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Particle production from nonlocal gravitational effective action
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In this paper we show how the nonlocal effective action for gravity, obtained after integrating out the matter
fields, can be used to compute particle production and spectra for different space-time metrics. Applying this
technique to several examples, we find that the perturbative calculation of the effective action up to second
order in curvatures yields exactly the same results for the total number of particles as the Bogolyubov trans-
formations method, in the case of massless scalar fields propagating in a Robertson-Walker space-time. Using
an adiabatic approximation we also obtain the corresponding spectra and compare the results with the tradi-
tional WKB approximation[S0556-282(99)02920-3

PACS numbegs): 04.62+v, 98.80.Cq

[. INTRODUCTION breaking. In addition, nonlocal finite terms also appear in the
EA which contribute to the imaginary part. This imaginary
In recent years the phenomenon of particle creation fronpart is physically important since it is connected with the
classical sources has experienced a growing interest, mainpossibility of having particle productiofi7,8]. By this we
motivated by its numerous applications in cosmology, butmean the production of the quanta corresponding to the fields
also in other areas of physics. In cosmology, it plays a funthat have been integrated out.
damental role in the mechanism of reheating after inflation In this paper, we consider the production of scalar par-
[1] which is believed to be responsible for the creation ofticles from classical gravitational backgrounds from the ef-
almost all the particles that populate the universe today. Ifective action point of view. We show how a perturbative
the reheating models, the oscillations of a homogeneous scaalculation up to second order in the curvatures in the case of
lar field (inflator) around the minimum of its potential give masless scalar fields, reproduces the well-known general re-
rise to an explosive creation of a large amount of particlessy|ts of particle production in Robertson-Walker space-times
On the other hand, the same methods are applied to the gegngd can give rise to the exact amount of particles at least in
eration of primordial density inhomogeneities in the earlyine models we have considered. The paper is organized as
universe that later on grew to create the present galactigyoys: in Sec. II, we review the Euler-Heisenberg Lagrang-
structure[2]. In addition, the cosmological expansion can; n for QED, but paying special attention to its nonlocal part.

ructe _ : a
give nse to the production of a stochastic background 0{l\/e show how the perturbative calculation up to second order

gravitational waves3]. Bounds on the Qen3|ty of these.m the coupling constant yields the correct expression for the
waves are very useful to constraint the different cosmologi-

cal modelg4]. In all these applications, the method which is imaginary part in the massless case. In Sec. lll, we introduce

used for the calculation of the rates and spectra of the palt_he nonlocal gravitational effective action for scalar fields

ticles produced is the traditional mode-mixing Bog;;olyubov"’,md dIS.CUSS some of the conditions for its application. Sec-
technique(5]. tion IV is devoted to the actual calculation of the total num-

On the other hand the notion of effective acti@?) has ber of particles produced due to the expansion in sever_al
proved to be a very useful tool for the development of theRobertson-Walker models and the results are compared with
so-called phenomenological Lagrangians. Typically, effecthose obtained by the Bogolyubov technique. In Sec. V we
tive actions are obtained in theories with heavy and lightstudy how to obtain the spectrum of the particles and com-
fields by functional integration of the heavy modes to findpare the results with the WKB approximation. Finally, Sec.
the effective low-energy theory for the light modes afterVI contains the main conclusions of the work.
some momentum expansion. Usual applications of those
technigues include low-energy hadron dynamitse so-
called chiral perturbation theorythe symmetry breaking |I. THE NONLOCAL EULER-HEISENBERG LAGRANGIAN
sector of the standard model, and low-energy quantum grav-
ity (see Ref[6] for a recent review, and references therein ~ Let us consider the well-known Euler-Heisenberg La-
Effective actions use to have a real and, in general, diverger#trangian for QED in flat space-tin{®]. When the momen-
part, that give rise to modifications of the classical equationgum p of photons is much smaller than the electron miéss
of motion due to quantum effects. Eventually, the corre-the one-loop effects, such as vacuum polarization, can be
sponding vacuum solutions could not exhibit some of thetaken into account by adding local nonlinear terms to the
symmetries of the classical theory, thus giving rise to theclassical electromagnetic Lagrangian. Consider the QED ef-
well-known phenomenon of spontaneous radiative symmetrfective action given by
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WA= J [dy][dy]
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X exp— Zf d*xF, F~"
xexpn(if d*x (i —M +ie)z//>

oY)

i
=ex;{ - ZJ d4XFM,,F’“’de(iD —M+ie) |,

where as usuabl = y*(J,—ieA,). From Eq.(1) we can
write the effective action as

l . - -
WIA]=— Zf d*xF, F*"—i Trlog[(iD —M+ie€)].
2

Expanding in a formal way the logarithm we obtain

(—e)

