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Resumen
Las estructuras de datos arborescentes son una forma común de implementar
tipos de datos importantes que se usan de forma generalizada en muchos lengua-
jes de programación. Concretamente, los árboles de búsqueda autoequilibrados
pueden garantizar coste logarítmico para las operaciones principales, haciéndo-
los la implementación elegida de muchas bibliotecas de contenedores de datos.

En este trabajo damos una especi�cación de conjuntos, mapas y multicon-
juntos en el lenguaje de programación Dafny. También implementamos y ver-
i�camos en Dafny los árboles rojinegros inclinados a la izquierda, un tipo de
árbol autoequilibrado, siguiendo la metodología que desarrollamos en trabajo
previo. Finalmente, avanzamos en la implementación y veri�cación de los iter-
adores para árboles binarios de búsqueda.

Palabras clave: veri�cación formal, estructuras de datos, árboles autoequili-
brados, Dafny

Abstract
Tree-like data structures are a common way to implement important data types
that are pervasively used in many programming languages. Speci�cally self-
balancing binary search trees can guarantee logarithmic cost for the main oper-
ations, making them the implementation choice of many container libraries.

In this work we give a spec�cation for sets, maps and multisets in the Dafny
programming language. We also implement and verify in Dafny left-leaning
red-black trees, a kind of self-balancing binary search tree, following the same
methodology that we developed in our previous work. Lastly, we advance on the
implementation and veri�cation of iterators for binary search trees.

Keywords: program veri�cation, data structures, self-balancing trees, Dafny
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Chapter 1

Introduction

Tree-like data structures constitute an important way to implement key-value
stores, the backbone of many applications in daily use today like internet routing,
�le systems and compilers [11]. In this work we will study the speci�cation of
such key-value stores in the form of maps, as well as sets and multisets. We will
also approach the problem of implementing and verifying tree-like data struc-
tures to implement those data types. In particular we will explore binary search
trees and a derivation of them, red-black trees, that has seen wide adoption in
standard libraries of common programming languages[2].

Our work is set in the context of formal veri�cation, an established method
to prove that the behaviour of a computer program matches its speci�cation.
There are several approaches to formal veri�cations that vary in their degree of
automation. In this work we use a programming language, Dafny [7], based on
a semiautomated theorem prover. This way we enjoy the automatic veri�cation
of the theorem prover while still being able to give more detailed proofs for the
cases that it cannot prove automatically.

1.1 Goals

This work is focused on the veri�cation of tree-like data structures, namely bi-
nary search trees and red-black trees. Since they are usually employed to imple-
ment key-value stores, we also set as a goal the speci�cation of this data type.
The de�nition of that data type is usually accompanied by iterators that traverse
the container, so we also set as a goal the speci�cation of iterators and the veri-
�cation of their implementation on binary search trees.

1



2 CHAPTER 1. INTRODUCTION

This document begins with Chapter 2 giving an overview on Dafny and on
the veri�cation and speci�cation techniques that we developed in our previous
work, needed to understand the current work. Since no veri�cation can be done
without a speci�cation, we continue with Chapter 3 exploring the speci�cation
of sets, multisets and maps. Next we study the veri�cation and implementation
of binary search trees in Chapter 4. They provide the foundation of red-black
trees, explored in Chapter 5. In Chapter 6 we close by showing our work on the
veri�cation of iterators for binary search trees. Chapter 7 concludes this work.

1.2 Work plan
The work plan for the di�erent tasks of this project was as follows:

• February: de�ne the speci�cation of sets, multisets and maps. Start the
implementation and veri�cation of binary search trees.

• March: implementation of sets, multisets and maps with linked lists. Con-
tinue implementation and veri�cation of binary search trees.

• March to July: implementation and veri�cation of red-black trees.

• April to July: implementation and veri�cation of iterators for binary search
trees.



Chapter 2

Preliminaries

2.1 An overview of Dafny

Dafny [6] is the language we have chosen for this work, continuing the code we
wrote in previous work [1]. Dafny is an object-oriented programming language
with veri�cation features. We assume knowledge of imperative programming,
but the veri�cation utilities that Dafny brings need some introduction. This sec-
tion is devoted to that.

To begin, in Figure 2.1 we have a small example class that implements a
counter. It only has a constructor, a method to increment the counter and a
method to retrieve its count. This is a similar program to what we would write
in a convential OOP language, but Dafny allows us to introduce speci�cations to
our methods that can be statically veri�ed to hold for all inputs, in all executions.
In Figure 2.2, we add such speci�cations. We de�ne a new predicate that discerns
between Counter objects that are valid and those that are not. Note that this
predicate will not be compiled, it is a veri�cation-only de�nition. The de�nition
of validity is simple: the count should never be less than 0. We verify that the
constructor produces a valid object by adding a postcondition via an ensures-
clause. In the increment method we set as a precondition that the object should
be valid via a requires-clause, and also ensure that the object is valid after the
execution of the method. Finally, we require that the object that Get receives is
valid. We do not add a postcondition to Get that ensures that the counter is still
valid since the method does not modify it.

You may have noticed that there are some clauses in predicates and methods,
the reads and modifies clauses, that we have not mentioned yet. These are

3



4 CHAPTER 2. PRELIMINARIES

c l a s s Counter {
var x ∶ in t ;

constructor ( )
{

x ∶ = 0 ;
}

method I n c ( )
modifies th i s

{
x ∶ = x + 1 ;

}

method Get ( ) returns ( r ∶ in t )
{

r ∶ = x ;
}

}

Figure 2.1: Counter class

c l a s s Counter {
var x ∶ in t ;

predicate Va l i d ( )
reads th i s

{ x ≥ 0 }

constructor ( )
ensures Va l i d ( )

{ x ∶ = 0 ; }

method I n c ( )
modifies th i s
requires Va l i d ( )
ensures Va l i d ( )

{ x ∶ = x + 1 ; }

method Get ( ) returns ( r ∶ in t )
requires Va l i d ( )
ensures r ≥ 0

{ r ∶ = x ; }
}

Figure 2.2: Counter class with validity

predicate So r t ed ( v ∶ array < int > )
reads v

{
∀ i | 0 ≤ i < v . Length −1 ● v [ i ] ≤ v [ i +1]

}

method DoNothing ( v ∶ array < int > )
modifies v

{ }

method Main ( )
{

var v ∶ = new int [ 3 ] ;
v [ 0 ] ∶ = 0 ; v [ 1 ] ∶ = 1 ; v [ 2 ] ∶ = 2 ;
as se r t So r t ed ( v ) ;

var w ∶ = new int [ 3 ] ;
w[ 0 ] ∶ = 0 ; w[ 1 ] ∶ = 1 ; w[ 2 ] ∶ = 2 ;
as se r t So r t ed (w ) ;

DoNothing (w ) ;
as se r t So r t ed ( v ) ;
/ / Dafny canno t p r o v e t h i s a s s e r t i o n ∶
/ / a s s e r t S o r t e d (w ) ;
/ / I t c anno t p r o v e t h i s e i t h e r ∶
/ / a s s e r t ¬S o r t e d (w ) ;

}

Figure 2.3: Framing example
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important clauses that make up the framing feature. Framing is the way in which
Dafny delimits the memory locations modi�ed by methods. By adding a reads
clause to a predicate, Dafny knows which memory locations may be accessed by
the predicate. If some memory space is modi�ed by a method (i.e. it is included in
its modifies clause) and a predicate reads it, Dafny might not be able to verify
if the predicate holds after the execution of the method. If, on the contrary, a
predicate holds before the execution of the method and the memory that it reads
is not modi�ed, the predicate will still hold. For example, in Figure 2.3 we de�ne
a predicate for sorted arrays. We also de�ne a method DoNothing that may
modify an array. In fact, it does not modify it, but methods in Dafny are opaque,
that is, outside of the method Dafny will not know its body, it will only take into
account its speci�cation (in this case, only that it may modify the input array). So
once we pass a sorted array into the DoNothing method, Dafny cannot verify
that it remains sorted, but we are able to verify that other arrays are still sorted
since those have certainly not been modi�ed.

There are some special expressions related with framing which are useful to
specify the memory behavior of methods:

• fresh(x): the object x has been newly allocated in the body of the method.

• old(e): evaluates to the value of the e expression before the execution of the
method.

• unchanged(x): every �eld of object x is the same as before the execution of
the method. For example, if the object has �elds foo and bar, it would be equiv-
alent to the expression x.foo==old(x.foo) && x.bar==old(x.bar).
Note that x==old(x) is not the same as unchanged(x), since x is a refer-
ence and in the �rst case you are only asserting that the variable x is pointing to
the same object at the beginning of the execution and at the end, but the �elds
of the object might have been modi�ed.

Apart from predicates, we can also write other de�nitions for the speci�ca-
tion of our methods. Functions, as opposed to methods, are speci�cation-only
de�nitions. In Figure 2.4 we see how we can use a function to write the speci-
�cation of a method, namely, of an imperative implementation of the Fibonacci
numbers. These functions cannot be compiled, but we can make them compil-
able by writting function method instead of just function. This way we
can invoke them as if they were methods, but with the guarantee that they do
not have any side e�ects. These function methods, of course, can also be used in
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function F i b ( n ∶ nat ) ∶ nat
decreases n

{
i f n = 0 then

0
e l se i f n = 1 then

1
e l se

F i b ( n −1 ) + F i b ( n −2 )
}

method F i b on a c c i ( n ∶ nat ) returns ( r ∶ nat )
ensures r = F i b ( n )

{
var i ∶ = 0 ;
var x ∶ = 0 ;
var y ∶ = 1 ;
while i < n

decreases n − i
invar iant i ≤ n
invar iant x = F i b ( i )
invar iant y = F i b ( i +1 )

{
x , y ∶ = y , x + y ;
i ∶ = i + 1 ;

}
r ∶ = x ;

}

Figure 2.4: Fibonacci sequence implementation

speci�cations.
In the example of Figure 2.4 we can also see the decreases-clause. This

clause is used to help Dafny prove the termination of recursive functions/meth-
ods and of loops.

