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Abstract. This paper deals with the concept of structure function
in Reliability Theory. Complete lattices are considered in order
to model the space of performance levels for both system and
components, leading to a general concept of structure function.
Measurability with respect to the associate order tepology is alsc
assumed. ©On one hand, some basic concepts in c¢lassical Reliability
Theory are translated into this context, where a particular
measure has bheen defined over the space of components. On the
other hand, the idea of duality is analyzed in this context.
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1. INTRODUCTIGHN

Classical Reliability Theory develops probabilistic

properties of binary systems with binary components, where ocnly



two states are allowed: perfect functiocning and complete failure.
Such a systems are usually represented by their structure
functions, which assign the performance level of the sysatom -—-AQN
if it is failed, "1" if it ims functioning=- to each profile of
states for itz components -"o_" if component i is failed, a2 Lo if
compenent i is functioning-. In this way, the relationship between
the performance levels of components and performance ievel of the
system 1itself can be explained by a mapping #:{0,11">{0,1}, n
being the number of compcnents of the system (see, e.g., Barlow &
Pruschanl}. But as pointed out by many reliability practitioners,
compeonents and systems can in fact take intermediate state levels.
Performance of many real systems can not be explained just by

considering perfect functioning and absolute failure.

Some mathematical models for non-kbinary systems have been
proposed in the past. A first generalization tries to develop a
theory of finite multistate systems, where a finite and linearly
ordered set of performance levels is assumed (see, e.qg.,
El-Neweihi et al.? and Griffith?). A second generalization has
been introduced by some authors (see, e.q., Baxter"ﬁ, and Block &
savits®) by considering a continuum of different states between
both extreme performance 1levels, that is, by assuming a real
interval as the space of states for the gsystem and each component
{for example, the unit interval [0,1])- Their associate
"continuum" structure function will be in this case given by a

mapping ¢:[0,1]"+[0,1] (see alsc Montero ).



In this paper we consider a general complete lattice as the
basic structure of states, and an associate measure defined on
the Borel o-field generated by the order topology is also assumed.
The concept of dual structure function in then discussed within

this general framework.

2.- GENERAL STRUCTURE FUNCTIONS

It can ke assumed that the space of performance levels for
the system and its components must be in any case a partially
ordered set, that is, a pair (L,=2) given by a ncon-empty set L and
a binary relation = over L verifying reflexivity (aza ¥aeL), anti
symnetry (a=b if azb and b=a hold simultaneously) and transitivity
(axc if a=b and bzec hold for some bel). As usual, a>b means that
azb holds but not bra, and then it is understood that the level of
performance "a" is strictly higher than level "b%, But fow
properties can be developed if such a lattice is hot supposed to
ke at least complete. We shall therefore assume that for each
non—-empty subset McL, its supM element (supMzb YbeM and supM=a if
azh YbeM) and its infM element (infMs<b YbeM and infM=za 1if a=b
vbeM) exist in L. Being L complete, it is then assured that I is
also compact and it has a lowest level O=infL {complete failure)}
and a highest leve) 1=supl (perfect functioning). A general

approach to the idea of structure function must be based upon such



a basic structure of performace levels. Any complete lattice (L,z)

can be considered as a "general space" of performance levels.

Following Montero et al,.", any mapping ¢:13+LU defined over a
general space of performance levels (L,z) for each component and
another general space of performance levels {Ln,t] for the system
itself will be called "general structure function" {(GSF). If L =L,
such a general structure function is then called L=structure
function (LSF for short). The usual product lattice is then
associated to L%, in such a way that xs¥ helds for two x,yel” if
and only if x =y V¥i (x<y holds for two x,yel” if and only if x=y
but not y=x). Moreover, since L is compact, its product space L°

is assured to be -by Tychonoff theorem- alse compact (see, e.q.,

Willard®),
Accarding to classical kinary approaches (see, e.q., Barlow
and Prnschani}, we shall reatrict our study to "coherent®

structure functions ¢, that is, those structure functions being
monotonic (¢{x1,x2,...,xn}ﬁ¢[Y1.¥2;---,yn] holds whenever X =Y,
¥i) and with no irrelevant components. By an irrelevant component
wWe mean here a component i such that ¢[yj,x}=¢{zi,x] wxel”

Hyi,zieL, where {vi,x}={x1,...,x X ,...,xn}. Companent i

R

will be irrelevant in a given monotonic system ¢ if and only if
#(0,,x)=¢(1 ,x} vxeL". Any system which can be represented by a
GSF being wmeonotonic and with ne irrelevant alternatives will be

called “general coherent system".