\/V[A]=—%fd4xF FMV+|Zl K T (i6—M)TAT<

3

Using dimensional regularization, it is possible to find the
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In a similar way, the inverse operatorl/can be defined
with the usual boundary conditions on the fields as

d*p

LF (X):f d4y eip(xfy) 1
-o (2m)* p?+ie

The expressiofd) for the EA has a regular massless limit. In
fact, for smallp compared withM, the Mandelstam function
F(p%M?) behaves as

Fu(y). (8

M2
F(DZ;MZ)=—|09<T) +O(M?). (€)
-p

—le

From Eq.(4) we can see that the only contributions in the
massless limit are those coming, on one hand fromAhe
factor and, on the other hand, from the Mandelstam function.
Both logarithmic contributions equal, up to sign, so that they
cancel each other and we obtain

following expression up to quadratic terms in the photonwhere we have used the following notation:

field:
W[A] fd“ 1F’“’F ¢ AF#'F
= Xy =7 v v
4 E7 0 3(4m)? g
2¢? 2M?% 1 M?2
— F,U-V —_—— e — 2_
(41)? 30 6 O
XF(=0O;M?) [F,,{ +O(AY), (4)
whereA=N_—log(M%u?), N.=2/e— y+log 4= is the well

W[A]:fd“x —EFWF __°© FAT(O)F
4 K 3(4m)? r
+O(AY), (10
O
F(D)=N€—Iog(—2) (12
)2

to be understood as in the previous cases through the corre-
sponding Fourier transform, with tHe factor as shown in

Eqg. (9). We see that the massless limit of the EA is a non-
local but analytical functional in the gauge curvatufgs, .

The EA (4) allows us to derive in an exact fashion the
photon two-point one loop Green functions. This, in turn,
allows us to obtain for example the vacuum polarization. In
the massive case, the EA can be expanded as a power series

2 . -
known constant appearing in dimensional regularization, ani! P ?/M?, and also inA to obtain the well-known local

we have used the expression

F(=0;M?)F (%)

:fd“y P VE(PEMAF,(y)  (5)
(2m )4 -

with
2

1 p
F(p*>M?)=2+ Odtlog(l—Wt(l—t)). (6)

In the p>>4M? case, this function can be written as

4|\/|2 \/TMZ/pZ-i-l
N aM?/p?—1’

F(p%M2)=

()

Euler-Heisenberg Lagrangidf]

2

1
= — —FMmv — mv
Lot=—7F*"F o, 3(4W)2AF F
¢ F#'OF ,,+ ¢
15(47)2M?2 - 90(477)2|v|4
FIUE, )24 (P o i +O(A®
X1 ( w) T 7 wn) 2|+ IV (A®).
(12)

The EA(4) possesses a nonvanishing imaginary part com-
ing from the Mandelstam functiofv). This imaginary part
provides the pair production raf@]. In the massless case
(10) we get
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4 The EA for the gravitational fields that arises after integrat-
ImW[A]= Imf d™XLest ing out the real scalar matter fields is given by the following
expression in Lorentzian signature:

e? d*p , .
T d*x “y(ZW)4 (0,0uf0,iny=2[g,,,]=e"19u
xePCVF L (OF# () 0(p?),  (13) = f [dgp]e!Stewe 4]
where
= | [d¢]
0, x<0, f
0(x) =1 1/2, x=0, (14) Xexp—lzJ dx\gp(O+m?+ ER—i€) b
1, x>0.

. _ _ =(detO) 12, 19
The 1/2 value arises as a consequence of-the factor in ( ) (19

Eq. (9). For constant electric fields and in absence of magynere 0O, (m?)=[—0,—m?—&R(y) +i€e]8%(x,y) with
netic fields, the previous expression gives the probability pefo(y vy beiyng the covaryiant deltd®(x,y) =g~ %(x) 8(x,y).
unit time and unit volume that at least one electron-positronryys'we see that, following the analogy with flat space-time

pair is created by the electric field we could interpreZ[g,,] as the vacuum persistence ampli-
o2 tude. Thus we have
- - g2
pP=2 1M L 2471_E . (15