In Dafny we can de�ne the interface of a class without providing any im-
plementation. We, however, can provide the implementation for any functions
and/or methods that we wish and the classes that implement the interface will
not need to provide such implementation. This feature is usually called just in-
terface in some languages. In Dafny and other languages it is called a trait. In Fig-
ure 2.5 we de�ne a trait for animals, and de�ne two classes that implement such
trait. This feature will be very useful when we de�ne abstract datatypes (ADTs).

Dafny comes prebundled with some datatypes that we use in the speci�ca-
tions throughout our development. We have the seq type (e.g. [1,2,3]), a
type for immutable lists that can be appended (with the + operator), indexed
(v[i]), sliced (v[i..j]) and converted to a multiset (multiset(v)); the
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t r a i t Animal {
function NumberOfLegs ( ) ∶ nat

}

c l a s s Cat extends Animal {
function NumberOfLegs ( ) ∶ nat
{

4
}

}

c l a s s Bonobo extends Animal {
function NumberOfLegs ( ) ∶ nat
{

2
}

}

Figure 2.5: Animal taxonomy expressed as a trait and classes

set type (e.g. {1,2,3}), a type for immutable sets that has the union opera-
tion (+ operator) and di�erence operation (- operator) and can also be de�ned
in terms of other sets with set comprehensions (set x | x in s :: x %
2==0); the multiset type (e.g. multiset{1,1,2}), similar to sets but al-
lowing repeated elements; and the map type (e.g. {"hello" := "world"}),
a key-value store with similar operations as sets. We can get the size of all of
those collections by the use of the |c| operator.

2.2 Veri�cation methodology

Our methodology is based on the veri�cation of abstract datatypes (ADTs). In
our previous work we developed a methodology that evolves from the work of
other authors [7, 6]. For brevity, here we will only discuss our methodology. For
a comparison with other ones we refer to [1].

To specify and implement ADTs we need three de�nitions:

• Representation (footprint): the set of objects that each instance owns
and uses to implement the interface. Mutators may modify it. It is ex-
pressed as a set of objects.

• Model: the formal interpretation we give to the ADT. It should be a value
type because it is used for veri�cation purposes.
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t r a i t L i s t {
function ReprDepth ( ) ∶ nat

reads th i s
ensures ReprDepth ( ) > 0

function ReprFami ly ( n ∶ nat ) ∶ set <object >
decreases n
requires n ≤ ReprDepth ( )
ensures n > 0 Ô⇒ ReprFami ly ( n ) ≥ ReprFami ly ( n −1 )
reads this , i f n = 0 then { } e l se ReprFami ly ( n −1 )

function Repr ( ) ∶ set <object >
reads this , ReprFami ly ( ReprDepth ( ) − 1 )

{
ReprFami ly ( ReprDepth ( ) )

}

predicate Va l i d ( )
reads this , Repr ( )

function Model ( ) ∶ seq < int >
reads this , Repr ( )
requires Va l i d ( )

}

Figure 2.6: Example ADT

• Representation invariant: it is the property that delimits which instances
denote a value of the model. In Dafny it is represented with a predicate that
reads the representation.

In Figure 2.6 we show an extract of the interface of a list ADT1. It speci�es
all the de�nitions that should be ful�lled by the implementation: the representa-
tion Repr, de�ned as a function that returns a set of objects; the Model, de�ned
as a function that returns a sequence; and the representation invariant, de�ned
in the Valid predicate. Note that the representation is de�ned by a represen-
tation family. This way of de�ning the representation is called representation
strati�cation, since it allows us to use ADTs to implement other ADTs, in a way
that reminds us of strata or levels. We will explore further how to de�ne this
strati�cation at the end of this section.

Now that we know the interface of our ADT, let us focus on how to implement
and verify such an ADT. In Figure 2.7 we show the implementation of a list ADT.
First we de�ne the nodes of the list and then the list that points to the �rst node

1The code of that �gure and the rest of this section can be found in the src/linear/
directory of the associated code.
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c l a s s Node<A> {
var data ∶ A ;
var nex t ∶ Node? <A> ;

constructor ( data ∶ A , nex t ∶ Node? <A> )
ensures th i s . data = data
ensures th i s . nex t = nex t

{
th i s . data ∶ = data ;
th i s . nex t ∶ = nex t ;

}
}

c l a s s L i s t <A> {
var head ∶ Node? <A> ;
ghost var s p i n e ∶ seq <Node<A> > ;

function Repr ( ) ∶ set <object >
reads th i s

{ se t x | x ∈ s p i n e }

predicate Va l i d ( )
reads this , Repr ( )

{
∧ (∀ i | 0 ≤ i < | s p i n e | −1 ●

s p i n e [ i ] . nex t = s p i n e [ i + 1 ] )
∧ ( i f head = nul l then

s p i n e = [ ]
e l se
∧ s p i n e ≠ [ ]
∧ s p i n e [ 0 ] = head
∧ s p i n e [ | s p i n e | − 1 ] . nex t = nul l )

}
}

Figure 2.7: De�nition of List class

. . .

NodeNode . . . Node

implementation

veri�cation

Figure 2.8: Spine and nodes

(called head). Note that object types in Dafny are not nullable, so we add an
interrogation mark ? to Node to make it nullable.

The List class also has a �eld spine. We mark it as ghost to make it a
veri�cation-only �eld, that is, it will not be present in memory when the pro-
gram is executed and the code that modi�es it will not be compiled. The spine
�eld is a sequence of nodes in the same order as they are linked. We de�ne the
representation of our list in terms of the nodes stored in it. Imagine, for example,
a list of three or more nodes. In Figure 2.8 we can see at the bottom how those
nodes would be present in memory and how, on the top, the spine stores them in
order. The Valid predicate ensures that the nodes in memory are linked in the
same order as in the spine. The Repr function, then, just has to return the set of
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s t a t i c function ModelAux ( xs ∶ seq <Node<A> >) ∶ seq <A>
reads se t x | x ∈ xs ● x ‘ data

{
i f xs = [ ] then

[ ]
e l se

[ xs [ 0 ] . data ] + ModelAux ( xs [ 1 . . ] )
}

function Model ( ) ∶ seq <A>
reads this , s p i n e
requires Va l i d ( )

{
ModelAux ( s p i n e )

}

Figure 2.9: De�nition of Model in the List class

nodes stored in the spine. This way of implementing the representation is called
structured representation, as opposed to unstructured representation (having a
�eld with the set of objects). With this methodology we can verify more easily
the ADT, since we have easy access to the nodes within the spine. For example, if
we want to verify something related to the previous node of a given node in the
i-th position we can do it with the spine by simple indexing (spine[i-1]). If
we did not have the spine we would have to traverse the list to access the node
and reason about it. While this is not a performance problem (it is veri�cation
code that will not be compiled nor executed), it makes the proofs longer and
more involved.

To de�ne the model of the list ADT we use a technique called calculated
model. In Figure 2.9 we can see how the model is computed by traversing the
spine each time the Model function is applied. We call this technique calculated
since other methodologies store the model in a ghost �eld instead of computing
it on-demand.

Until now we have described how to implement and verify our ADT from
scratch, but we usually want to reuse ADTs to implement other ones. This is
possible in our methodology thanks to the representation strati�cation that we
mentioned at the beginning of this section. With this technique the representa-
tion is de�ned as a family of representations built level by level. The �rst level
of the family, 0, is the current object. The family grows from there, level by
level, until it reaches the deepest level of nested objects. For example, in Fig-
ure 2.10 we illustrate the representation levels of a linked list implementation,
along with the corresponding code in Figure 2.11. The ADT has a reference
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ReprFamily(0)

ReprFamily(1)

ReprFamily(2)

this

LinkedListImpl

list:

DoublyLinkedListWithLast

list: last:

DoublyLinkedList

head:

DNodeDNode . . .

. . .
DNode

Figure 2.10: Strati�ed representation of LinkedList

to DoublyLinkedListWithLast, so we start level 0 with that reference.
Then we add the reference to the DoublyLinkedList it is built on, building
level 1. Finally, we add all the nodes of the DoublyLinkedList (contained in
list.list.Repr() to build level 2.

In the discussion of the representation of LinkedListImpl we have omit-
ted the �eld iter, even though it is in the representation. This ghost �eld stores
all the iterators pointing to a node of the linked list. We will now give a short
introduction to the iterators that we developed in previous work [1].