The key point for this paper is te notice that structure
functions modeling real systems assume in fact the existence of an
appropriate measure on the initial space of components., This
associate measure reveals which statez in I® are really
observable, or how the structure function is really recognized.
Hence, two GSF ¢1 and ¢1 defined on the same measure space are
indistinguishable if they are identical almost everywhere with
respect o such a measure. If we consider the Borel g-fields B and
ﬂn generated by the natural order topology in lattices L and L.
both being obtained by considering the family of sets of the form
{¥/y<x} together with those of the form {¥/y>x) as a sub base
(see, a. g., Willarda], then we can assume without loss of
practical generality that our GSF ¢:1ﬂ+LD is measurable with
respect the product o-field (¢~ '(B)eo(E") VBeB _, where o(8") is
the minimum o-field containing the product topology E°). Hence,
the system must be always analyzed with respect to some fixed
measure u defined on o(8"). Moreover, it is well known that "being
identical almost everywhere" defines an equivalence relation on

the set of measurabkle Ffunctions.

Definition 1.- Let (L",s(B"},u) be a fixed measure space, L being
a general space of performance levels. An observable structure
function (OSF) is an equivalence class of measurable GSF being

indistinguishable between them.

Each OSF % can be represented by any of its elements ¢ed,



although we will usually try to define the most useful element as
its canonical element (perhaps the most simple analytical
mapping). Concepts and results relative to GSFP must be properly
transiated to the OSF context, analyzing the whole equivalence
¢lass. For example, a "ccherent" OSF must be an equivalence class

containing some coherent GSF, leading to the following definition.

Definition 2.- An OSF ¢ is said to be coherent if
i) there exists ¢cP being monotonic, and
ii) there is no irrelevant component for any given GSF

ded.
The following result represents a useful necessary condition:

Propositien 1.- If ¢ is a coherent observable structure function,
then

H{X / #(0 ,X)<P(1 ,x)} > O Vi
helds for any given monotonic ¢ed.
Proof: Obvicusly, this conditien means that if we can not find a
monotonic ¢, or it verifies

wix / ¢(0 ., x)<¢(1l ,x)} =0

for some compeonent i, then ¥ is not cocherent. In fact: if we
suppose the existence of such a meonotonic GSF ¢ed and such
component i, then the mapping ¢ defined by P{X)=¢ (0 ,x) vrel”
would be a monotonic GSF identical almost everywhere to ¢, since

P(X)=¢(0 ,x)=¢(0 ,y)=¢(y) holds whenever xsy. But then component i



is an irrelevant compcnent of the GSF g

®(0,,x)=¢(0 ,x}=p(l ,x) ¥x

3.- DUAL OBSERVABLE L-STRUCTURE FUNCTIONS

A certain duality appears in any lattice (L,z), since lattice
(L,s) will always be another lattice. However, {L,z} is not always
isomorphic to (L,=). But this isomorphism appears in practice very
often, since the set of performance levels are usually defined
acceording te a high internal duality which assures the existence
of a one-to-ane mapping &:(L,z)>(L,= being order-preserving
(d(a)=8(b) if and only if a=b). In this secticn we shall translate
the idea of duality from binary reliability theory to the context
of our observable structure functions, extending some results

obtained in Montero et al.®

In general, §(0)=1, 5(1)=0 and &(a)>8(b} if and only if a<b
held for any order-preserving isomorphism &. But it must be
pointed out that in general such an isomorphism needs not to be
unigque and may even not exist. In any case, the idea of dual

structure is behind such a dual isomorphism.