[ i
WIg,.,]= 5log detO(m?)= 5Trlog o(m?). (20
Let us compare this result with exact expression for the

imaginary part obtained by Schwing]: In this expression we have integrated the scalars but the
b gravitational field is treated clgssically. Accordingly, t'his.EA

p=2ImL _€ E > ie—mznwleE (16) must be F_;ld_ded to the classical action for the gravitational

eff 473 n=1n? ' field and it includes the quantum effects due to the matter

fields. In addition, Eq(19) is the generating functional of the
The dependence in the electric fields appears in botksreen functions containing scalar loops only and external
a gquadratic term and a nonanalytical contributiongravitational legs.
exp(—n?nw/eE). This latter term shows the importance of ~ Once one knows the EA at least in some limit, we have all
the nonperturbative effects in the particle production phethe information concerning the semiclassical gravitational
nomenor 1]. However, in the massless limit the nonanalyti- evolution in this limit. As we mentioned in the Introduction,
cal pieces disappear and the result exactly agrees with tlibe EA could have a nonvanishing imaginary part, which is
perturbative calculation in(15). Notice that in this case, related to the pair production probability. In fact, the prob-
gauge invariance and the dimension of the effective Laability P that at least one pair particle-antiparticle is created
grangian constraint the result to be quadratieand that by the gravitational field is given bj8]
is the reason why the second order perturbative calculation 4
gives rise to the exact result. Accordingly, in the masslessP:1—|<0,0U¢0,in>|gﬂfl—|e'W[g“”]|2:1—e_2'mW[g””]
limit, the perturbative calculation can provide, in some cases, (21
all the relevant information about the particle production
processes. In the gravitational case that we will study in thdor small values oMW[g,,,] we have
next sections, we will show that the same effect takes place.

P=2ImWg,,]. (22

Ill. THE EFFECTIVE ACTION FOR GRAVITY Concerning the applicability of this equation, let us com-

Let us consider a real scalar field in a curved space-tim@a'€ the EA method with the traditional Bogolyubov tech-

with an arbitrary nonminimal coupling to the curvature. TheMdue- The classical equations of motion for the scalar field
corresponding classical action is given by are

1 (O+m?+ £R) ¢=0. (23
S¢]=- Ef dxVgp(O+m*+ER)G,  (17) | _ |

Unlike flat space-time, there is no natural set of mode solu-
tions to this equation, rather we can expand its solutions in

where different ways, i.e.,

1 L
D¢=g””VMaV¢=J—gaﬂ(g“”@ﬂvdﬂ- (18) ¢=; (akuk+a§u:):; (autaju). (29
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Each of these expansions will give rise to different Fockrepresentation of the nonlocal form factors is provided by the
spaces when interpreting the Coefﬁcieamsal andak ’ng as use of the Riemann normal Coordlnat(else details of this

creation and annhilation operators. A problem arises wheAPProach will be given elsewhef#4]). Thus, taking normal

we try to identify which of these Fock spaces corresponds t§oordinates X*) with origin at y, the action of the form
our usual notion of particle. In general, this question carfactors is understood through the correspondig Fourier trans-
only be answered when we have a high degree of symmetrﬁprm

(conformal invariance or if the space-time is flat in the

asymptotic in and out regions. However, in most of the in-

teresting situations, these two conditions are not present. A R(y@log(;) R(Yo)

solution to this problem was suggested in a series of works

(see Ref[5], and references thergim which the notion of d*p

adiabatic vacuum is introduced. In the cosmological space- =f d*x 7
times in which we will be mainly interested, in order to (2)

define an adiabatic vacuum it is only required that asympéndR denotes generically the scalar curvature, the Ricci or
totically in the past and in the future the rate of expansio 9 y ’

. o ) ] nRiemann tensors. For the sake of simplicity we will study
vanishes, i.e.a/a—0 with a(t) the universe scale factor.

