
Desarrollo de una Estrategia de Migración Automática
de JSP a JSF

Development of an Automated Migration Strategy from
JSP to JSF

Trabajo de Fin de Máster
Curso 2019�2020

Autor
Santiago Bermúdez Fortes

Director
Manuel Montenegro Montes

Máster en Ingeniería Informática

Facultad de Informática

Universidad Complutense de Madrid

Desarrollo de una Estrategia de Migración

Automática de JSP a JSF

Development of an Automated Migration

Strategy from JSP to JSF

Trabajo de Fin de Máster en Ingeniería Informática

Departamento de Sistemas Informáticos y Computación

Autor
Santiago Bermúdez Fortes

Director
Manuel Montenegro Montes

Convocatoria: Junio 2020

Cali�cación: 7

Máster en Ingeniería Informática

Facultad de Informática

Universidad Complutense de Madrid

15 de julio de 2020

Autorización de difusión

El abajo �rmante, matriculado en el Máster en Ingeniería en Informática de la Facultad
de Informática, autoriza a la Universidad Complutense de Madrid (UCM) a difundir y
utilizar con �nes académicos, no comerciales y mencionando expresamente a su autor el
presente Trabajo Fin de Máster: �Desarrollo de una Estrategia de Migración Automática
de JSP a JSF�, realizado durante el curso académico 2019-2020 bajo la dirección de Manuel
Montenegro Montes en el Departamento de Sistemas Informáticos y Computación, y a la
Biblioteca de la UCM a depositarlo en el Archivo Institucional E-Prints Complutense con
el objeto de incrementar la difusión, uso e impacto del trabajo en Internet y garantizar su
preservación y acceso a largo plazo.

Santiago Bermúdez Fortes

15 de julio de 2020

v

Agradecimientos

A mis padres, Miguel y Maricarmen, por darme la vida, su tiempo, amor, cariño y
su ejemplo para motivarme a ser una persona de bien. También agradezco a Sebastián y
Paloma, mis hermanos menores que me han soportado y apoyado siempre.

A mis tíos Antonio y Mónica, por aceptarme en su casa y apoyarme en esta nueva
etapa, y Fran, quien se terminó convirtiendo en un hermano menor.

A Itestra, por la oportunidad y el reto que fue el trabajo, sobre todo la oportunidad
de hacer mi TFM con ellos.

Al doctor Manuel Montenegro Montes por su guía durante todo el proyecto.

A mis amigos de la UCM que me han acompañado en esta aventura: Gabriel, Gonzalo,
John y Javier.

A los amigos que tengo por el mundo: Andrea, Simone, Peter, Ander, José Eduardo,
Eduardo, José Manuel, Alberto, Dudley, Pamela, Martín, Sergio, Brandon, Luis Ernesto,
Ricardo, Christian, Iago, Francia, Omaira, Daniela, Estefanía, Melisa, Rodrigo y Tane.

vii

Resumen

Desarrollo de una Estrategia de Migración Automática de JSP
a JSF

Al desarrollar una aplicación web es muy conveniente usar un framework, ya que reduce
el tiempo para implementar nuevas funcionalidades. Un desarrollo web puede llegar a
involucrar muchas tecnologías, y un framework puede ayudar a reducir el conocimiento
necesario al facilitar la integración de todas esas tecnologías para que funcionen bien juntas.

JSP (JavaServer Pages) está desarrollado principalmente para crear páginas web diná-
micas para pequeñas aplicaciones. Sin embargo, es muy difícil usarlo para aplicaciones a
gran escala, ya que JSP es muy �exible, por lo que permite poner lógica correspondiente
al modelo de negocio o a un controlador en la vista. Esto provoca que cuanto más crece
una aplicación web desarrollada en JSP, más difícil es mantenerla. Por otro lado, JSF (Ja-
vaServer Faces) es un sistema basado en componentes que es muy útil para proyectos a
gran escala. Este framework utiliza la arquitectura MVC (Modelo, Vista, Controlador) y,
por lo tanto, incluso las interfaces de usuario y sus componentes son reutilizables en una
página web en particular.

La principal diferencia entre JSP y JSF radica en la forma en que operan. En JSP,
un componente tiene un impacto mínimo en otro componente y la comunicación entre
componentes depende del programador y no de un framework. Por lo tanto, es posible
crear vistas sin tener que escribir el modelo, por lo que la aplicación puede ser más �exible.
Pero cuando se trata de aplicaciones web complejas, es difícil mantener la estructura del
desarrollo a diferencia de cuando se desarrollan aplicaciones más pequeñas. Puede haber
duplicación de código, la estructura puede complicarse y el mantenimiento suele ser difícil.
Es por eso que las grandes empresas evitan JSP para aplicaciones grandes ya que podría
haber muchos errores aun después de la integración. Por otro lado, JSF se puede dividir en
seis fases de desarrollo (restaurar vista, aplicar valores de solicitud, validación del proceso,
actualizar los valores del modelo, solicitud de invocación, respuesta de procesamiento) que
le dan una estructura rígida al framework. La integración de componentes es perfecta ya
que es una tecnología basada en componentes y diseñada para aplicaciones a gran escala.

El código se puede encontrar en: https://github.com/sanbefo/jsp-to-jsf

Palabras clave

Java, JSP, JSF, Framework, Transformación de Código, Análisis Sintáctico, HTML

ix

https://github.com/sanbefo/jsp-to-jsf

Abstract

Development of an Automated Migration Strategy from JSP
to JSF

In migrating a web development project the best thing to use is a framework, because it
reduces the time for implementing new functionalities. A web development project includes
many technologies. A framework can help reduce the knowledge needed by making it easier
to integrate all those technologies so they work well together.

JSP (JavaServer Pages) is primarily developed to create dynamic web pages for small
applications. However, it is very di�cult to use it for large-scale applications, since JSP is
very �exible, allowing it to put logic corresponding to the business model or a controller in
view. This means that the more a web application developed in JSP grows, the more di�-
cult it is to maintain it. On the other hand, JSF (JavaServer Faces) is a component-based
system that is very useful for large-scale projects. This framework uses the MVC (Model,
View, Controller) architecture and therefore even user interfaces and their components are
reusable on a particular web page.

The main di�erence between JSP and JSF lies in the way they operate. In JSP, one
component has minimal impact on the other component. Therefore, it is possible to create
views without having to write the model, so the application can be more �exible. But,
when it comes to complex web applications, it is di�cult to maintain the structure while
developing small-scale applications. There can be code duplication, the structure can be-
come a mess and maintenance can be di�cult. That is why big companies avoid JSP for
large-scale applications and there could be a lot of bugs and errors after integration. On
the other hand, JSF can be divided into six phases of development (Restore View, Apply
Request Values, Process Validation, Update Model Values, Invoke Application, Render
Response) that allow the framework to grow smoothly. The integration of components is
seamless as it is a component-based technology and designed for large-scale applications.

The code can be found in: https://github.com/sanbefo/jsp-to-jsf

Keywords

Java, JSP, JSF, Framework, Transformation, Parser, HTML

xi

https://github.com/sanbefo/jsp-to-jsf

Table of Contents

1. Introduction 1

1.1. Motivation . 1

1.2. Objectives . 2

1.3. Workplan . 2

1.4. Document Structure . 2

2. State of the Art 5

2.1. HTML Background . 5

2.1.1. HTML Best Practices . 6

2.2. HTTP . 9

2.2.1. HTTP Errors . 10

2.2.2. HTTP Verbs . 10

2.2.3. HTTPS . 11

2.3. Web Development . 11

2.3.1. Web 1.0 . 12

2.3.2. Web 2.0 . 12

2.3.3. Web 3.0 . 15

2.3.4. Progressive Web Apps . 16

2.4. Parsers . 18

2.5. Java . 19

2.5.1. Java Virtual Machine . 20

2.5.2. Syntax . 20

2.5.3. Java Servlets . 20

2.6. JavaServer Pages . 22

2.6.1. JSP Elements . 24

2.6.2. JSP Standard Actions . 26

2.6.3. JSP Standard Tag Library . 31

2.7. JavaServer Faces . 31

2.7.1. JSF Lifecycle Overview . 32

2.7.2. JSF Tags . 33

2.7.3. Component Tree . 35

2.7.4. Conversion and Validation . 38

2.8. Migrating from Legacy Systems . 39

2.8.1. Problems with Migrating Legacy Applications 39

xiii

2.8.2. Steps to Follow for Migrating Legacy Systems 39

3. Solution Design 41

3.1. Architecture of the Proposed Solution . 41

3.2. Setbacks . 48

3.3. Used Packages . 49

3.3.1. java.io . 49

3.3.2. org.json.simple . 49

3.3.3. Jsoup . 50

3.3.4. java.util . 50

3.3.5. commons.cli . 50

4. Tests and Results 51

4.1. How To Use the System . 51

4.2. Results . 54

4.2.1. Select . 54

4.2.2. Div and Radio Buttons . 54

4.2.3. Inputs . 54

4.2.4. Images and Buttons . 55

4.2.5. Tables . 55

4.2.6. If/Choose . 56

4.2.7. foreach . 56

4.2.8. Google Skeleton . 57

5. Conclusions and Future Work 61

5.1. Conclusions . 61

5.2. Future Work . 62

References 63

List of Figures

2.1. title and meta example . 7

2.2. Loading scripts DOM speed comparison . 9

2.3. HTTP request-response cycle . 9

2.4. Asymmetric Key Encription . 11

2.5. History of Web . 12

2.6. Web 1.0 . 13

2.7. The traditional model vs AJAX . 14

2.8. Classic web application model (Synchronous) 15

2.9. AJAX web application model (Asynchronous) 15

2.10. Application Silos . 16

2.11. Capabilities vs. reach of native apps, web app, and progressive web apps . . 17

2.12. Types of Parsers . 18

2.13. Servlet Architecture . 21

2.14. How the server creates the page with JSP 23

2.15. Hello World in JSP with Google Chrome . 24

2.16. Forward display example code . 27

2.17. Include display example code . 28

2.18. useBean, getProperty and setProperty result 29

2.19. JSP plugin action . 31

2.20. JSF Lifecycle . 32

2.21. Component Tree . 36

3.1. Chain of Responsibility . 41

3.2. UML Diagram for the program . 42

4.1. Usage without arguments . 51

4.2. Usage specifying �le . 52

4.3. Usage specifying a folder to put the notes 52

4.4. Resulting folder . 52

4.5. Error example . 53

xv

List of Tables

2.1. JSTL Tags . 31

2.2. HTML Tags and HTML Elements . 34

xvii

Listings

2.1. index.html . 21

2.2. Java Servlet Example . 22

2.3. web.xml . 22

2.4. Java Code from the Hello World! JSP Page 23

2.5. expression scriplet example . 25

2.6. The out object . 25

2.7. forward Scriplet example . 26

2.8. forward Scriplet result . 26

2.9. index.jsp . 27

2.10. display.jsp . 27

2.11. Bean Class . 28

2.12. useBean . 29

2.13. index.jsp . 29

2.14. plugin.jsp . 30

2.15. MyApplet.java . 30

2.16. <c:forEach> example . 33

2.17. <c:forEach> result . 33

2.18. <c:set> and <c:if> example . 35

2.19. <c:choose> example . 35

2.20. <c:catch> example . 35

2.21. Component Tree example . 35

2.22. Example on how to manipulate the Component Tree 36

2.23. Example on how to manipulate the Component Tree 36

2.24. Example on how to populate the Component Tree 37

2.25. Example of f:convertNumber . 38

2.26. Example of f:convertDateTime . 38

2.27. Example of f:validateLongRange . 38

2.28. Example of f:validateRegex for a �xed length of 3 39

3.1. collectTags method . 44

3.2. replaceTags method . 45

3.3. Transformation Code . 46

3.4. Transformation Main . 47

3.5. Dictionary JSON �le . 47

4.1. Select example . 54

xix

4.2. h:selectOneMenu result . 54

4.3. Radio button example . 54

4.4. Radio button result . 54

4.5. Input tags example . 55

4.6. Input tags result . 55

4.7. img and button tags example . 55

4.8. Input tags result . 55

4.9. Table example . 55

4.10. Table result . 56

4.11. if/else . 56

4.12. <c:choose>, <c:when> and <c:otherwise> example 56

4.13. Table with foreach example java . 56

4.14. Table with foreach result . 57

4.15. googleSkeleton.html . 57

4.16. googleSkeleton.xhtml . 58

4.17. Notes example . 59

Chapter 1
Introduction

�The Legacy Problem is like global warming. Some people don't
believe there's a problem at all but the ones who do know that it

won't go away by itself, it will only get worse�
� Matjaz Jug, September 2008

1.1. Motivation

The motivation for this Thesis is to create a tool that can reduce the time invested in
migrating projects from JSP (JavaServer Pages) to JSF (JavaServer Faces).

In migrating a web development project the best thing to use is a framework, because it
reduces the time for implementing new functionalities. A web development project includes
many technologies, such as HTML, CSS, JavaScript, a backend language, a database tech-
nology and many more inbetween. A framework can help reduce the knowledge needed by
making it easier to integrate all those technologies so they work well together. frameworks
also include security features by default that greatly reduce the cost of implementing fea-
tures. They have guidelines and a structure that, if followed, it becomes easier to organize
the project. They also do a great job at including other libraries and making them work
together [1].

JSP is primarily developed for creating dynamic web pages for small applications.
However, it is very di�cult to use it for large-scale applications as they are developed
with a certain framework and component-based system. JSF is a component-based system
that is highly useful for large-scale projects. JSF uses MVC (Model, View, Controller) and
hence, even the user interfaces and its components are reusable in a particular web page.

JSF is a proper framework and that is why it is widely used in the web development
industry. It uses XML for view templates. FacesServlets are responsible for processing
requests and sending required view templates, creating component trees, processing events
and rendering response to the clients. The state of the components is saved and later
is retrieved before creating another view. On the other hand, JSP is a request-driven
technology and it is translated into servlets at runtime. Even though it is request-driven,
instead of using it independently, it can be used with view components of any server-side
MVC design.

The main di�erence between JSP and JSF lies in the way they operate. In JSP, one
component has minimal impact on the other component. Therefore, it is possible to create
views without having to write the model, so the application can be more �exible. But,
when it comes to complex web applications, it is di�cult to maintain the structure while

1

2 Chapter 1. Introduction

developing small-scale applications. There can be code duplication, the structure can be-
come a mess and maintenance can be di�cult. Since JSP is a core technology, there can
be di�erent developers for di�erent components but care must be taken when it comes
to integration as it can go wrong. That is why big companies avoid JSP for large-scale
applications and there could be a lot of bugs and errors after integration. On the other
hand, JSF can be divided into a �xed sequence of development phases. The integration of
components is seamless as it is a component-based technology and designed for large-scale
applications. It is possible to create and restore views that are used for showing infor-
mation to the clients, update values as per requirements without major changes, process
validations and data type conversions. Similarly, it is possible to invoke applications to
ful�ll any request and render responses [2].