Example 1l.- Iet us consider the real unit interval [0,1].
Obvicusly, 51 such that & (x)=1-x Vvxe[0,1] and 62 such that

Ez(x}=l—x2 ¥Xe({0,1], are both one-tc-cne mappings being order



preserving.
The following definition was proposed in Montero et al.®

Definition 3.- Let us consider a ISF ¢. Supposed a one-to-one
mapping &:IsL being order preserving, its &-dual structure
function is given by
#° (%, %00 eu% ) = 8T IHA O]
where A:(L",o(B"))}«{L",0(8")) is the associated one-to-one mapping
such that
A yoensX J=(8(X, ), 000 8(% )) ¥xeL

Though order-preserving isomorphisms are not unique in
general and they may even not exist, it can be noticed that dual
structure can ke unique in some particular cases. For exampla, if
L is a linearly ordered set and a "series" system

¢J[xl,x ,...,xn]=min{xl,x2,..*,xn]

2
is given, its usual dual structure function is in all cases the
"parallel" structure
¢H(x1,x2,...,xn}=max[x1,xz,..‘,xn}
Indeed, parallel structure function is the &=dual structure
function of series structure for any given isomorphism & defined
in the linearly ordered set 1. of performance levels: since
y=max{xl,xz,...,xn} & E[y}=min(5{x1},E(xz],...,atxn}}
then we have that ¢S{x]=a-1[min(3{x1},...,E{xn}}]=max(xl,...,xn)

¥x€[0,1} holds for any order-preserving isomorphism & in L.



However, the property {¢6)5=¢ can not be assured in general.
But as shown in Montero et al.B, given & a one-to-one and order
preserving mapping, the mapping 4 is alse a measurable ocne-to-one
mapping. Hence, if ¢ is a measurable LSF, any 3-dual LSF ¢6 will
be alsc measurabkle. Furthermore, every 5-dual ISF ¢3 of a coherent
ILSF ¢ is assured tc be coherent (see Montero et al.%). When the
concept of duality and such duality closure theorem is going to be
translated into the context of observable L-structure functions,
we find out that the §-dual set ¢E={¢5f¢eﬁ} of a coherent
observable L-structure function & is not assured to be also
coherent, neither an equivalence class of measurabie and
indistinguishable L-structure functions, as it is shown in the

fellowing example.

Example 2.- Let us consider binary systems with two components
{that is, ¢:{D,1}24{0,1}}, and the preckakility measure P such that
P{{0,0)}=P{{0,1)}=P{(1,1)}=1/3. If we define &(a)=l-a ¥Yae(0,1), it
is clear that any twoc ISF 9 and ¢ such that P (x}=¢_(x) vx=(l1,0)
are identical almost everywhere. But if ¢1{1,ﬂ]=¢2[1,u], then ¢?
is not identical almost everywhere to ¢2, since

#7(0,2)=37"16,(1,0) 1% (4, (1,0) 1=¢° (0, 1)

with P{ (0,1} }>0.

The desired closure theocrem will appear when a "natural®

isomorphism & can be defined preserving the measure u associated



to (L",0(8")), in the sense that the measure of any Borel set is
equal to the measure of its image, that is:

M({B) = p{yel® / 3IxeB, y=A(x)} VBea (B") (1}

Clearly, this condition on & is equivalent to impose
HIX,¥] = {A[x,¥]) vx, yel’
on A. Mcreover, it is then c¢lear that such a measure u must be a
product measure (a more general concept of duality could have been
proposed by considering different one-to-one mappings for each
component) . In any case, our concept of dual observable structure
function can be properly considered only when such a cendition {1)
is verified; otherwise, the existence of a measure-preserving
isomorphism 1is not assured. Uniqueness of measure-preserving
isomcorphisms is neither true in general, but some general results

can be cbhbtained.

Proposition 2.- Let us consider a measure u defined on (L%, o (B"))
such that wu({0,0,...,0})=u({1,1,...,1}). Since 3(0)=1 for any
one-to-ohe mapping being order-preserving, it is clear that it can

not be simultaneocusly measure-preserving.

Example 3.- Let us c¢onsider systems with one component, with
I={0,1}% as the space of perfarmance levels, and the probability
measure P on (L,B) such that P{(i,j)}=1/4 v{i,j)e{0,1}°. Then the
mapping &  such that al{i,j}=[1—i,1—j] ¥(i,j), and the mapping 62

such that azti,j}z[l-j,l-i] w{i,j), are both one-to-one,

10



order-preserving and measure preserving.

Proposition 3.- Let us suppose that u(z,1]=0 for some z=1, and
that for any given =xeL”, x=#0, there exists yeL", ysx, such that
M[0,¥)>0. Then there is nc measure-preserving iscomeorphism in I.

