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Particle production from nonlocal gravitational effective action
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In this paper we show how the nonlocal effective action for gravity, obtained after integrating out the matter
fields, can be used to compute particle production and spectra for different space-time metrics. Applying this
technique to several examples, we find that the perturbative calculation of the effective action up to second
order in curvatures yields exactly the same results for the total number of particles as the Bogolyubov trans-
formations method, in the case of massless scalar fields propagating in a Robertson-Walker space-time. Using
an adiabatic approximation we also obtain the corresponding spectra and compare the results with the tradi-
tional WKB approximation.@S0556-2821~99!02920-3#

PACS number~s!: 04.62.1v, 98.80.Cq
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I. INTRODUCTION

In recent years the phenomenon of particle creation fr
classical sources has experienced a growing interest, ma
motivated by its numerous applications in cosmology,
also in other areas of physics. In cosmology, it plays a f
damental role in the mechanism of reheating after inflat
@1# which is believed to be responsible for the creation
almost all the particles that populate the universe today
the reheating models, the oscillations of a homogeneous
lar field ~inflaton! around the minimum of its potential giv
rise to an explosive creation of a large amount of partic
On the other hand, the same methods are applied to the
eration of primordial density inhomogeneities in the ea
universe that later on grew to create the present gala
structure@2#. In addition, the cosmological expansion c
give rise to the production of a stochastic background
gravitational waves@3#. Bounds on the density of thes
waves are very useful to constraint the different cosmolo
cal models@4#. In all these applications, the method which
used for the calculation of the rates and spectra of the
ticles produced is the traditional mode-mixing Bogolyub
technique@5#.

On the other hand the notion of effective action~EA! has
proved to be a very useful tool for the development of
so-called phenomenological Lagrangians. Typically, eff
tive actions are obtained in theories with heavy and li
fields by functional integration of the heavy modes to fi
the effective low-energy theory for the light modes af
some momentum expansion. Usual applications of th
techniques include low-energy hadron dynamics~the so-
called chiral perturbation theory!, the symmetry breaking
sector of the standard model, and low-energy quantum g
ity ~see Ref.@6# for a recent review, and references therei!.
Effective actions use to have a real and, in general, diverg
part, that give rise to modifications of the classical equati
of motion due to quantum effects. Eventually, the cor
sponding vacuum solutions could not exhibit some of
symmetries of the classical theory, thus giving rise to
well-known phenomenon of spontaneous radiative symm
0556-2821/99/60~10!/104045~9!/$15.00 60 1040
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breaking. In addition, nonlocal finite terms also appear in
EA which contribute to the imaginary part. This imagina
part is physically important since it is connected with t
possibility of having particle production@7,8#. By this we
mean the production of the quanta corresponding to the fi
that have been integrated out.

In this paper, we consider the production of scalar p
ticles from classical gravitational backgrounds from the
fective action point of view. We show how a perturbativ
calculation up to second order in the curvatures in the cas
masless scalar fields, reproduces the well-known genera
sults of particle production in Robertson-Walker space-tim
and can give rise to the exact amount of particles at leas
the models we have considered. The paper is organize
follows: in Sec. II, we review the Euler-Heisenberg Lagran
ian for QED, but paying special attention to its nonlocal pa
We show how the perturbative calculation up to second or
in the coupling constant yields the correct expression for
imaginary part in the massless case. In Sec. III, we introd
the nonlocal gravitational effective action for scalar fiel
and discuss some of the conditions for its application. S
tion IV is devoted to the actual calculation of the total num
ber of particles produced due to the expansion in sev
Robertson-Walker models and the results are compared
those obtained by the Bogolyubov technique. In Sec. V
study how to obtain the spectrum of the particles and co
pare the results with the WKB approximation. Finally, Se
VI contains the main conclusions of the work.

II. THE NONLOCAL EULER-HEISENBERG LAGRANGIAN

Let us consider the well-known Euler-Heisenberg L
grangian for QED in flat space-time@9#. When the momen-
tum p of photons is much smaller than the electron massM,
the one-loop effects, such as vacuum polarization, can
taken into account by adding local nonlinear terms to
classical electromagnetic Lagrangian. Consider the QED
fective action given by
©1999 The American Physical Society45-1
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eiW[A]5E @dc#@dc̄#

3exp2
i

4E d4xFmnFmn

3expS i E d4xc̄~ iD” 2M1 i e!c D
5expS 2

i

4E d4xFmnFmndet~ iD” 2M1 i e! D , ~1!

where as usualD” 5gm(]m2 ieAm). From Eq. ~1! we can
write the effective action as

W@A#52
1

4E d4xFmnFmn2 i Tr log@~ iD” 2M1 i e!#.

