
axioms

Article

Reduction of Homogeneous Pseudo-Kähler
Structures by One-Dimensional Fibers

José Luis Carmona Jiménez * and Marco Castrillón López

Departamento de Álgebra, Geometría y Topología, Facultad de Matemáticas, Universidad Complutense
de Madrid, 28040 Madrid, Spain; mcastri@mat.ucm.es
* Correspondence: jcarmo03@ucm.es

Received: 18 June 2020; Accepted: 30 July 2020; Published: 1 August 2020
����������
�������

Abstract: We study the reduction procedure applied to pseudo-Kähler manifolds by a one
dimensional Lie group acting by isometries and preserving the complex tensor. We endow the
quotient manifold with an almost contact metric structure. We use this fact to connect pseudo-Kähler
homogeneous structures with almost contact metric homogeneous structures. This relation will have
consequences in the class of the almost contact manifold. Indeed, if we choose a pseudo-Kähler
homogeneous structure of linear type, then the reduced, almost contact homogeneous structure is of
linear type and the reduced manifold is of type C5 ⊕ C6 ⊕ C12 of Chinea-González classification.

Keywords: Ambrose–Singer connections; almost contact metric manifolds; homogeneous manifolds;
homogeneous structures; pseudo-Kähler manifolds; pseudo-Riemannian metrics

1. Introduction

First, Ambrose and Singer [1] gave a tensorial approach to study homogeneous Riemannian
manifolds by the so-called homogeneous structure S. Later, Kiričenko [2] extended this approach
to homogeneous Riemannian manifolds with additional geometric structures. Furthermore,
references [3–5] decomposed the space of tensors S in cases of the additional geometry being purely
Riemannian, Kähler or almost contact metric, respectively.

Nowadays, the application of homogeneous structures is a main tool in the investigation
of homogeneous manifolds; see [3,5], among others. Moreover, homogeneous manifolds are a
central object for many mathematical models of physical theories (for example, linear degenerate
homogeneous structures are related to homogeneous plane waves; cf. [6]). This is specially relevant
when the space is also equipped with additional geometry, such as contact or Kähler. Nevertheless,
the scare knowledge about the relationships between homogeneous structures when there is a map
between homogeneous manifolds is remarkable. An example of this is the reduction procedure of
homogeneous structures, which was first introduced in [7], wherein, in particular, the authors reduced
pseudo-Riemannian almost contact homogeneous structures to pseudo-Riemannian, almost-Hermitian
homogeneous structures.

In this paper, we examine the reduction procedure of a pseudo-Kähler homogeneous manifold to
almost contact metric homogeneous manifolds by one dimensional fibers. We show that the almost
contact metric manifold is of type C5 ⊕ C6 ⊕ C7 ⊕ C8 ⊕ C9 ⊕ C10 ⊕ C12 of Chinea-González classification
(cf. [8]).

Some of the most important cases of homogeneous structures are those ones of linear
type, in which the dimension of the class grows linearly with the dimension of the manifold;
see ([5] Chapter 5). Linear classes always provide, in the different geometries with which they have
been studied, interesting results, from the characterization of negative constant curvature (cf. [3]
Theorem 5.2) in Riemannian manifolds, to other surprising facts in other geometries (see [9] for a
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survey). In our work, we show that if the Kähler manifold has a homogeneous structure of linear type,
then the reduced homogeneous structure is of linear type. Furthermore, as the homogeneous structures
of almost contact metric manifolds are related with the covariant derivative of the fundamental 2-form
associated to it, we prove that the reduced manifold by a homogeneous linear structure is of type
C5 ⊕ C6 ⊕ C12 of Chinea-González classification (cf. [8]). Besides that, if the one-dimensional Lie group
is proportional to the sum of the two vectors that defines each projection to the subspaces K2 ⊕K4 of
the linear homogeneous structure, then the manifold is Sasakian. Moreover, the reduced manifold is
cosymplectic if the sum is zero.

2. Preliminaries

2.1. Homogeneous Structures

For a general non-metric framework of homogeneous structures, see [10]. Here, we will focus
on the well known notion of pseudo-Riemannian Homogeneous structures that we summarize as
follows (see [5] and the references therein for a detailed description). Let (M, g) be a connected
pseudo-Riemannian manifold and let ∇ be the Levi–Civita connection. A (1, 2)-tensor field S in M is
said to be a pseudo-Riemannian homogeneous structure if and only if it satisfies

∇̃R = 0, ∇̃g = 0, ∇̃S = 0, (1)

where ∇̃ = ∇− S and R is the curvature form of ∇. A manifold (M, g) is reductive and locally
homogeneous if and only if it is endowed with a pseudo-Riemannian homogeneous structure (cf. [11]).
It is sometimes more convenient to work with (0, 3)-tensors instead of (1, 2)-tensors with the relation

(Sp)XYZ = g((Sp)XY, Z), X, Y, Z ∈ V.

For the sake of simplicity, both tensor fields will be denoted the same. If we fix a point p ∈ M and
we consider V = Tp M, the condition ∇̃g = 0 implies that Sp belongs to the space

S(V) = {S ∈ ⊗3V : SXYZ = −SXZY}.