We save the iterators of the list in a ghost �eld to be able to specify the op-
erations on them and to specify their invalidation policy, that is, which iterators
are no longer valid after a list operation. In Figure 2.13 we show the de�nition
of iterators for linked lists. It is similar to ADTs in the sense that it has a repre-
sentation invariant (Valid) that ensures that the node is always pointing to the
parent list to which it belongs, a model (Index) that speci�es the position the
iterator is pointing to, and a representation (the same as the representation of
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c l a s s L i n k edL i s t Imp l extends L i n k e d L i s t {
var l i s t ∶ Doub lyL inkedL i s tWi thLas t ;
ghost var i t e r s ∶ set < L i n k e d L i s t I t e r a t o r Imp l > ;

function ReprDepth ( ) ∶ nat
ensures ReprDepth ( ) > 0

{ 2 }

function ReprFami ly ( n ∶ nat ) ∶ set <object >
decreases n
requires n ≤ ReprDepth ( )
ensures n > 0 Ô⇒ ReprFami ly ( n ) ≥ ReprFami ly ( n −1 )
reads this , i f n = 0 then { } e l se ReprFami ly ( n −1 )

{
i f n = 0 then

{ l i s t } + i t e r s
e l se i f n = 1 then

ReprFami ly ( 0 ) + { l i s t . l i s t }
e l se

ReprFami ly ( 1 ) + l i s t . l i s t . Repr ( )
}

}

Figure 2.11: Code of strati�ed representation of LinkedList

the parent, Parent().Repr()). We also have a function method, HasNext,
that determines whether the iterator can be advanced, and Next, the method
that consumes the element of the list in position Index() and increases that
number by one while keeping the rest of the iterators intact.

In Figure 2.12 we show some of the de�nitions of the LinkedListImpl
class related to iterators. First, we de�ne the user-facing function that returns
the iterators of a list. That function is needed so that users of the ADT do not need
to know that a �eld exists inside the class. We also add the de�nition of Begin, a
method that returns a new iterator pointing to the �rst position, 0, while keeping
the rest of the iterators and the model of the list intact. It is important that we
specify that the model and the iterators remain the same because the method
speci�cation says that it modi�es the representation. You may think that we do
not need that modifies-clause because we are not really modifying the list, we
are only constructing a new iterator, but we are in fact modifying ghost state: the
iters �eld. Dafny cannot distinguish between ghost state and heap state in this
regard, so we need to add the modifies-clause while we ensure that everything
stays valid and the model does not change. This is why you will see in the rest
of this work that we add a modifies-clause to methods that are apparently
observers (they keep the model intact): we want to allow the implementors of
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c l a s s L i n k edL i s t Imp l extends L i n k e d L i s t {
function I t e r a t o r s ( ) ∶ set < L i s t I t e r a t o r >
{ i t e r s }

method Begin ( ) returns ( i t ∶ L i s t I t e r a t o r )
modifies this , Repr ( )
requires Va l i d ( )
ensures Va l i d ( )
ensures Model ( ) = old ( Model ( ) )
ensures i t . Index ( ) = 0
ensures I t e r a t o r s ( ) = { i t } + old ( I t e r a t o r s ( ) )
ensures ∀ i t | i t ∈ old ( I t e r a t o r s ( ) ) ∧ old ( i t . V a l i d ( ) ) ●

∧ i t . V a l i d ( ) ∧ old ( i t . Pa ren t ( ) ) = i t . Pa ren t ( )
∧ old ( i t . Index ( ) ) = i t . Index ( )

{
i t ∶ = new L i n k e d L i s t I t e r a t o r Im p l ( th i s ) ;
i t e r s ∶ = { i t } + i t e r s ;

}

method PopFront ( ) returns ( x ∶ in t )
modifies this , Repr ( )
ensures [ x ] + Model ( ) = old ( Model ( ) )
ensures ∀ i t | i t ∈ I t e r a t o r s ( ) ∧ old ( i t . V a l i d ( ) ) ∧ old ( i t . Index ( ) ) ≠ 0 ●

i t . V a l i d ( ) ∧ i t . Index ( ) + 1 = old ( i t . Index ( ) )
}

Figure 2.12: Iterators, Begin and part of the speci�cation of PopFront

these methods to modify internal ghost state.
In Figure 2.12 we also see an example method, PopFront, that speci�es its

invalidation policy: all the iterators that were not pointing to the �rst element of
the list will still be valid and will have their index decreased by one. The behavior
of the rest of the iterators is not speci�ed, but since the user will not be able to
prove that they are valid, they are invalid in practice. This speci�cation is added
to each of the mutator methods so that the user can verify which iterators they
are using are still valid after operations on lists.

We will �nish this section discussing the usual boilerplate code that Dafny
needs to verify our methods but that we omit in this document. In Figure 2.14
we show the preconditions and postconditions present in all mutator methods.
With them we ensure that the objects added to the representation are newly
allocated (fresh). We also assert that all of the objects of the representation are
allocated, that is, they are present in memory. This assertion is true for every
object in Dafny, but we write it explicitly because Dafny sometimes cannot infer
it by itself. We give more details on this matter in our previous work [1]. We
will also omit the preconditions and postconditions that are not relevant to the
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c l a s s L i n k e d L i s t I t e r a t o r Im p l extends L i s t I t e r a t o r {
ghost var pa ren t ∶ L i n k edL i s t Imp l
var node ∶ DNode?

predicate Va l i d ( )
reads this , parent , pa r en t . Repr ( )

{
∧ pa ren t . Va l i d ( )
∧ ( node ≠ nul l Ô⇒ node ∈ pa ren t . l i s t . l i s t . s p i n e )

}

function Paren t ( ) ∶ L i s t
reads th i s

{ pa r en t }

function Index ( ) ∶ nat
reads this , parent , pa r en t . Repr ( )
requires Va l i d ( )
requires Paren t ( ) . V a l i d ( )
ensures Index ( ) ≤ | Pa ren t ( ) . Model ( ) |

{
i f node ≠ nul l then

pa ren t . l i s t . l i s t . Get Index ( node )
e l se

| p a r en t . l i s t . l i s t . s p i n e |
}

function method HasNext ( ) ∶ bool
reads this , Pa ren t ( ) , Pa ren t ( ) . Repr ( )
ensures HasNext ( ) ⇐⇒ Index ( ) < | Pa ren t ( ) . Model ( ) |

{
pa r en t . l i s t . l i s t . Mode lRe la t ionWithSp ine ( ) ;
node ≠ nul l

}

method Next ( ) returns ( x ∶ in t )
modifies th i s
requires HasNext ( )
ensures Index ( ) = 1 + old ( Index ( ) )
ensures ∀ i t | i t ∈ Paren t ( ) . I t e r a t o r s ( ) ∧ old ( i t . V a l i d ( ) ) ●

i t . V a l i d ( ) ∧ ( i t ≠ th i s Ô⇒ i t . Index ( ) = old ( i t . Index ( ) ) )
{

x ∶ = node . data ;
node ∶ = node . nex t ;

}
}

Figure 2.13: De�nition of iterators for linked lists



2.3. RELATED WORK 15

ensures fresh ( Repr ( ) − old ( Repr ( ) ) )

requires ∀ x | x ∈ Repr ( ) ● a l located ( x )
ensures ∀ x | x ∈ Repr ( ) ● a l located ( x )

Figure 2.14: Boilerplate code

subject being discussed and can be inferred from the context or be studied in the
source code, for example that a method requires the ADT to be valid and ensures
that it is valid after its execution.

2.3 Related work

The veri�cation of abstract data types is well-studied in the automated veri�ca-
tion literature. Di�erent approaches have been developed to address the three
building blocks needed to de�ne an ADT, as outlined previously in this chapter:
the model, the representation invariant and the representation.

Regarding the model, one of the approaches is based on model �elds [3], that
is, ghost �elds that are automatically updated as the state is changed. This ap-
proach su�ers from soundness issues, so Leino and Müller [5, 4] develop an al-
ternative methodology called the Boogie methodology. Our calculated model is
more similar to the approach of [3].

Some veri�cation systems support class invariants that are automatically set
as preconditions and postconditions of methods. Sometimes, however, we want
to de�ne auxiliary methods that do not fully comply with the invariant. In those
systems the invariant can be lifted by de�ning a ghost attribute that determines
whether the invariant must hold or not [8, 4]. In the system that we use we
have to explicitly write as preconditions and postcondition that the invariant
must hold, so de�ning a method that does not hold the invariant can be done by
removing such pre/postconditions or by weakening them.

Verifying abstract data types sometimes is involved in the speci�cation of
how di�erente objects are related. Our strati�ed representation deals with own-
ership with a layered approach based on levels. This is similar to Müller’s work
[8], where objects are classi�ed in contexts of di�erent ownership level. To ac-
cess an object from a di�erent context there must be an ownership relation.

There are other works that have focused on the speci�cation and veri�cation
of a container ADTs. One of the most notable are the container library Ei�elBase2
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developed by Polikarpova [10]. In her work, she implements and veri�es maps
and sets through hash tables, along other linear ADTs. In contrast, our work
focuses on tree data structures to implement those ADTs.

There have been several veri�cations of red-black trees. The closest to our
work is the one from Peña [9], where the author implements and veri�es red-
black trees as a functional data type in Dafny. By focusing on immutable types,
all of the issues that come from framing can be avoided. That work could have
been useful to specify how the trees in memory are being modi�ed, but that is not
the approach we have taken, since we specify directly the nodes and memory ref-
erences of the trees without de�ning the red-black tree operations on immutable
trees.



Chapter 3

ADT speci�cation

In this chapter we will describe the speci�cation of the ADTs that we have devel-
oped. The �rst ADT we will explore will be the set, in its two forms: ordered and
unordered. We begin with sets because they have the key characteristics that we
want to discuss throughout this chapter. Later, when we explore multisets and
maps, we will present their di�erences to sets.

The code of this chapter can be found in the src/tree/layer1/ directory
of the associated code. The implementations at the end of this chapter are located
in the src/tree/layer3/ directory.

3.1 Sets
The di�erence between ordered and unordered sets lies in their iterators. While
the iterators of ordered sets return the elements in ascending order, the iterators
of unordered sets do not specify any order in particular. This is the reason why
the OrderedSet trait extends the UnorderedSet trait. We will begin with
the simplest of the two, unordered sets.