~2!

Expanding in a formal way the logarithm we obtain

W@A#52
1

4E d4xFmnFmn1 i (
k51

`
~2e!k

k
Tr@~ i ]”2M !21A” #k.

~3!

Using dimensional regularization, it is possible to find t
following expression up to quadratic terms in the phot
field:

W@A#5E d4xH 2
1

4
FmnFmn2

e2

3~4p!2
DFmnFmn

2
2e2

~4p!2
FmnF2

2

3

M2

h
2

1

6 S 122
M2

h
D

3F~2h;M2!GFmnJ 1O~A4!, ~4!

whereD5Ne2 log(M2/m2), Ne52/e2g1 log 4p is the well
known constant appearing in dimensional regularization,
we have used the expression

F~2h;M2!Fmn~x!

5E d4y
d4p

~2p!4
eip(x2y)F~p2;M2!Fmn~y! ~5!

with

F~p2;M2!521E
0

1

dt logS 12
p2

M2
t~12t !D . ~6!

In the p2.4M2 case, this function can be written as

F~p2;M2!5A12
4M2

p2
log

A124M2/p211

A124M2/p221
. ~7!
10404
d

In a similar way, the inverse operator 1/h can be defined
with the usual boundary conditions on the fields as

1

2h
Fmn~x!5E d4y

d4p

~2p!4
eip(x2y)

1

p21 i e
Fmn~y!. ~8!

The expression~4! for the EA has a regular massless limit.
fact, for smallp compared withM, the Mandelstam function
F(p2;M2) behaves as

F~p2;M2!52 logS M2

2p22 i e
D 1O~M2!. ~9!

From Eq.~4! we can see that the only contributions in th
massless limit are those coming, on one hand from theD
factor and, on the other hand, from the Mandelstam functi
Both logarithmic contributions equal, up to sign, so that th
cancel each other and we obtain

W@A#5E d4xS 2
1

4
FmnFmn2

e2

3~4p!2
FmnG~h !FmnD

1O~A4!, ~10!

where we have used the following notation:

G~h !5Ne2 logS h

m2D ~11!

to be understood as in the previous cases through the c
sponding Fourier transform, with thei e factor as shown in
Eq. ~9!. We see that the massless limit of the EA is a no
local but analytical functional in the gauge curvaturesFmn .

The EA ~4! allows us to derive in an exact fashion th
photon two-point one loop Green functions. This, in tur
allows us to obtain for example the vacuum polarization.
the massive case, the EA can be expanded as a power s
in p2/M2, and also inA to obtain the well-known local
Euler-Heisenberg Lagrangian@9#

Leff52
1

4
FmnFmn2

e2

3~4p!2
DFmnFmn

2
e2

15~4p!2M2
FmnhFmn1

e4

90~4p!2M4

3S ~FmnFmn!21
7

4
~FmnF̃mn!2D1OS p2

M2D 3

1O~A6!.

~12!

The EA~4! possesses a nonvanishing imaginary part co
ing from the Mandelstam function~7!. This imaginary part
provides the pair production rate@8#. In the massless cas
~10! we get
5-2
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Im W@A#5ImE d4xLeff

52
e2

48pE d4x d4y
d4p

~2p!4

3eip(x2y)Fmn~x!Fmn~y!u~p2!, ~13!

where

u~x!5H 0, x,0,

1/2, x50,

1, x.0.

~14!

The 1/2 value arises as a consequence of the2 i e factor in
Eq. ~9!. For constant electric fields and in absence of m
netic fields, the previous expression gives the probability
unit time and unit volume that at least one electron-posit
pair is created by the electric field

p.2 ImLeff5
e2

24p
EW 2. ~15!

Let us compare this result with exact expression for
imaginary part obtained by Schwinger@8#:

p.2 ImLeff5
e2E2

4p3 (
n51

`
1

n2
e2m2np/eE. ~16!