The decomposition of this space into irreducible components under the action of the orthogonal
group provides a set of classes such that Sp belongs to the same class for every choice of the point p.
If the manifold (M, g) is also equipped with an additional geometric structure defined by a tensor K,
then the condition ∇̃K = 0 must be included in (1) to characterize the reductive local homogeneity
of the manifold under (local) transformations preserving both g and K. We apply this situation to
two instances:

• Let (M, g, J) be an almost pseudo-Hermitian manifold, that is, a pseudo-Riemannian manifold
equipped with a (1, 1)-tensor J that is a point-wise isometry. A pseudo-Hermitian homogeneous
structure S is a (1, 2)-tensor satisfying (1) and ∇̃J = 0. If in addition (M, g, J) is Kähler (that is,
∇J = 0), and we fix a point p ∈ M, V = Tp M, the linear space of tensors to be considered is

K(V) = {S ∈ ⊗3V : SXYZ = −SXZY, SXJYJZ = SXYZ},

obtained by implementing the condition ∇̃J = −SJ = 0 to S(V). It is proven in [4,9] that the
space K(V) of pseudo-Kähler homogeneous structures decomposes in four mutually orthogonal
and irreducible U(p, q)-submodules

K(V) = K1(V)⊕K2(V)⊕K3(V)⊕K4(V). (2)

Their expressions can be found in the Appendix A.
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• Let (M, g, φ, ξ, η) be an almost contact metric manifold, that is (for example, see [12]),
a pseudo-Riemannian manifold (M, g) equipped with a (1, 1)-tensor φ and a vector field ξ

(the 1-form η being its dual with respect to g) such that

φ2 = −id + η ⊗ ξ, g(φ(X), φ(Y)) = g(X, Y)− εη(X)η(Y)

where ε = g(ξ, ξ). Then, S is a almost contact metric homogeneous structure if and only if (1) is
satisfied together with ∇̃φ = 0. This implies that also ∇̃ξ = 0 and ∇̃η = 0. The equation ∇̃φ = 0
is equivalent to ∇φ = [S, φ], but this condition cannot be easily implemented into the definition
of the pointwise space of tensors S(V), V = Tp M, since the Levi–Civita connection depends on
the metric and the first derivatives of the metric. However, we can still split this space of linear
tensors under the group U(r, s)× 1. Recall that this group characterizes the canonical almost
metric structure of R2n+1 defined by ξ0 = e2n+1 and

φ0 =

(
J0 0
0 0

)
,

J0 being the standard complex structure of R2n. That is, U(r, s)× 1 is the subgroup of O(2r + 1, 2s)
or O(2r, 2s + 1) (depending on the value of ε) stabilizing both ξ0 and φ0. Then, S(V) decomposes
into two mutually orthogonal U(r, s)× 1 submodules,

S(V) = S+(V)⊕ S−(V).

with

S+(V) = {S ∈ S(V) : SXφYφZ = SXYZ},
S−(V) = {S ∈ S(V) : SXφYφZ + SXYZ = η(Y)SXξZ + η(Z)SXYξ}.

Additionally, these two submodules decompose in mutually orthogonal and irreducible
U(p, q)× 1-submodules

S+(V) = CS1(V)⊕ · · · ⊕ CS6(V) (3)

S−(V) = C1(V)⊕ · · · ⊕ C12(V) (4)

where the first classification is given in ([5] Prop. 4.2.10) and the second in [8]. See the Appendix A
for their expressions. Cosymplectic manifolds are an important subcase of almost contact metric
manifolds. They are characterized by the additional condition ∇φ = 0. Hence, a homogeneous
structure S belongs to S+(V) if and only if the manifold is cosymplectic.

2.2. Reduction of a Homogeneous Structure

Let π : M̄ −→ M be a (left) G-principal bundle, where M̄ is a pseudo-Riemannian manifold with
metric ḡ, and the fibers are non-degenerate with respect to ḡ. Suppose that G acts on M̄ by isometries.

Given p̄, we consider Vp̄ M̄ the vertical subspace at p̄ and Hp̄ M̄ its orthogonal complement with
respect to ḡ. As G acts by isometries, the decomposition

Tp̄ M̄ = Vp̄ M̄⊕ Hp̄ M̄

is a principal G-connection. This connection ω is sometimes called a mechanical connection for its
relevant role in some problems in geometric mechanics (see [13]). Furthermore, there is a unique
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pseudo-Riemannian metric g in M such that the restriction π∗ : Hp̄ M̄ −→ Tπ( p̄)M is an isometry for
every p̄ ∈ M̄. Obviously, the metric g satisfies

g(X, Y) ◦ π = ḡ(XH , YH) for all X, Y ∈ X(M),

where XH and YH denote the horizontal lift of X and Y with respect to the mechanical connection.
Let ∇̄ be the Levi–Civita connection and S̄ = ∇̄ − ˜̄∇ be a pseudo-Riemannian homogeneous

structure on M̄, invariant under the action of the structure group G. Assume that there is 1-form β

taking values in End(h) such that ˜̄∇ω = β ·ω.

Then, by ([7] Theorem 3.7), the reduced tensor field S on M defined by

SXY = π∗(S̄XH YH), X, Y ∈ X(M),

is a pseudo-Riemannian homogeneous structure of (M, g).