3.1.1 Unordered sets

The main trait of the unordered sets is the UnorderedSet trait. It is composed,
as shown in the previous chapter, of a strati�ed representation, a validity pred-
icate and a calculated model (of type set<int>1). In Figure 3.1 we omit those

1Note that our ADTs are not generic in the contained type because of the di�culties that
Dafny has with generics. For the time being, our ADTs will contain ints, but our methodology

17
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t r a i t UnorderedSet {
method Conta ins ( x ∶ in t ) returns ( b ∶ bool )

modifies this , Repr ( )
requires Va l i d ( )
ensures Va l i d ( ) ∧ Model ( ) = old ( Model ( ) )
ensures b = ( x ∈ Model ( ) )

method Add ( x ∶ in t )
modifies this , Repr ( )
requires Va l i d ( )
ensures Va l i d ( ) ∧ Model ( ) = old ( Model ( ) ) + { x }

method Remove ( x ∶ in t )
modifies this , Repr ( )
requires Va l i d ( )
ensures Va l i d ( ) ∧ Model ( ) = old ( Model ( ) ) − { x }

}

Figure 3.1: UnorderedSet trait

de�nitions for brevity but show some basic methods, namely Contains, Add
and Remove. These methods allow us to do basic operations on our sets. For
example, in Figure 3.2 we implement a method that determines whether there
are duplicate elements in a sequence by adding them to a set. Since we are deal-
ing with abstract datatypes we cannot construct a new instance. Therefore, the
method receives an empty unordered set as a parameter for internal use.

We can add, remove and check if a set contains an element, but we have not
explored yet how to traverse all the elements of a set. To do so we will use it-
erators, as de�ned in Figure 3.3. We add to the main trait, UnorderedSet, a
function that returns the set of iterators related to an instance: Iterators().
It is de�ned as a function and not as a function method because it is only
used for veri�cation purposes. The iterators of this set are of type Unordered-
SetIterator. This type is a trait similar to the ones we developed in our pre-
vious work, but in this occasion we need an extra function: Traversed. This
function de�nes the set of elements of the model that have been consumed by

applies to generic ADTs as well.
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method HasDup l i c a t e s ( p ∶ seq < int > , s ∶ UnorderedSet ) returns ( b ∶ bool )
modifies s , s . Repr ( )
requires s . Va l i d ( ) ∧ s . Empty ( )
ensures s . Va l i d ( )
ensures b = ∃ i , j | 0 ≤ i < j < | p | ● p [ i ] = p [ j ]

{
var n ∶ = 0 ;
while n < | p |

invar iant s . Va l i d ( )
invar iant n ≤ | p |
invar iant ¬∃ i , j | 0 ≤ i < j < n ● p [ i ] = p [ j ]
invar iant mult i set ( s . Model ( ) ) = mult iset ( p [ . . n ] )

{
var con ta ined ∶ = s . Conta ins ( p [ n ] ) ;
as se r t con ta ined ⇐⇒ p [ n ] ∈ mult iset ( s . Model ( ) ) ;
i f con ta ined {

return true ;
}
s . Add ( p [ n ] ) ;
as se r t p [ . . n ] + [ p [ n ] ] = p [ . . n + 1 ] ;
n ∶ = n + 1 ;

}
return f a l s e ;

}

Figure 3.2: HasDuplicates method

the iterator. We also have, as usual, the following de�nitions:

• Peek returns the element currently pointed to by the iterator. The only
property we know is that this element is in the model and not in the tra-
versed elements, but it could be any of the possible elements.

• HasNext returns whether the iteration can proceed, i.e. whether there
are any elements left to be traversed. It is equivalent to the Traversed
set being a strict subset of the model.

• Next returns the currently pointed element and then advances the itera-
tor. Its speci�cation also has to ensure that all the other iterators remain
valid and the element they are pointing to is the same.

Thanks to those de�nitions we can now store the elements of a set in a list,
as shown in Figure 3.4. Note, however, that we cannot guarantee any order on
the elements of the list since we are using an unordered set. We will change this
once we explore ordered sets in the next section. Note, also, that we need to add
a modifies clause to the method because we are altering ghost state (namely,
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t r a i t UnorderedSet {
function I t e r a t o r s ( ) ∶ set < Uno rd e r e dS e t I t e r a t o r >

reads this , Repr ( )
requires Va l i d ( )
ensures ∀ i t | i t ∈ I t e r a t o r s ( ) ● i t ∈ Repr ( ) ∧ i t . Pa ren t ( ) = th i s

}

t r a i t Uno r d e r e d S e t I t e r a t o r {
function Paren t ( ) ∶ UnorderedSet

reads th i s

predicate Va l i d ( )
reads this , Pa ren t ( ) , Pa ren t ( ) . Repr ( )

function T rav e r s ed ( ) ∶ set < int >
reads this , Pa ren t ( ) , Pa ren t ( ) . Repr ( )
ensures T rav e r s ed ( ) ≤ Paren t ( ) . Model ( )

function method Peek ( ) ∶ in t
reads this , Pa ren t ( ) , Pa ren t ( ) . Repr ( )
requires HasNext ( )
ensures Peek ( ) ∈ Paren t ( ) . Model ( ) ∧ Peek ( ) ∉ T rav e r s ed ( )

function method HasNext ( ) ∶ bool
reads this , Pa ren t ( ) , Pa ren t ( ) . Repr ( )
ensures HasNext ( ) ⇐⇒ T rave r s ed ( ) < Paren t ( ) . Model ( )

method Next ( ) returns ( x ∶ in t )
modifies this , Pa ren t ( ) , Pa ren t ( ) . Repr ( )
requires HasNext ( )
ensures x = old ( Peek ( ) )
ensures T rav e r s ed ( ) = { old ( Peek ( ) ) } + old ( T r a v e r s ed ( ) )

ensures ∀ i t | i t ∈ Paren t ( ) . I t e r a t o r s ( ) ∧ old ( i t . V a l i d ( ) ) ●

i t . V a l i d ( ) ∧ ( i t ≠ th i s Ô⇒ i t . T r a v e r s ed ( ) = old ( i t . T r a v e r s ed ( ) )
∧ ( i t . HasNext ( ) Ô⇒ i t . Peek ( ) = old ( i t . Peek ( ) ) ) )

}

Figure 3.3: UnorderedSetIterator trait
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method ToSeq ( s ∶ UnorderedSet ) returns ( p ∶ seq < int > )
modifies s , s . Repr ( )
requires s . Va l i d ( )
ensures s . Va l i d ( )
ensures s . Model ( ) = old ( s . Model ( ) )
ensures mult i set ( p ) = mult iset ( s . Model ( ) )

{
p ∶ = [ ] ;
var i t ∶ = s . F i r s t ( ) ;
while i t . HasNext ( )

decreases s . Model ( ) − i t . T r a v e r s ed ( )
invar iant s . Va l i d ( ) ∧ s . Model ( ) = old ( s . Model ( ) )
invar iant i t . V a l i d ( ) ∧ i t . Pa ren t ( ) = s
invar iant mult i set ( p ) = mult iset ( i t . T r a v e r s ed ( ) )

{
var x ∶ = i t . Next ( ) ;
p ∶ = p + [ x ] ;

}
}

Figure 3.4: ToSeq example

we are constructing a new iterator). Currently it is not possible to specify in
Dafny that only ghost state can be modi�ed.

Apart from traversing all the elements of our set, iterators also give us some
more capabilities. In Figure 3.5 we de�ne methods Find, Insert and Erase.
These methods are similar to Contains, Add and Remove but they take or
return iterators:

• Find returns an iterator pointing to the searched element or, if the element
is not in the set, an iterator pointing past the end (that is, an iterator whose
HasNext predicate returns false).

• Insert takes an iterator as a hint that can be used by the implementa-
tion for better performance2 and returns an iterator pointing to the newly
inserted element. The input iterator is only a hint, it can be used or not
by the implementation, but there is no iterator that will cause an invalid
state on the set. The worst that can happen if an "incorrect" iterator is
given is a performance penalty. This behavior is borrowed from the C++
Standard [2].

2For example, a binary search tree could expect an iterator pointing to a node in which the
new node can be placed maintaining the order of the tree.
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method Find ( x ∶ in t ) returns ( newt ∶ Uno r d e r e d S e t I t e r a t o r )
modifies this , Repr ( )
requires Va l i d ( )
ensures Va l i d ( ) ∧ Model ( ) = old ( Model ( ) )
ensures fresh ( newt ) ∧ newt . Va l i d ( ) ∧ newt . Pa ren t ( ) = th i s
ensures x ∈ old ( Model ( ) ) Ô⇒ newt . HasNext ( ) ∧ newt . Peek ( ) = x
ensures x ∉ old ( Model ( ) ) Ô⇒ newt . T r a v e r s ed ( ) = Model ( )
ensures I t e r a t o r s ( ) = { newt } + old ( I t e r a t o r s ( ) )

method I n s e r t ( mid ∶ Uno rd e r edS e t I t e r a t o r , x ∶ in t ) returns ( newt ∶ Uno r d e r e d S e t I t e r a t o r )
modifies this , Repr ( )
requires Va l i d ( ) ∧ mid . Va l i d ( ) ∧ mid . Paren t ( ) = th i s ∧ mid ∈ I t e r a t o r s ( )
ensures Va l i d ( ) ∧ Model ( ) = old ( Model ( ) ) + { x }
ensures fresh ( newt ) ∧ I t e r a t o r s ( ) = { newt } + old ( I t e r a t o r s ( ) )
ensures newt . Va l i d ( ) ∧ newt . Pa ren t ( ) = th i s ∧ newt . HasNext ( ) ∧ newt . Peek ( ) = x

method Era se ( mid ∶ Uno r d e r e d S e t I t e r a t o r ) returns ( nex t ∶ Uno r d e r e d S e t I t e r a t o r )
modifies this , Repr ( )
requires Va l i d ( ) ∧ mid . Va l i d ( )
requires mid . Paren t ( ) = th i s ∧ mid . HasNext ( ) ∧ mid ∈ I t e r a t o r s ( )
ensures Va l i d ( ) ∧ Model ( ) = old ( Model ( ) ) − { old ( mid . Peek ( ) ) }
ensures fresh ( nex t ) ∧ I t e r a t o r s ( ) = { nex t } + old ( I t e r a t o r s ( ) )
ensures nex t . Va l i d ( ) ∧ nex t . Pa ren t ( ) = th i s
ensures nex t . T r a v e r s ed ( ) = old ( mid . T r a v e r s ed ( ) )

Figure 3.5: Find, Insert and Erase methods

• Erase takes an iterator, removes the element it is pointing to and returns
an iterator pointing to the next element.