There are some challenges to migrate a system, here are some that must be taken into
account [3]:

The new system cannot be a copy of the old one; it always has new requirements in
line with the business.

New technology must be used to support current/future business needs.

Knowledge needed to migrate the software may not be documented, so it slows down
the developing process.

Business continuity must be ensured at all times during the migration.

Data migration must be e�cient and data consistency must be ensured.

1.2. Objectives

The Thesis objective is to create a software tool capable of migrating a web view �le
automatically from JSP to JSF, by parsing the �les and transforming their tags and code
into a JSF valid syntax, in order to accelerate the migration of old projects into more
modern ones.

1.3. Workplan

Read about JSP and JSF to familiarize with the technology.

Divide what tags are easy/simple to change and what tags are more complicated to
start transforming incrementally.

Test with simple examples that contain HTML tags that must be transformed into
a JSF allowed syntax.

Report the results of the implementation.

1.4. Document Structure

The structure of the document is as follows:

In chapter 2, the state of the art is described: what is HTML, best practices for it,
parsers, background for JSP and JSF and migrating projects.

1.4. Document Structure 3

In chapter 3, we describe the proposed solution and implementation, we mention the
used packages and explain some setbacks we had in the development.

In chapter 4, we explain how to run the program and describe the tests and results.

In chapter 5, conclusions, lessons learned and future work are presented.

Chapter 2
State of the Art

Summary: In this chapter the state of the art of the technologies involved in the

project is describred. This includes HTML, Web development, Parsers, Java, JSP, JSF

and migrating projects.

2.1. HTML Background

HTML stands for Hypertext Markup Language, so, technically, HTML is a program-
ming language, but HTML and CSS are declarative languages, in contrast to other langua-
ges such as Java, C, Python, or Javascript, which explicitly express how a computation is
done. HTML and CSS do not specify a computation, but the structure of a document [4].

This language was created by Sir Tim Berners-Lee in late 1991. There have been several
versions of it throughout history [5; 6]:

HTML 1.0

It was released in 1993 with the intention of sharing information that can be readable
and accessible via web browsers. It had very limited features which greatly limited
what a developer could do to design web pages.

HTML 2.0

It was published in 1995, and it contained all HTML 1.0 features along with a few
more, which remained as the standard markup language for designing and creating
websites until January 1997. Netscape, the leading browser at that time, introduced
new tags and attributes called the Netscape Extension Tags. Other browsers tried to
duplicate them but Netscape did not specify their new tags and so these extension
tags did not work in other browsers. It led to considerable confusion and problems
when web developers used these tags and attributes and then saw that they did not
work as expected in other browsers.

HTML 3.0

A group of people working under Dave Raggett 's leadership introduced the HTML
3.0 draft which included many new enhancements to HTML. However, most browsers
only implemented a few. Another reason why HTML 3.0 did not make it was because
it was considered too big and it slowed browsers down. Future versions were to be

5

6 Chapter 2. State of the Art

introduced in a more �modular� way so that browsers could implement them little
by little.

HTML 3.2 (WILBUR)

As more browser-speci�c tags were introduced, it became obvious that a new standard
was needed. For this reason, the Word Wide Web Consortium (W3C), founded in
1994 to develop common standards for the evolution of the World Wide Web, drafted
the WILBUR standard, later known as HTML 3.2. It became the o�cial standard
in January, 1997.

HTML 4.0 (COUGAR)

It introduced new functionality, most of which came from the expired HTML 3.0
draft. This version was recommended in December, 1997 and used as a standard in
April, 1998.

XHTML

It stands for EXtensible HyperText Markup Language. It does not bring along new
tags. The purpose of XHTML is to address new browser technologies. Nowadays,
web pages are viewed in browsers through cell phones, cars, televisions, etc. and in
many cases, these devices do not have the computing power of desktop or notebook
computers and so are not able to accommodate poor or sloppy coding practices.
XHTML is designed to address these issues. It also addresses the need for people
with disabilities (such as the blind and visually impaired) to access the Internet.
Thus web pages written in XHTML allow them to be viewed on a wide range of
browsers and internet platforms.

XHTML is the result of the W3C's work to bring a standard to provide rich high
quality web pages through these varied devices. XHTML became an o�cial W3C
recommendation in January, 2000. XHTML2 was cancelled in 2009, having HTML5
take its place.

HTML5

It is the new web standard. It follows HTML 4 and XHTML. The purpose of HTML5
is to provide two things:

� Improve the language.

� Support the latest multimedia technologies.

To accomplish this, it reduces the need for external plug-ins (such as Flash plug-
ins), and more markup elements (tags) to replace scripting. HTML5 is also device
independent (understood by computers and many devices today) while also keeping
it easily readable by humans.

2.1.1. HTML Best Practices

HTML can be read by the browser without showing any errors because of its �exibility,
but this is not necessarily an advantage because the end result can be di�erent from what
was expected, and also this makes it hard to maintain. That is why there are some best
practices that can be found here [7; 8]:

2.1. HTML Background 7

Always Declare a Doctype.

The doctype declaration should be the �rst element in HTML documents. The docty-
pe declaration tells the browser about the XHTML standards used and helps it read
and render a webpage correctly.

Use Meaningful Title Tags.

The <title> tag allows one to make a web page more meaningful and search-engine
friendly. For example, the text inside the <title> tag appears in Google's search
engine results page, as well as in the user's web browser bar and tabs. Figure 2.1 is
a good example.

Use Descriptive Meta Tags

Meta tags make the web page more meaningful for user agents like search engine
spiders. The description meta attribute describes the basic purpose of your web page
(a summary of what the web page contains). Again, look at �gure 2.1.

Figure 2.1: title and meta example (Image found in [8])

Use the Right HTML Element at the Right Place

For example, use for emphasis and for heavy emphasis, instead of
<i> or (which are deprecated).

Close Tags

The W3C speci�es that all tags should be closed. Some browsers may still render
pages correctly, but not closing tags is invalid under standards.

Use Lower Case Markup

It is an industry-standard practice to keep the markup lower-cased. Capitalizing the
markup will work and will probably not a�ect how web pages are rendered, but it
does a�ect code readability.

Write Consistently Formatted Code

A cleanly written and well-indented code base shows professionalism, as well as con-
sideration for other people that might need to work on that code.

Writing properly indented clean markup from the start will increase code's readabi-
lity.

8 Chapter 2. State of the Art

Do not use inline styles and scripts

The document will quickly become cluttered and unreadable otherwise. It is better
to use external stylesheets. Same goes for inline JavaScript as for inline CSS. Apart
from readability issues, this will make the document heavier and harder to maintain.

Only use critical inline CSS

Critical CSS must be placed at the top of the web page. By doing so, users will get
to see the �rst portion of the page rendered more quickly. Critical CSS refers to the
minimum CSS that is required to render the top of the page that a user sees �rst
when landing on the site. The order of the link tags can a�ect how CSS rules are
applied so they must be placed carefully. If there are separate �les for resets or 3rd
party libraries, they must be placed �rst and then the rest.

Script tags must be placed at the bottom

O�cially, script tags live inside the head, but if they are placed at the bottom of
the document, before the closing tag of the body, their download can be delayed and
allow the document to load �rst in the DOM, show it to the user and then request
the scripts. This is because the browser interprets the document from top to bottom,
line by line. When it gets to the head and comes across a script tag, it starts a request
to the server to get the �le. If the �le is very big, it will keep loading and the user
will only see a blank page because it is still loading the head, so it should be moved
to the bottom. This way, all the content of the body will get loaded in before it loads
the content of the script tag. Figure 2.2 is a good example of how the scripts a�ect
the DOM loading.

Use alt tags for images

The alt tag speci�es an alternate text for the image, so in case it cannot be displayed
for any reason, this text will be shown instead. Search engines prioritize websites that
contain alt tags for images so they rank higher in search results.

Use one h1 per page

The most important text should be placed here, which describes the content of the
page, Using multiple h1 tags per page is not a good idea and not advised, because
it can a�ect the search engine results. This aids search engines at indexing the site
the right way.

2.2. HTTP 9

Figure 2.2: Loading scripts DOM speed comparison (Image found in [7])

2.2. HTTP

HTTP stands for Hypertext Transfer Protocol. It is the foundation of the World Wide
Web. It de�nes how messages are formatted and transmitted, and what actions Web servers
and browsers should take in response to various commands. A server is listening for a
request and sends back a response, then the communication terminates. When the user
enters a URL in a browser, this actually sends an HTTP command to the Web server
directing it to fetch and transmit the requested Web page. Figure 2.3 ilustrates the HTTP
cycle.

Figure 2.3: HTTP request-response cycle (Image found in [9])

10 Chapter 2. State of the Art

Any request acts independently of the previous ones. To proceed with a user session
in the application, a session management needs to be implemented on top of HTTP. The
goal of this session management is to remember the current state of the application. The
server transfers the complete state information to the client. This approach keeps memory
consumption on the server lean. Sending too much information over the web has its draw-
backs because latency slows applications down. Another drawback is security, because if it
is not secure enough, the information sent might be read by unauthorized persons [9].

2.2.1. HTTP Errors

HTTP Status Codes are Error Messages that the server shows in order to tell either
the user or the developer that there is something wrong [10].

400 Bad File Request

Usually means the syntax used in the URL is incorrect.

401 Unauthorized

Server is looking for some encryption key from the client and is not getting it. Also,
wrong password may have been entered.

403 Forbidden/Access Denied

Similar to 401; special permission needed to access the site � a password and/or
username if it is a registration issue.

404 File Not Found

Server cannot �nd the requested �le/information.

408 Request Timeout

Client stopped the request before the server �nished retrieving it.

500 Internal Error

Could not retrieve the HTML document because of server-con�guration problems.

502 Service Temporarily Overloaded

Server congestion, too many connections, high tra�c.

503 Service Unavailable

Server busy, site may have moved, or the internet connection has been lost.

2.2.2. HTTP Verbs

HTTP de�nes a set of request methods to indicate an action to be performed by the
server. Here is a list of the most common ones [11].

GET

It requests a representation of the speci�ed resource.

POST

It is used to submit an entity to the speci�ed resource, causing a change in state of
the server.

2.3. Web Development 11

DELETE

It deletes the speci�ed resource.

PATCH

It is used to apply partial modi�cations to a resource.

2.2.3. HTTPS

The name HTTPS stands for Hypertext transfer protocol secure. HTTPS is encrypted
in order to increase security of data transfer. This is particularly important when users
transmit sensitive data, such as logging into a bank account, email service, or health in-
surance provider. Any website, especially those that require login credentials, must use
HTTPS.

HTTPS uses an encryption protocol to encrypt communications. The protocol is ca-
lled Transport Layer Security (TLS). This protocol secures communications by using an
asymmetric public key infrastructure. This type of security system uses two di�erent keys
to encrypt communications between two parties, as shown in �gure 2.4 [12].

Figure 2.4: Asymmetric Key Encription (Image found in [13])

The Private key: this key is controlled by the owner of a website and it is kept, as
the reader may have speculated, private. This key lives on a web server and is used
to decrypt information encrypted by the public key.

The Public key: this key is available to everyone who wants to interact with the
server in a secure way. Information that is encrypted by the public key can only be
decrypted by the private key.

2.3. Web Development

A web application is a client-server application interacting dynamically with the
user via a web browser.

Michael Müller, [9]

We can de�ne the web as a means of sharing information, documents and resources
between users via The Internet. The early Web consisted on a collection of texts formatted

12 Chapter 2. State of the Art

in HTML hosted on servers. The Web itself appeared in the early 1989. It was �rstly
designed to meet the request for information-sharing among universities and scienti�c
institutions around the world [14]. Figure 2.5 shows the di�erences betweeen Web 1.0,
Web 2.0 and Web 3.0.

Figure 2.5: History of Web (Image found in [14])

Before The Web was created, information was distributed in several documents spread
around the world and it was di�cult to access it.

2.3.1. Web 1.0

Web 1.0 represents the basics of the web. It was used mostly until 2003, and it was
just a readable site with raw data of the World Wide Web. The user can only Search and
read the information through the browser, but cannot share on the site. It is made of static
(�xed) information. Technologies used in Web 1.0 are HTML, HTTP, URI, XML, XHTML
and CSS. Web 1.0 is very slow and the user needs to refresh the site every time when new
information is added to the site. This is because it just works in one direction. The thing
it solves is the access to information, because there are links between websites that makes
resources quicker and easier to �nd. Figure 2.6 represents how this looks.

A web application is a client-software application run by the user in a browser. The
main function of a browser is to show the information received from a server and send the
user's data back. The main advantage of this approach is the fact that clients do not depend
on the user's operating system; therefore, web applications are cross-platform services. Due
to this universal feature, web apps became very popular in 1990s and 2000s.

2.3.2. Web 2.0

In 1995 Netscape Communications presented JavaScript, a client-side scripting lan-
guage that enables programmers to improve the user interface with dynamic elements.
JavaScript made the Internet faster and more productive because the data was no longer
sent to the server to generate the whole web page. The Embedded scripts ful�l various
tasks on the speci�c downloaded page �right on the spot�. JavaScript is one of the three
most notable technologies (with HTML and CSS) of content production for WWW. It has
an Application Programming Interface (API) that enables developers to work with texts,

2.3. Web Development 13

Figure 2.6: Web 1.0 (Image found in [15])

dates and various regular expressions. In fact, it does not have input/output that makes
the machine �communicate� with the outside world.

In 1996 Macromedia Flash was introduced. It was a revolutionary innovation that made
the Web �brighter� and interactive. This vector-based animation player enabled developers
to enrich web pages with animation. This multimedia software platform works with anima-
tions, di�erent types of browser games, vector graphics, Internet and mobile applications.
The majority of the Internet before 2000 was full of websites that used embedded inter-
active multimedia content on their pages. Animated ads could be seen and videos that
overloaded webpages with colors and unnecessary �movement�. Very soon, the popularity
of Flash declined. Webpages gained their regular look. The user's work was no longer inte-
rrupted by the odd and unexpected ads and streaming videos as much as they slowed the
work of the website and consumed the additional tra�c [16].

2.3.2.1. AJAX

AJAX stands for Asynchronous JavaScript and XML, and it represents a fundamental
shift in what is possible on the Web. AJAX is not a technology, it is a combination of several
technologies. It enabled developers to create asynchronous web apps. It made it possible
for users to work on the Web faster and better because there is no need to download the
whole page. AJAX incorporates:

Standards-based presentation using XHTML and CSS.

Dynamic display and interaction using the Document Object Model.

14 Chapter 2. State of the Art

Data interchange and manipulation using XML and XSLT (Extensible Stylesheet
Language Transformations).

Asynchronous data retrieval using XMLHttpRequest.

JavaScript binding everything together.

Without AJAX, the classic web application model works like this: Most user actions
in the interface trigger an HTTP request back to a web server. The server does some
processing � retrieving data, crunching numbers � and then returns an HTML page to
the client.