3. Fibrations of Pseudo-Hermitian over Almost Contact Metric Manifolds

Let θ be a nowhere-vanishing vector field in M̄. Around any point p̄ ∈ M̄ there exists a coordinate
system (x1, ..., xm), m = dimM̄, in a neighborhood diffeomorphic to [0, 1]m such that any integral curve
of θ is given by x1 = const, . . . , xm−1 = const. The vector field is said to be regular if the domains
can be always chosen such that any orbit of θ intersects them at most once. For regular vector fields,
the orbit space M is a smooth manifold and the projection π : M̄ −→ M a submersion (cf. [14]).
Furthermore, a regular vector field is said to be strictly regular if all the orbits are diffeomorphic. If θ

is a complete, strictly regular vector field, the one-parametric group G generated by θ (G = R or S1)
acts freely on M̄, and π : M̄ −→ M is a G-principal bundle. If we further assume that M̄ is equipped
with a pseudo-Riemannian metric ḡ such that ḡ(θ, θ) = ±1 (that is, θ is non-degenerate so that we can
normalize it) and ḡ is invariant by the group G, then the 1-form

ω(v) = εḡ(θ, v), v ∈ TM̄,

where ε = sign(ḡ(θ, θ)) is a G-principal connection form in π : M̄ −→ M, a mechanical connection,
as we mentioned above.

Theorem 1. Let (M̄, ḡ, J̄) be an almost pseudo-Hermitian manifold and let θ ∈ X(M̄) be a complete strictly
regular unit vector field (ε = ḡ(θ, θ) = ±1). We consider that both ḡ and J̄ are invariant with respect to
the uniparametric group G defined by θ. Then, the orbit space (M, g, φ, ξ, η) is an almost contact metric
manifold, with

g(X, Y) = ḡ(XH , YH), φX = π∗( J̄XH), ξ = π∗( J̄θ), (5)

for any X, Y ∈ TM, where XH stands for the horizontal lift with respect to the mechanical connection, and η is
the dual form of ξ; that is, η(·) = εg(·, ξ).

Proof. As θ acts by preserving the metric and the complex structure tensor, we have that the tensors
given in (5) are well defined. In addition, J̄θ, being orthogonal to θ, is horizontal with respect to the
mechanical connection and g(ξ, ξ) = ḡ( J̄θ, J̄θ) = ḡ(θ, θ) = ε. We have to check that

φ2 = −Id + η ⊗ ξ, g(φX, φY) = g(X, Y)− εη(X)η(Y). (6)
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If X ∈ ξ⊥ = {Y ∈ TM : g(Y, ξ) = 0} = ker η, then ḡ(XH , J̄θ) = 0, which means that J̄(XH) is an
horizontal vector. Then,

(φ ◦ φ)(X) = φ(π∗( J̄XH))

= π∗((π∗( J̄XH))H) = π∗( J̄2XH) = −X.

On the other hand, φ(ξ) = π∗( J̄(ξH)) = π∗( J̄ J̄θ) = −π∗(θ) = 0, so that both sides of

(φ ◦ φ)(ξ) = −ξ + η(ξ)ξ

vanish. The first equation of (6) is satisfied.
With respect to the second equation, given X ∈ TM, we denote by X′ the orthogonal part of X

with respect to ξ. Note that, since ḡ( J̄(X′H), θ) = −ḡ(X′H , J̄θ) = g(X′, ξ) = 0, the vector J̄(X′H) is
horizontal. Then

g(φX, φY) = g(φ(X′ + η(X)ξ), φ(Y′ + η(Y)ξ)) =

= g(φ(X′), φ(Y′)) = ḡ( J̄(X′H), J̄(Y′H))

= ḡ(X′H , Y′H) = g(X′, Y′)

= g(X, Y)− εη(X)η(Y),

and the proof is complete.

Remark 1. On top of the structure on the reduced manifold provided in the previous result, it is easy to check
that the Levi–Civita connection on M associated with g is characterized by the condition

∇XY = π∗(∇̄XH YH), X, Y ∈ X(M).

Associated with an almost contact metric manifold (M, g, φ, ξ, η), the canonical 2-form Φ is
defined to be Φ(X, Y) = g(φ(X), Y). Since

(∇̃XΦ)(Y, Z) = g((∇̃Xφ)Y, Z), X, Y, Z ∈ X(M),

for any metric connection ∇̃, the manifold M is cosymplectic if and only if ∇Φ = 0.
For non-cosymplectic manifolds, if we choose a point p ∈ M, V = Tp M, the 3-tensor (∇Φ)p belongs
to the space

S−(V) = {α ∈ S(V) : αXYZ = −αXφYφZ + η(Y)αXξZ + η(Z)αXYξ}.

defined above. The classification of almost contact metric manifold in a category other than
cosymplectic (Sasaki, trans-Sasaki, Kenmotsu, etc.; see [8]) is equivalent to ∇Φ belonging to different
combinations of the irreducible subspaces C1, . . . , C12 in which S−(V) decomposes. These subspaces
can be organized in a less coarse classification

S−(V) = S−,1(V) + S−,0(V),

as

S−,1(V) = C1 ⊕ C2 ⊕ C3 ⊕ C4 ⊕ C11,

S−,0(V) = C5 ⊕ C6 ⊕ C7 ⊕ C8 ⊕ C9 ⊕ C10 ⊕ C12,
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and defined by the expressions

S−,1(V) = {α ∈ S−(V) : αXξZ = 0} = {α ∈ S−(V) : αXYZ = −αXφYφZ},
S−,0(V) = {α ∈ S−(V) : αXYZ = η(Y)αXξZ + η(Z)αXYξ}.