We do not specify an invalidation policy for the iterators as we did for linked
lists in our previous work. An invalidation policy would need to be dependent
on the data structure that implements the ADT. For trees, that policy would not
be trivial, so we leave it for future work.

3.1.2 Ordered sets

Unordered sets are useful in many cases but we sometimes need to traverse the
elements in order. There are performant implementations of ordered sets, like
the red-black trees that we will explore in Chapter 5, so it is often a good choice
in terms of performance too. In this section we present our ordered set interface
and speci�cation.

The OrderedSet trait inherits from UnorderedSet. The main re�ne-
ment it does over unordered sets is on the Traversed function. In Figure 3.6
we show the postconditions added to the ordered set iterators. In particular,
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t r a i t Ord e r e d S e t I t e r a t o r extends Uno r d e r e d S e t I t e r a t o r {
function T rav e r s ed ( ) ∶ set < int >

ensures ∀ x , y | x ∈ T rave r s ed ( ) ∧ y ∈ Paren t ( ) . Model ( ) − T r a v e r s ed ( ) ● x < y

function method Peek ( ) ∶ in t
ensures Peek ( ) = e lemth ( Paren t ( ) . Model ( ) , | T r a v e r s ed ( ) | )

function method Index ( ) ∶ in t
ensures HasNext ( ) Ô⇒ Index ( ) = | T r a v e r s ed ( ) |
ensures ¬HasNext ( ) Ô⇒ Index ( ) = | Pa ren t ( ) . Model ( ) |

function method HasPrev ( ) ∶ bool
. . .

method Prev ( ) returns ( x ∶ in t )
. . .

}

Figure 3.6: Ordered set iterators

the new postcondition of Traversed ensures that each traversed element is
smaller than the rest of the model. Peek is also updated to ensure that it returns
the correct element from the model, that is, if n is the number of elements in
Traversed, it returns the n-th element of the ordered Model. This behavior
is speci�ed with the help of the elemth function, omitted in the �gure. We also
add a new function method that returns the number of traversed elements.

Another feature of the iterators of ordered sets is going back in the traversal.
OrderedSetIterator has a Prev method that traverses the elements in
reverse order. Its precondition is HasPrev, similar to HasNext. We also add
a new constructor method for iterators: Last. This method returns an iterator
pointing to the last element, allowing the user to traverse the set from the end
to the beginning.

Lastly, Find, Insert and Remove have new postconditions that specify
the position of the returned iterators. For example, in Figure 3.7 we see the post-
condition added to Find that says that the traversed elements of the new iterator
are all the elements smaller than the found element.

3.2 Maps and multisets

Maps and multisets are related to the set ADT since they usually share the un-
derlying data structure for their implementation and also a good part of the spec-
i�cation. In this section we will explore the di�erences they have with sets.
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ensures x ∈ Model ( ) Ô⇒
∧ newt . HasNext ( )
∧ newt . T r a v e r s ed ( ) = sma l l e r ( Model ( ) , x )
∧ newt . Peek ( ) = x

ensures x ∉ Model ( ) Ô⇒
newt . T r a v e r s ed ( ) = Model ( )

Figure 3.7: Find new postcondition

Both maps and multisets come in ordered and unordered variants, giving four
traits in total: UnorderedMap, OrderedMap, UnorderedMultiset and
OrderedMultiset. The most obvious di�erence is in the model: maps have
a model of type map<int, int> and multisets of type multiset<int>.

Apart from the methods that they share with sets, maps also have the At
method which, given a key k, returns the value associated with it Model()[k].
Similarly, multisets have the Count method that returns the number of occur-
rances of an element (the multiplicity).

Regarding iterators, map iterators give a pair of integers (the key and the
value) each time we call Next, traversing one by one all the pairs of the map.
Apart from that, they behave the same as set iterators. Multisets, however, be-
have di�erently. Next returns only one integer each time it is called, but it
can return the same integer several times. This depends on the multiplicity
of the element it is pointing to. For example, suppose that we transform the
ToSeq method we explored in the last section in Figure 3.4 to accept multi-
sets. For a multiset multiset{1,1,2,2,2} the returned sequence would be
[1,1,2,2,2] if the multiset was ordered (or any permutation of it if it was
unordered). This means that the loop body has been executed several times for
each element.

3.3 Implementations

3.3.1 Ine�cient list-based implementations

Currently we have implemented unordered sets with arrays and with linked
lists. To do so, we used the linear ADTs we developed in our previous work
[1]. Thanks to the strati�ed representation we can use ADTs to implement other
ADTs without breaking encapsulation. In Figure 3.8 we show the strati�cation
of the linked list implementation. We need to include all of the representation
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c l a s s Uno rde r edSe t Imp lL i nkedL i s t extends Uno rde r edSe t L i nkedL i s t {
var e lems ∶ L i n k edL i s t Imp l
ghost var i t e r s ∶ set < Uno r d e r e d S e t I t e r a t o r Imp l L i n k e dL i s t >

function ReprDepth ( ) ∶ nat
{ e lems . ReprDepth ( ) + 2 }

function ReprFami ly ( n ∶ nat ) ∶ set <object >
{ i f n = 0 then { e lems } + i t e r s

e l se i f n = 1 then ReprFami ly ( 0 ) + ( se t i t | i t ∈ i t e r s ● i t . i t e r )
e l se ReprFami ly ( 1 ) + e lems . ReprFami ly ( n −2 )

}
}

Figure 3.8: Strati�cation of UnorderedSetImplLinkedList

method Add ( x ∶ in t )
{

var b ∶ = Conta ins ( x ) ;
i f ¬b { e lems . PushBack ( x ) ; }

}

Figure 3.9: Add method of UnorderedSetImplLinkedList

of the LinkedList, since the memory footprint of that ADT is included in the
footprint of the set. The implementation with arrays is similar.

These implementations are simple but ine�cient, since their only objective is
to test the speci�cation and the use of other ADTs. For example, the Add method
of UnorderedSetImplLinkedList consists of only two lines of code (and
none of them are veri�cation related), as shown in Figure 3.9.

Iterators are implemented by using the underlying iterators of linked lists, as
shown in Figure 3.10. The representation invariant of iterators makes sure that
no list iterator is shared between set iterators. The rest of the implementation has
to implement the correspondance between the model of the list and the external
speci�cation of sets.

3.3.2 Implementations with binary search trees
Binary search trees have long been used to implement map-like data structures [11].
In this work our primary objective was to verify the implementation of such
trees, more concretely red-black binary search trees. More details will be given
on the intricacies of their veri�cation in chapters 4 and 5, but we would also like
to add that their encapsulation into a map ADT is being worked on. Currently,
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c l a s s Uno r d e r e d S e t I t e r a t o r Imp l L i n k e d L i s t extends Uno r d e r e d S e t I t e r a t o r {
var i t e r ∶ L i n k e d L i s t I t e r a t o r Im p l ;
ghost var pa ren t ∶ Uno rde r edSe t Imp lL i nkedL i s t ;

predicate Va l i d ( )
reads this , Pa ren t ( ) , Pa ren t ( ) . Repr ( )

{
∧ i t e r ∈ Paren t ( ) . Repr ( )
∧ i t e r . Pa ren t ( ) = pa ren t . e lems
∧ pa ren t . Va l i d ( )
∧ i t e r . Va l i d ( )
∧ i t e r ∈ pa ren t . e lems . I t e r a t o r s ( )
∧ (∀ i t | i t ∈ pa ren t . i t e r s ∧ i t ≠ th i s ●

( i t as Uno r d e r e d S e t I t e r a t o r Imp l L i n k e d L i s t ) . i t e r ≠ i t e r )
}

}

Figure 3.10: Add method of UnorderedSetImplLinkedList

OrderedMapImpl implements the Contains, Add and Remove methods by
using binary search trees. An implementation of iterators is also being worked
on using a stack, as explained in Chapter 6.

3.4 Examples
We close this chapter by giving some examples of use of iterators for ordered and
unordered sets. Notably, we want to show the use of multiple iterators at once.