An AJAX application eliminates the start-stop-start-stop nature of interaction on the
Web by introducing an intermediary � an AJAX engine � between the user and the
server. It is like adding a layer to the application. Instead of loading a webpage at the start
of the session, the browser loads an AJAX engine written in JavaScript. This engine is
responsible for both rendering the interface the user sees and communicating with the server
on the user's behalf. The AJAX engine allows the user's interaction with the application
to happen asynchronously � independent of communication with the server. So the user
is never staring at a blank browser window waiting for the server to deliver the results.
Figures 2.7, 2.8 and 2.9 show the di�erences.

Figure 2.7: The traditional model for web applications (left) compared to the AJAX model
(right) (Image found in [17])

Every user action that generates an HTTP request takes the form of a JavaScript call
to the AJAX engine instead. Any response to a user action that does not involve the server
� such as simple data validation, editing data in memory, and even some navigation �
the engine handles it on its own. If the engine needs something from the server in order
to respond � if it is submitting data for processing, loading additional interface code,
or retrieving new data � the engine makes those requests asynchronously, using XML,
without stalling a user's interaction with the application.

In 2004, Web 2.0 was presented formally by Dale Dougherty, who was vice-president
of O'Reilly Media. It is also called the read and write web (writable), it represents a new

2.3. Web Development 15

Figure 2.8: Classic web application model (Synchronous) (Image found in [17])

Figure 2.9: AJAX web application model (Asynchronous) (Image found in [17])

method to use the current internet technologies, and the web could become bi-directional.
Actually the Web 1.0 presents the user the possibility to upload and download from the
webpage like a provider (site admin) but with limited control. The users of Web 2.0 have
more interaction with less control. Technology infrastructure of Web 2.0 consist of some
rules such as AJAX technology in internet such as JavaScript and XML, DOM, REST,
XML and CSS. The Web 2.0 allows users the ability to create social activities and com-
municate with each other. But these properties also consider issues because the user can
be hacked in privacy and personal information security.

The problem with Web 2.0 is that web applications do not share information, so apps
that should have the same data are hard to keep up to date. This is called Application
Silos (See �gure 2.10).

2.3.3. Web 3.0

The third and current version of the web started in 2014 known as executable web. It
allows users the ability to interact with dynamic applications. Web 3.0 implies to convert
the web into a huge database [17].

The Semantic Web is an extension of the World Wide Web through standards set by
the W3C. Its goal is to make Internet data machine-readable.

According to the W3C, �The Semantic Web provides a common framework that allows

16 Chapter 2. State of the Art

Figure 2.10: Application Silos [15]

data to be shared and reused across application, enterprise, and community boundaries�.
The Semantic Web is therefore regarded as an integrator across di�erent content and
information applications and systems. Instead of having URLs bewteen documents, there
are URLs between facts (data). If that information is ever updated, it can be linked from
a source to any other source and to be understood by computers so that they can perform
increasingly sophisticated tasks on the user's behalf. Figure 2.1 is a good example of this.

The term Web 3.0 was coined by Tim Berners-Lee for a web of data that can be
processed by machines, that is, a web in which much of the content is machine-readable.
Berners-Lee originally expressed his vision of the Semantic Web in 1999 as follows: �I have
a dream for the Web [in which computers] become capable of analyzing all the data on the
Web � the content, links, and transactions between people and computers. A Semantic Web,
which makes this possible, has yet to emerge, but when it does, the day-to-day mechanisms
of trade, bureaucracy and our daily lives will be handled by machines talking to machines�
[18].

The Semantic Web abstracts away the document and application layers involved in the
exchange of information.

2.3.4. Progressive Web Apps

Native desktop applications are known for being incredibly rich and reliable. They can
read and write �les from the local �le system, access hardware connected via USB, serial
or bluetooth, and even interact with data stored on your device, like contacts or calendar
events. In native applications, it is possible to do things like take pictures, see playing songs
on the home screen, or control song playback while in another app. Native applications
feel like part of the device they run on.

In terms of capabilities and reach, native apps represent the best of capabilities while
web apps represent the best of reach. Progressive Web Apps (PWA) are built and enhanced
with modern APIs to deliver native-like capabilities, reliability, and installability while
reaching anyone, anywhere, on any device with a single codebase. Progressive Web Apps
are web applications that have been designed so they are capable, reliable, and installable.
These three pillars transform them into an experience that feels like a native application
[19]:

2.3. Web Development 17

Figure 2.11: Capabilities vs. reach of native apps, web app, and progressive web apps

Capable

While some capabilities are still out of the web's reach, new and upcoming APIs are
looking to change that, expanding what the web can do with features like �le system
access, media controls, app badging, and full clipboard support.

Progressive Web Apps must also be fully integrated with the services that users
usually expect when navigating either a web app or a mobile app, like mobile pay-
ments, access to the user's location or push noti�cations.

Reliable

A reliable Progressive Web App feels fast regardless of the network. Speed is critical
for a good user experience; it helps avoid the bounce rate of the site. Performance
a�ects the entire experience, from how users perceive the application to how it ac-
tually performs. Users expect apps to start up on slow network connections or even
if they are o�ine. When a request is not possible, they expect to be told there is
trouble instead of silently failing or crashing, just like Google Chrome's downasaur.

Security is very important as well, the conection must be secure between the site and
the user.

Installable

Installed Progressive Web Apps run in a standalone window instead of a browser
tab. It is possible to search for them on a device and jump between them with the
app switcher, making them feel like part of the device they are installed on. New
capabilities open up after a web app is installed. Progressive Web Apps should be
able to register to accept content from other applications.

There are three ways to approach a Progressive Web App [20]:

18 Chapter 2. State of the Art

Building it from the ground up. A redesign is a good opportunity to take on this
approach.

Building a simpler version of the product (light or mobile).

Building just a simple feature that can have a high impact on the usage of the
product.

2.4. Parsers

A parser is a compiler or interpreter component that breaks a program's source code
into smaller elements. It takes the input in the form of a string and builds a data structure
in the form of an abstract syntax tree.

It is commonly used as a component of an interpreter or a compiler. The overall process
of parsing involves three stages:

Lexical Analysis

It is used to produce tokens from a stream of input string characters, which are
broken into small components to form meaningful expressions.

Syntactic Analysis

Checks whether the generated tokens form a meaningful expression. This uses a
context-free grammar that de�nes algorithmic procedures for components. These
work to form an expression and de�ne the particular order in which tokens must be
placed.

Semantic Parsing

The �nal parsing stage is where the meaning and implications of the validated ex-
pression(s) are determined.

The main purpose of a parser is to determine if the input data may be derived from
the start symbol of the grammar. If yes, input data can be derived as �gure 2.12 shows:

Figure 2.12: Types of Parsers (Image found in [21])

Top-Down Parser

It starts from the start symbol and ends on the terminals. It uses leftmost derivation.
There are 2 types of parsers, and they can be classi�ed into Recursive descent parsers
and Non-recursive descent parsers.

2.5. Java 19

� Recursive descent parsers:

It generates the parse tree by using recursion.

� Non-recursive descent parsers:

It uses parsing table to generate the parse tree instead of backtracking.

Bottom-Up Parser

It starts from non-terminals and ends on the starting symbol. It uses the reverse of
the right most derivation. Further Bottom-up parser is classi�ed into 2 types: LR
parser, and Operator precedence parser.

� LR parser:

Is the bottom-up parser that generates the parse tree for the given string by
using unambiguous grammar. It follow reverse of right most derivation. There
are many types of LR parsers, among them: LR(0), SLR(1), LALR(1), CLR(1).

� Operator precedence parser:

It generates the parse tree from a given string but the only condition is that
two consecutive non-terminals never appear in the right-hand side.

Parsers are widely used in the following technologies [22]:

Java and other programming languages.

HTML and XML.

Database languages, such as SQL.

Scripting languages.

Protocols, such as HTTP and Internet remote function calls.

2.5. Java [23]

Java was originally developed by James Gosling at Sun Microsystems (now Oracle)
and released in 1995 as a core component of Sun Microsystems' Java platform. Java is a
general-purpose programming language that is class-based, object-oriented, and designed
to have as few implementation dependencies as possible. It follows the Write once, run
anywhere slogan which illustrates its cross-platform bene�ts. Ideally, this means that a
Java program could be developed on any device, compiled into standard bytecode, and be
expected to run on any device equipped with a Java virtual machine (JVM). The syntax of
Java is similar to C and C++. The latest versions are Java 14, released in March 2020, and
Java 11, a currently supported long-term support (LTS) version, released on September
25, 2018.

These are the �ve primary goals for creating Java:

Simple, object-oriented, and familiar.

Robust and secure.

Portable.

High performance.

Interpreted, threaded, and dynamic.

20 Chapter 2. State of the Art

2.5.1. Java Virtual Machine

One design goal of Java is portability, which means that programs written in Java
must run on any other device supporting the JVM. This is achieved by compiling the
Java language code to an intermediate called Java bytecode, instead of directly to the
speci�c machine code. Java bytecode instructions are analogous to machine code, but they
are intended to be executed on a virtual machine (VM) written speci�cally for the host
hardware. End users commonly use a Java Runtime Environment (JRE) installed on their
machine for standalone Java applications. The use of universal bytecode makes the program
portable. However, the overhead of interpreting bytecode into machine instructions made
interpreted programs almost always run more slowly than native executables.

2.5.2. Syntax

The syntax of Java is largely in�uenced by C++. Unlike C++, which combines the
syntax for structured, generic, and object-oriented programming, Java was built as an
object-oriented language. All code is written inside classes, and every data item is an
object, with the exception of the primitive data types, (i.e. integers, �oating-point numbers,
boolean values, and characters), which are not objects for performance reasons. Java uses
comments similar to those of C++.

2.5.3. Java Servlets

A servlet is a Java Programming language class that is used to create a dynamic website;
a dynamic website has the capability to change the site contents according to the time or
are able to generate the contents according to the request received by the client.

Servlets are Java programs that run on the Java web server. They are used to handle
the request obtained from the web server, process the request, produce the response, then
send response back to the web server. Figure 2.13 helps understand this concept.

1. The clients send the request to the web server.

2. The web server receives the request.

3. The web server passes the request to the corresponding servlet.

4. The servlet processes the request and generates the response in the form of output.

5. The servlet sends the response back to the web server.

6. The web server sends the response back to the client and the client browser displays
it on the screen.

The server-side extensions are the technologies that are used to create dynamic Web
pages. To provide the facility of dynamic Web pages they need a container or Web server.
APIs are used for this. These APIs allow us to build programs that can run with a Web
server. In this case, Java Servlet is also one of the component APIs of Java Platform
Enterprise Edition which sets standards for creating dynamic Web applications in Java
[24].

1. It reads the explicit data sent by the browser. This can be an HTML web page. It also
reads the implicit HTTP request data sent by the browser. This can include cookies,
media types and compression schemes the browser understands, and so forth.

2.5. Java 21

Figure 2.13: Servlet Architecture (Image found in [24])

2. After that, the servlet processes the data and generates the results. This process may
require communicating with a database, invoking a Web service, or computing the
response directly.

3. After processing, it sends the explicit data to the browser. This document can be
sent in a variety of formats, mostly in HTML or XML.

4. Finally, it also sends the implicit HTTP response to the browser. This includes telling
the client what type of document is being returned.

2.5.3.1. Create a Servlet

The steps to create a servlet are the following [25]:

1. Create a directory structure.

2. Create a Servlet.

3. Compile the Servlet.

4. Add mappings to the web.xml �le.

5. Start the server and deploy the project.

6. Access the Servlet.

There are three �les needed for any servlet program index.html �le (Listing 2.1), Java
class �le (Listing 2.2), and web.xml �le (Listing 2.3).

1 <!DOCTYPE HTML>
2 <html>
3 <body>
4 <form action = "add">
5 Enter 1st number: <input type = "text" name = "num1">
6 Enter 2nd number: <input type = "text" name = "num2">
7 </form>
8 </body>
9 </html>

Listing 2.1: index.html (Code found in [25])

22 Chapter 2. State of the Art

1 import java.io.IOException;
2 import java.io.PrintWriter;
3 import javax.servlet.http.HttpServlet;
4 import javax.servlet.http.HttpServletRequest;
5 import javax.servlet.http.HttpServletResponse;
6

7 public class Add extends HttpServlet{
8

9 public void service(HttpServletRequest req, HttpServletResponse res)
10 throws IOException
11 {
12 int i = Integer.parseInt(req.getParameter("num1"));
13 int j = Integer.parseInt(req.getParameter("num2"));
14 int k = i + j;
15 PrintWriter out = res.getWriter();
16 out.println("Result is " + k);
17 }
18 }

Listing 2.2: Java Servlet Example (Code found in [25])

1 <?xml version = "1.0" encoding = "UTF-8"?>
2 <web-app xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" version =

"3.0">
3 <display-name>Basic</display-name>
4 <servlet>
5 <servlet-name>Addition</servlet-name>
6 <servlet-class>edureka.Add</servlet-class>
7 </servlet>
8 <servlet-mapping>
9 <servlet-name>Addition</servlet-name>

10 <url-pattern>/add</url-pattern>
11 </servlet-mapping>
12 <welcome-file-list>
13 <welcome-file>index.html</welcome-file>
14 </welcome-file-list>
15 </web-app>

Listing 2.3: web.xml (Code found in [25])

2.6. JavaServer Pages [26]

JSP is a technology that allows developers to add dynamic content to web pages.
Without JSP, updating the appearance or the content of plain static HTML pages would
have to be done by hand. With JSP, content on a website can be dependent on many
factors, including the time of the day, the information provided by the user, the user's
history of interaction with your web site, and even the user's browser type. This capability
is essential to provide online services in which it is possible to tailor each response to the
viewer who made the request, depending on the viewer's preferences and requirements.
A crucial aspect of providing meaningful online services is to be able to remember data
associated with the service and its users. That is why databases play an essential role in
dynamic web pages.

With JSP, the web page does not exist on the server, the server creates it when it
responds to each request.

2.6. JavaServer Pages 23

A java Servlet queries a database containing the information needed and formats an
HTML page with that data. Plain HTML cannot make queries on a database, but Java
can, so JSP has the means to include snippets of Java inside an HTML page.

These steps explain how the web server creates the web page with the help of �gure 2.14:

1. Like with a normal page, the browser sends an HTTP request to the web server. This
does not change with JSP, although the URL probably ends in .jsp instead of .html.

2. The web server is a Java server. The web server recognizes that the HTTP request
is for a JSP page and forwards it to a JSP engine.

3. The JSP engine loads the JSP page from disk and converts it into a Java Servlet.

4. The JSP engine compiles the servlet into an executable class and forwards the original
request to another part of the web server called the servlet engine.

5. The servlet engine loads the servlet class and executes it. During execution, the
servlet produces an output in HTML format, which the servlet engine passes to the
web server inside an HTTP response.