Proposition 1. In the conditions of Theorem 1, if (M̄, ḡ, J̄) is a Kähler manifold, then the quotient space
(M, g, φ, ξ, η) is an almost contact manifold such that ∇Φ belongs to the class S−,0(V) = C5 ⊕ C6 ⊕ C7 ⊕
C8 ⊕ C9 ⊕ C10 ⊕ C12.

Proof. For X, Y, Z ∈ X(M) we have

(∇Xφ)Y = ∇X(φY)− φ(∇XY) = π∗(∇̄XH (φY)H)− π∗( J̄(∇XY)H)

= π∗(∇̄XH J(Y′)H)− π∗( J̄(∇̄XH YH − εḡ(∇̄XH YH , θ)θ))

= π∗
(
∇̄XH JYH − ε∇̄XH J̄(ḡ(YH , J̄θ) J̄θ)

− J̄(∇̄XH YH) + εḡ(∇̄XH YH , θ) J̄θ)
)

.

Since ∇̄J = 0, the first and third terms of the last step above vanish and we get

(∇Xφ)Y = π∗(εXH(ḡ(YH , J̄θ))θ) + εḡ(YH , J̄θ)∇̄XH θ + εḡ(∇̄XH J̄YH , θ) J̄θ)

= η(Y)π∗(∇̄XH θ) + εḡ(∇̄XH YH , θ)ξ

so that
g((∇Xφ)Y, Z) = η(Y)ḡ(∇̄XH θ, ZH) + η(Z)ḡ(∇̄XH YH , θ), (7)

for any vector field X(M). In particular,

g((∇Xφ)ξ, Z) = η(ξ)ḡ(∇̄XH θ, ZH) + η(Z)ḡ(∇̄XH ξH , θ)

= ḡ(∇̄XH θ, ZH) + η(Z)ḡ(∇̄XH J̄θ, θ),

and

g((∇Xφ)Y, ξ) = η(Y)ḡ(∇̄XH θ, ξH) + η(ξ)ḡ(∇̄XH YH , θ)

= η(Y)ḡ(∇̄XH θ, J̄θ) + ḡ(∇̄XH YH , θ)

= −η(Y)ḡ(∇̄XH J̄θ, θ) + ḡ(∇̄XH YH , θ).

Then

η(Y)g((∇Xφ)ξ, Z) + η(Z)g((∇Xφ)Y, ξ) = η(Y)ḡ(∇̄XH θ, ZH) + η(Z)ḡ(∇̄XH YH , θ).

Through a comparison with (7) we finally get

g((∇Xφ)Y, Z) = η(Y)g((∇Xφ)ξ, Z) + η(Z)g((∇Xφ)Y, ξ);

that is, ∇Φ belongs to S−,0(V).

4. Reduction of Homogeneous Structures

We now assume that the pseudo-Hermitian manifold (M̄, ḡ, J̄) is equipped with a homogeneous
structure tensor S̄, which in addition is invariant under the action of the group G.
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Theorem 2. Let (M̄, ḡ, J̄) be an almost pseudo-Kähler manifold equipped with an almost pseudo-Kähler
homogeneous structure S̄ that is invariant under the group flow G of a complete strictly regular unit vector field
θ. Suppose that ˜̄∇θ = β⊗ θ

where ˜̄∇ = ∇̄ − S̄ and β is a 1-form on M. Then, the tensor field S on the orbit space M = M̄/G defined by

SXY = π∗(S̄XH YH)

is a homogeneous, almost contact metric structure on (M, g, φ, ξ, η) belonging to the class S+(V)⊕ S−,0(V).
Furthermore, the components S+ ∈ S+(V) and S−,0 ∈ S−,0(V) of S are

(S+)XYZ = SXφYφZ

(S−,0)XYZ = η(Y)SXξZ + η(Z)SXYξ ,

respectively.

Proof. Since the condition ˜̄∇θ = β⊗ θ is equivalent to ˜̄∇ω = β ·ω, we are working in the conditions
explained in Section 2.2 so that S is a pseudo-Riemannian homogeneous structure. To show that S is
an almost contact metric homogeneous structure, we have to prove that ∇̃φ = 0, where ∇̃ = ∇− S.
Let X, Y ∈ X(M) be two vector fields,

ω( ˜̄∇XH YH) = XH
(

ω(YH)
)
− ( ˜̄∇XH ω)(YH) = −β(XH)ω(YH) = 0

so that ˜̄∇XH YH is horizontal. Then ˜̄∇XH YH projects to ∇̃XY. Following the same steps in Proposition 1,
we get

g((∇̃Xφ)Y, Z) = η(Y)ḡ( ˜̄∇XH θ, ZH) + η(Z)ḡ( ˜̄∇XH YH , θ)

which implies that ∇̃φ = 0, while again taking into consideration the fact that ˜̄∇XH YH is horizontal.
Now, we decompose Y = Y′ + η(Y)ξ, Z = Z′ + η(Z)ξ and we get

SXYZ = S̄XHYH ZH

= S̄XH(Y′)H(Z′)H + η(Y)S̄XH J̄θ(Z′)H + η(Z)S̄XH(Y′)H J̄θ

= S̄XH(Y′)H(Z′)H + η(Y)S̄XH J̄θZH + η(Z)S̄XHYH J̄θ .