: i . ) . massless scalar particles propagating in a cosmological back-
Expressing this statement in a covariant way, it would b

. ) X €round, whose metric is that of Friedmann, Robertson, and
equivalent to require that the curvatures and all their covariyyalker (FRW):

ant derivatives vanish in the far past and future.
In the effective action approactz[g,,] can be inter- ( r2

: —p’—ie
e'PR(y,)log T R(x) (26

preted as vacuum persistence amplitude in principle only ds’=dt?—a(t)?
when the vacuum staté8,in) and|0,ou} can be defined in
regions with a temporal separatifh0]. When this does not 27
occur, it is not obvious what the interpretation of the effec-
tive action is. However, we will show in the following, that ' ;
the naive calculation of the effective action, in those situalS the universe scale factor. . .
tions in which an adiabatic vaccum can be defined althoug? The EA imaginary part comes from the logarithms in Eq.
the space-time is not asymptotically Minkowskian, yield the 25). Due to the homogenelty and isotropy Of.Space in the
same result for the particle production as the standar§€Sent case, the different curvatures appearing in that ex-
Bogolyubov technique. As a consequence, in these cases, \gEession only dePe”d on Fhe t'm,e coo@natg. Thus, we can
could try to interpreZ[g,,] as adiabatic vacuum persistence perform the spatial coordinates integration in E26) and
amplitude. generically we will obtain

The nonlocal effective action for gravity has been evalu-
ated in different works using several techniques. Thus in Ref. |mf d*x
[11] it was suggested what would be the form of the two-
point form factors. In Ref[12] the effective action is derived
by means of the so called covariant perturbation theory, valid o dPo 0 — pg— ie 0
in asymptotically flat manifolds, in Ref13] the same result —Imj dx (Z—W)epo R(Yo)log| ——— | R(X")
is obtained by means of the partial resummation of the K

2 +r2d 6%+ r2sink( 0)d¢2)
r

whereK determines the spatial curvature sidrb] anda(t)

d*p
™)

: —p’—ie
(2 4 eleR(yO)Iog T R(X)

Schwinger-DeWitt series. The result in all these cases up to =—7R(Yo) R(Yo)- (28)
second order in curvatures can be written in the massless
case as Let us momentarily consider a general metric, not necessar-

ily FRW. It is easy to see from the first term in this equation
1 that when the metric is static, i.e., only depending on spatial
@R/‘”)‘P(X)F(D)Rﬂmp(x) coordinates, the argument in the logarithm would only con-

tain 52— i . Therefore the imaginary part would be zero and
we would recover the well-known result of absence of par-
—@R””(X)F(D)R,W(X) ticle production in generalinhomogeneoys static back-
grounds.
FRW metrics Returning to the FRW metric we obtain
+O(R%, (25  from Eq.(28) the general expression

1
32

Wig,. 1= = [ dg

2

1/1 2
g—f) R(x)I(E)R(x)

where the form factof' () is given in Eq.(11). The local ImW[g,,]= %j d*x\/gl 1i80R’”"PR
finite pieces as usual depend on the different renormalization Tr
schemes and they are not relevant for our calculations, al- 1 1 2
though in general their coefficients are important to fix the —@R’”Rﬂﬁ 5(6—5) R?
form of the linear terms in the trace anomaly. The nonlocal

contributions are in any case unambiguous. An appropriate (29

HYAp

+O(R3).
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This result is only valid for homogeneous and isotropic metproblem of the initial singularity, it was assumed that when
rics. Comparing this result with the divergences, we see that—tp with tp the Planck time, the scale factor smoothly
both have the same form. Notice that Eg9) is a linear tends to a constant. This allows us to define an initial
combination ofwa)\p, wa, andR?, but we can choose a vacuum state in the problem. Again the out vacuum is cho-
different basis to write it. In particular, we can take the onesen as an adiabatic vacuum. Notice that in this case the

made out ofR?, C2 and E, whereC is the Weyl ~ Gauss-Bonnet term can also be neglected.

tensor ancE=R?2 AW—)\ZRZ +R?is the G’gﬁs”s_Bonnet term. Homogeneous anisotropic metricSonsider now a gen-
In this basis we have eral homogeneous but anisotropic metric of the Bianchi type
I:
2 2 2_ 1 42| ~2 2 2 iy
aiR;,\, TR, tagR =~ a;+ Eaz E+|2a;+ 7)C ds>=C?(n)[dy —gij(n)dxdxl], (33

where the three-metrig;; only depends on the time coordi-
R2. (30) nate. Since, as it happened with the FRW, the curvatures
only depend on the time coordinate, it is possible to explic-
ity perform the spatial coordinate integration in H6).
Therefore we obtain the same combination of curvature ten-