In Figure 3.11 we show the implementation of a method that returns whether
an ordered set is a subset of another one. To do so, it has to receive two sets that
have disjoint representations and are valid. The implementation is based on a
while-loop that traverses the two sets in order until a discrepancy is detected,
in that case the method returns false. Some of the invariants of the loop have
been omitted because they are the same as the preconditions, but others are im-
portant to note. Namely, we are guaranteeing that during the execution of the
loop, the traversed elements of the �rst iterator are a subset of the traversed
elements of the second. After the while-loop, we give a small manual proof
on why we can assure that the �rst set is a subset of the second by checking
!it1.HasNext() after the execution of the loop.

In Figure 3.12 we show a method that does the same as the previous one but
using unordered sets, omitting the boilerplate that has already been shown. This
time we cannot rely on the order of the elements consumed by the iterator, so
we need to use Find method. If after the execution of the method none of the
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elements of the �rst set have not been found in the second set, we return true.
We return false otherwise.
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method Contained ( s1 ∶ OrderedSet , s2 ∶ OrderedSet ) returns ( b ∶ bool )
modifies s1 , s1 . Repr ( ) , s2 , s2 . Repr ( )

requires ( { s1 } + s1 . Repr ( ) ) ∩ ( { s2 } + s2 . Repr ( ) ) = { }
requires s1 . Va l i d ( ) ∧ s2 . Va l i d ( )

ensures ( { s1 } + s1 . Repr ( ) ) ∩ ( { s2 } + s2 . Repr ( ) ) = { }
ensures s1 . Va l i d ( ) ∧ s2 . Va l i d ( )
ensures s1 . Model ( ) = old ( s1 . Model ( ) ) ∧ s2 . Model ( ) = old ( s2 . Model ( ) )
ensures s1 . I t e r a t o r s ( ) ≥ old ( s1 . I t e r a t o r s ( ) )
ensures s2 . I t e r a t o r s ( ) ≥ old ( s2 . I t e r a t o r s ( ) )

ensures b = ( s1 . Model ( ) ≤ s2 . Model ( ) )
{

var i t 1 ∶ = s1 . F i r s t ( ) ;
var i t 2 ∶ = s2 . F i r s t ( ) ;

while i t 1 . HasNext ( ) ∧ i t 2 . HasNext ( )
decreases s2 . Model ( ) − i t 2 . T r a v e r s ed ( )
invar iant i t 1 . Va l i d ( ) ∧ i t 2 . Va l i d ( )
invar iant i t 1 ∈ s1 . I t e r a t o r s ( ) ∧ i t 2 ∈ s2 . I t e r a t o r s ( )
invar iant i t 1 . Pa ren t ( ) = s1 ∧ i t 2 . Pa ren t ( ) = s2

invar iant i t 1 . T r a v e r s ed ( ) ≤ i t 2 . T r a v e r s ed ( )
invar iant i t 1 . HasNext ( ) Ô⇒
∧ (∀ x | x ∈ i t 2 . T r a v e r s ed ( ) ● i t 1 . Peek ( ) > x )
∧ i t 1 . Peek ( ) ∉ i t 2 . T r a v e r s ed ( )

{
i f i t 1 . Peek ( ) = i t 2 . Peek ( ) {

var _ ∶ = i t 1 . Next ( ) ;
var _ ∶ = i t 2 . Next ( ) ;

} e l se i f i t 1 . Peek ( ) < i t 2 . Peek ( ) {
as se r t i t 1 . Peek ( ) ∉ i t 2 . T r a v e r s ed ( ) ;
as se r t ∀ z | z ∈ s2 . Model ( ) − i t 2 . T r a v e r s ed ( ) − { i t 2 . Peek ( ) } ●

i t 1 . Peek ( ) < i t 2 . Peek ( ) < z ;
as se r t i t 1 . Peek ( ) ∉ s2 . Model ( ) ;
return f a l s e ;

} e l se {
as se r t i t 1 . Peek ( ) > i t 2 . Peek ( ) ;
var _ ∶ = i t 2 . Next ( ) ;

}
}

i f i t 1 . HasNext ( ) {
as se r t i t 1 . Peek ( ) ∉ i t 2 . T r a v e r s ed ( ) ;
as se r t i t 2 . T r a v e r s ed ( ) = s2 . Model ( ) by {

as se r t ¬ i t 2 . HasNext ( ) ;
}
as se r t i t 1 . Peek ( ) ∉ s2 . Model ( ) ;
as se r t ¬ ( s1 . Model ( ) ≤ s2 . Model ( ) ) ;

} e l se {
as se r t i t 1 . T r a v e r s ed ( ) = s1 . Model ( ) ≤ i t 2 . T r a v e r s ed ( ) ≤ s2 . Model ( ) ;

}
return ¬ i t 1 . HasNext ( ) ;

}

Figure 3.11: Contained example for ordered sets
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method Conta ined ( s1 ∶ UnorderedSet , s2 ∶ UnorderedSet ) returns ( b ∶ bool )
modifies s1 , s1 . Repr ( ) , s2 , s2 . Repr ( )
ensures b = ( s1 . Model ( ) ≤ s2 . Model ( ) )

{
var i t ∶ = s1 . F i r s t ( ) ;
b ∶ = true ;
while b ∧ i t . HasNext ( )

decreases s1 . Model ( ) − i t . T r a v e r s ed ( )
invar iant b = ( i t . T r a v e r s ed ( ) ≤ s2 . Model ( ) )

{
var x ∶ = i t . Next ( ) ;
var f ∶ = s2 . F ind ( x ) ;
b ∶ = f . HasNext ( ) ;

}
}

Figure 3.12: Contained example for unordered sets
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Chapter 4

Binary search trees

Binary trees are a basic data structure used to store information in a hierarchical
way. In this work we focus on self-balancing binary search trees, but before we
can get to self-balancing trees we need a good foundation on binary search trees.
In this chapter we will explore how to implement and verify these trees in Dafny.

The code of this chapter can be found in the src/tree/Tree.dfy and
src/tree/SearchTree.dfy �les of the associated code.

4.1 Binary search trees in Dafny

Before we de�ne binary search trees, we de�ne binary trees in Figure 4.1. Each
node stores a key and a value, together with its left and right children. The tree
only stores a reference to the root. It also saves in a ghost �eld the skeleton of the
tree, a concept similar to the spine of linked lists that we explored in our previous
work [1]. The skeleton is an immutable tree of nodes, as de�ned in Figure 4.2,
that matches the structure of the real tree in memory. In Figure 4.3 we show a tree
with �ve nodes as it is stored in memory, alongside its corresponding skeleton,
represented with dotted lines.

The representation invariant, that is, the Valid predicate, ensures that the
skeleton matches the real nodes in memory. It also ensures that there are no
loops or sharing in the tree. In Figure 4.4 we show its de�nition1. For empty

1Note that in that �gure the only predicate shown is ValidRec. As a convention, we add the
Rec su�x to the auxiliary de�nitions of methods. Since they are the more interesting de�nitions,
we will omit the main methods without the su�x that only call the recursive de�nition with the
correct arguments (root and/or skeleton).

31
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type K = in t
type V = in t

c l a s s TNode {
var key ∶ K ;
var va l ue ∶ V ;
var l e f t ∶ TNode ? ;
var r i g h t ∶ TNode ? ;

}

c l a s s Tree {
var r o o t ∶ TNode ? ;
ghost var s k e l e t o n ∶ t r e e <TNode > ;

function Repr ( ) ∶ set <object >
reads th i s

{
e lems ( s k e l e t o n )

}
}

Figure 4.1: Tree and tree node classes

datatype t r e e <A> = Empty | Node ( l e f t ∶ t r e e <A> , data ∶ A , r i g h t ∶ t r e e <A> )

function method elems <A> ( t ∶ t r e e <A> ) ∶ set <A>
{

match t {
case Empty ⇒ { }
case Node ( l , x , r ) ⇒ e lems ( l ) + { x } + e lems ( r )

}
}

Figure 4.2: Immutable trees

TNode

TNode TNode

TNode TNode

root
skeleton

Figure 4.3: Skeleton and nodes



4.1. BINARY SEARCH TREES IN DAFNY 33

s t a t i c predicate Va l idRec ( node ∶ TNode ? , sk ∶ t r e e <TNode > )
reads se t x | x ∈ e lems ( sk ) ● x ‘ l e f t
reads se t x | x ∈ e lems ( sk ) ● x ‘ r i g h t

{
match sk {

case Empty ⇒ node = nul l
case Node ( l , x , r ) ⇒
∧ x = node
∧ x ∉ e lems ( l ) ∧ x ∉ e lems ( r ) / / No l o o p s
∧ e lems ( l ) ∩ e lems ( r ) = { } / / No s h a r i n g
∧ Va l idRec ( node . l e f t , l )
∧ Va l idRec ( node . r i gh t , r )

}
}

Figure 4.4: Validity of trees

trees we require that the root is null. For nodes of the tree, we require that the
root of the skeleton and of the tree are the same, that the root is not present
in any of its children (no loops) and that the children do not share any of their
nodes (no sharing).

With the de�nition of the model in Figure 4.5 we complete our de�nition of
binary trees. The model collects all the key-value pairs in the nodes of the tree
and stores them in a map. We chose maps as the model for trees since they are
meant to implement sets, multisets and maps, not a general interface for trees,
although that is an alternative. This de�nition is opaque, that is, its body is not
known to Dafny for veri�cation until the reveal ModelRec(); statement
is issued. The decision to make it opaque was made after discovering that, by
separating the proofs about the model from the rest of the proofs, the veri�cation
time is reduced signi�cantly2. By making the ModelRec function opaque we
can introduce its de�nition only in the fragments related to it. This way the rest
of the proofs can be veri�ed faster since, as we understand it, Dafny can do a
more directed veri�cation by hiding the unrelated assertions.