Since S̄ is a pseudo-Kähler homogeneous structure ,

SXYZ = S̄XH J̄(Y′)H J̄(Z′)H + η(Y)S̄XH J̄θZH + η(Z)S̄XHYH J̄θ

= SXφYφZ + η(Y)SXξZ + η(Z)SXYξ ,

which implies that S ∈ S+(V)⊕ S−,0(V). Finally, it is a matter of direct checking that S+ and S−,0 in
the statement satisfy S+ ∈ S+(V) and S−,0 ∈ S−,0(V).

Theorem 3. Let (M̄, ḡ, J̄) be a pseudo-Kähler manifold equipped with a pseudo-Kähler homogeneous structure
S̄ invariant under the flow group G of a complete strictly regular unit vector field θ. Assume that S̄ belongs
to the class K2(V̄) + K4(V̄), parametrized by G-invariant vector fields χ2 and χ4. Then, the component
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(S−,0) ∈ S−,0(V) of the reduced homogeneous almost-contact metric structure S of the almost contact metric
manifold (M = M̄/G, g, φ, ξ, η) belongs to C5(V)⊕ C6(V)⊕ C12(V) with projections

(S−,0)(5)(X, Y, Z) = εω(χ) (η(Y)g(X, φZ)− η(Z)g(X, φY))

(S−,0)(6)(X, Y, Z) = εη(π∗χ) (η(Z)g(X, Y)− η(Y)g(X, Z))

(S−,0)(12)(X, Y, Z) = εη(X) (η(Y)g(Z, π∗χ)− η(Z)g(Y, π∗χ))

for X, Y, Z ∈ V, where χ = χ2 + χ4.

Proof. In the expression

(S−,0)XYZ = η(Y)SXξZ + η(Z)SXYξ = η(Y)S̄XH J̄θZH + η(Z)S̄XHYH J̄θ

of the component S−,0(V) of S, we apply that S̄ ∈ K2(V̄) +K4(V̄), defined by vector fields χ2 and χ4

(see Theorem A1), and we have

(S−,0)XYZ = η(Y)
(

ḡ(XH , J̄θ)ḡ(ZH , χ)− ḡ(XH , ZH)ḡ( J̄θ, χ)

+ ḡ(XH , J̄2θ)ḡ( J̄ZH , χ)− ḡ(XH , J̄ZH)ḡ( J̄2θ, χ)

−2ḡ( J̄2θ, ZH)ḡ( J̄XH , χ̂)
)

+ η(Z)
(

ḡ(XH , YH)ḡ( J̄θ, χ)− ḡ(XH , J̄θ)ḡ(YH , χ)

+ ḡ(XH , J̄YH)ḡ( J̄2θ, χ)− ḡ(XH , J̄2θ)ḡ( J̄YH , χ)

−2ḡ( J̄YH , J̄θ)ḡ( J̄XH , χ̂)
)

,

where χ = χ2 + χ4, χ̂ = χ2 − χ4. As ḡ(XH , θ) = 0 we get

(S−,0)XYZ = η(Y) (εη(X)g(Z, π∗χ)− εη(π∗χ)g(X, Z) + εg(X, φZ)ω(χ))

+ η(Z) (εη(π∗χ)g(X, Y)− εη(X)g(Y, π∗χ)− εg(X, φY)ω(χ))

= εω(χ) (η(Y)g(X, φZ)− η(Z)g(x, φY))

+ εη(π∗χ) (η(Z)g(X, Y)− η(Y)g(X, Z))

+ εη(X) (η(Y)g(Z, π∗χ)− η(Z)g(Y, π∗φ)) .

One can easily check from expression given in the Theorem A3 that first, second and third lines of
the last equality belong to C5(V), C6(V) and C12(V) respectively.

Recall that the Ambrose–Singer condition ∇̃φ = 0 is equivalent to ∇φ = [S, φ] = [S−, φ]. Hence

(∇XΦ)(Y, Z) = g((∇Xφ)Y, Z) = g((S−)X(φY)− φ((S−)XY), Z)

= (S−)XφYZ + (S−)XYφZ.

If in addition S− belongs to S−,0(V), then

(∇XΦ)(Y, Z) = η(φY)(S−)XξZ + ηZ(S−)XφYξ + η(Y)(S−)XξφZ + ηφZ(S−)XYξ

= η(Z)(S−)XφYξ + η(Y)(S−)XξφZ. (8)
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Proposition 2. Under the conditions of Theorem 3, the covariant derivative∇Φ of the fundamental form of the
almost-contact metric manifold (M, g, φ, ξ, η) belongs to C5(V)⊕ C6(V)⊕ C12(V) with components

((∇XΦ)(5))(Y, Z) = εη(π∗χ) (η(Z)g(X, φY)− η(Y)g(X, φZ))

((∇XΦ)(6))(Y, Z) = εω(χ) (η(Z)g(X, Y)− η(Y)g(X, Z))

((∇XΦ)(12))(Y, Z) = εη(X) (η(Y)g(φZ, π∗χ)− η(Z)g(φY, π∗χ))

for X, Y, Z ∈ X(M), where χ = χ2 + χ4.
Moreover, the manifold (M, g, φ, ξ, η) is cosymplectic if and only if χ = 0.