{X/Z?IIH;ZZ?UZ;IS;%Sth?rh'\élr'glt(;\gsé:zg;%t::li/ iggtgﬁgﬁéts sors as in Eq(29) for the EA imagi_nary part. In this case the
scalar curvature and tﬁe Gauss-Bonnet terms, but the integrn]etm.: 'S not confqrmal o the Minkowski one and accord-
of the latter also vanishes in the class of asy,mptotically fla%gly Itis not possible to drop_ the Weyl_ter_m from EGO).
metrics. Moreover, the asymptotic flatness is not a necces-he Gau_ss-Bonnet term continues vamshlng under the same
' : -assumptions about the metric. To summarize, the resulting

sary condition for the Gauss-Bon_net term to vanish af?d’ =T imaginary part can be written for this kind of metrics as
fact, examples can be found which are not asymptotically

—+

1 1
§a1+ §a2+ ag

In our casea; = —a,. On the other hand, the FRW metric is

flat, but still they have a zero Gauss-Bonnet term contribu- 1 1
tion (see below. To summarize, the imaginary part in these IMW[g,,]1= == | d*x\g|5=C,,,,C*"*"
m 327 120 "#7°
cases reduces to
1 1(1 )2 +1(1 g)ZRZ +O(R3) (34
—_— | 44 i 2 3 216 :
ImW[g,,] 327Jd x@z(6 £ RP+O(R3).

(3D This result agrees with that of Zel'dovich and Starobinski

. . o [19] (see also Ref.20]) obtained by using standard Bogoly-
Conformal couplingIn the conformal caseéE 1/6) it is ubov techniques. In fact, assumigg = &,[1+h;(7)], ne-

evidgnt from the abovg expression_ that the EA iI’naginaryglecting terms of orde©(h®) in Eq. (34) and imposing that
partis zero and accordingly there will be no particle prOdUC'asymptotically the anisotropies vanish, we recover their re-
tion. This is a well-known result and has been proved b '

Ysults.
studying the positive-energy modes of the corresponding From the above expressions we can extract another con-

K_Igzm-gotrﬁon equat|o![116]| for thetscalar field. The II:A pr(;t- sequence. Particle production only takes place when curva-
Vi SS ('jr.] i IS cdase.a stm;p € yvayé(; pr]?ve al general resull. 6 ig nonvanishing, i.e., in the presence of a genuine gravi-
adiation dominateéd universe&.oniormal INvarance IS a4ona| field and not merely by means of a coordinate

nolt:g\;avoglly;ase '%WE'Ch t?ﬁre 'i no particle pr?ductlorr: Inchange as it happens for an accelerated obs¢bjem the
a ackground. From (€ above arguments, We NavVyar case the creation could be considered as fictitious.

seen that tge only piece COﬂtI’IbL!'[Ing to the EA Imaginaryrperefore, for the boundary conditions in the space-time ge-
part'|s theR t.erm. If this term vam;heg, there V_VO%"d not be ometry that we mentioned before, the EA provides an invari-
particle creation. For a FRW metric witi=0 this implies 5+ criterium (independent of the observeto decide when
the following condition: particle production takes place.

0 2

H=—2H% (32) IV. SPECIFIC EXAMPLES WITH MINIMAL COUPLING
whereH =a/a is the Hubble parameter. The solution is sim-  In order to illustrate the previous results we will show
ply a(t)=A(t—to)? with A andt, arbitrary constants. In several examples in which the EA allows us to make physi-
fact taking traces in the Einstein equatiowgth the stress cal predictions. In some cases it will be possible to compare
tensor corresponding to a perfect flyidt is obvious thatR  these results with those obtained by means of the traditional
=0 impliesR=87G(3p—p) =0, with p andp the pressure Bogolyubov transformations. Exact results from the Bogoly-
and density of the fluid. Accordingly=3p, which is noth-  ubov transformation have been obtained for a very limited
ing but the state equation for a fluid of highly relativistic number of models in the literature.
particles. Therefore a radiation dominated universe is a Model 1 We will now consider &omplexscalar field and
stable solution of Einstein equations against pair emissiorthe FRW metric withK=0. It will be useful, in order to
This result was obtained in Refel6—18 by means of the compare with other results, to work with the new time coor-
Bogolyubov technique, where in order to circumvent thedinate defined by
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= Jta‘3(t’)dt’, (35)

which allows us to write the d’Alembertian operator acting

on time dependent functions as

Df(T)=$&T&Tf(T). (36)

First we consider the model proposed in Ref8]. The
scale factor is given by

a’(r)=aj+e”(a3—aj)(e”5+1)+b](e”+1) 2

(37

For 7—o(—x), a(7) smoothly tends to a constaaj(a,),

PHYSICAL REVIEW D 60 104045

It is possible to perform the integrals in E¢40) and(41) in
an explicit way, so that we can compare both results at the
analytical level. They yielexactlythe same result