6. The web server forwards the HTTP response to your browser.

7. The web browser handles the dynamically generated HTML page inside the HTTP
response exactly as if it were a static page.

Figure 2.14: How the server creates the page with JSP (Image found in [27])

1 <% @page language = "java" contentType = "text/html" %>
2 <html>
3 <head>
4 <title>Hello World dynamic HTML</title>
5 </head>
6 <body>
7 Hello World!
8 <% out.println("
Your IP address is " + request.getRemoteAddr());
9 String userAgent = request.getHeader("user-agent");

10 String browser = "unknown";
11 out.print("
and your browser is ");
12 if (-1 < userAgent.indexOf("MSIE")) {
13 browser = "MS Internet Explorer";
14 }
15 else if (-1 < userAgent.indexOf("Firefox")) {

24 Chapter 2. State of the Art

16 browser = "Mozilla Firefox";
17 }
18 else if (-1 < userAgent.indexOf("Opera")) {
19 browser = "Opera";
20 }
21 else if (-1 < userAgent.indexOf("Chrome")) {
22 browser = "Google Chrome";
23 }
24 else if (-1 < userAgent.indexOf("Safari")) {
25 browser = "Apple Safari";
26 }
27 }
28 out.println(browser); %>
29 </body>
30 </html>

Listing 2.4: Java Code from the Hello World! JSP Page (Code found in [27])

The code in listing 2.4 renders the view in �gure 2.15:

Figure 2.15: Hello World in JSP with Google Chrome (Image found in [27])

2.6.1. JSP Elements [27]

A JSP page is made out of a page template, which consists of HTML code and JSP
elements such as scripting elements, directive elements, and action elements.

Scripting elements (scriptlets) consist of code delimited by particular sequences of cha-
racters. They are delimited by the pair <% and%>. All scripting elements are Java frag-
ments capable of manipulating Java objects, invoking their methods and catching Java
exceptions. They can send data to the output, and they execute when the page is reques-
ted.

Directive elements are messages to the server. They provide information on the page
itself necessary for its translation. They have no association with each individual request,
so they do not output any text to the HTML response. Other directives available are
include and taglib. This data in�uences the translation process from a script �le to a Java
servlet class. As directives only play a role when a JSP page is re-compiled after its been
modi�ed, they have no speci�c e�ect on the individual HTML responses.

There are three directives that can be used in JSP pages: page, include, and taglib. Their
syntax is as follows: <% @directive-name attr1=“v1” [attr2=“v2”...]%>

The page directive de�nes several page-dependent properties expressed through attribu-
tes. These properties should appear only once in a JSP page. This directive is used in all JSP

2.6. JavaServer Pages 25

pages. Typically, a JSP page starts with a page directive to tell the server that the scripting
language is Java and that the output is to be HTML: <% @page language=“java”
contentType=“text/html”%>

2.6.1.1. The include Directive

The include directive allows to insert into a JSP page the unprocessed content of
another text �le. <% @include file“some_jsp_code.jspf”%>1 The server does
the merging before any translation, so the content of the included �le is pasted into the
page. All the HTML tags and JSP variables de�ned before the line containing the directive
are available to the included code.

2.6.1.2. The taglib Directive

The JSP tags available for use can be extended by directing the server to use external
self-contained tag libraries. The taglib directory identi�es a tag library and speci�es what
pre�x to use to identify its tags.

The code <% @taglib uri=“http://mysite.com/mytags” prefix=“my”%>
makes it possible to write the following line as part of the JSP page:

<my:oneOfMyTags>...</my:oneOfMyTags>.

The following code includes the core JSP Standard Tag Library:

<% @taglib uri=“http://java.sun.com/jsp/jstl/core” prefix=“x”%>.

Scripting elements allow Java code to be embeded in an HTML page. Java methods
consist of a sequence of operations to instantiate objects, allocate memory for variables,
calculate expressions, perform assignments, etc.

2.6.1.3. Expressions

An expression scripting element inserts into the page the result of a Java expression
enclosed in the pair <%= and%>. For example, in the code in listing 2.5, the expression
scripting element inserts the current date into the generated HTML page:

1 <% @page import = "java.util.Date" %>
2 Server date and time: <%= new Date() %>

Listing 2.5: expression scriplet example (Code found in [27])

It is possible to use any Java expression within a Scriplet as long as it provides a value.
This means that every Java expression will do, except a void method. For example, <%=
(condition) ? “yes” : “no”%> is valid, because it is evaluated to a string.

The out object is used in JSP like the System.out object in Java: to write to the
standard output. The standard output for a JSP page is the body of the HTML response
sent back to the client. Therefore, the scriptlet <% out.print(expression)%> causes
the result of the expression to be displayed in the client's browser. The same result can be
achieved by typing <%= expression%>. Listing 2.6 is a good example.

1 <% out.print(user.toString()) %>
2 <%= user.toString() %>

Listing 2.6: The out object (Code found in [27])

1JSPF stands for JSP Fragment

26 Chapter 2. State of the Art

2.6.2. JSP Standard Actions

Action elements specify activities that, like the scripting elements, need to be performed
when the page is requested, because their purpose is to encapsulate activities that the server
performs when handling an HTTP request from a client. Action elements can use, modify,
and/or create objects, and they may a�ect the way data is shown to the user. They normally
take the following form: <jsp:action-name attr1=“v1” [attr2=“v2”...]>...
</jsp:action-name> [28].

There are eight JSP standard actions (forward, include, useBean, setProperty,
getProperty, text, element, and plugin) and �ve additional actions that can only
appear in the body of other actions (param, params, attribute, body, and fallback).

2.6.2.1. Forward

The forward action makes possible to abort execution of the current page and transfer
the request to another page, listings 2.7 and 2.8 show how to create the view in �gure 2.16,
note the title in the tab [29]:

1 <html>
2 <head>
3 <title>JSP forward example with parameters</title>
4 </head>
5 <body>
6 <jsp:forward page = "display.jsp">
7 <jsp:param name = "name" value = "Chaitanya" />
8 <jsp:param name = "site" value = "BeginnersBook.com" />
9 <jsp:param name = "tutorialname" value = "jsp forward action" />

10 <jsp:param name = "reqcamefrom" value = "index.jsp" />
11 </jsp:forward>
12 </body>
13 </html>

Listing 2.7: forward Scriplet example (Code found in [29])

1 <html>
2 <head>
3 <title>Display Page</title>
4 </head>
5 <body>
6 <h2>Hello this is a display.jsp Page</h2>
7 My name is: <%= request.getParameter("name") %>

8 Website: <%= request.getParameter("site") %>

9 Topic: <%= request.getParameter("tutorialname") %>

10 Forward Request came from the page:
11 <%= request.getParameter("reqcamefrom") %>
12 </body>
13 </html>

Listing 2.8: forward Scriplet result (Code found in [29])

2.6.2.2. Include

When the include action is executed, the content is not replaced, instead it includes
the new content into the old one [30]. Listings 2.9 and 2.10 have the code necessary to
generate the view in �gure 2.17.

2.6. JavaServer Pages 27

Figure 2.16: Forward display example code (Image found in [29])

1 <html>
2 <head>
3 <title>JSP Include example with parameters</title>
4 </head>
5 <body>
6 <h2>This is index.jsp Page</h2>
7 <jsp:include page = "display.jsp" >
8 <jsp:param name = "userid" value = "Chaitanya" />
9 <jsp:param name = "password" value = "Chaitanya" />

10 <jsp:param name = "name" value = "Chaitanya Pratap Singh" />
11 <jsp:param name = "age" value = "27" />
12 </jsp:include>
13 </body>
14 </html>

Listing 2.9: index.jsp (Code found in [30])

1 <html>
2 <head>
3 <title>Display Page</title>
4 </head>
5 <body>
6 <h2>Hello this is a display.jsp Page</h2>
7 UserID: <%= request.getParameter("userid") %>

8 Password is: <%= request.getParameter("password") %>

9 User Name: <%= request.getParameter("name") %>

10 Age: <%= request.getParameter("age") %>
11 </body>
12 </html>

Listing 2.10: display.jsp (Code found in [30])

2.6.2.3. useBean, setProperty, getProperty

A good example on how to use these properties is this [31]:

Listing 2.11 is a bean class Details where there are three variables: username, age
and password. In order to use the bean class and its properties in JSP the class must be
initialized.

28 Chapter 2. State of the Art

Figure 2.17: Include display example code (Image found in [30])

1 public class Details {
2

3 private int age;
4 private String username;
5 private String password;
6

7 public Details() {
8 }
9

10 public String getUsername() {
11 return username;
12 }
13

14 public void setUsername(String username) {
15 this.username = username;
16 }
17

18 public int getAge() {
19 return age;
20 }
21

22 public void setAge(int age) {
23 this.age = age;
24 }
25

26 public String getPassword() {
27 return password;
28 }
29

30 public void setPassword(String password) {
31 this.password = password;
32 }
33 }

Listing 2.11: Bean Class (Code found in [31])

The useBean action is used to initialize the class. The setProperty action is used to set
the �*� property to map the values based on their names because it uses the same property
name in bean class and index.jsp JSP page. To get the property values, getProperty action
tag is used. Listings 2.12 and 2.13 are a good example.

2.6. JavaServer Pages 29

1 <jsp:useBean id = "userinfo" class = "beginnersbook.com.Details"></jsp:
useBean>

2 <jsp:setProperty property = "*" name = "userinfo"/>
3 You have enterted below details:

4 <jsp:getProperty property = "username" name = "userinfo"/>

5 <jsp:getProperty property = "password" name = "userinfo"/>

6 <jsp:getProperty property = "age" name = "userinfo"/>

Listing 2.12: useBean (Code found in [31])

1 <html>
2 <head>
3 <title>useBean, getProperty and setProperty example</title>
4 </head>
5 <form action = "userdetails.jsp" method = "post">
6 User Name: <input type = "text" name = "username">

7 User Password: <input type = "password" name = "password">

8 User Age: <input type = "text" name = "age">

9 <input type = "submit" value = "register">

10 </form>
11 </html>

Listing 2.13: index.jsp (Code found in [31])

The result can be seen in �gure 2.18.

Figure 2.18: useBean, getProperty and setProperty result (Image found in [31])

30 Chapter 2. State of the Art

2.6.2.4. Text

The text action can be used to write template text. Its body cannot contain other
elements.

2.6.2.5. Plugin, Params, and Fallback

These three actions are for embeding an object in a web page. In this example, the
plugin action (listing 2.14) generates the appropriate browser-dependent HTML construct
to embed the applet (listing 2.15).

1 <% @page language = "java" contentType = "text/html" %>
2 <html>
3 <head>
4 <title>Action: plugin</title>
5 </head>
6 <body>
7 <jsp:plugin type = "applet" code = "MyApplet.class"
8 codebase = "/tests" height = "100" width = "100">
9 <jsp:params>

10 <jsp:param name = "line" value = "Well said!"/>
11 </jsp:params>
12 <jsp:fallback>Unable to start plugin</jsp:fallback>
13 </jsp:plugin>
14 </body>
15 </html>

Listing 2.14: plugin.jsp (Code found in [28])

1 import java.awt.*;
2 import java.applet.*;
3

4 public class MyApplet extends Applet {
5 String line;
6

7 public void init() {
8 line = getParameter("line");
9 }

10

11 public void paint(Graphics page) {
12 page.setColor(Color.red);
13 page.fillRect(0, 0, 50, 50);
14 page.setColor(Color.green);
15 page.fillRect(50, 0, 50, 50);
16 page.setColor(Color.blue);
17 page.fillRect(0, 50, 50, 50);
18 page.setColor(Color.yellow);
19 page.fillRect(50, 50, 50, 50);
20 page.setColor(Color.black);
21 page.drawString(line, 10, 40);
22 }
23 }

Listing 2.15: MyApplet.java (Code found in [28])

The result can be seen in �gure 2.19.

2.7. JavaServer Faces 31

Figure 2.19: JSP plugin action (Image found in [28])

Core i18n Functions Database XML

c:catch fmt:bundle fn:contains sql:dateParam x:choose
c:choose fmt:formatDate fn:trim sql:param x:forEach
c:forEach fmt:formatNumber fn:endsWith sql:query x:if
c:forTokens fmt:message fn:escapeXml sql:setDataSource x:otherwise
c:if fmt:param fn:indexOf sql:transaction x:out
c:import fmt:parseDate fn:join sql:update x:param
c:otherwise fmt:parseNumber fn:length - x:parse
c:out fmt:timeZone fn:replace - x:set
c:param fmt:setBundle fn:split - x:transform
c:redirect fmt:setLocale fn:startsWith - x:when
c:remove fmt:setTimeZone fn:substring - -
c:set - fn:substringAfter - -
c:url - fn:substringBefore - -
c:when - fn:toLowerCase - -
- - fn:toUpperCase - -

Table 2.1: JSTL Tags (Table found in [32])

2.6.3. JSP Standard Tag Library

JSP also provides a mechanism to de�ne custom actions, in which a custom pre�x
replaces the pre�x jsp of the standard actions. The tag extension mechanism makes possible
to create libraries of custom actions, which then can be used in all your applications. This
is JSTL, the JSP Standard Tag Library. JSTL consists of �ve tag libraries. Table 2.1 shows
the tags included in each library.

2.7. JavaServer Faces

JavaServer Faces (JSF) was conceived in 2001 and released in 2004 as an attempt to
bring a standardized MVC (Model-View-Controller) web framework base for Java.

JSP technology is based on processing a template from start to end, immediately writing
to the response as tags are encountered. JSF, on the other hand, requires a phased approach
where components need to be able to inspect and act on the component tree, which is built

32 Chapter 2. State of the Art

from the tags on the page, before starting to write anything to the response.

In 2009 JSF 2.0 arrived and JSP was deprecated [33].

JavaServer Pages (JSP) is used to de�ne pages, which are compiled to servlets. Ja-
vaServer Faces (JSF) is a complete web MVC framework. It is implemented as a servlet
itself.

JSF has these advantages for web development:

Makes it easy to construct a UI from a set of reusable UI components.

Simpli�es migration of application data to and from the UI.

Helps manage UI state across server requests.

Provides a simple model for wiring client-generated events to server-side application
code.

Allows custom UI components to be easily built and reused.

JSF is intended to handle component status across multiple requests. It can be used to
process complex forms, even if they span multiple pages. It provides a strongly typed event
model for events created on the client side and implements powerful page navigation.

2.7.1. JSF Lifecycle Overview

The JSF lifecycle consists of six phases, ilustrated in �gure 2.20:

Figure 2.20: JSF Lifecycle (Image found in [32])

1. Restore View: The JSF servlet builds the view of the requested page as a component
tree that contains the information associated with all components of the page. If the
page is requested for the �rst time, JSF creates an empty view, wires event handlers
and validators to its components, and then saves it in a FacesContext object, before
jumping directly to Render Response. By saving the view, JSF makes it possible to
repopulate the phase 6 if necessary�for example, when an error ocurrs.