Proof. From Theorem 2, the part S− of the reduced homogeneous structure S in S−(V) belongs to
S−,0(V) and we can apply (8). By means of a straightforward computation, one can show that the
components (S−)(5), (S−)(6) and (S−)(12) provide the expressions (∇XΦ)(6), (∇XΦ)(5) and (∇XΦ)(12)
in the statement, which belong to C6(V), C5(V) and C12(V) respectively.

Finally, the three components of ∇Φ vanish if and only if π∗χ = 0 and ω(χ) = 0, that is,
χ = 0.

Corollary 1. Let (M̄, ḡ, J̄) be a pseudo- Kähler manifold equipped with a pseudo-Kähler homogeneous structure
of the class K2 +K4 defined by vector fields χ2 and χ4. Suppose that χ = χ2 + χ4 is a complete strictly regular
vector field, and let G be its flow group. Then the orbit manifold (M = M̄/G, g, φ, ξ, η) is Sasakian.

Proof. The vector fields χ2 and χ4 satisfy ˜̄∇χ2 = ˜̄∇χ4 = 0 (cf. [9]) so that χ = χ2 + χ4 satisfies the
conditions of Theorem 2. From Proposition 2, since π∗χ = 0, we have that ∇Φ belongs to the class C6,
which is equivalent to being Sasakian ([8]).

Theorem 4. Let (M̄, ḡ, J̄) be a pseudo-Kähler manifold equipped with a pseudo-Kähler homogeneous structure
S̄ invariant under the flow group G of a complete strictly regular unit vector field θ. Assume that S̄ belongs
to the class K2(V̄) + K4(V̄), parametrized by G-invariant vector fields χ2 and χ4. Then, the component
(S+) ∈ S+(V) of the reduced homogeneous almost-contact metric structure S of the almost contact metric
manifold (M = M̄/G, g, φ, ξ, η) belongs to CS2(V)⊕ CS4(V)⊕ CS6(V), and its expression is

(S+)(X, Y, Z) = g(X, Y)g(Z, ρ)− εη(X)η(Y)g(Z, ρ)− g(X, Z)g(Y, ρ)

+ εη(X)η(Z)g(Y, ρ) + g(X, φY)g(φZ, ρ)− g(X, φZ)g(φY, ρ)

− 2g(φY, Z)g(φX, ρ̂) + 2εη(X)ω(χ̂)g(φY, Z),

for X, Y, Z ∈ V, where χ = χ2 + χ4, χ̂ = χ2 − χ4 and ρ = π∗χ− η(π∗χ)ξ, ρ̂ = π∗χ̂− η(π∗χ̂)ξ.

Proof. In the expression,

(S+)XYZ = SXφYφZ = S̄XJ̄Y′H J̄Z′H = S̄XY′Z′

of the component S+(V) of S, we apply the fact that S̄ ∈ K2(V̄) +K4(V̄), defined by vector fields χ2

and χ4 (see Theorem A1), and we have

(S+)XYZ = ḡ(XH , Y′H)ḡ(Z′H , π∗χ)− ḡ(XH , Z′H)ḡ(Y′H , π∗χ)

+ ḡ(XH , J̄Y′H)ḡ( J̄Z′H , π∗χ)− ḡ(XH , J̄Z′H)ḡ( J̄Y′H , π∗χ)

− 2ḡ( J̄Y′H , Z′H)ḡ( J̄XH , π∗χ̂)

= g(X, Y′)g(Z′, π∗χ)− g(X, Z′)g(Y′, π∗χ)

+ g(X, φY)g(φZ, π∗χ)− g(X, φZ)g(φY, π∗χ)

− 2g(φY, Z′) (g(φX, π∗χ̂)− εη(X)ω(χ̂)) .
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We use the fact that g(Z′, π∗χi) = g(Z, ρi), g(φY, π∗χi) = g(φY, ρi), g(φY, Z′) = g(φY, Z) and
we get

(S+)XYZ = g(X, Y′)g(Z, ρ)− g(X, Z′)g(Y, ρ)

+ g(X, φY)g(φZ, ρ)− g(X, φZ)g(φY, ρ)

− 2g(φY, Z)g(φX, ρ̂) + 2εη(X)ω(χ̂)g(φY, Z).

Finally, taking into account that g(X, Y′) = g(X′, Y), g(X, Z′) = g(X′, Z), X′ = X − η(X)ξ,
we get the given expression.

Corollary 2. Let (M̄, ḡ, J̄) be a pseudo-Kähler manifold equipped with a pseudo-Kähler homogeneous structure
S̄ invariant under the flow group G of a complete strictly regular unit vector field θ. Assume that S̄ belongs
to the class K2(V̄) +K4(V̄). Then the reduced homogeneous almost-contact metric structure S of the almost
contact metric manifold (M, g, φ, ξ, η) is of linear type.

Proof. This result is a consequence of Theorems 3 and 4.

5. Conclusions

Since Ambrose–Singer [1] to the present, homogeneous structure tensors have been a main
object in the study of the homogeneous manifolds with very interesting applications to other fields
in differential geometry and theoretical physics, for example, those derived from linear structures.
This paper is a contribution in those two lines of work:

• We showed a reduction procedure by one dimensional fibers between almost pseudo-Hermitian
manifolds to almost contact metric manifolds of general type in the sense of Chinea-González
(cf. [8]).