1

5760mals®

Pea=PBoc™

where we have taken the limits=0 anda,— .
Model 2 The second model we will study is that proposed
in Ref.[22]. The scale factor is now given by
a*(r)=A?7%+B?, (44)
where A and B are arbitrary constants. In this case, space-

time is not asymptotically flat and therefore the Bogolyubov
calculation is based on the definition of adiabatic vacua.

i.e., it is possible to unambiguously define initial and final However, the Gauss-Bonnet contribution vanishes and thus

vacuum states. On the other haag, a,, s, andb are arbi-

we can use again E@1). The number of created pairs in the

trary parameters. Fa,>a, and using quantum mechanics k mode is given by

methods, it is possible to calculate the Bogolyubov coeffi-
cients and hence the number density of produced particles

[18]:

1

(Ny=——,

e4’Tsa1k— 1 (38)

where the number of created pairs per unit coordinate vol-

ume and unit trimomentum volume in tlkemode is related
to the Bogolyubov coefficients by means(®f,)=| 8|2 [5].

The relation betweefN,) and the pair production prob-
ability per unit coordinate volumpggg is given by this ex-
pression21]

d3k
psoe=f (ZW)3[i|09(1i<Nk>)]a (39)

where the+ sign is used for bosons and for fermions. In
the present mod€IN,) does not depend oa, nor b. Using
Eq. (39) we find for the probability density

d3k
Peoc= j ——log(1+(Ny))

(2m)®

(40)

fdk K | 1+ 1
= —lo —_—.
2.2 9 e4wsaik_1

On the other hand, the EA method provides from E4):

21 ! fd 5(7)R? 41
Pea~235 35— ra’(T)R(7) (41
with

~2

a a
R(7)=—12—5+6—. (42)
a a

(N =e 78%A (45)
Once again both methods yield the same results for the prob-
ability densities

7A3

e 46
360B6 7 (49

Peoc=Pea™

Since in Eq.(41) we have neglected higher order terms in
curvatures, we can conclude that in these two cases they do
not contribute to the EA imaginary part. As we found in the
QED case, here again the second order perturbative calcula-
tion is exact. To check this fact, we should calculate the
complete expression for the EA as we did in Sec. Il, how-
ever, the very same arguments used in that section suggest
that in the absence of a mass term, since in both cases there
is just one-dimensional parameter, it is not possible to build
any other term with the appropriate dimension.

V. SPECTRUM AND WKB APPROXIMATION

The traditional Bogolyubov method for particle produc-
tion gives information, not only on the total number of cre-
ated particles, but also on their energy distribution. However,
only in very specific cases, closed analytical expressions can
be written. As we have seen, the EA method provides a
closed expression for the total number of particles that is
obtained from the curvatures and, therefore, can be evaluated
for arbitrary scale factors in a very easy way. In this respect
the EA method is obviously more advantageous than the
Bogolyubov method. However, it is not obvious how to de-
rive the spectra in this formalism. Let us try to clarify this
issue with a simple example and compare our result with the
one obtained from the traditional method.

Consider the Klein-Gordon equation for a minimally
coupled massless complex scalar field

O¢=0. (47)

104045-6
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Introducing the FRW metri€27) with time coordinater and From the complementary point of view, given the number
K=0, we look for solutions by means of variable separationdensity of created particléN,), it is also possible to recon-
#(7,X)= x(7)e**. Hence the temporal equation can bestruct the scale factor evolution by inverting the previous

written as steps
2 6 2 ) dp =i 7'2 6
X H)kx=0 (48) a()R(7) =36 _.oaP log(1+(Np)e "P7| +O(v®)
dr? ’
4
. _9v f dppsm(p )e*'PT Lo
wherek?=kk. In the simple example we are going to con- 4 2w 2

sider, the scale factor is made of two step functions 4

_L ’ _ o 2 6

This result agrees with the calculation from E49).

Let us try to generalize the above results for arbitrary
scale factor evolution. In the above example, it can be shown
that the difference in the results using plane waves or a com-
plete set of solutions of the Klein-Gordon equatiodie°).
Therefore the former is a good approximation. Now we have

(NS =| ﬁk|2 sm2(2Tk Ji+v?). (50) to take into account the presence of the curvature. With that
purpose we take variable-frequency plane waves such that in
the vanishing curvature limit they tend to the usual plane

Expanding the right-hand side of E@9) using (50) up to  waves.