2. Apply Request Values: JSF goes through the component tree and executes each
component's decode method, which extracts values from the request parameters, or
possibly from cookies or headers. It also automatically converts the parameters that
are associated with object properties of nonstring types.

2.7. JavaServer Faces 33

3. Process Validation: The servlet invokes the validate methods for all components of
the validators that had been registered during the Restore View. The validation rules
can be custom-de�ned or prede�ned by JSF. For each validate method that returns
false, the servlet marks the component invalid and queues an error message to the
FacesContext. At the end of this phase, if there are validation errors, JSF jumps
directly to Render Response, so that error messages can be displayed to the user.

4. Update Model Values: During this phase, the values of the components are copied
to the corresponding properties of the managed beans that are wired to them. JSF
does it by executing the component method updateModel, which also performs type
conversions when necessary.

5. Invoke Application: During this phase, the servlet processes the application level
events by executing the corresponding handlers. When the user submits a form or
clicks on a link of a JSF application, the JSF servlet generates a corresponding
application level event. One task developers have to do when working on a JSF
application is to assign a handler to each one of the possible application events.
This is where they specify what should happen next by returning outcomes linked to
possible next pages.

6. Render Response: The servlet creates a response component tree and delegates the
rendering of the page to the server. Each component renders itself as the server goes
through the JSF tags. At the end of this phase, the state of the response is saved so
that the servlet can access it during the Restore View phase of subsequent requests
to the same page.

2.7.2. JSF Tags

Many HTML tags in JSF are rewritten as table 2.2 shows. In JSP whe had tags. Now
in JSF we have Facelets. These are the main tags in JSF:

<c:forEach>, see �gure 2.16 and �gure 2.17

<c:if>, see �gure 2.18

<c:set>, see �gure 2.18

<c:choose><c:when><c:otherwise>, see �gure 2.19

<c:catch>, see �gure 2.20

The code in listing 2.16 creates three separate <h:outputText> components in the
component tree, like this:

1 <c:forEach items = "#{bean.items}" var = "item">
2 <h:outputText id = "item_#{item.id}" value = "#{item.value}" />
3 </c:forEach>

Listing 2.16: <c:forEach> example (Code found in [32])

1 <h:outputText id = "item_1" value = "#{bean.items[0].value}" />
2 <h:outputText id = "item_2" value = "#{bean.items[1].value}" />
3 <h:outputText id = "item_3" value = "#{bean.items[2].value}" />

Listing 2.17: <c:forEach> result (Code found in [32])

34 Chapter 2. State of the Art

Tag Name HTML Element

h:body body
h:button input type=�button�
h:column �
h:commandButton input type=�submit�
h:commandLink a
h:dataTable table
h:doctype <!DOCTYPE>declaration
h:form form
h:graphicImage img
h:head head
h:inputHidden input type=�hidden�
h:inputSecret input type=�password�
h:inputText input type=�text�
h:inputTextarea input type=�textarea�
h:link a
h:message span or text
h:messages span or text
h:outputFormat span or text
h:outputLabel label
h:outputLink a
h:outputScript script
h:outputStylesheet link
h:outputText span or text
h:panelGrid table
h:panelGroup div or span
h:selectBooleanCheckbox input type=�checkbox�
h:selectManyCheckbox multiple input type=�checkbox�
h:selectManyListbox select and multiple option
h:selectManyMenu select and multiple option
h:selectOneListbox select and multiple option
h:selectOneMenu select and multiple option
h:selectOneRadio multiple input type=�radio�

Table 2.2: HTML Tags and HTML Elements (Table found in [32])

2.7. JavaServer Faces 35

1 <c:set var = "salary" scope = "session" value = "${2000 * 2}"/>
2 <c:if test = "${salary > 2000}">
3 <p>My salary is: <c:out value = "${salary}"/><p>
4 </c:if>

Listing 2.18: <c:set> and <c:if> example (Code found in [32])

1 <c:choose>
2 <c:when test = "#{type eq ’password’}">
3 <h:inputSecret id = "#{id}" label = "#{label}" value = "#{value}" />
4 </c:when>
5 <c:when test = "#{type eq ’textarea’}">
6 <h:inputTextarea id = "#{id}" label = "#{label}" value = "#{value}" />
7 </c:when>
8 <c:otherwise>
9 <h:inputText id = "#{id}" label = "#{label}" value = "#{value}"

10 a:type = "#{type}">
11 </h:inputText>
12 </c:otherwise>
13 </c:choose>

Listing 2.19: <c:choose> example (Code found in [32])

1 <c:catch var = "catchException">
2 <% int x = 5 / 0 %>
3 </c:catch>
4

5 <c:if test = "${catchException != null}">
6 <p>The exception is : ${catchException}

7 There is an exception: ${catchException.message}
8 </p>
9 </c:if>

Listing 2.20: <c:catch> example (Code found in [32])

2.7.3. Component Tree

When JSF processes a request, it searches for the requested page and scans its content.
Besides HTML, the page can contain special tags, like <h:inputText value=“...”
/>. Those elements have a special XML namespace that indicates they must be handled
by JSF. These UI elements are collected into a tree data structure. Figure 2.21 is the com-
ponent tree that is restored in the restore view phase, it shows how the tree of listing 2.21
looks and listings 2.22 and 2.23 show how to manipulate it.

The root of this tree always is UIViewRoot. Below that, there are two siblings repre-
senting the head and body of that page, and below that, the other elements nested within
that page. In this example, all elements with the special tags of the JSF/HTML namespace
(with the pre�x h:) show up in the Component Tree. If this namespace is omitted, these
elements will be treated as pure HTML and won't be included in the component tree.

1 <?xml version=’1.0’ encoding=’UTF-8’ ?>
2 <!DOCTYPE html>
3 <html xmlns = "http://www.w3.org/1999/xhtml"
4 xmlns:h = "http://xmlns.jcp.org/jsf/html">
5 <h:head>
6 <h:outputLabel value = "Demo"/>
7 </h:head>
8 <h:body>

36 Chapter 2. State of the Art

Figure 2.21: Component Tree

9 <h:form>
10 <h:outputLabel value = "Param1: "/>
11 <h:inputText value = "#{tinyCalculator.param1}"/>
12 </h:form>
13 </h:body>
14 </html>

Listing 2.21: Component Tree example (Code found in [34])

2.7.3.1. Manipulating the Component Tree

Manipulating the Component Tree can be done declaratively using JSTL tags as well
as programmatically using Java code. Tree-based hierarchies in code are best readable and
maintainable when using a hierarchical markup language such as XML. Facelets is already
XML based. JSTL is also XML based and therefore can be integrated in a Facelets �le.
JSTL is therefore the recommended approach to dynamically manipulate the component
tree, rather than Java code.

In other words, the earliest moment when you can guarantee safely modifying the
component tree is during the PostAddToViewEvent and the latest moment when you can
guarantee safely modifying the component tree is during the PreRenderViewEvent. Any
moment in between is thus also possible. So manipulating the component tree during the
render response phase (sixth phase) is a bad idea.

1 <h:form id = "dynamicFormId">
2 <f:event type = "postAddToView" listener = "#{dynamicForm.populate}" />
3 </h:form>

Listing 2.22: Example on how to manipulate the Component Tree (Code found in [34])

Where the dynamicForm looks something like listing 2.23:

1 Named RequestScoped
2 public class DynamicForm {
3

4 private transient UIForm form;
5

6 private Map<String, Object> values = new HashMap<>();
7

8 private FieldService fieldService;

2.7. JavaServer Faces 37

9

10 public void populate(ComponentSystemEvent event) {
11 form = (UIForm) event.getComponent();
12 List<Field> fields = fieldService.list(form.getId());
13 fields.forEach(field -> field.populate(this));
14 }
15

16 public void createOutputLabel(Field field) {
17 HtmlOutputLabel label = new HtmlOutputLabel();
18 label.setId(field.getName() + "_l");
19 label.setFor(field.getName());
20 label.setValue(field.getLabel());
21 form.getChildren().add(label);
22 }
23

24 public void createInputText(Field field) {
25 HtmlInputText text = new HtmlInputText();
26 text.setId(field.getName());
27 text.setLabel(field.getLabel());
28 text.setValueExpression("value", createValueExpression(field));
29 form.getChildren().add(text);
30 }
31

32 public void createMessage(Field field) {
33 HtmlMessage message = new HtmlMessage();
34 message.setId(field.getName() + "_m");
35 message.setFor(field.getName());
36 form.getChildren().add(message);
37 }
38

39 public static ValueExpression createValueExpression(Field field) {
40 String el = "#{dynamicForm.values[’" + field.getName() + "’]}"
41 FacesContext context = FacesContext.getCurrentInstance();
42 ELContext elContext = context.getELContext();
43 return context.getApplication().getExpressionFactory()
44 .createValueExpression(elContext, el, Object.class);
45 }
46

47 public Map<String, Object> getValues() {
48 return values;
49 }
50 }

Listing 2.23: Example on how to manipulate the Component Tree (Code found in [34])

And where the abstract class Field represents the custom model of a form �eld with at
least type, name, and label properties and the implementation of a TextField#populate()
looks something like listing 2.24:

1 public void populate(DynamicFormBean form) {
2 form.createOutputLabel(this);
3 form.createInputText(this);
4 form.createMessage(this);
5 }

Listing 2.24: Example on how to populate the Component Tree (Code found in [34])

38 Chapter 2. State of the Art

2.7.4. Conversion and Validation [34]

As an MVC framework, JSF needs to convert between Java objects and strings all the
time. The HTTP request is basically broken down into plain vanilla strings representing
headers and parameters, not as Java objects. The HTTP response is written as one big
sequence of characters representing HTML or XML, not as a Java object. However, the
average Java model behind a JSF page does not necessarily contain only String properties.
That is why Converters come into the picture: converting between objects in model and
strings in view.

Before updating the model values with freshly submitted and converted values, the
program must validate whether they comply with the business rules of the web application
and, if necessary, present end users an error message so that they can �x any errors them-
selves. Usually, the business rules are already very well de�ned in the data store, such as a
relational database management system. The Frontend should make absolutely sure that
the submitted and converted values can be inserted in the database without errors.

The standard converters are these:

<f:convertNumber>, see listing 2.25

<f:convertDateTime>, see listing 2.26

1 <f:convertNumber type = "number" />
2 <f:convertNumber type = "currency" />
3 <f:convertNumber type = "percent" />
4

5 <h:outputText value = "#{product.price}">
6 <f:convertNumber type = "currency" locale = "en_US" />
7 </h:outputText>

Listing 2.25: Example of f:convertNumber (Code found in [34])

1 <f:convertDateTime type = "localDate" pattern = "yyyy-MM-dd" />
2 <f:convertDateTime type = "localTime" pattern = "HH:mm:ss" />
3 <f:convertDateTime type = "localDateTime" pattern = "yyyy-MM-dd HH:mm:ss" /

>
4 <f:convertDateTime type = "offsetTime" />
5 <f:convertDateTime type = "offsetDateTime" />
6 <f:convertDateTime type = "zonedDateTime" />
7

8 <h:inputText id = "date" value = "#{bean.date}">
9 <f:convertDateTime type = "date" pattern = "yyyy-MM-dd" />

10 </h:inputText>

Listing 2.26: Example of f:convertDateTime (Code found in [34])

When the submitted value is successfully converted, then JSF will perform validations
on the converted value. It has standard validators of its own.

<f:validateLongRange>/<f:validateDoubleRange>, see listing 2.27

<f:validateLength>/<f:validateRegex>, see listing 2.28

1 <h:inputText value = "#{bean.quantity}">
2 <f:validateLongRange minimum = "1" maximum = "10" />
3 </h:inputText>
4 <h:inputText value = "#{bean.quantity}" a:type = "number" a:min = "1"

2.8. Migrating from Legacy Systems 39

5 a:max = "10">
6 <f:validateLongRange minimum = "1" maximum = "10" />
7 </h:inputText>

Listing 2.27: Example of f:validateLongRange. These validators specify a minimum
and/or maximum number value for an input (Code found in [34])

1 <h:inputText value = "#{bean.someStringOrInteger}" maxlength = "3">
2 <f:validateLength minimum = "3" maximum = "3" />
3 </h:inputText>
4 <h:inputText value = "#{bean.someString}" maxlength = "3">
5 <f:validateRegex pattern = "[0-9]{3}" />
6 </h:inputText>

Listing 2.28: Example of f:validateRegex for a �xed length of 3. It converts the value
to string and then validate the length of the string. It casts the value to String and then
check if the string matches() returns true for the speci�ed pattern attribute (Code found
in [34])

2.8. Migrating from Legacy Systems

A legacy system is a system built on what has become obsolete technology. It continues
to be used due to the cost of replacing or redesigning it and often despite its poor com-
petitiveness, inability to meet changing business needs and incompatibility with modern
equivalents. The implication is that the system is large, monolithic, and di�cult to modify,
integrate and support [35].

For many businesses, legacy system migrations are becoming an increasingly important
issue when they examine their technology portfolios. Legacy apps have become one of the
enduring points of pain, as the cost and di�culty in managing them leads to companies
needing to rationalize them on regular basis.

The whole prospect of how to exploit the cloud has added pressure on how to migrate
a legacy system. The opportunities the cloud presents for increasing automation, enabling
rapid innovation, and reducing operational costs are perks in migrating the system.

2.8.1. Problems with Migrating Legacy Applications

Legacy system migration projects bring up the question of which applications to kill
o� and which to move.

From a business perspective, the challenge is to decide whether a better app will really
help the business. From a technical perspective, the question often becomes how to migrate
a system with a monolithic architecture to a more modern microservice structure.

To make it possible to evolve monolithic applications, innovate, and allow their capa-
bilities to be used by other applications, the system must be broken apart into simpler
component parts [36].

2.8.2. Steps to Follow for Migrating Legacy Systems [37]

Document the Existing System

In the Software Development Life Cycle, a key part of the process is gathering requi-
rements from users on the functionality that they need in the application that will

40 Chapter 2. State of the Art

be built. In the case of migrating a legacy system, an analysis on the current system
is needed to understand how it works, who uses it, what they use it for.

A good starting point for gathering this information is in the existing documentation
for the system that is to be migrated. Often this information is missing or incomplete
with legacy systems.

There can be crucial information in guides, manuals, tutorials, training materials, etc.
that end users may have used. Most often this type of material provides background
information on the functionality but may not provide details of how the underlying
processes work.

Requirements Analysis

The next step in the migration process is to perform a detailed requirements analysis
to determine what features are required in the new application. The features and
functionality that are in the legacy system should be included, and also interviews
with the end users to know what new features are expected/needed.

This area of the migration is frequently where the cost and scope of the project can
increase if mismanaged. The move from a legacy system to another platform is driven
by the request for new features that a legacy application cannot provide or where
the cost of providing these features would be very high.