• We applied this fibration result to the case of homogeneous structures. In this context we got
a reduction result between pseudo-Kähler homogeneous structures to almost contact metric
homogeneous structures. Moreover, the reduced manifold lies in C5⊕C6⊕C7⊕C8⊕C9⊕C10⊕C12

of the Chinea-González classification (cf. [8]).
• We proved that the reduction procedure sends pseudo-Kähler homogeneous structures of linear

type to almost contact metric homogeneous structures of linear type. Indeed, we showed the
explicit expressions of the reduced homogeneous structure and gave a characterization of the
reduced manifold being cosymplectic and Sasakian.

• The study of homogeneous structures of linear type is connected with models of singular plane
waves in general relativity (see [15] for the real case and [16] for the pseudo-Kähler setting
explored in this work). The models associated with the particular instances that arose from our
results, along with some other examples, will be the topic of future research.

Furthermore, we can conclude once more that homogeneous structures have an important and
restrictive influence on the geometric structures of the manifold (for example, being xosymplectic or
Sasakian). In our opinion, that makes homogeneous structures a fruitful main tool in the study of
homogeneous manifolds.
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Appendix A. Expressions of Homogeneous Structures

We now give the explicit expressions of the classes given in (2)–(4) and their corresponding
classification theorems.

Theorem A1 ([4]). If m ≥ 6, the space K(V) is decomposed into mutually orthogonal and irreducible
U(p, q)-submodules as

K(V) = K1(V)⊕K2(V)⊕K3(V)⊕K4(V), (A1)

where

K1(V) = {S ∈ K(V) : SXYZ =
1
2
(
SYZX + SZXY + SJYJZX + SJZXJY

)
,

c12(S) = 0},
K2(V) = {S ∈ K(V) : SXYZ = 〈X, Y〉χ2(Z)− 〈X, Z〉χ2(Y) + 〈X, JY〉χ2(JZ)

− 〈X, JZ〉χ2(JY)− 2〈JY, Z〉χ2(JX), χ2 ∈ V∗},

K3(V) = {S ∈ K(V) : SXYZ = −1
2
(
SYZX + SZXY + SJYJZX + SJZXJY

)
,

c12(S) = 0},
K4(V) = {S ∈ K(V) : SXYZ = 〈X, Y〉χ4(Z)− 〈X, Z〉χ4(Y) + 〈X, JY〉χ4(JZ)

− 〈X, JZ〉χ4(JY)− 2〈JY, Z〉χ4(JX), χ4 ∈ V∗}

and

c12(S)(Z) =
m

∑
i=1

(
SeieiZ

)
,

for an orthonormal basis {e1, . . . , em}.

Theorem A2 ([5]). If m ≥ 7, the space S+(V) decomposes into irreducible and mutually orthogonal U(p, q)×
{1}-submodules as

S+(V) = CS1(V)⊕ CS2(V)⊕ CS3(V)⊕ CS4(V)⊕ CS5(V)⊕ CS6(V)

where

CS1(V) = {S ∈ S+(V) : SXYZ =
1
2
(
SYZX + SZXY + SJYJZX + SJZXJY

)
,

c12(S) = 0},
CS2(V) = {S ∈ S+(V) : SXYZ = 〈X, Y〉ψ2(Z)− εη(X)η(Y)ψ2(Z)− 〈X, Z〉ψ2(Y)

+ εη(X)η(Z)ψ2(Y) + 〈X, φY〉ψ2(φZ)− 〈X, φZ〉ψ2(φY)

− 2〈φY, Z〉ψ2(φX), ψ2 ∈ V̂∗},

CS3(V) = {S ∈ S+(V) : SXYZ = −1
2
(
SYZX + SZXY + SJYJZX + SJZXJY

)
,

c12(S) = 0},
CS4(V) = {S ∈ S+(V) : SXYZ = 〈X, Y〉ψ4(Z)− εη(X)η(Y)ψ4(Z)− 〈X, Z〉ψ4(Y)

+ εη(X)η(Z)ψ4(Y) + 〈X, φY〉ψ4(φZ)− 〈X, φZ〉ψ4(φY)

+ 2〈φY, Z〉ψ4(φX), ψ4 ∈ V̂∗},
CS5(V) = {S ∈ S+(V) : SXYZ = αη(X)g(Y, φZ), α ∈ R},
CS6(V) = {S ∈ S+(V) : c2φ3(ξ) = 0},
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and

c12(S)(Z) =
m−1

∑
i=1

SeieiZ, c2φ3(S)(Z) =
m−1

∑
i=1

SZeiφei ,

for V̂ the orthogonal complement to ξ, an orthonormal basis {e1, . . . , em−1} of V̂ and ε = g(ξ, ξ).

Theorem A3 ([8]). If m ≥ 7, the space S−(V) decomposes into irreducible and mutually orthogonal U(p, q)×
{1}-submodules as

S−(V) = C1(V)⊕ · · · ⊕ C12(V)

where

C1(V) = {S ∈ S−(V) : SXXY = SXYξ = 0},
C2(V) = {S ∈ S−(V) : S

X, Y, Z
SXYZ = 0, SXYξ = 0},

C3(V) = {S ∈ S−(V) : SXYZ − SφXφYZ = 0, c12(S) = 0},
C4(V) = {S ∈ S−(V) : SXYZ = 〈X, Y〉µ4(Z)− εη(X)η(Y)µ4(Z)− 〈X, Z〉µ4(Y)