O(v* we find Let us consider the temporal part of the Klein-Gordon
equation(48). This is a harmonic-oscillator equation but with
a time-dependent frequenay(7) =ka?( 7). Changing to the

with v and T being arbitrary parameters. The Bogolyubov
coefficients provide the following value for the number of
created pairs per unit coordinate volume and unit trimomens=
tum volume in thek mode

4 ro
ProG= V_zf dkICsir?(2kT). (51 new time coordinatd »=a?(7)d, the equation can be writ-
8mJo ten as
The integrand gives the probability density per unit trimo- dx ady 5
mentum volume. On the other hand, the EA method gives A 23 a4y K0 (55

the following result from Eq(31):

In the limit in which the expansion rat'a is much smaller

Pea=2 IMw=4-— J dra8(r)R? than the frequency of the oscillatioksthe equation reduces
32m 72 to the flat space-time form. Therefore let us consider that
v4 1 limit and let us introduce a complete set of plane waves

32 - dT_[g(T T)-o8'(7+T)]2 (52  corresponding to the new time coordinaje

1 1
~___ 6 2
We have introduced a global 2 factor in the EA because now ~ PEA~23g 327-J dra*(m)R(7)
the field is complex. The spectrum can be obtained by intro-

ducing a complete set of plane waves 1 1
I8 comp P 22 5= | dmat(mRCny?

p z4——f drd7’ 1 : : /
EAT 32 72 23—65 dydy'a®(n)a*(n" )R(m)R(7')
= dp , 3 ; )
g ’ Na—ip(r—7")
Xf_m -2 (NR(na*(r)R(1")e y gi —ip(n=7"). (56
4
v f dpp2sin?(pT). (530  Changing again to the old coordinateve have
64

2

a @ - 2ikf a?(r")d7!
Comparingpgog With pga we find that both integrands Pea= QL dk f dr ;—zg € o
agree by identifyingo=2k. This is sensible and represents (57)
the energy conservation in the pair creation, sikds the
single particle energy anglis the energy of the gravitational where we have used E2). According to the above dis-
field oscillations producing particles. cussion, the introduction of the plane waves only makes
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TABLE |I. Number densities corresponding to the mo¢&T) with
s=2(a.u)!, a;=1, a,=500, and b=0. BOG denotes the

Bogolyubov method and EA the effective action. T
9o ¢(T)=kJ dr'a(r'), 62)
0
k(a.u.) (Nigos (NWea (Nwks
03 537104 4.15¢ 104 4.96<10°4 with boundary conditons/(—«)=1, B(«)=0. Putting this
0'4 4.3J>< 105 3.33>< 10°5 4I13>< 105 ansatz back into the equation of motion, we get
0.7 2.28<10°8 1.75<10°8 2.28x10°8 2a
1.0 1.22¢10°*  0.93x10 M 1.24x10 % ae ) — Bel (1) = —(-)[a(T)e-iw(ﬂ—ﬁ(r)eivf(f)],
1.2 797107 6.48<10°%  8.64x10° 1 a 63
1.3 6.44x 10715 5.91x 10" %° 7.76x10°1°
1.4 4.44x 10716 4.90<10°16 6.19x 1016

where the conditionve™ ¥+ Be'¥=0 is used(see Ref[23]
for detailg. The solution to first adiabatic order is given by

sense in the adiabatic limit and therefore this expression is - 4
valid only in the limit a/a<k. As in the step function ex- B(r)z—f dr'—e 27, (64)
ample, we have useg=2k. The pairs densityN,) can be 4
calculated in a very easy way by identifying E&7) with
Eqg. (39). Obviously from the equality of the integrals we
cannot obtain the equality of the integrands, however, the 3

. X . ) ; 1 (d%k
covariance and dimensionality of the integrands allows us to =— | —|B(—x)|? (65)

; . Pwke =75 1B :

constrain them. In fact, from the equality of Eq57) and T 4
(39 we know that the integrands differ at most in a function
f(p) such that/dpf(p)=0. Now let us assume that such From Egs.(64) and(65) we see that
function can be written aup to O(R ?)]