Now that we have binary trees, we de�ne binary search trees using a predi-
cate in Figure 4.6. Adding a new de�nition for search trees allows us to verify the
validity and the order of the keys separately. SearchTreeRec holds for trees
such that, for each of its subtrees, the nodes down its left branch have smaller
keys than the root, and bigger keys down its right branch.

2We believe that this is due to the map automatic reasoning of Dafny not being as performant
as the automation for sets, since we have not had this problem with the other predicates of this
work.
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s t a t i c function { ∶ opaque } ModelRec ( sk ∶ t r e e <TNode > ) ∶ map<K , V>
reads se t x | x ∈ e lems ( sk ) ● x ‘ key
reads se t x | x ∈ e lems ( sk ) ● x ‘ v a l u e

{
match sk {

case Empty ( ) ⇒ map [ ]
case Node ( l , n , r ) ⇒ ModelRec ( l ) + ModelRec ( r ) + map[ n . key ∶ = n . v a l u e ]

}
}

Figure 4.5: Model of trees

s t a t i c predicate SearchTreeRec ( sk ∶ t r e e <TNode > )
reads se t x | x ∈ e lems ( sk ) ● x ‘ key

{
match sk {

case Empty ( ) ⇒ true
case Node ( l , n , r ) ⇒
∧ (∀ m | m ∈ e lems ( l ) ● m. key < n . key )
∧ (∀ m | m ∈ e lems ( r ) ● n . key < m. key )
∧ SearchTreeRec ( l )
∧ SearchTreeRec ( r )

}
}

Figure 4.6: De�nition of binary search tree
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s t a t i c lemma ModelLemmas ( node ∶ TNode ? , sk ∶ t r e e <TNode > )
requires Va l idRec ( node , sk )
requires SearchTreeRec ( sk )
ensures ModelRec ( sk ) . Keys = TreeKeys ( sk )
ensures ModelRec ( sk ) =map k | k ∈ TreeKeys ( sk ) ● FindNode ( k , node , sk ) . v a l u e
ensures ∀ n | n ∈ e lems ( sk ) ● n . key ∈ ModelRec ( sk ) ∧

n . v a l u e = ModelRec ( sk ) [ n . key ]
ensures sk . Node ? Ô⇒
∧ sk . data . key ∉ ModelRec ( sk . l e f t )
∧ sk . data . key ∉ ModelRec ( sk . r i g h t )
∧ (∀ k | k ∈ ModelRec ( sk . l e f t ) ● k ∉ ModelRec ( sk . r i g h t ) )
∧ (∀ k | k ∈ ModelRec ( sk . r i g h t ) ● k ∉ ModelRec ( sk . l e f t ) )
∧ (∀ k | sk . data . key ≤ k ● k ∉ ModelRec ( sk . l e f t ) )
∧ (∀ k | k ≤ sk . data . key ● k ∉ ModelRec ( sk . r i g h t ) )

{
reveal ModelRec ( ) ;
match sk {

case Empty ( ) ⇒ { }
case Node ( l , n , r ) ⇒ {

ModelLemmas ( node . l e f t , sk . l e f t ) ;
ModelLemmas ( node . r i gh t , sk . r i g h t ) ;

}
}

}

Figure 4.7: De�nition of ModelLemmas

Before we continue with the methods that operate on binary search trees,
we need to discuss the ModelLemmas de�nition in Figure 4.7. These lemmas
relate the model with the skeleton, for example, proving that every node of the
tree has its key in the model, that its value is the corresponding from the model,
that the key of the root is not in the model of its children, etc. The methodology
we follow to verify the methods on binary search trees is based on verifying �rst
properties about the nodes of the tree and then using that knowledge to prove
the postconditions about the model. The reason we do not prove directly the
properties about the model is that the properties on Model are harder to verify.
ModelLemmas helps with the veri�cation of such properties.

4.2 Search

We begin de�ning methods that operate on binary search trees with the FindRec
method in Figure 4.8. This method searches a node with the given key. If the
node is not found, it returns null. Otherwise, it returns the correct node. This
is speci�ed with the two last two postconditions. The �rst one ensures that the
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s t a t i c method FindRec ( node ∶ TNode ? , ghost sk ∶ t r e e <TNode > , k ∶ K)
returns ( found ∶ TNode ? )

requires Va l idRec ( node , sk )
requires SearchTreeRec ( sk )

ensures Va l idRec ( node , sk )
ensures SearchTreeRec ( sk )
ensures found = nul l ⇐⇒ k ∉ ModelRec ( sk )
ensures found ≠ nul l Ô⇒ found . key = k

∧ found . v a l u e = ModelRec ( sk ) [ k ]
∧ found ∈ e lems ( sk )

{
i f node = nul l {

found ∶ = nul l ;
} e l se {

as se r t e lems ( sk ) = e lems ( sk . l e f t ) + { sk . data } + e lems ( sk . r i g h t ) ;
i f k = node . key { found ∶ = node ; }
e l se i f node . key < k { found ∶ = FindRec ( node . r i gh t , sk . r i gh t , k ) ; }
e l se { found ∶ = FindRec ( node . l e f t , sk . l e f t , k ) ; }

}
as se r t . . . by {

reveal ModelRec ( ) ;
ModelLemmas ( node , sk ) ;

}
}

Figure 4.8: FindRec method

returned node is null if and only if the key is present in the model. The second
one ensures that if the node is found, its key and value are correct and that it
is in the skeleton. This is implemented with a binary search along the tree and
proved by invoking ModelLemmas.

The FindRec method is used to implement several user-facing methods
shown in Figure 4.9. They implement simple operations on trees and are ver-
i�ed trivially.

4.3 Insertion

Next we will discuss the InsertRec method of Figure 4.10. This method inserts
a new node in the tree while preserving the order of the keys. If there is already
a node with the input key, it returns it; otherwise it returns the newly inserted
node. The implementation of this method performs binary search until a node
with the input key is found or, if none exists, it constructs a new node in the
correct place. The veri�cation adds some concepts that will be explored when
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method Find ( k ∶ K) returns ( found ∶ TNode ? )
requires Va l i d ( )
requires Sea r chTree ( )
ensures found = nul l ⇐⇒ k ∉ Model ( )
ensures found ≠ nul l Ô⇒
∧ found . key = k
∧ found . v a l u e = Model ( ) [ k ]
∧ found ∈ e lems ( t r e e . s k e l e t o n )

{
found ∶ = FindRec ( t r e e . root , t r e e . s k e l e t on , k ) ;

}

method Get ( k ∶ K) returns ( v ∶ V)
requires Va l i d ( )
requires Sea r chTree ( )
requires k ∈ Model ( )
ensures Model ( ) [ k ] = v

{
var found ∶ = Find ( k ) ;
return found . v a l u e ;

}

method Search ( k ∶ K) returns ( b ∶ bool )
requires Va l i d ( )
requires Sea r chTree ( )
ensures b = ( k ∈ Model ( ) )

{
var found ∶ = Find ( k ) ;
return found ≠ nul l ;

}

Figure 4.9: Methods derived from FindRec

we discuss deletion.

4.4 Deletion
The last method we want to discuss is the RemoveRec method, but �rst we
need to de�ne RemoveMinRec. This method, shown in Figure 4.11, removes
and returns the node with the smallest key of a non-empty tree. It is implemented
by descending through the left branch until it is empty. This method mutates the
tree that it receives, so we need to specify and verify that mutation. Concretely,
the new model is the previous method without the removed key, formalized in the
postcondition marked with a☀ symbol. Dafny cannot prove this automatically
so we need to prove it manually. We only show one of the proofs in Figure 4.12
since they follow the same strategy; namely, they prove a series of equalities that
depend on properties of maps.

Finally, we can implement the RemoveRec method of Figure 4.13. The im-
plementation is as we would expect: binary search until the node is found, once
it is found remove the minimum node of the right branch and replace the node
we want to remove with the minimum node. The veri�cation of this method has
more cases but the proof techniques have already been presented, so we omit
the proofs in the �gure and add annotations to inform of the number of lines
omitted.
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s t a t i c method I n s e r t R e c ( node ∶ TNode ? , ghost sk ∶ t r e e <TNode > , k ∶ K , v ∶ V)
returns ( newNode ∶ TNode , ghost newSk ∶ t r e e <TNode > , ghost i n s e r t edNode ∶ TNode )

modifies e lems ( sk )
requires Va l idRec ( node , sk ) ∧ SearchTreeRec ( sk )
ensures Va l idRec ( newNode , newSk ) ∧ SearchTreeRec ( newSk )
ensures ModelRec ( newSk ) = old ( ModelRec ( sk ) ) [ k ∶ = v ]

ensures e lems ( newSk ) = e lems ( sk ) + { i n se r t edNode }
ensures i n s e r t edNode . key = k ∧ i n s e r t edNode . v a l u e = v
ensures ∀ n | n ∈ e lems ( sk ) ∧ old ( n . key ) ≠ k ●

n . key = old ( n . key ) ∧ n . v a l u e = old ( n . v a l u e )
{

i f node = nul l {
newNode ∶ = new TNode ( null , k , v , nul l ) ;
newSk ∶ = Node ( Empty , newNode , Empty ) ;
i n s e r t edNode ∶ = newNode ;

} e l se {
newNode ∶ = node ;
i f k = node . key {

node . v a l u e ∶ = v ;
newSk ∶ = sk ;
i n se r t edNode ∶ = node ;