The most e�ective way of moving to a new platform is to ensure that the application
supports the existing features and functionality �rst before adding anything new. It
may be tempting to add features thinking �while we are at it� but this can be a point
of failure if those new features slow or halt development of core functionality that
the business requires.

Platform Selection

The major decision to be made on the application platform is whether the migrated
application will be a client application, installed locally on the user's computer or
whether it will be a Web application that the users can run from their browser.
Current trends lean toward replacing desktop applications with web-based versions,
even though there may be some functionalities that can not be easily replicated in a
Web application.

The programming language must be selected too. There may be a corporate standard
development environment or it could be an opportunity to establish a new project.
When considering a programming platform, servers cost must be included in the
evaluation.

From the data side, the new database platform must support the new application,
as well as hold any existing data migrated over from the legacy system.

Design, Development and Deployment

Finally, with the system requirements collected and the application and database
platform, then the detailed design and development phase of the migration begins.

A key to a successful migration is having a thorough detailed design that encompasses
the current functionality in the legacy system and user requirements. Users should
be able to take the screen designs from your detailed designs and walk through the
tasks they would normally carry out in the legacy system that is being replaced. Test
migrations of data should be run frequently to ensure that the new application is
ready to go live by the release date.

Chapter 3
Solution Design

Summary: In this chapter the proposed solution and the software implementation

are described, as well as the development process, the decision making, the used pac-

kages and the setbacks that happened along the way.

3.1. Architecture of the Proposed Solution

Chain of Responsibility is a behavioral design pattern that consists on passing a request
along the chain of potential handlers until one of them handles the request. This pattern
is used in the project as there are many classes that transform some parts of the HTML
document into a JSF valid syntax, but all transformers behave similarly, so they inherit
from a given class.

Figure 3.1: Chain of Responsibility (Image found in [38])

The solution developed for the project includes 14 java �les, where 13 are components of
the Chain of Responsibility and one that has the main method, uses all the transformations
and creates a new �le with the .xhtml extension with the solution for the user to check.
It also creates a .txt �le that contains warning notes on the proposed solution.

The UML diagram for the program developed can be seen in �gure 3.2.

These are the �les that are included in the developed software. Also there is a JSON
�le that has all the equivalences between JSF and HTML. There is almost one �le for each
HTML tag that has a complex transformation:

41

42 Chapter 3. Solution Design

Figure 3.2: UML Diagram for the program

3.1. Architecture of the Proposed Solution 43

Transformation.java

This is the �le that the rest of the transformations extend to.

ATransformation.java

This �le replaces the tag a for h:outputLink, the attribute href for value and
moves the text of the tag to the attribute outcome, so there is no outside text in
this tag.

ButtonTransformation.java

This �le replaces the tag button for h:commandButton.

HTMLTransformation.java

This �le adds the attributes xmlns with the value http://www.w3.org/1999/xhtml
and xmlns:h with the value http://xmlns.jcp.org/jsf/html to the html
tag.

ImageTransformation.java

This �le replaces the tag img for h:graphicImage, and the attribute src for
value.

InputTransformation.java

This �le replaces the tag input with a set of JSF tags depending on the value of
the type attribute. These are the set of tags contemplated for the transformation:

� hidden for h:inputHidden

� checkbox for h:selectBooleanCheckbox

� password for h:inputSecret

� radio for h:selectOneRadio

� text for h:inputText

� submit for h:commandButton

Every one of them produces a di�erent JSF tag, but the attributes for those tags
remain the same.

LinkTransformation.java

This �le replaces the tag link for h:outputStylesheet, the attribute type for
library, href for name and removes the closing tag.

OptionTransformation.java

This �le replaces the tag option for f:selectItem, the attribute value for
value and moves the text of the tag to the attribute itemLabel, so there is no
outside text in this tag.

RadioTransformation.java

This �le replaces the tag radio for f:selectItem, the attribute value for itemValue,
the surrounding label tag is removed, the text inside that tag goes to the itemLabel
attribute and the tag select for h:selectOneRadio.

44 Chapter 3. Solution Design

ScriptTransformation.java

This �le replaces the tag script for h:outputScript, the attribute type for
library, src for name and removes the closing tag.

SimpleTransformation.java

This �le replaces the following tags with their respective ones. They are very similar
and that is why they are all on the same transformation:

� body and /body for h:body and /h:body

� head and /head for h:head and /h:head

� form and /form for h:form and /h:form

� label and /label for h:outputLabel and /h:outputLabel

� div and /div for h:panelGroup and /h:panelGroup

� span and /span for h:outputText and /h:outputText

� select and /select for h:span and /h:span

TableTransformation.java

This �le replaces the table tag for h:panelGrid and the thead and tfoot tags
for f:facet. It also removes the tbody and tr tags and replaces the td tags with
h:outputLabel tags. It also calculates the column span and puts it as an attribute
in the h:panelGrid tag. All the other attributes remain the same. There are no
explicit rows contemplated in JSF tables.

JavaTransformation.java

This �le contemplates the transformations needed for the raw Java code included in
the JSP �le. Listing 3.1 groups all the code between <%%lt; and%gt;%> tags with
the collectTags() method.

Two key methods in this �le are chooseTransform() and forEachTransform()
because they transform the java instructions into JSF valid tags. These methods are
used in Listing 3.2.

1 private ArrayList<String> collectTags(ArrayList<String> matches,
2 ArrayList<String> tags) {
3

4 for (String match : matches) {
5 match = match.replace(">", ">").replace("<", "<");
6 if (!match.contains("for")) {
7 for (String tag : match.split("; ")) {
8 if (tag.contains("}")) {
9 for (String braces : tag.split("}")) {

10 tags.add(braces.trim().isEmpty() ? "}" : braces);
11 }
12 } else {
13 tags.add(tag);
14 }
15 }
16 } else {
17 tags.add(match);
18 }
19 }
20 return tags;

3.1. Architecture of the Proposed Solution 45

21 }

Listing 3.1: collectTags method

Listing 3.2 replaces all the tags previously talked about with a corresponding JSF
transformation. The way it works is this:

1. It receives an ArrayList<String> with all the Java syntax tags in the �le.

2. It loops through tags in order to transform each tag.

3. It works with a Stack that stores the closing match of the tag it is working on,
so when it the tag is a } (closing curly bracket) it calculates how many tags it
has to pop from the Stack.

4. When it is done looping through the array, the Stack is empty.

1 private String replaceTags(ArrayList<String> tags, Stack<String> ends, String
dom) {

2 for (int i = 0; i < tags.size(); i++) {
3 System.out.println(tags.get(i));
4 if (tags.get(i).contains("if")) {
5 String jsfTag = "\n<c:choose>\n\t";
6 addToStack(ends, "</c:choose>");
7 jsfTag += chooseTransform(tags.get(i), ends);
8 dom = dom.replace(tags.get(i), jsfTag);
9 }

10 if (tags.get(i).contains("for")) {
11 dom = forEachTransform(tags.get(i), ends, dom);
12 }
13 if (tags.get(i).contains("}")) {
14 if (!ends.empty()) {
15 if (ends.peek().toString().equals("\n</c:when>\n") && !

containsTag(tags.subList(i, tags.size()), "if")) {
16

17 dom = dom.replaceFirst(" } ", ends.pop().toString() + ends.
pop().toString());

18

19 } else if (ends.peek().toString().equals("\n</c:otherwise>\n")
|| (ends.size() == 2 && i == (tags.size() - 1))) {

20

21 dom = dom.replaceFirst(" } ", ends.pop().toString() + ends.
pop().toString());

22

23 } else {
24 dom = dom.replaceFirst(" } ", ends.pop().toString());
25 }
26 }
27 }
28 if (tags.get(i).contains("else {")) {
29 String tag = tags.get(i).replace("{", "");
30 dom = dom.replaceFirst(tag, "<c:otherwise>");
31 addToStack(ends, "\n</c:otherwise>\n");
32 }
33 }
34 return dom;
35 }

Listing 3.2: replaceTags method

46 Chapter 3. Solution Design

JSPtoJSF.java

Listing 3.3 shows the code used to e�ciently transform the code with all the �les
previously described. It parses the document with Jsoup, and then every transformer
acts on the result of the previous transformation. It also creates a �le with notes about
the transformed �le.

All transformers have a boolean �ag initially set to false, so if there is a transformer
that does not need to operate, it keeps its �ag in false, but if there is a transformer
that needs to take action because there are tags in the JSP/HTML �le that involve
that transformer, then te �ag turns true and the notes �le contemplates notes for
that transformation. These �ags allow us to monitor which phases have actually made
changes in the input �le.

1 public static String domJsoup(JSONObject json, File fileInput) throws
IOException {

2 Document document = Jsoup.parse(fileInput, "UTF-8");
3

4 Transformation[] transformers = {
5 new HTMLTransformation(json),
6 new LinkTransformation(json),
7 new ScriptTransformation(json),
8 new RadioTransformation(json),
9 new InputTransformation(json),

10 new OptionTransformation(json),
11 new ATransformation(json),
12 new ImageTransformation(json),
13 new ButtonTransformation(json),
14 new TableTransformation(json),
15 new SimpleTransformation(json),
16 new JavaTransformation(json)
17 };
18 String dom = document.toString();
19

20 FileOutputStream name = new FileOutputStream(NOTES_FOLDER + changeExtension
(file, TXT_EXTENSION));

21

22 PrintStream out = new PrintStream(name);
23 int i = file.getName().lastIndexOf(’.’);
24 String filename = file.getName().substring(0, i);
25

26 out.println("===");
27 out.println("Recommendations for the file " + filename);
28 out.println("===");
29 out.println("Check tabulations and linebreakes for better readability");
30

31 for (Transformation transformer : transformers) {
32 dom = transformer.transform(document, dom);
33 if (transformer.getFlag()) {
34 out.println(transformer.notes());
35 }
36 }
37 out.close();
38 return customUpperCase(dom);
39 }

Listing 3.3: Transformation Code

Listing 3.4 has the main method where it prints the solution in an xhtml �le.

3.1. Architecture of the Proposed Solution 47

1 public static void processFile() throws IOException, ParseException {
2 if (cmd.hasOption("f")) {
3 File file = new File(cmd.getOptionValue("f"));
4 message("START!!!");
5 String filename = cmd.getOptionValue("f").substring(cmd.getOptionValue(

"f").lastIndexOf("\\") + 1, cmd.getOptionValue("f").length());
6

7 System.out.println("\n The file to be transformed is: " + filename + "\
n");

8

9 JSONParser parser = new JSONParser();
10 try {
11 Reader dictionary = new FileReader(JSON_FILE);
12 JSONObject json = (JSONObject) parser.parse(dictionary);
13 String res = domJsoup(json, file);
14 File folder = new File(TRANSFORMATIONS_FOLDER);
15 folder.mkdirs();
16 FileOutputStream name = new FileOutputStream(TRANSFORMATIONS_FOLDER

+ changeExtension(file, XHTML_EXTENSION));
17

18 PrintStream out = new PrintStream(name);
19 out.print(res);
20 out.close();
21 } catch (FileNotFoundException e) {
22 System.out.println("\n The file seems to be wrong \n");
23 }
24 message("DONE!!! ");
25 }
26 }

Listing 3.4: Transformation Main

dictionary.json

This �le includes all the di�erent equivalences between HTML and JSF, listing 3.5
is an extract of this �le's content.

1 {
2 "html": [{
3 "xmlns": "http://www.w3.org/1999/xhtml",
4 "xmlns:h": "http://xmlns.jcp.org/jsf/html"
5 }],
6 "head": "h:head",
7 "body": "h:body",
8 "button": [{
9 "button": "h:commandButton"

10 }],
11 "img": [{
12 "img": "h:graphicImage",
13 "src": "value"
14 }],
15 "input": [{
16 "type": [{
17 "hidden": "h:inputHidden",
18 "checkbox": "h:selectBooleanCheckbox",
19 "password": "h:inputSecret",
20 "radio": "h:selectOneRadio",
21 "text": "h:inputText",
22 "submit": "h:commandButton"
23 }]

48 Chapter 3. Solution Design

24 }],
25 "a": [{
26 "a": "h:outputLink",
27 "href": "value"
28 }],
29 "option": [{
30 "option": "f:selectItem",
31 "value": "itemValue"
32 }],
33 "radio": [{
34 "radio": "f:selectItem",
35 "value": "itemValue",
36 "label": "itemLabel",
37 "select": "h:selectOneRadio",
38 }],
39 "script": [{
40 "script": "h:outputScript",
41 "type": "library",
42 "src": "name"
43 }],
44 "label": "h:outputLabel",
45 "span": "h:outputText",
46 "table": "h:panelGrid",
47 "thead": "f:facet",
48 "tfoot": "f:facet",
49 }

Listing 3.5: Dictionary JSON �le

3.2. Setbacks

There were a few setbacks while developing the program that in�uenced the way the
software was developed.

Jsoup does not allow tags that are not contemplated in the HTML standard, for
example h:outputLabel. Other tried solution was the JDOM package, but it showed
troubles with the closing tags, because it is intended to work with xml, but HTML
does have some tags that do not need a matching closing tag.

To �x this problem, I decided to have a string that had the HTML DOM, so after
editing the tag with Jsoup, I replaced the corresponding tag in the DOM string, so
that I could use almost all Jsoup methods and replace in the DOM string what was
needed.

When replacing the attributes, Jsoup does not allow for camel case attributes inside
tags, such as itemLabel, so I had to replace all those attributes with the camel
case ones before writing the solution in the �le.

When replacing the Java code, the <c:if> tag gave some trouble because the
JSF equivalent does not support an else tag, so instead, I decided to use the
<c:choose> and <c:when> tags because the <c:otherwise> tag can be omit-
ted.

JSTL tags are compatible with JSF, so those tags were not transformed into a JSF
equivalent, which would have been using regular Java code and that is against MVC
best practices.

3.3. Used Packages 49

Because JSF is an MVC framework, all the business logic is intended to be written
either in the Controller or the Model, so it was not aggressively addressed. This point
is related to the previous one.

3.3. Used Packages

Maven is a software project management tool. Using a project object model (POM),
it can manage a project's build, reporting and documentation from a central piece of
information [39]. It was used for the development of the project.

These are the Java Packages used for developing the software:

3.3.1. java.io [40]

The java.io package contains the classes that handle fundamental input and output
operations in Java. The I/O classes can be grouped as follows:

Cases that handle object serialization.

Manipulate �les on the local �lesystem.

For reading input/writing output from/to a stream of data.

The classes from java.io used in the project are the following:

java.io.File

java.io.Reader

java.io.FileReader

java.io.IOException

java.io.FileNotFoundException

This package helped with handling the test �les and creating the solution �les and the
note �les on every transformation.

3.3.2. org.json.simple [41]

The package org.json.simple is a Java toolkit used to encode or decode JSON
text.

org.json.simple.JSONObject

org.json.simple.parser.JSONParser

org.json.simple.parser.ParseException

This package helped with handling the JSON �le that contains the dictionary.