The dependence in the electric fields appears in b
a quadratic term and a nonanalytical contributi
exp(2m2np/eE). This latter term shows the importance
the nonperturbative effects in the particle production p
nomenon@1#. However, in the massless limit the nonanaly
cal pieces disappear and the result exactly agrees with
perturbative calculation in~15!. Notice that in this case
gauge invariance and the dimension of the effective
grangian constraint the result to be quadratic ineE and that
is the reason why the second order perturbative calcula
gives rise to the exact result. Accordingly, in the massl
limit, the perturbative calculation can provide, in some cas
all the relevant information about the particle producti
processes. In the gravitational case that we will study in
next sections, we will show that the same effect takes pla

III. THE EFFECTIVE ACTION FOR GRAVITY

Let us consider a real scalar field in a curved space-t
with an arbitrary nonminimal coupling to the curvature. T
corresponding classical action is given by

S@f#52
1

2E d4xAgf~h1m21jR!f, ~17!

where

hf5gmn¹m]nf5
1

Ag
]m~gmnAg]nf!. ~18!
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The EA for the gravitational fields that arises after integr
ing out the real scalar matter fields is given by the followi
expression in Lorentzian signature:

^0,outu0,in&5Z@gmn#5eiW[gmn]

5E @df#eiS[gmn ,f]

5E @df#

3exp2
i

2E dxAgf~h1m21jR2 i e!f

5~detO!21/2, ~19!

where Oxy(m
2)5@2hy2m22jR(y)1 i e#d0(x,y) with

d0(x,y) being the covariant deltad0(x,y)5g21/2(x)d(x,y).
Thus we see that, following the analogy with flat space-ti
we could interpretZ@gmn# as the vacuum persistence amp
tude. Thus we have

W@gmn#5
i

2
log detO~m2!5

i

2
Tr logO~m2!. ~20!

In this expression we have integrated the scalars but
gravitational field is treated classically. Accordingly, this E
must be added to the classical action for the gravitatio
field and it includes the quantum effects due to the ma
fields. In addition, Eq.~19! is the generating functional of th
Green functions containing scalar loops only and exter
gravitational legs.

Once one knows the EA at least in some limit, we have
the information concerning the semiclassical gravitatio
evolution in this limit. As we mentioned in the Introduction
the EA could have a nonvanishing imaginary part, which
related to the pair production probability. In fact, the pro
ability P that at least one pair particle-antiparticle is crea
by the gravitational field is given by@8#

P512u^0,outu0,in&ugmn

2 512ueiW[gmn] u2512e22 Im W[gmn]

~21!

for small values ofW@gmn# we have

P.2 ImW@gmn#. ~22!

Concerning the applicability of this equation, let us com
pare the EA method with the traditional Bogolyubov tec
nique. The classical equations of motion for the scalar fi
are

~h1m21jR!f50. ~23!

Unlike flat space-time, there is no natural set of mode so
tions to this equation, rather we can expand its solutions
different ways, i.e.,

f5(
k

~akuk1ak
†uk* !5(

k
~ ākūk1āk

†ūk* !. ~24!
5-3
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Each of these expansions will give rise to different Fo
spaces when interpreting the coefficientsak ,ak

† andāk ,āk
† as

creation and annhilation operators. A problem arises w
we try to identify which of these Fock spaces correspond
our usual notion of particle. In general, this question c
only be answered when we have a high degree of symm
~conformal invariance! or if the space-time is flat in the
asymptotic in and out regions. However, in most of the
teresting situations, these two conditions are not presen
solution to this problem was suggested in a series of wo
~see Ref.@5#, and references therein! in which the notion of
adiabatic vacuum is introduced. In the cosmological spa
times in which we will be mainly interested, in order
define an adiabatic vacuum it is only required that asym
totically in the past and in the future the rate of expans
vanishes, i.e.,ȧ/a→0 with a(t) the universe scale factor
Expressing this statement in a covariant way, it would
equivalent to require that the curvatures and all their cov
ant derivatives vanish in the far past and future.

In the effective action approach,Z@gmn# can be inter-
preted as vacuum persistence amplitude in principle o
when the vacuum statesu0,in& and u0,out& can be defined in
regions with a temporal separation@10#. When this does no
occur, it is not obvious what the interpretation of the effe
tive action is. However, we will show in the following, tha
the naive calculation of the effective action, in those situ
tions in which an adiabatic vaccum can be defined altho
the space-time is not asymptotically Minkowskian, yield t
same result for the particle production as the stand
Bogolyubov technique. As a consequence, in these cases
could try to interpretZ@gmn# as adiabatic vacuum persisten
amplitude.