+ εη(X)η(Z)µ4(Y)− 〈X, φY〉µ4(φZ) + 〈X, φZ〉µ4(φY), µ4 ∈ V̂∗},
C5(V) = {S ∈ S−(V) : SXYZ = βε (η(Y)g(X, φZ)− η(Z)g(X, φY)) , β ∈ R},
C6(V) = {S ∈ S−(V) : SXYZ = γε (η(Y)g(X, Z)− η(Z)g(X, Y)) , γ ∈ R},
C7(V) = {S ∈ S−(V) : SXYZ = η(Z)SYXξ − η(Y)SφXφZξ , c12(S)(ξ) = 0},
C8(V) = {S ∈ S−(V) : SXYZ = −η(Z)SYXξ − η(Y)SφXφZξ , c1φ2(S)(ξ) = 0},
C9(V) = {S ∈ S−(V) : SXYZ = η(Z)SYXξ + η(Y)SφXφZξ},
C10(V) = {S ∈ S−(V) : SXYZ = −η(Z)SYXξ + η(Y)SφXφZξ},
C11(V) = {S ∈ S−(V) : SXYZ = −η(X)SξφYφZ},
C12(V) = {S ∈ S−(V) : SXYZ = εη(X) (η(Y)µ12(Z)− η(Z)µ12(Y)) , µ12 ∈ V̂∗},

and

c12(S)(Z) =
m−1

∑
i=1

SeieiZ, c1φ2(S)(Z) =
m−1

∑
i=1

SeiφeiZ,

for V̂ the orthogonal complement to ξ, an orthonormal basis {e1, . . . , em−1} of V̂ and ε = g(ξ, ξ).
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2. Kiričenko, V.F. On homogeneous Riemannian spaces with an invariant structure tensor. Sov. Math. Dokl.
1980, 21, 734–737.

3. Tricerri, F.; Tricerri, G.; Vanhecke, L. Homogeneous Structures on Riemannian Manifolds, 1st ed.; Lon. Math. Soc.
Lecture Notes Series 83; Cambridge University Press: London, UK, 1983.

4. Abbena, E.; Garbiero, S. Almost hermitian homogeneous structures. Proc. Edinb. Math. Soc. 1988, 31, 375–395.
[CrossRef]

5. Calvaruso, G.; Castrillón López, M. Pseudo-Riemannian Homogeneous Structures, 1st ed.; Developments in
Mathematics 59; Springer: New York, NY, USA, 2019.

6. Castrillón López, M.; Luján, I. Homogeneous structures of linear type on ε-Kähler and ε- quaternion Kähler
manifolds Rev. Mat. Iberoam. 2017, 33, 139–168. [CrossRef]

7. Castrillón López, M.; Luján, I. Reduction of homogeneous Riemannian structures. Proc. Edinh. Math. Soc.
2015, 58, 81–106. [CrossRef]

http://dx.doi.org/10.1215/S0012-7094-58-02560-2
http://dx.doi.org/10.1017/S0013091500006775
http://dx.doi.org/10.4171/RMI/930
http://dx.doi.org/10.1017/S0013091513000679


Axioms 2020, 9, 94 13 of 13

8. Chinea, D.; González, C. A Classification of Almost Contact Metric Manifolds. Annali di Matematica Pura
ed Applicata 1990, 156, 15–36. [CrossRef]

9. Batat, W.; Gadea, P.; Oubiña, J.A. Homogeneous pseudo-Riemannian structures of linear type. J. Geom. Phys.
2011, 60, 745–764. [CrossRef]

10. Carmona Jiménez, J.L.; Castrillón López, M. The Ambrose-Singer theorem for general homogeneous spaces
with applications to symplectic geometry. arXiv 2020, unpublished. Available online: https://arxiv.org/abs/
2001.06254 (accessed on 17 January 2020).

11. Luján. I. Reductive locally homogeneous pseudo-Riemannian manifolds and Ambrose–Singer connections.
Diff. Geom. Appl. 2015, 41, 65–90. [CrossRef]

12. Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds, 1st ed.; Progress in Mathematics 203;
Birkhäuser: Basel, Switzerland, 2002.

13. Marsden, J.E.; Ostrowski, J. Symmetries in motion: Geometric foundations of motion control.
Nonlinear Sci. Today 1996, 1–21.

14. Palais, R. A Global Formulation of the Lie Theory of Transformation Groups; Mem. Amer. Math. Soc. 22; American
Mathematical Society: Providence, RI, USA, 1957.

15. Meessen, P. Homogeneous Lorentzian spaces admitting a homogeneous structure of type T1 + T2.
J. Geom. Phys. 2006, 56, 754–761. [CrossRef]

16. Castrillón López, M.; Luján, I. Strongly degenerate homogeneous pseudo-Kähler structures of linear type
and complex plane waves. J. Geom. Phys. 2013, 73, 1–19. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF01766972
http://dx.doi.org/10.1016/j.geomphys.2010.12.006
https://arxiv.org/abs/2001.06254
https://arxiv.org/abs/2001.06254
http://dx.doi.org/10.1016/j.difgeo.2015.04.007
http://dx.doi.org/10.1016/j.geomphys.2005.04.016
http://dx.doi.org/10.1016/j.geomphys.2013.04.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Homogeneous Structures
	Reduction of a Homogeneous Structure

	Fibrations of Pseudo-Hermitian over Almost Contact Metric Manifolds
	Reduction of Homogeneous Structures
	Conclusions
	Expressions of Homogeneous Structures
	References