50 Chapter 3. Solution Design

3.3.3. Jsoup [42]

Jsoup is a Java package for working with real-world HTML. It provides an API for
fetching URLs and extracting and manipulating data, using the HTML5 DOM methods
and CSS selectors. It implements the WHATWG (Web Hypertext Application Technology
Working Group) HTML5 speci�cation, and parses HTML to the same DOM as modern
browsers do. It can scrape and parse HTML from a URL, �le, or string.

The classes from org.jsoup used in the project are the following:

org.jsoup.Jsoup

org.jsoup.nodes.Document

This package helped with handling the HTML tags to make it easier to transform into
a JSF valid tag.

3.3.4. java.util [43]

The java.util package contains the collections framework, legacy collection classes,
event model, date and time, internationalization, and miscellaneous utility classes.

The classes from java.util used in the project are the following:

java.util.List

java.util.Stack

java.util.ArrayList

java.util.regex.Matcher

java.util.regex.Pattern

This package helped with the logic of tranforming the Java raw tags.

3.3.5. commons.cli [44]

The commons.cli package provides an API for parsing command line options passed
to programs. It can also print help messages explaining the options available for a custom
command line tool.

The classes from commons.cli used in the project are the following:

org.apache.commons.cli.CommandLine

org.apache.commons.cli.CommandLineParser

org.apache.commons.cli.DefaultParser

org.apache.commons.cli.HelpFormatter

org.apache.commons.cli.Options

org.apache.commons.cli.ParseException

This package helped with the logic of the command line.

Chapter 4
Tests and Results

Summary: In this chapter there is a tutorial, also the tests and results are shown

and described.

4.1. How To Use the System

The program must be run with the command line. The user needs to be located at
the folder that has the .jar �le. To run the program the user must use the command
java -jar <JAR_FILE>

Figure 4.1 shows the output when the user does not send any arguments.

Figure 4.1: Usage without arguments

Figure 4.2 shows how the program runs when a �le is sent with in the command. The
way to do it is this: java -jar <JAR_FILE>-f file . If the user does not provide the
a folder to store the notes and the transformations, the program has (or creates) default
folders for that.

It is possible to tell the program where to put the notes and the transformed �les. If
the folders do not exist, the program creates them. Figure 4.3 shows how the program runs
when a �le and a place to store either/both folders are sent with in the command. The
way to to do it is this: java -jar <JAR_FILE>-f file -n <NOTES_FOLDER> .

Figure 4.4 shows the result of running the program. The results will be found in the
transformedFiles folder and some warning/recommendation notes will be found in the
notesFiles folder if the user does not provide custom folders, otherwise the results will be
found there.

If there is a mistake, the command line will prompt a message like �gure 4.5:

51

52 Chapter 4. Tests and Results

Figure 4.2: Usage specifying �le

Figure 4.3: Usage specifying a folder to put the notes

Figure 4.4: Resulting folder

4.1. How To Use the System 53

Figure 4.5: Error example

54 Chapter 4. Tests and Results

4.2. Results

4.2.1. Select

Listing 4.1 is an example on how a select tag is composed.

1 <select name="example">
2 <option value="1">Item 1</option>
3 <option value="2">Item 2</option>
4 </select>
5 <select name="example">
6 <option value="3">Item 3</option>
7 <option value="4">Item 4</option>
8 </select>

Listing 4.1: Select example

Listing 4.2 shows how the select tag composition is transformed into h:selectOneMenu.

1 <h:selectOneMenu name="example">
2 <f:selectItem itemValue="1" itemLabel="Item 1"/>
3 <f:selectItem itemValue="2" itemLabel="Item 2"/>
4 </h:selectOneMenu>
5 <h:selectOneMenu name="example">
6 <f:selectItem itemValue="3" itemLabel="Item 3"/>
7 <f:selectItem itemValue="4" itemLabel="Item 4"/>
8 </h:selectOneMenu>

Listing 4.2: h:selectOneMenu result

4.2.2. Div and Radio Buttons

Listing 4.3 is an example on how radio buttons are displayed in HTML.

1 <div>
2 <input type="radio" id="male" name="gender" value="male">
3 <label for="male">Male</label>

4 <input type="radio" id="female" name="gender" value="female">
5 <label for="female">Female</label>

6 <input type="radio" id="other" name="gender" value="other">
7 <label for="other">Other</label>
8 </div>

Listing 4.3: Radio button example

Listing 4.4 shows how radio buttons are transformed into JSF using less tags, making
it easier to read.

1 <h:panelGroup>
2 <f:selectItem itemLabel="Male" itemValue="male" />

3 <f:selectItem itemLabel="Female" itemValue="female" />

4 <f:selectItem itemLabel="Other" itemValue="other" />
5 </h:panelGroup>

Listing 4.4: Radio button result

4.2.3. Inputs

Listing 4.5 is an example on di�erent input tags in HTML.

4.2. Results 55

1 <input type="hidden" id="custId" name="custId" value="3487">
2 <input type="text" id="username" name="username">
3 <input type="password" id="pass" name="password" minlength="8" required>

Listing 4.5: Input tags example

Listing 4.6 shows how those input tags are transformed with more self explanatory tags
in JSF.

1 <h:inputHidden id="custId" name="custId" value="3487" />
2 <h:inputText id="username" name="username" />
3 <h:inputSecret id="pass" name="password" minlength="8" required />

Listing 4.6: Input tags result

4.2.4. Images and Buttons

Listing 4.7 shows how images and buttons are used in HTML.

1
2 <button type="button">Click Me!</button>

Listing 4.7: img and button tags example

Listing 4.8 shows how images and buttons are transformed in JSF.

1 <h:graphicImage value="http://www.tutorialspoint.com/images/jsf-mini-logo.
png"/>

2 <h:commandButton value="Click Me!" />

Listing 4.8: Input tags result

4.2.5. Tables

Listing 4.9 shows how tables are created in HTML.

1 <thead>
2 <tr><th colspan = "2" scope = "colgroup">Login</th></tr>
3 </thead>
4 <tbody>
5 <tr>
6 <td>Username</td>
7 <td>xxxxxxxxxxxxx</td>
8 </tr>
9 <tr>

10 <td>Password</td>
11 <td>yyyyyyyyyyyyyy</td>
12 </tr>
13 </tbody>
14 <tfoot>
15 <tr>
16 <td colspan = "2">
17
18 <input type = "submit" name = "submit" value = "Submit" />
19
20 </td>
21 </tr>
22 </tfoot>
23 </table>

Listing 4.9: Table example

56 Chapter 4. Tests and Results

Listing 4.10 shows how a table is transformed with less tags and easier to read.

1 <h:panelGrid column="2" id="example" border="1" cellpadding="10"
cellspacing="1">

2 <f:facet name="thead">
3 <h:outputLabel>Login</h:outputLabel>
4 </f:facet>
5 <h:outputLabel>Username</h:outputLabel>
6 <h:outputLabel>xxxxxxxxxxxxx</h:outputLabel>
7 <h:outputLabel>Password</h:outputLabel>
8 <h:outputLabel>yyyyyyyyyyyyyy</h:outputLabel>
9 <f:facet name="tfoot">

10 <h:outputText style="display:block; text-align:center">
11 <h:commandButton name="submit" value="Submit" />
12 </h:outputText>
13 </f:facet>

Listing 4.10: Table result

4.2.6. If/Choose

Listing 4.11 has an example on how an if/else instruction would look in Java.

1 <% if (num > 0.95) { %>
2 <h2>You’ll have a luck day!</h2><p>(<%= num %>)</p>
3 <% } else { %>
4 <h2>Well, life goes on ... </h2><p>(<%= num %>)</p>
5 <% } %>

Listing 4.11: if/else

Listing 4.12 shows how the transformation looks, with <c:choose>, <c:when> and
<c:otherwise> tags.

1 <c:choose>
2 <c:when test="#{num > 0.95}">
3 <h2>You’ll have a luck day!</h2>
4 <p>(<%= num %>)</p>
5 </c:when>
6 <c:otherwise>
7 <h2>Well, life goes on ... </h2>
8 <p>(<%= num %>)</p>
9 </c:otherwise>

10 </c:choose>

Listing 4.12: <c:choose>, <c:when> and <c:otherwise> example

4.2.7. foreach

Listing 4.13 has an example of how a table could be created in a JSP or pure Java
environment, where all the rows are de�ned, all columns can be seen explicitly and there
is a for loop.

1 <table border="1">
2 <tr>
3 <td>Festival Name:</td>
4 <td>Location:</td>
5 <td>Start Date:</td>
6 <td>End Date:</td>
7 <td>URL:</td>

4.2. Results 57

8 </tr>
9 <% for(int i = 0; i < allFestivals.size(); i += 1) { %>

10 <tr>
11 <td>${allFestivals.get(i).getFestivalName()}</td>
12 <td>${allFestivals.get(i).getLocation()}</td>
13 <td>${allFestivals.get(i).getStartDate()}</td>
14 <td>${allFestivals.get(i).getEndDate()}</td>
15 <td>${allFestivals.get(i).getURL()}</td>
16 </tr>
17 <% } %>
18 </table>

Listing 4.13: Table with foreach example java

Listing 4.14 shows a h:panelGrid instead of a table, with the attribute column that
has been calculated so there are no longer trs or tds. Now there are h:outputLabel
tags that contain the text. There is a <c:foreach> instead of the for loop, so now it does
not involve an index. The variable in the loop has a su�x _elem which substitutes the
.get(i), and the methods have a get word preceding it. These lines should be adapted
according to what the variables in the Model are.

1 <h:panelGrid column="5" border="1">
2 <h:outputLabel>Festival Name:</h:outputLabel>
3 <h:outputLabel>Location:</h:outputLabel>
4 <h:outputLabel>Start Date:</h:outputLabel>
5 <h:outputLabel>End Date:</h:outputLabel>
6 <h:outputLabel>URL:</h:outputLabel>
7 <c:forEach items="#{allFestivals}" var="allFestivals_elem">
8 <h:outputLabel>${allFestivals_elem.getFestivalName}</h:outputLabel>
9 <h:outputLabel>${allFestivals_elem.getLocation}</h:outputLabel>

10 <h:outputLabel>${allFestivals_elem.getStartDate}</h:outputLabel>
11 <h:outputLabel>${allFestivals_elem.getEndDate}</h:outputLabel>
12 <h:outputLabel>${allFestivals_elem.getURL}</h:outputLabel>
13 </c:forEach>
14 </h:panelGrid>

Listing 4.14: Table with foreach result

4.2.8. Google Skeleton

The code in listing 4.15 has the skeleton of the Google's home page, and its transfor-
mation into JSF can be seen in listing 4.16

1 <html>
2 <head>
3 <link rel="stylesheet" type="text/css" href="css/style.css">
4 <title>Google</title>
5 </head>
6 <body>
7 <header>
8
9 Gmail

10 Im genes
11
12
13
14
15 </header>
16 <main>

58 Chapter 4. Tests and Results

17 <section>
18
19 </section>
20 <section>
21 <input id="search" class="field" type="text" name="name"

autofocus="true">
22
23 </section>
24 <section>
25 <button onclick="redirect()">Buscar en Google</button>
26 <button>Me siento con suerte</button>
27 </section>
28 </main>
29 <footer>
30
31 Publicidad
32 Negocios
33 Acerca de
34
35
36 Privacidad
37 Condiciones
38 Preferencias
39 Utilizar Google.com
40
41 </footer>
42 </body>
43 </html>

Listing 4.15: googleSkeleton.html

1 <html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://xmlns.jcp.org/
jsf/html">

2 <h:head>
3 <h:outputStylesheet library="css" name="css/style.css">
4 <title>Google</title>
5 </h:head>
6 <h:body>
7 <h:header>
8
9 Gmail

10 Im?genes
11 <h:graphicImage value="img/cuadros.png"/>
12 <h:graphicImage value="img/campana.svg"/>
13 <h:graphicImage value="img/perfil.jpg"/>
14
15 </h:header>
16 <main>
17 <section>
18 <h:graphicImage id="google" value="img/Google.jpg"/>
19 </section>
20 <section>
21 <h:inputText id="search" styleClass="field" name="name" autofocus="true

" />
22 <h:graphicImage width="25" value="img/google-microfono.jpg"/>
23 </section>
24 <section> <h:commandButton onclick="redirect()" value="Buscar en Google"

/>
25 <h:commandButton value="Me siento con suerte" />
26 </section>
27 </main>

4.2. Results 59

28 <footer>
29
30 Publicidad
31 Negocios
32 Acerca de
33
34
35 Privacidad
36 Condiciones
37 Preferencias
38 Utilizar Google.com
39
40 </footer>
41 <h:outputScript library="js" name="" />
42 </h:body>
43 </html>

Listing 4.16: googleSkeleton.xhtml

Listing 4.17 is an example of the warning notes that are generated along the transfor-
mation.

1 ===
2 Warning notes and recommendations for the file index
3 ===
4 Check the tabulations and linebreakes for better readability
5

6 -- Link Tag Notes --
7 Check that there are no link tags in the file
8 Check that there are no empty attributes in the h:outputStylesheet tag
9 Check that both library and name attributes have coherent values

10

11 -- Script Tag Notes --
12 Check that there are no script tags in the file
13 Check that there are no empty attributes in the h:outputScript tag
14 Check that both library and name attributes have coherent values
15

16 -- Radio Tag Notes --
17 Check that there are no radio tags in the file
18 Check that there are no empty attributes in the f:selectItem tag
19 Check there are no label tags surrounding the f:selectItem tags
20 Check the itemValue attribute and the itemLabel value
21

22 -- Input Tag Notes --
23 Check that there are no input tags in the file
24 Check that there are no empty attributes in any of the following tags: h:

inputText, h:commandButton, h:selectOneRadio, h:inputSecret, h:
inputHidden, h:selectBooleanCheckbox

25

26 -- Option Tag Notes --
27 Check that there are no option tags in the file
28 Check that there are no empty attributes in the f:selectItem tag
29

30 -- A Tag Notes --
31 Check that there are no a tags in the file
32 Check that there are no empty attributes in the h:outputLink tag
33 Check the outcome attribute because it should contain the text in the link
34

35 -- Image Tag Notes --
36 Check that there are no img tags in the file
37 Check that there are no empty attributes in the h:graphicImage tag
38

60 Chapter 4. Tests and Results

39 -- Button Tag Notes --
40 Check that there are no button tags in the file
41 Check that there are no empty attributes in the h:commandButton tag
42

43 -- Table Tag Notes --
44 Check that there are no table, tbody, thead, tfoot, tr or td tags in the

file
45 Check that there are no empty attributes in the h:panelGrid or f:facet tags

Listing 4.17: Notes example

Chapter 5
Conclusions and Future Work

Summary: This chapter presents the conclusions drawn during the development of

the project as well as possible improvements that could be implemented to extend the

functionality of the system or improve its e�ciency.