The nonlocal effective action for gravity has been eva
ated in different works using several techniques. Thus in R
@11# it was suggested what would be the form of the tw
point form factors. In Ref.@12# the effective action is derived
by means of the so called covariant perturbation theory, v
in asymptotically flat manifolds, in Ref.@13# the same resul
is obtained by means of the partial resummation of
Schwinger-DeWitt series. The result in all these cases u
second order in curvatures can be written in the mass
case as

W@gmn#5
1

32p2E d4xAgF 1

180
Rmnlr~x!G~h !Rmnlr~x!

2
1

180
Rmn~x!G~h !Rmn~x!

1
1

2 S 1

6
2j D 2

R~x!G~h !R~x!G1O~R 3!, ~25!

where the form factorG(h) is given in Eq.~11!. The local
finite pieces as usual depend on the different renormaliza
schemes and they are not relevant for our calculations
though in general their coefficients are important to fix t
form of the linear terms in the trace anomaly. The nonlo
contributions are in any case unambiguous. An appropr
10404
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representation of the nonlocal form factors is provided by
use of the Riemann normal coordinates~the details of this
approach will be given elsewhere@14#!. Thus, taking normal
coordinates (xm) with origin at y0 the action of the form
factors is understood through the correspondig Fourier tra
form

R~y0!logS h

m2DR~y0!

5E d4x
d4p

~2p!4
eipxR~y0!logS 2p22 i e

m2 DR~x! ~26!

andR denotes generically the scalar curvature, the Ricc
Riemann tensors. For the sake of simplicity we will stu
massless scalar particles propagating in a cosmological b
ground, whose metric is that of Friedmann, Robertson,
Walker ~FRW!:

ds25dt22a~ t !2S dr2

12Kr 2
1r 2du21r 2sin2~u!df2D

~27!

whereK determines the spatial curvature sign@15# anda(t)
is the universe scale factor.

The EA imaginary part comes from the logarithms in E
~25!. Due to the homogeneity and isotropy of space in
present case, the different curvatures appearing in that
pression only depend on the time coordinate. Thus, we
perform the spatial coordinates integration in Eq.~26! and
generically we will obtain

ImE d4x
d4p

~2p!4
eipxR~y0!logS 2p22 i e

m2 DR~x!

5ImE dx0
dp0

~2p!
eip0x0R~y0!logS 2p0

22 i e

m2 DR~x0!

52pR~y0!R~y0!. ~28!

Let us momentarily consider a general metric, not neces
ily FRW. It is easy to see from the first term in this equati
that when the metric is static, i.e., only depending on spa
coordinates, the argument in the logarithm would only co
tain pW 22 i e. Therefore the imaginary part would be zero a
we would recover the well-known result of absence of p
ticle production in general~inhomogeneous! static back-
grounds.

FRW metrics. Returning to the FRW metric we obtai
from Eq. ~28! the general expression

Im W@gmn#5
1

32pE d4xAgF 1

180
RmnlrRmnlr

2
1

180
RmnRmn1

1

2 S 1

6
2j D 2

R2G1O~R 3!.

~29!
5-4
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This result is only valid for homogeneous and isotropic m
rics. Comparing this result with the divergences, we see
both have the same form. Notice that Eq.~29! is a linear
combination ofRmnlr

2 , Rmn
2 , and R2, but we can choose a

different basis to write it. In particular, we can take the o
made out ofR2, Cmnlr

2 , and E, whereCmnlr is the Weyl
tensor andE5Rmnlr

2 24Rmn
2 1R2 is the Gauss-Bonnet term

In this basis we have

a1Rmnlr
2 1a2Rmn

2 1a3R252S a11
1

2
a2DE1S 2a11

a2

2 DC2

1S 1

3
a11

1

3
a21a3DR2. ~30!

In our case,a152a2. On the other hand, the FRW metric
locally conformal to the Minkowski metric and hence i
Weyl tensor vanishes. Therefore Eq.~29! only contains the
scalar curvature and the Gauss-Bonnet terms, but the inte
of the latter also vanishes in the class of asymptotically
metrics. Moreover, the asymptotic flatness is not a nec
sary condition for the Gauss-Bonnet term to vanish and
fact, examples can be found which are not asymptotic
flat, but still they have a zero Gauss-Bonnet term contri
tion ~see below!. To summarize, the imaginary part in the
cases reduces to

Im W@gmn#5
1

32pE d4xAg
1

2 S 1

6
2j D 2

R21O~R 3!.

~31!

