (z,0)|[¢?9)]? and using extended trajecto-
ries (Bayesian networks) techniques [37,58] to infer the
work probability distribution. Finally, work probability dis-
tributions using collective measurements might be instead
reproduced following the proposal in Ref. [42] by augmenting
the number of paths and using them to encode other system
degrees of freedom.
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APPENDIX A: LIMITED CONTROL OVER
EXPERIMENTAL SETTINGS

In this Appendix, we consider the situation where the
ability to control the application of the protocol A is heavily

affected by experimental limitations such as (i) the impossi-
bility of splitting the protocol A in two halves and inverting
the second half, or (ii) difficulties in applying the time-
reversal operation ®' at the end of the second branch of
the interferometer. If any of these circumstances applies, the
requirements for the usability of the interferometric scheme
proposed above may not be met. In light of this, here we
propose an alternative setup to be applied in such situations.
The main price to pay is that the time needed to run the scheme
for any initial state is doubled.

In this alternative scheme, we will take advantage of the
unitary equivalence of the system states in the forward and
time-reversal dynamics. In addition, the relation between the
dissipative work and the relative entropy in Eq. (4) is verified
for any intermediate instant of time ¢ € [0, T]. As a conse-
quence, we can observe interference between the states in the
forward and time-reversal dynamics also at the extremes of
the interval, where one of the two states is thermal. In the
following, we present the scheme in the case of interference
at time 7 in the forward dynamics (corresponding to t = 0
in the time-reversal dynamics), but an analogous scheme can
be developed for interference at time ¢+ = 0 in the forward
dynamics (corresponding to r = t in the time-reversal one).

As in the previous case, we start by preparing the auxiliary
degree of freedom in the quantum superposition %UO) 4+

[1)4) at t < 0. Once again, the initial states of the system in
the two branches may either be the pure states |E,50)) along the
path |0), and |E,5f )y along |1)4, or the mixed thermal states
o and p!M, respectively, depending on whether we have full
control over the system in the preparation stage. However,
in contrast to the previous case, we implement the whole
protocol A over the system in the path |0),, while the branch
[1) 4 remains unaffected.

Assuming, for concreteness, initial pure states, the global
state of the system and the auxiliary system after time 7 can
be evaluated, and tracing the system degrees of freedom, we
obtain

pa(t) = Trg[psa(T)]
= 211004 (0l4 + 11)4 (114
+10)4 (114 Tes[U (z, ) |[ECVED| ]
+ 1A Ol Trs[IESV(EP | Uz, 0]} (AD)

Consequently, in this case the visibility directly gives us the
conditional probabilities for the work probability distribution,

Vm,n = ‘TrS[U(T, 0) ’E,EO)> (E,Eqr)| :H = A/ Pmin>

and we recover Eqgs. (13) and (14).

Likewise, when the initial states in the two interferometer
paths are the mixed thermal states, we find again, for the
visibility,

V = |Trs e [(U(7,0) ® 1) [ P)g p (0 Qs £
=1 (V% (U, 00 1) [¥ D) £ |,

which is equivalent to Eq. (17). Consequently, the bounds
developed in Egs. (22) and (23) for the dissipative work apply
also in this situation.

(A2)

(A3)

013208-9



GIULIA RUBINO et al.

PHYSICAL REVIEW RESEARCH 4, 013208 (2022)

APPENDIX B: CONTINUOUS ROTATION PROTOCOL

We analytically obtain the evolution generated by the
time-dependent Hamiltonian in Eq. (24) for the continuous
variation of the control parameter A(¢) = Q¢ for a constant
angular velocity €2 in the interval ¢ € [0, t]. In order to reach
a description in terms of a time-independent Hamiltonian, we
use a picture in which the states rotate at the same rate as the
Hamiltonian around the ¥ axis: |¥(¢)) = emi%o [Yo(2)).

We write the time-dependent Schrodinger equa-
tion ih% [ (@) = H[A@)] |¥(2)) with this substitution
for [ (1)), as

nQ2 . d i, —i%s,
5% Wfo(ﬂ)-i—zha Yo (@) = e > H[A[)]le™ > [o(1)) -
(B1)
We focus now on the right-hand side of this equation. By
substituting the expression equation (24) for the Hamiltonian,
we get
- Qf - Qt
e YH[AM)]e™ > [Yo(1))
= h%u [1+ cos(Qt)ei%a"aze’i%“)'
+sin(Q1)el T %o, e T Yo (1)) - (B2)