5.1. Conclusions

The objective of the thesis set at the beginning, which was to create a software tool
capable of migrating a web view �le automatically from JSP to JSF, was achieved suc-
cesfully. The transformation from one �le to another is clear, even though there are a few
things that could improve and would have to be addressed in future versions of the project.

Before enrolling in the master I had worked with web technologies for a few years, so I
chose to work on this project because it involved learning new web technologies that I had
not worked with before but I could encounter in future jobs/projects, even though it did
not involve creating create a web application per se. This project forced me to investigate
and reinforce the knowledge I have about web technologies, even though it did not imply
developing a web application.

Implementing this project included many challenges. Firstly to work again with Java,
because in my case I had not done that since leaving college four years ago. Then I had to
learn two technologies with which I had no experience with, compare them and create a
tool that migrates from one technology to the other. Another challenge was also working
with the Java packages, especially Jsoup, because of the challenges that emerged. The
structure and purpose of the project forced to have a DOM String with the changes instead
of making the transformations directly with Jsoup. It had been a while since I developed
a program without using a Framework.

My previous experience working with web technologies along with the new knowledge
and habits acquired in the master helped me get through this project despite what the
COVID-19 circumstances are and the stress the situation provokes, so I think this is a good
way to �nish the master.

In summary, the balance is positive, especially because of the knowledge adquired
during the development of the project.

61

62 Chapter 5. Conclusions and Future Work

5.2. Future Work

The future work to keep growing this project would imply to keep on making tests so
that it can cover more cases, stress the system with more and more complex templates
or even with real projects in order to tune the system and then get a more accurate
transformation.

There are tags that have multiple HTML equivalences, so a better transformation could
be to analyze and make sure which tag should be used in each case.

Other improvement would be better handling of tabs and spaces between tags and
breaklines, so the resulting transformed �le is more readable. There is also room for im-
provement on improving the warning notes and make them more precise with what the
transformation encounters in the �le or tries to do.

In a MVC Framework, this project only focuses on the view �les, so a next step could be
to work with servlet �les in order to create a robust Controller �le to address a full�edged
MVC transformation of the project and not just limit it to the view phase.

References

[1] Eric Normand. Why do we use web frameworks?
https://lispcast.com/why-web-frameworks/, 2020 (Retrieved on April 1
2020).

[2] Kitty Gupta. What is the di�erence between jsp and jsf? https:
//www.freelancinggig.com/blog/2018/03/16/difference-jsp-jsf/,
2020 (Retrieved on April 1 2020).

[3] Paul Vasiliev. Five biggest challenges of software migration projects.
https://www.syberry.com/company/blog/articles/
streamlining-the-software-migration-process, 2020 (Retrieved on
April 1 2020).

[4] Jay Wengrow. Is html a programming language?
https://anyonecanlearntocode.com/blog_posts/
is-html-a-programming-language, 2020 (Retrieved on April 2 2020).

[5] Krishna Eydat. Di�erent versions of html. http://www.codefreetutorial.
com/learn-html/76-different-versions-of-html, 2020 (Retrieved on
March 28 2020).

[6] W3cschool. Html history.
https://www.w3schools.in/html-tutorial/history/, 2020 (Retrieved
on March 28 2020).

[7] Ferenc Almasi. 10 best practices for html. https:
//medium.com/swlh/10-best-practices-for-html-542fb923b93, 2020
(Retrieved on April 2 2020).

[8] William Craig. 20 html best practices you should follow.
https://www.webfx.com/blog/web-design/
20-html-best-practices-you-should-follow/, 2020 (Retrieved on April
2 2020).

[9] Michael Müller. Practical JSF in Java EE 8. Electronic version, 2018.

[10] Vangie Beal. Http - hypertext transfer protocol.
https://www.webopedia.com/TERM/H/HTTP.html, 2020 (Retrieved on April
13 2020).

63

https://lispcast.com/why-web-frameworks/
https://www.freelancinggig.com/blog/2018/03/16/difference-jsp-jsf/
https://www.freelancinggig.com/blog/2018/03/16/difference-jsp-jsf/
https://www.syberry.com/company/blog/articles/streamlining-the-software-migration-process
https://www.syberry.com/company/blog/articles/streamlining-the-software-migration-process
https://anyonecanlearntocode.com/blog_posts/is-html-a-programming-language
https://anyonecanlearntocode.com/blog_posts/is-html-a-programming-language
http://www.codefreetutorial.com/learn-html/76-different-versions-of-html
http://www.codefreetutorial.com/learn-html/76-different-versions-of-html
https://www.w3schools.in/html-tutorial/history/
https://medium.com/swlh/10-best-practices-for-html-542fb923b93
https://medium.com/swlh/10-best-practices-for-html-542fb923b93
https://www.webfx.com/blog/web-design/20-html-best-practices-you-should-follow/
https://www.webfx.com/blog/web-design/20-html-best-practices-you-should-follow/
https://www.webopedia.com/TERM/H/HTTP.html

64 REFERENCES

[11] Mozilla. Http request methods.
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods, 2020
(Retrieved on April 13 2020).

[12] Cloudfare. What is https?
https://www.cloudflare.com/learning/ssl/what-is-https/, 2020
(Retrieved on April 13 2020).

[13] Chip Securis. What is asymmetric encryption? read symmetric vs. asymmetric
encryption diversity. https://cheapsslsecurity.com/blog/
what-is-asymmetric-encryption-understand-with-simple-examples/,
2020 (Retrieved on April 29 2020).

[14] Karwan Jacksi. Development history of the world wide web. International Journal
of Scienti�c and Technology Research, 2019.

[15] Cambridge Semantics. An introduction to the semantic web.
https://www.youtube.com/watch?v=V6BR9DrmUQA, 2020 (Retrieved on
April 6 2020).

[16] Pradeep Saran. From history of web application development. https:
//www.devsaran.com/blog/history-web-application-development,
2020 (Retrieved on April 2 2020).

[17] Jesse James Garrett. Ajax: A new approach to web applications. Adaptive Path,
2005.

[18] Metalog. The semantic web made easy.
https://www.w3.org/RDF/Metalog/docs/sw-easy, 2020 (Retrieved on
April 4 2020).

[19] Sam Richard. What are progressive web apps?
https://web.dev/what-are-pwas/, 2020 (Retrieved on April 6 2020).

[20] Google Chrome Developers. Progressive web apps - pwa roadshow.
https://www.youtube.com/watch?v=z2JgN6Ae-Bo, 2020 (Retrieved on
April 6 2020).

[21] Pankaj Patel. Types of parsers in compiler design. https:
//www.geeksforgeeks.org/types-of-parsers-in-compiler-design/,
2020 (Retrieved on April 12 2020).

[22] Dale Janssen. What is a parser?
https://www.techopedia.com/definition/3854/parser, 2020 (Retrieved
on April 12 2020).

[23] Allforrous. Java (programming language).
https://en.wikipedia.org/wiki/Java_(programming_language), 2020
(Retrieved on April 16 2020).

[24] Kartik Thakral. Introduction to java servlets.
https://www.geeksforgeeks.org/introduction-java-servlets/, 2020
(Retrieved on April 16 2020).

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://www.cloudflare.com/learning/ssl/what-is-https/
https://cheapsslsecurity.com/blog/what-is-asymmetric-encryption-understand-with-simple-examples/
https://cheapsslsecurity.com/blog/what-is-asymmetric-encryption-understand-with-simple-examples/
https://www.youtube.com/watch?v=V6BR9DrmUQA
https://www.devsaran.com/blog/history-web-application-development
https://www.devsaran.com/blog/history-web-application-development
https://www.w3.org/RDF/Metalog/docs/sw-easy
https://web.dev/what-are-pwas/
https://www.youtube.com/watch?v=z2JgN6Ae-Bo
https://www.geeksforgeeks.org/types-of-parsers-in-compiler-design/
https://www.geeksforgeeks.org/types-of-parsers-in-compiler-design/
https://www.techopedia.com/definition/3854/parser
https://en.wikipedia.org/wiki/Java_(programming_language)
https://www.geeksforgeeks.org/introduction-java-servlets/

REFERENCES 65

[25] Neha Vaidya. Introduction to java servlets: Java servlets tutorial.
https://www.edureka.co/blog/java-servlets, 2020 (Retrieved on April
16 2020).

[26] Giulio Zambon. Introducing JSP and Tomcat. In Beginning JSP, JSF and Tomcat
Java Web Development (pp. 1�18). Electronic version, 2012.

[27] Giulio Zambon. JSP Elements. In Beginning JSP, JSF and Tomcat Java Web
Development (pp. 19�47). Electronic version, 2012.

[28] Giulio Zambon. JSP in Action. In Beginning JSP, JSF and Tomcat Java Web
Development (pp. 78�119). Electronic version, 2012.

[29] Chatanya Singh. Jsp forward action tag - jsp tutorial.
https://beginnersbook.com/2013/11/jsp-forward-action-tag/, 2020
(Retrieved on April 15 2020).

[30] Chatanya Singh. Jsp include action tag - jsp tutorial.
https://beginnersbook.com/2013/11/jsp-include-action-tag/, 2020
(Retrieved on April 15 2020).

[31] Chatanya Singh. jsp:usebean, jsp:setproperty and jsp:getproperty action tags.
https://beginnersbook.com/2013/11/
jsp-usebean-setproperty-getproperty-action-tags/, 2020 (Retrieved
on April 15 2020).

[32] Giulio Zambon. JavaServer Faces 2.2. In Beginning JSP, JSF and Tomcat (pp.
188�229). Electronic version, 2012.

[33] Arjan Tijms Bauke Scholtz. History. In The De�nitive Guide to JSF in Java EE 8
(pp. 1�12). Electronic version, 2018.

[34] Arjan Tijms Bauke Scholtz. Conversion and Validation In The De�nitive Guide to
JSF in Java EE 8 (pp. 149�191). Electronic version, 2018.

[35] Matjaz Jug. Migration from legacy systems. Statistical O�ce of the European Union
(EUROSTAT), 2013.

[36] Dan Woods. Learning from pivotal about migrating legacy applications.
https://www.forbes.com/sites/danwoods/2018/02/22/
learning-from-pivotal-about-migrating-legacy-applications/,
2020 (Retrieved on April 7 2020).

[37] David McAmis. Migrating legacy applications. https://www.techrepublic.
com/article/migrating-legacy-applications/, 2020 (Retrieved on April
7 2020).

[38] Alexander Shvets. Chain of responsibility. https:
//refactoring.guru/design-patterns/chain-of-responsibility,
2014 (Retrieved on May 15 2020).

[39] Brett Van Porter. Welcome to apache maven. https://maven.apache.org/,
2020 (Retrieved June 8, 2020).

https://www.edureka.co/blog/java-servlets
https://beginnersbook.com/2013/11/jsp-forward-action-tag/
https://beginnersbook.com/2013/11/jsp-include-action-tag/
https://beginnersbook.com/2013/11/jsp-usebean-setproperty-getproperty-action-tags/
https://beginnersbook.com/2013/11/jsp-usebean-setproperty-getproperty-action-tags/
https://www.forbes.com/sites/danwoods/2018/02/22/learning-from-pivotal-about-migrating-legacy-applications/
https://www.forbes.com/sites/danwoods/2018/02/22/learning-from-pivotal-about-migrating-legacy-applications/
https://www.techrepublic.com/article/migrating-legacy-applications/
https://www.techrepublic.com/article/migrating-legacy-applications/
https://refactoring.guru/design-patterns/chain-of-responsibility
https://refactoring.guru/design-patterns/chain-of-responsibility
https://maven.apache.org/

66 REFERENCES

[40] Jonathan Knudsen. The java.io package. https://bioinfo2.ugr.es/
OReillyReferenceLibrary/java/fclass/ch11_js.htm, 1997 (Retrieved
on May 14 2020).

[41] Yidong Fang. jsoup java html parser, with the best of html5 dom methods and css
selectors. https://github.com/fangyidong/json-simple, 2014 (Retrieved
on May 14 2020).

[42] Jonathan Hedley. jsoup java html parser, with the best of html5 dom methods and
css selectors. https://jsoup.org/, 1997 (Retrieved on May 14 2020).

[43] geeksforgeeks. Java.util package in java.
https://www.geeksforgeeks.org/java-util-package-java/, 2014
(Retrieved on May 14 2020).

[44] The Apache Software Foundation. Commons cli.
http://commons.apache.org/proper/commons-cli/, 2019 (Retrieved May
31, 2020).

[45] Arjan Tijms Bauke Scholtz. The De�nitive Guide to JSF in Java EE 8. Electronic
version, 2018.

[46] Michael Müller. JavaServer Faces. In Practical JSF in Java EE 8 (pp. 35�48).
Electronic version, 2018.

[47] Giulio Zambon. Beginning Jsp, Jsf and Tomcat Java Web Development. Electronic
version, 2012.

[48] Oleg Uryutin. A brief history of web app. https:
//medium.com/@aplextor/a-brief-history-of-web-app-50d188f30d,
2020 (Retrieved on April 2 2020).

[49] Royce Moroch. Semantic web.
https://en.wikipedia.org/wiki/Semantic_Web, 2020 (Retrieved on April
5 2020).

https://bioinfo2.ugr.es/OReillyReferenceLibrary/java/fclass/ch11_js.htm
https://bioinfo2.ugr.es/OReillyReferenceLibrary/java/fclass/ch11_js.htm
https://github.com/fangyidong/json-simple
https://jsoup.org/
https://www.geeksforgeeks.org/java-util-package-java/
http://commons.apache.org/proper/commons-cli/
https://medium.com/@aplextor/a-brief-history-of-web-app-50d188f30d
https://medium.com/@aplextor/a-brief-history-of-web-app-50d188f30d
https://en.wikipedia.org/wiki/Semantic_Web

	Página de Título
	Índices
	Tabla de Contenidos
	Índice de figuras
	Índice de tablas

	Introduction
	Motivation
	Objectives
	Workplan
	Document Structure

	State of the Art
	HTML Background
	HTML Best Practices

	HTTP
	HTTP Errors
	HTTP Verbs
	HTTPS

	Web Development
	Web 1.0
	Web 2.0
	Web 3.0
	Progressive Web Apps

	Parsers
	Java
	Java Virtual Machine
	Syntax
	Java Servlets

	JavaServer Pages
	JSP Elements
	JSP Standard Actions
	JSP Standard Tag Library

	JavaServer Faces
	JSF Lifecycle Overview
	JSF Tags
	Component Tree
	Conversion and Validation

	Migrating from Legacy Systems
	Problems with Migrating Legacy Applications
	Steps to Follow for Migrating Legacy Systems

	Solution Design
	Architecture of the Proposed Solution
	Setbacks
	Used Packages
	java.io
	org.json.simple
	Jsoup
	java.util
	commons.cli

	Tests and Results
	How To Use the System
	Results
	Select
	Div and Radio Buttons
	Inputs
	Images and Buttons
	Tables
	If/Choose
	foreach
	Google Skeleton

	Conclusions and Future Work
	Conclusions
	Future Work

	References