Conformal coupling. In the conformal case (j51/6) it is
evident from the above expression that the EA imagin
part is zero and accordingly there will be no particle prod
tion. This is a well-known result and has been proved
studying the positive-energy modes of the correspond
Klein-Gordon equation@16# for the scalar field. The EA pro
vides in this case a simple way to prove a general result

Radiation dominated universe. Conformal invariance is
not the only case in which there is no particle production
a FRW background. From the above arguments, we h
seen that the only piece contributing to the EA imagina
part is theR2 term. If this term vanishes, there would not b
particle creation. For a FRW metric withK50 this implies
the following condition:

Ḣ522H2, ~32!

whereH5ȧ/a is the Hubble parameter. The solution is sim
ply a(t)5A(t2t0)1/2 with A and t0 arbitrary constants. In
fact taking traces in the Einstein equations~with the stress
tensor corresponding to a perfect fluid!, it is obvious thatR
50 impliesR58pG(3p2r)50, with p andr the pressure
and density of the fluid. Accordinglyr53p, which is noth-
ing but the state equation for a fluid of highly relativist
particles. Therefore a radiation dominated universe is
stable solution of Einstein equations against pair emiss
This result was obtained in Refs.@16–18# by means of the
Bogolyubov technique, where in order to circumvent t
10404
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problem of the initial singularity, it was assumed that wh
t→tP with tP the Planck time, the scale factor smooth
tends to a constant. This allows us to define an ini
vacuum state in the problem. Again the out vacuum is c
sen as an adiabatic vacuum. Notice that in this case
Gauss-Bonnet term can also be neglected.

Homogeneous anisotropic metrics. Consider now a gen-
eral homogeneous but anisotropic metric of the Bianchi ty
I:

ds25C2~h!@dh22gi j ~h!dxidxj #, ~33!

where the three-metricgi j only depends on the time coord
nate. Since, as it happened with the FRW, the curvatu
only depend on the time coordinate, it is possible to exp
itly perform the spatial coordinate integration in Eq.~26!.
Therefore we obtain the same combination of curvature t
sors as in Eq.~29! for the EA imaginary part. In this case th
metric is not conformal to the Minkowski one and accor
ingly it is not possible to drop the Weyl term from Eq.~30!.
The Gauss-Bonnet term continues vanishing under the s
assumptions about the metric. To summarize, the resul
EA imaginary part can be written for this kind of metrics

Im W@gmn#5
1

32pE d4xAgF 1

120
CmnrsCmnrs

1
1

2 S 1

6
2j D 2

R2G1O~R 3!. ~34!

This result agrees with that of Zel’dovich and Starobins
@19# ~see also Ref.@20#! obtained by using standard Bogoly
ubov techniques. In fact, assuminggi j 5d i j @11hi(h)#, ne-
glecting terms of orderO(h3) in Eq. ~34! and imposing that
asymptotically the anisotropies vanish, we recover their
sults.

From the above expressions we can extract another
sequence. Particle production only takes place when cu
ture is nonvanishing, i.e., in the presence of a genuine gr
tational field and not merely by means of a coordina
change as it happens for an accelerated observer@5#, in the
latter case the creation could be considered as fictitio
Therefore, for the boundary conditions in the space-time
ometry that we mentioned before, the EA provides an inva
ant criterium~independent of the observer! to decide when
particle production takes place.

IV. SPECIFIC EXAMPLES WITH MINIMAL COUPLING

In order to illustrate the previous results we will sho
several examples in which the EA allows us to make phy
cal predictions. In some cases it will be possible to comp
these results with those obtained by means of the traditio
Bogolyubov transformations. Exact results from the Bogo
ubov transformation have been obtained for a very limi
number of models in the literature.

Model 1. We will now consider acomplexscalar field and
the FRW metric withK50. It will be useful, in order to
compare with other results, to work with the new time coo
dinate defined by
5-5
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ANTONIO DOBADO AND ANTONIO L. MAROTO PHYSICAL REVIEW D 60 104045
t5E t

a23~ t8!dt8, ~35!

which allows us to write the d’Alembertian operator acti
on time dependent functions as

h f ~t!5
1

a6
]t]t f ~t!. ~36!

First we consider the model proposed in Ref.@18#. The
scale factor is given by

a4~t!.a1
41et/s@~a2

42a1
4!~et/s11!1b#~et/s11!22.

~37!

For t→`(2`), a(t) smoothly tends to a constanta2(a1),
i.e., it is possible to unambiguously define initial and fin
vacuum states. On the other hand,a1 , a2 , s, andb are arbi-
trary parameters. Fora2@a1 and using quantum mechanic
methods, it is possible to calculate the Bogolyubov coe
cients and hence the number density of produced parti
@18#:

^Nk&5
1

e4psa1
2k21

, ~38!

where the number of created pairs per unit coordinate
ume and unit trimomentum volume in thek mode is related
to the Bogolyubov coefficients by means of^Nk&5ubku2 @5#.