Proof: Trivial since u[0,3(z))=0¢ in order to be measure

preserving, and therefore u[0,y)=0 ¥y=3({z)} must hold.

Theorem 1.~ Let us consider a complete linearly ordered set L, and
a o-finite product measure i associated to (L, o(8")). If there
exists a measure preserving isomorphism & in I, its associated A
is unique almost everywhere.

Proof: since u is o-finite, it is assured the existence of a

partiticon {An}

ney © T(F) of L' such that H(A )<= VneN. Let A_ be

fixed, and let us define
B = {xeL” / 3Ceo(B"), xeC, C open with (C)=0}
In any case,

Hi{A -B) = inf {u(A n{ v D)), {D ax} co (8") open sets}
n o . ep ¥ x xeb

because it is clear that for any given yeB and any given x#B there
exists an open set Dxeu[ﬂn], D sx, such that y#D_ (for example, if
X<y then xj{yj for some j, and {zjzj{yj} is an open set containing

x but not y). If we consider now an open cover {c} co (8"} with
xel."

xeC for each xel” and H{C1}=0 if xeB, a finite open sub cover can

be picked in such a way that
M

A} = u((ve, dra ) s pu{u (C . AA )+ E u(C nA) =
k=1 Tk xkiﬁ " quB k

11



=w(v (€ M) s u(( v C M)
!{kEB k xeB

Therefore u{An]=u{An—B} ¥n holds, n(Bnan}=0 ¥n also heolds, and

#(B)=L p(BnA )=0

1]

But the wvalue A({x) is unigque for any given x«¢B: if al and 52 are
two measure-preserving isomorphisms in I such that al{xjjﬂﬁztxjj
for some j, then it is clear that for any fixed set A
HiyeR A¥ 28, (x )} =
T uiYeR /Y 28, (x )} - uiyeA /& (x )<y 38 (x )}
Analogously,
H{YEEHKYJ{EZIKJ]} =
= u{yeA /¥y <8 (x,)) - HAYEA /8 (X )=y <8, (x,))
in such a way that
HYER /8, (x )<y =3,(X )} = u{yeh /& (x )=y <5 (x )} =0
Therefore,
MLy / 8 (% )<y <3 (x )} =
=HEMM{YEED / Eltleﬁyjﬂﬁz[xji} =0
and hence

L

-1
wiy / %>y >8 "(3,(x 1))
_1 -
Hly /8, (8, (x)))>y >x } =0
in contradiction with the fact that xe¢B: since
RUY/Y (=X ) = p{y/Y =8 (X))} = w{y/y =§,(x,}} =0
it is clear that

ty / 8715, (x))<y <813, (x )}

12



would be an cpen set with zero measure containing the element x«B.

It must be noticed that the set B defined in the proof of
last theorem is obvicusly an open set: if xeB, there exists C,
x€C, such that p(C)=0, and then for any given element yeC we have
that u(Cc)=0, in such a way that CcB holds; hence, the complement
L"-B is closed. Moreover, it is clear that our linearly ordered
set L is Hausdorff (there exist two disjoint open sets U »x and
vyay for any pailr of elements x+y) and, being L compact, L is also
a T -space (if A and B are twc disjoint closed sets, there exist
two disjoint open sets UsA and VsB). And it is also known that
every product of compact and Hausdorff spaces (L" in our case) is

a T, -space (see e.g. Willarda}.

The feilowing result justifies the uniqueness of a "natural®
duality when dealing with random continuous systems of independent

components:

Theorem 2.- Let us consider a closed interval L of the compact
real line Ru{-w,®}, and let us assume that a proper proaduct
probability measure is defined in the L, being absoclutely
continuous with density function £(x,).f(x,})...E(x_)>0 ¥xeL'. Then
it is defined a unigue measure-preserving isomorphism.