The probability density is given by

1
_ ) ~ pWKB:;I d%k| B(—)|?
f(p)=f dypdy' P 7)a( )@’y )F(n)F(7'), m
. 2
9 = (" dkamie f dro e 2k ar
8m3Jo a

whereF(7) andF(%’) are some appropriate functions. The

condition fdpf(p)=0 implies a 2

= dkfdr—ke‘Zikféaz(T')dT'
~ 22 a
f dna*(n)F(n)F(7)=0. (59 _ ,

_ 1 dk J d a 1 d —2ikffp?(")dr!

Since the integrand has to be a dimension-4 operator and a T o2 "a —2ia2 a-

scalar function then the only possibility satisfying that con-

dition is 1 d /[ a P
=—| dk f dro-| e e (66)

FE=aE, (60) 8w T\a

whereE is the Gauss-Bonnet term defined before, which is 4" 1€ 1ast step we have used integration by parts assuming
total derivative, andr is some arbitrary constant. However thata/a® vanishes forr— = [which is the same condition
we know that in a radiation dominated universe, whBre @s for the vanishing of the Gauss-Bonnet term contribution in
=0, the spectrum is identically zetdl,)=0 (see Refs[16—  Ed. (29)]. This condition is satisfied in the models we have
18]). This implies that the contribution from the Gauss- considered in the paper. Therefore we get
Bonnet term should also vanish. This fact allows us to fix the . Y 2
constante=0. As a consequence the result in E5j/) gives f dr(%—sa—4> o2k [3a%(r")dr’
a

1 0
. - . =— k
the correct spectrum up tO(R?) at least in the adiabatic =~ PWKE™ g 2 f 0 d

a
limit we are considering. In fact, as shown in Table | the (67)
results are in good agreement with the Bogolyubov method
especially for large values & which is valid again only in the adiabatic limit.

Since we have used an adiabatic approximation in the last In Table | some values of the number densities are shown
step, we can try to find which are the differences with respecfor the different methods. The results have been obtained
to the usual WKB approximation in Ref23]. In this from Egs.(57) and(67) for the model(37) by numeric inte-

method, the solutions of E¢48) are taken to be gration. Due to the strongly oscillating integrals, the results
. A can only be given for small momenta. Both methods give
x(7)=a(r)e "+ B(r)e ¥, (61)  similar results to those obtained with the Bogolyubov coef-
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ficients. Notice that, despite the fact that the WKB and EAmarkable since we have used a perturbative expression for
expression in Eqg57) and(67) are not identical, there is no the EA, whereas the Bogolyubov results are exact. This in-
contradiction in this. These results come from different ap-dicates that in some cases a perturbative calculation may
proximations. The WKB method comes from a derivativecontain all the relevant information about the particle pro-
expansion and is not covariant, whereas the EA is an expamtuction processes. In principle, the EA is defined for asymp-
sion in curvatures and covariance is imposed from the begirtotically flat manifolds, however, it is interesting to notice
ning. From Table I, we see that the contribution from thethat the naive extension to those manifolds in which adia-
(a/a?)? terms in Eqs(57) and (67) is always smaller than baticl vacua ﬁan behdefineld, properly :jeF)rf]Od(;J?feS the correct

—_ -3 results. Finally we have also compared the different spectra
the contribution froma/a” derived with the EA, Bogolyubov, and WKB techniques.

In principle the EA method can be extended to more gen-
eral metrics(not necessarily homogenegus a straightfor-

In this work we have shown how to use the nonlocal formward way. This fact could make it valuable in those areas in
of the gravitational EAup to O(R ?)] for the computation ~Which the Bogolyubov technique has been traditionally used.
of massless scalar particle production. For FRW back!n addition this method can also be applied to the production
grounds in which the expansion rate asymptotically vanishe®f higher spin particles such as Dirac and Weyl fermions,
it is shown that the particle production probabilities only gravitons, gravitinos, etc. Finally, in a recent wd@d] the
depend on the scalar curvature. As a consequence and kgevance of the nonlocal EA for particle creation has also
expected there is no particle creation in a radiation domibeen stressed from a different point of view based on the
nated universe. This is also the case for conformally couple@nergy-momentum tensor expectation values.
scalar fields. For anisotropic homogeneous metrics we reob-
tai_n the well-known expression of Zel’dovic_h and Starobin- ACKNOWLEDGMENTS
ski. We compare our results with those obtained by means of
the well-known Bogolyubov transformations. In the ex- A.L.M acknowledges support from SEUID-Royal Soci-
amples considered, the agreement between both methodséty. This work has been partially supported by Ministerio de
complete for the probability densities. This fact is quite re-Educacim y Ciencia(Spain CICYT (AEN96-1634.
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