The relation between̂Nk& and the pair production prob
ability per unit coordinate volumepBOG is given by this ex-
pression@21#

pBOG.E d3k

~2p!3
@6 log~16^Nk&!#, ~39!

where the1 sign is used for bosons and2 for fermions. In
the present model̂Nk& does not depend ona2 nor b. Using
Eq. ~39! we find for the probability density

pBOG5E d3k

~2p!3
log~11^Nk&!

5E dk
k2

2p2
logS 11

1

e4psa1
2k21

D . ~40!

On the other hand, the EA method provides from Eq.~31!:

pEA.2
1

36

1

32pE dta6~t!R2~t! ~41!

with

R~t!5212
ȧ2

a8
16

ä

a7
. ~42!
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It is possible to perform the integrals in Eqs.~40! and~41! in
an explicit way, so that we can compare both results at
analytical level. They yieldexactlythe same result

pEA5pBOG5
1

5760pa1
6s3

, ~43!

where we have taken the limitsb50 anda2→`.
Model 2. The second model we will study is that propos

in Ref. @22#. The scale factor is now given by

a4~t!5A2t21B2, ~44!

whereA and B are arbitrary constants. In this case, spa
time is not asymptotically flat and therefore the Bogolyub
calculation is based on the definition of adiabatic vac
However, the Gauss-Bonnet contribution vanishes and t
we can use again Eq.~31!. The number of created pairs in th
k mode is given by

^Nk&5e2pB2k/A. ~45!

Once again both methods yield the same results for the p
ability densities

pBOG5pEA5
7A3

360B6p
. ~46!

Since in Eq.~41! we have neglected higher order terms
curvatures, we can conclude that in these two cases the
not contribute to the EA imaginary part. As we found in th
QED case, here again the second order perturbative calc
tion is exact. To check this fact, we should calculate
complete expression for the EA as we did in Sec. II, ho
ever, the very same arguments used in that section sug
that in the absence of a mass term, since in both cases
is just one-dimensional parameter, it is not possible to bu
any other term with the appropriate dimension.

V. SPECTRUM AND WKB APPROXIMATION

The traditional Bogolyubov method for particle produ
tion gives information, not only on the total number of cr
ated particles, but also on their energy distribution. Howev
only in very specific cases, closed analytical expressions
be written. As we have seen, the EA method provide
closed expression for the total number of particles tha
obtained from the curvatures and, therefore, can be evalu
for arbitrary scale factors in a very easy way. In this resp
the EA method is obviously more advantageous than
Bogolyubov method. However, it is not obvious how to d
rive the spectra in this formalism. Let us try to clarify th
issue with a simple example and compare our result with
one obtained from the traditional method.

Consider the Klein-Gordon equation for a minimal
coupled massless complex scalar field

hf50. ~47!
5-6
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Introducing the FRW metric~27! with time coordinatet and
K50, we look for solutions by means of variable separat
f(t,xW )5xk(t)eikWxW. Hence the temporal equation can
written as

d2xk

dt2
1a4~t!k2xk50, ~48!

wherek25kWkW . In the simple example we are going to co
sider, the scale factor is made of two step functions

a4~t!511v2@u~t1T!2u~t2T!# ~49!

with v and T being arbitrary parameters. The Bogolyub
coefficients provide the following value for the number
created pairs per unit coordinate volume and unit trimom
tum volume in thek mode

^Nk&5ubku25
v4

4~11v2!
sin2~2TkA11v2!. ~50!

Expanding the right-hand side of Eq.~39! using ~50! up to
O(v4) we find

pBOG.
v4

8p2E0

`

dkk2sin2~2kT!. ~51!

The integrand gives the probability density per unit trim
mentum volume. On the other hand, the EA method gi
the following result from Eq.~31!:

pEA.2 Imw.4
1

32p

1

72E dta6~t!R2

54
v4

32p

1

72E dt
9

4
@d8~t2T!2d8~t1T!#2. ~52!

We have introduced a global 2 factor in the EA because n
the field is complex. The spectrum can be obtained by in
ducing a complete set of plane waves

pEA.4
1

32p

1

72E dtdt8

3E
2`

` dp

2p
a3~t!R~t!a3~t8!R~t8!e2 ip(t2t8)

5
v4

64p2E0

`

dpp2sin2~pT!. ~53!