Preoof: trivial since the distribution function associated to f is

continucus and strictly increasing in IL.
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Example 4.- Let us consider the real unit hypercube [0,1]" with
its associate Borel o-field and the Uniform distribution P on

[0,1]", characterized by

Piy,z] = (2,-y,) Vvy,zel', zzy
1=1

then such a "natural" isomorphism in L=[0,1] is unigque and it is
diven by &(a)=1-a ¥Ya. Indeed, s=since P[O,x]=P[A(x) ,A4{1)] must be
verified due to condition (3), then

n n
mx, =qA-8(x}) vxel,
1=1 1=1

Therefore, just taking &(a)=l-a Vae€[0,1] we have the unique
order-preserving and measure-preserving isomorphism. This example
shows how the standard dual continuum structure function in most
papers
¢a{x1,x2,...,xn} = 14(l-x,1-%_,...,1-X_) Vxe{0,1]"
was really the unique dual structure which can be defined when the
space of states is observed accoerding the Lebesgque measure (¢ has
been defined from the real unit hypercube into the real unit

interval, and distance between points in the real line is usually

measured according such a Lebesque measure).

In order to get a general duality closure theorem for

coherent COSF we need the fellowing lemma.

Lemma 1.- Let us assume the existence of an isomorphism & in the
general space of states L being measure-preserving. Then the dual
set of any OSF is also an OSF.

Proof: Let ¢ be a fixed LSF. Then it is encugh to prove that the

1d



set of LSF being identical almost everywhere to ¢E 1s just the
dual set of all LSF being identical almost everywhere to ¢.

Indeed, since
Hix / @(x)=¢ (X))} = w(x / 8 [p(x)1=8 '[#(x)]} =
= u{8(y) / 87 [e(a(¥))I=8 T [O(A (Y]} =
= waty / P =6 ) ) = wty / ° (v)=6% ()}
and
wix / o(x)=¢°(x)) = iy / ¢ 3 m=0(n))
where ¢ °(y}=8[p(A”'(y))], then the result is immediate. Hence,
dual L-structure functicns of any two identical almost everywhere
L-structure functions are alsc identical almost everywhere, and if
¢5 is identical almost everywhere to $a, then ¢ and ¢ are also

identical almost everywhere.

Theorem 3.- let 3 be a measure-preserving isomorphism defined on

the general space of states (L",¢(8"),u), and let & be a coherent

é

O5F. Then ¢ is al=so a ccherent DSF.

3

Froof; From the previous lemma, it is a=zeuyred that & iz an

observable structure function. The result follows from the fact

8

that any 5-dual ISF ¢~ of a coherent LSF ¢ is always a coherent

LSF {see Montero et al.a].

Therefore, only in case of dealing with a one-to-one mapping
being order-preserving and measure-preserving it makes sense to

consider the dual system.
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4.- FINAL COMMENTS

This paper on observable structure functions has been devoted
mainly to the problem of duality. As in classical reliability
theory, the concept of dual structure function will be useful in
analyzing systems where components are subject to two kinds of
failure. This is the case in most safety systemsi. For example, if
we consider a control flood of twe independent sluices in a rivar,
we find that each sluice can respond at a level X, to a command to
close and at a level ¥ to a command to open (we can assume that
both x ¥, €L, being L a 1linearly ordered set with a natural
order-preserving isomorphism § between the degrees of response to
each command). If we want to close the flood, it is clear that the
system can be represented by a series structure function depending
on the wvalues X, and X7 put if we want to opan the flood, the
system will be represented by a parallel structure function
depending on the values Yy, and y . Then it will be very useful
that both failure to close and failure to open can be analyzed
using the same structure function (one is the dual structure of

the other, no matter the particular isomorphism & on L).

In any case, it 1is eclear that the concept of structure
function proposed in this paper is too general for most practical
situations. It seems a must to develop in deephess intermediate

generalized models between binary systems and our GSF. Discrete

16



systems and continuum systems have been studied in the past, but
we must also develop concepts and properties for "usual®" structure
functions (USF) rp:L“—)Ln with L,=L, L being an arbitrary linearly
ordered set. Another important case is that one in which the
system can be modeled according to "multivalued" usual structure
functions (MUSF}, that is, those systems that can be described by
a mapping q!r:L“-;Lﬂ, where LD=L]‘ (k<n) and L is a linearly ordered
set. If our measure u defined on the space of states is a
probability measure P, a reliability function R,
R{a)=P{xeL"/¢p{x)za} VaeL , can be defined in order to know the
prokability distribution of the performance of these USF or MUSF
systems. First results (some general reliability bounds for USF

and MUSF) can be found in Montero et al.®
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