We now write the Pauli matrices in the o, operator’s eigen-
basis, and we correspondingly evaluate the two terms in
Eq. (B2):

cos (1), — sin (Q1)o, = 7 %0.e 7%, (B3a)
(B3b)
From this, Eq. (B2) becomes e3> H[A(t)]e 7% =
h
760(1 + o0,). By substituting this result into Eq. (B1), we

obtain

. d h
ih= 1Yo()) = 5[“’(1 +0;) = Qo] [Yo (1)) . (B4)

We have thus reduced the Schrédinger equation with a
time-dependent Hamiltonian into one with a time-independent
Hamiltonian. By calling

. 2 e
cos ()0, + sin ()0, = €2 Voe 2%,

w —Q
sinf = ——, cos§ = ———, (BS)
Va? + Q? w? + Q2

where by £ we defined the angle between the direction 7 =
(0, cos&, sin&) and the y axis within the z-y plane, we can
therefore rewrite Eq. (B4) as

w

ih% [o(1)) = %1 + ;JWﬁ “G |Yo(0)) . (BO)
[Yo(1)) =

The  solution of this equation is
eTiFImIVOH T 40 (0)).  Neglecting the global phase
(e7'3"), we thus get

W) = e 5% |yo(t)
= exp(—i% oy> exp(—%\/ w?+ Q27 -5 t) [ (0)) .
B7)

We now introduce an eigenstate basis {|riy)} of 7i-
G (ie., 7i-6 |ig) = £1i)), where |iy) = cos(§/2) |y+) +

sin(§/2) [y-) and |ii-) = —sin(§/2) [y4) + cos(§/2) |y-),
with {|y+)} being the eigenbasis of o,.

If we write the initial state [¥((0)) in terms of this new
basis in the general form [y(0)) = c; |7iy) + ¢ [i-), where
c1 and ¢; are complex numbers, it is straightforward to obtain
a solution for Eq. (B7):

[W(@) = [e1 eV cos(€/2)

— eV in g /2)] e |ysy)
+ [e1 eV sin(g 2)
+ ey eV cog(£/2)] € |y ) (BS)

Finally, to set ¢; and ¢, we suppose that the initial state
[Y¥0(0)) was an eigenstate of the initial Hamiltonian
Hit=0)="%0+0), ie, l|z4)=0y)+Iy-)/v2
and |z_) = —i(ly;) — |y-))/~/2. Then ¢ = [cos(§/2) +
sin(€/2)l/v/2  and ¢y = —[sin(£/2) — cos(§/2)1/v/2
for |z.) and ¢ = —i[cos(£/2) —sin(€/2)]/~/2 and
¢z = i[sin(€/2) + cos(&/2)]/v/2 for |z_).

Let us denote by [+ (7)) the final states evolved from the
two initial states |z ). If initially the system was in the thermal
state, i.e., pit = Zl0[|z_) (z_| + e7"P |z} (z4]], then the final
state will be

1
pr = Z—O[Il/f—(f)> Y-l + e [y (0) (Y4 (D] (BY)

Let us separate the following two cases: that of a slowly
varying Hamiltonian @ 3> € (which will correspond to an adi-
abatic thermodynamic process) and that of a rapidly varying
Hamiltonian w < Q2. We will assume below that the initial
state is always |z-+).

a. Slowly varying Hamiltonian (v > €2). Recalling the def-
initions given in Eq. (B5), we obtain siné ~ 1 and cos§ =~ 0,
and hence & >~ /2. In this case, [ (?)),sq = (e”'% lys) +

e ly—))/+/2, where we have neglected the global phase
e~ We recall that, in the oy eigenbasis, o, |y+) = xi [ys)
and o, [y+) = |y£), the action of the Hamiltonian H[A(z)]
onto the state |y (¢)) in case of an adiabatic evolution of
the system will resultin H[A(®)] [¥ () ps0 = Ao [V (1)) psa-
We conclude that, if a system is in an eigenstate of the time-
dependent Hamiltonian (24) at time ¢t = 0, it remains in the
eigenstate of the Hamiltonian at any later time ¢. Since the
Hamiltonian H[A(#)] has the same eigenvalues at all times,
we conclude from Eq. (B9) that, under the adiabatic evolution,
a system starting in a thermal state of the Hamiltonian (24)
at t = 0 at temperature 7 will remain in the thermal state
of the Hamiltonian at the temperature 7 at all later times.
Specifically, the system will end up in the thermal state of o,
att = t. In this sense, the system “thermalizes” under a slow
change in the Hamiltonian.

b. Rapidly varying Hamiltonian (v < 2). In this case,
sin€ >~ 0 and cosé >~ —1; thus £ ~ m:

e = T,

We therefore conclude that the state does not depend on time,
which indicates that, under a rapid change in the Hamiltonian,
the system remains in its initial state.

(B10)
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