ComparingpBOG with pEA we find that both integrand
agree by identifyingp52k. This is sensible and represen
the energy conservation in the pair creation, sincek is the
single particle energy andp is the energy of the gravitationa
field oscillations producing particles.
10404
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From the complementary point of view, given the numb
density of created particles^Nk&, it is also possible to recon
struct the scale factor evolution by inverting the previo
steps

a6~t!R2~t!536U E
2`

` dp

2p
pAlog~11^Np/2&!e2 iptU2

1O~v6!

5
9v4

4 U E
2`

` dp

2p
p

sin~pT!

2
e2 iptU2

1O~v6!

5
9v4

4
@d8~t2T!2d8~t1T!#21O~v6!. ~54!

This result agrees with the calculation from Eq.~49!.
Let us try to generalize the above results for arbitra

scale factor evolution. In the above example, it can be sho
that the difference in the results using plane waves or a c
plete set of solutions of the Klein-Gordon equation isO(v6).
Therefore the former is a good approximation. Now we ha
to take into account the presence of the curvature. With
purpose we take variable-frequency plane waves such th
the vanishing curvature limit they tend to the usual pla
waves.

Let us consider the temporal part of the Klein-Gord
equation~48!. This is a harmonic-oscillator equation but wit
a time-dependent frequencyvk(t)5ka2(t). Changing to the
new time coordinatedh5a2(t)dt, the equation can be writ
ten as

d2xk

dh2
12

ȧ

a

dxk

dh
1k2xk50. ~55!

In the limit in which the expansion rateȧ/a is much smaller
than the frequency of the oscillationsk, the equation reduce
to the flat space-time form. Therefore let us consider t
limit and let us introduce a complete set of plane wav
corresponding to the new time coordinateh:

pEA.2
1

36

1

32pE dta6~t!R2~t!

52
1

36

1

32pE dha4~h!R~h!2

52
1

36

1

32pE dhdh8a2~h!a2~h8!R~h!R~h8!

3E dp

2p
e2 ip(h2h8). ~56!

Changing again to the old coordinatet we have

pEA.
1

8p2E0

`

dkU E dtS ä

a3
22

ȧ2

a4D e22ik*0
ta2(t8)dt8U2

,

~57!

where we have used Eq.~42!. According to the above dis
cussion, the introduction of the plane waves only mak
5-7
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sense in the adiabatic limit and therefore this expressio
valid only in the limit ȧ/a!k. As in the step function ex-
ample, we have usedp52k. The pairs densitŷNk& can be
calculated in a very easy way by identifying Eq.~57! with
Eq. ~39!. Obviously from the equality of the integrals w
cannot obtain the equality of the integrands, however,
covariance and dimensionality of the integrands allows u
constrain them. In fact, from the equality of Eqs.~57! and
~39! we know that the integrands differ at most in a functi
f (p) such that*dp f(p)50. Now let us assume that suc
function can be written as@up to O(R 2)#

f ~p!5E dhdh8eip(h2h8)a2~h!a2~h8!F~h!F̃~h8!,

~58!

whereF(h) andF̃(h8) are some appropriate functions. Th
condition*dp f(p)50 implies

E dha4~h!F~h!F̃~h!50. ~59!

Since the integrand has to be a dimension-4 operator a
scalar function then the only possibility satisfying that co
dition is

FF̃5aE, ~60!

whereE is the Gauss-Bonnet term defined before, which i
total derivative, anda is some arbitrary constant. Howeve
we know that in a radiation dominated universe, whereR
50, the spectrum is identically zero^Nk&50 ~see Refs.@16–
18#!. This implies that the contribution from the Gaus
Bonnet term should also vanish. This fact allows us to fix
constanta50. As a consequence the result in Eq.~57! gives
the correct spectrum up toO(R 2) at least in the adiabatic
limit we are considering. In fact, as shown in Table I t
results are in good agreement with the Bogolyubov met
especially for large values ofk.

Since we have used an adiabatic approximation in the
step, we can try to find which are the differences with resp
to the usual WKB approximation in Ref.@23#. In this
method, the solutions of Eq.~48! are taken to be

xk~t!5a~t!e2 ic(t)1b~t!eic(t), ~61!

TABLE I. Number densities corresponding to the model~37!
s52(a.u)21, a151, a25500, and b50. BOG denotes the
Bogolyubov method and EA the effective action.

k(a.u.) ^Nk&BOG ^Nk&EA ^Nk&WKB

0.3 5.3131024 4.1531024 4.9631024

0.4 4.3131025 3.3331025 4.1331025

0.7 2.2831028 1.7531028 2.2831028

1.0 1.22310211 0.93310211 1.24310211

1.2 7.97310214 6.48310214 8.64310214

1.3 6.44310215 5.91310215 7.76310215

1.4 4.44310216 4.90310216 6.19310216
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c~t!5kE
0

t

dt8a2~t8!, ~62!

with boundary conditonsa(2`)51, b(`)50. Putting this
ansatz back into the equation of motion, we get

ȧe2 ic(t)2ḃeic(t)52S 2ȧ

a
D @a~t!e2 ic(t)2b~t!eic(t)#,

~63!

where the conditionȧe2 ic1ḃeic50 is used~see Ref.@23#
for details!. The solution to first adiabatic order is given b

b~t!52E
t

`

dt8
ȧ

a
e22ic(t8). ~64!

The probability density is given by

pWKB5
1

2pE d3k

4p2
ub~2`!u2. ~65!

From Eqs.~64! and ~65! we see that

pWKB5
1

8p3E d3kub~2`!u2

5
1

8p3E0

`

dk4pk2U E dt
ȧ

a
e22ik*0

ta2(t8)dt8U2

5
1

2p2E dkU E dt
ȧ

a
ke22ik*0

ta2(t8)dt8U2

5
1

2p2E dkU E dt
ȧ

a

1

22ia2

d

dt
e22ik*0

ta2(t8)dt8U2

5
1

8p2E dkU E dt
d

dt S ȧ

a3D e22ik*0
ta2(t8)dt8U2

. ~66!

In the last step we have used integration by parts assum
that ȧ/a3 vanishes fort→6` @which is the same condition
as for the vanishing of the Gauss-Bonnet term contribution
Eq. ~29!#. This condition is satisfied in the models we ha
considered in the paper. Therefore we get

pWKB.
1

8p2E0

`

dkU E dtS ä

a3
23

ȧ2

a4D e22ik*0
ta2(t8)dt8U2

~67!

which is valid again only in the adiabatic limit.
In Table I some values of the number densities are sho

for the different methods. The results have been obtai
from Eqs.~57! and~67! for the model~37! by numeric inte-
gration. Due to the strongly oscillating integrals, the resu
can only be given for small momenta. Both methods g
similar results to those obtained with the Bogolyubov co
5-8
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ficients. Notice that, despite the fact that the WKB and E
expression in Eqs.~57! and~67! are not identical, there is no
contradiction in this. These results come from different a
proximations. The WKB method comes from a derivati
expansion and is not covariant, whereas the EA is an exp
sion in curvatures and covariance is imposed from the be
ning. From Table I, we see that the contribution from t
(ȧ/a2)2 terms in Eqs.~57! and ~67! is always smaller than
the contribution fromä/a3.

VI. CONCLUSIONS

In this work we have shown how to use the nonlocal fo
of the gravitational EA@up to O(R 2)# for the computation
of massless scalar particle production. For FRW ba
grounds in which the expansion rate asymptotically vanish
it is shown that the particle production probabilities on
depend on the scalar curvature. As a consequence an
expected there is no particle creation in a radiation do
nated universe. This is also the case for conformally coup
scalar fields. For anisotropic homogeneous metrics we re
tain the well-known expression of Zel’dovich and Starob
ski. We compare our results with those obtained by mean
the well-known Bogolyubov transformations. In the e
amples considered, the agreement between both metho
complete for the probability densities. This fact is quite
v.

er
.

d

se
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markable since we have used a perturbative expression
the EA, whereas the Bogolyubov results are exact. This
dicates that in some cases a perturbative calculation
contain all the relevant information about the particle p
duction processes. In principle, the EA is defined for asym
totically flat manifolds, however, it is interesting to notic
that the naive extension to those manifolds in which ad
batic vacua can be defined, properly reproduces the cor
results. Finally we have also compared the different spe
derived with the EA, Bogolyubov, and WKB techniques.

In principle the EA method can be extended to more g
eral metrics~not necessarily homogeneous! in a straightfor-
ward way. This fact could make it valuable in those areas
which the Bogolyubov technique has been traditionally us
In addition this method can also be applied to the product
of higher spin particles such as Dirac and Weyl fermio
gravitons, gravitinos, etc. Finally, in a recent work@24# the
relevance of the nonlocal EA for particle creation has a
been stressed from a different point of view based on
energy-momentum tensor expectation values.
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