} e l se i f node . key < k {
ghost var newSkRight ;
node . r i gh t , newSkRight , i n se r t edNode ∶ = I n s e r t R e c ( node . r i g h t , sk . r i g h t , k , v ) ;
newSk ∶ = Node ( sk . l e f t , node , newSkRight ) ;

} e l se {
ghost var newSkLeft ;
node . l e f t , newSkLeft , i n se r t edNode ∶ = I n s e r t R e c ( node . l e f t , sk . l e f t , k , v ) ;
newSk ∶ = Node ( newSkLeft , node , sk . r i g h t ) ;
as se r t ModelRec ( newSk ) = old ( ModelRec ( sk ) ) [ k ∶ = v ] by {

/ ∗ 10 om i t t e d l i n e s o f p r o o f ∗ /
}

}
}

}

Figure 4.10: InsertRec method
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s t a t i c method RemoveMinRec ( node ∶ TNode , ghost sk ∶ t r e e <TNode > )
returns ( newNode ∶ TNode ? , ghost newSk ∶ t r e e <TNode > , removedNode ∶ TNode )

modifies e lems ( sk )
requires Va l idRec ( node , sk )
requires SearchTreeRec ( sk )
ensures Va l idRec ( newNode , newSk )
ensures SearchTreeRec ( newSk )

ensures removedNode . key ∈ old ( ModelRec ( sk ) )
ensures old ( ModelRec ( sk ) ) [ removedNode . key ] = removedNode . v a l u e
ensures ModelRec ( newSk ) = old ( ModelRec ( sk ) ) − { removedNode . key } / / ☀

ensures removedNode ∈ e lems ( sk ) ∧ removedNode ∉ e lems ( newSk )
ensures e lems ( newSk ) = e lems ( sk ) − { removedNode }
ensures ∀ n | n ∈ e lems ( sk ) ● n . key = old ( n . key ) ∧ n . v a l u e = old ( n . v a l u e )
ensures ∀ n | n ∈ e lems ( newSk ) ● removedNode . key < n . key
ensures fresh ( e lems ( newSk ) − old ( e lems ( sk ) ) )

{
i f node . l e f t = nul l {

newNode ∶ = node . r i g h t ;
newSk ∶ = sk . r i g h t ;
removedNode ∶ = node ;
as se r t ModelRec ( newSk ) = old ( ModelRec ( sk ) ) − { removedNode . key } ∧ . . . by {

/ / See f i g u r e 4.12
}

} e l se {
newNode ∶ = node ;
newSk ∶ = sk ;
ghost var newSkLeft ;
newNode . l e f t , newSkLeft , removedNode ∶ = RemoveMinRec ( newNode . l e f t , newSk . l e f t ) ;
newSk ∶ = Node ( newSkLeft , newNode , newSk . r i g h t ) ;
as se r t . . . by { . . . }

}
}

Figure 4.11: RemoveMinRec method

reveal ModelRec ( ) ;
var k ∶ = removedNode . key ; var v ∶ = removedNode . v a l u e ;
ca lc = {

ModelRec ( newSk ) ;
old ( ModelRec ( sk . r i g h t ) ) ;
old ( ModelRec ( sk . r i g h t ) ) + (map[ k ∶ = v ] − { k } ) ;
{ as se r t k ∉ old ( ModelRec ( sk . r i g h t ) ) by { . . . } }
( old ( ModelRec ( sk . r i g h t ) ) + map[ k ∶ = v ] ) − { k } ;
{ as se r t old ( ModelRec ( sk . l e f t ) ) =map [ ] ; }
( old ( ModelRec ( sk . l e f t ) ) + old ( ModelRec ( sk . r i g h t ) ) + map[ k ∶ = v ] ) − { k } ;
old ( ModelRec ( sk ) ) − { k } ;

}

Figure 4.12: Proof of the mutation of the model in RemoveMinRec
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s t a t i c method RemoveRec ( node ∶ TNode ? , ghost sk ∶ t r e e <TNode > , k ∶ K)
returns ( newNode ∶ TNode ? , ghost newSk ∶ t r e e <TNode > , ghost removedNode ∶ TNode ? )

modifies e lems ( sk )
requires Va l idRec ( node , sk ) ∧ SearchTreeRec ( sk )
ensures Va l idRec ( newNode , newSk ) ∧ SearchTreeRec ( newSk )

ensures ∀ n | n ∈ e lems ( sk ) ● n . key = old ( n . key ) ∧ n . v a l u e = old ( n . v a l u e )
ensures e lems ( newSk ) = e lems ( sk ) − { removedNode }
ensures removedNode ≠ nul l Ô⇒
∧ removedNode ∈ e lems ( sk )
∧ removedNode ∉ e lems ( newSk )
∧ removedNode . key = k
∧ removedNode . key ∈ old ( ModelRec ( sk ) )
∧ old ( ModelRec ( sk ) ) [ removedNode . key ] = removedNode . v a l u e

ensures removedNode = nul l ⇐⇒ k ∉ old ( ModelRec ( sk ) )
ensures ModelRec ( newSk ) = old ( ModelRec ( sk ) ) − { k }

{
newNode ∶ = node ;
newSk ∶ = sk ;
i f newNode = nul l {

removedNode ∶ = nul l ;
as se r t . . . by { . . . }

} e l se {
i f node . key > k {

as se r t k ∉ ModelRec ( sk . r i g h t ) by { . . . }
ghost var newSkLeft ;
newNode . l e f t , newSkLeft , removedNode ∶ =

RemoveRec ( newNode . l e f t , newSk . l e f t , k ) ;
newSk ∶ = Node ( newSkLeft , newNode , newSk . r i g h t ) ;
as se r t . . . by { / ∗ 20 om i t t e d l i n e s o f p r o o f ∗ / }

} e l se {
i f k = newNode . key ∧ newNode . r i g h t = nul l {

as se r t node . key ∉ ModelRec ( sk . l e f t ) by { . . . }
removedNode ∶ = newNode ;
newNode ∶ = newNode . l e f t ;
newSk ∶ = newSk . l e f t ;
as se r t . . . by { / ∗ 11 om i t t e d l i n e s o f p r o o f ∗ / }
return ;

}

i f k ≠ newNode . key {
ghost var newSkRight ;
newNode . r i gh t , newSkRight , removedNode ∶ =

RemoveRec ( newNode . r i g h t , newSk . r i gh t , k ) ;
newSk ∶ = Node ( newSk . l e f t , newNode , newSkRight ) ;
as se r t . . . by { / ∗ 15 om i t t e d l i n e s o f code ∗ / }

} e l se {
as se r t k ∉ ModelRec ( sk . l e f t ) ∧ k ∉ ModelRec ( sk . r i g h t ) by { . . . }
removedNode ∶ = newNode ;
ghost var newSkRight ;
var minNode ;
newNode . r i gh t , newSkRight , minNode ∶ =

RemoveMinRec ( newNode . r i g h t , newSk . r i g h t ) ;
minNode . l e f t ∶ = newNode . l e f t ;
minNode . r i g h t ∶ = newNode . r i g h t ;
minNode . c o l o r ∶ = newNode . c o l o r ;
newNode ∶ = minNode ;
newSk ∶ = Node ( newSk . l e f t , newNode , newSkRight ) ;
as se r t . . . by { / ∗ 15 om i t t e d l i n e s o f code ∗ / }

}
}

}
}

Figure 4.13: RemoveRec method



Chapter 5

Red-black trees

In this chapter we are going to study the implementation and veri�cation of a
speci�c instance of self-balancing trees: left-leaning red-black trees [11]. Self-
balancing trees represent an advantage over the binary search trees presented in
the last chapter, since they guarantee logarithmic time for all the operations that
we show in this work. That performance advantage, however, comes with im-
plementation complexity. In this chapter we will verify that the implementation
of self-balancing trees is correct while the performance boosts are retained.

To achieve the goals set we will need to explore how red-black trees work
in theory, without code. After that we will see the formal de�nition we give
to red-black trees in Dafny, the auxiliary methods that we need and �nally the
implementation and veri�cation of insertion and deletion in these trees.

The code of this chapter can be found in the src/tree/Tree.dfy and
src/tree/RedBlackTree.dfy �les of the associated code.

5.1 The theory of left-leaning red-black trees

Red-black trees come directly from ordered 2-3 trees, the later of which are not bi-
nary. Instead, they have nodes with two or three children, as shown in Figure 5.1.
These trees can be manipulated to remain perfectly balanced (i.e. the length of
every path from the root to a leaf is the same) after insertion and deletion, but
they come with a drawback: they are complicated to implement due to the many
cases that we have to consider. To solve that problem left-leaning red-black trees
were introduced. These trees are binary search trees with red and black links,
and have a one to one mapping to 2-3 trees, as shown in Figure 5.2, but their

41
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A

(a) 2-node

A B

(b) 3-node

D

A C F

(c) Example tree

Figure 5.1: 2-3 trees.

A A

A B B

A

Figure 5.2: 1-to-1 mapping between 2-3 trees and red-black trees.

implementation is easier since we can reuse much of the implementation of the
binary trees that we discussed in previous sections. Given that 2-3 nodes and
red-black trees are isomorphic we will sometimes write 2-node to mean a node
without red children and a 3-node to mean a node with its left child red.

Red-black trees, as already seen in Figure 5.2, have two types of links: red and
black. The black links work as the default links, whereas red links bind together
two nodes to form a 3-node. In a more formal way, red-black trees must comply
with the following rules, as described in [11]:

• Red links lean left.

• No node has two red links connected to it.

• The tree has perfect black balance: every path from the root to a null link
has the same number of black links.
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type K = in t
type V = in t

datatype Color = Red | B lack

c l a s s TNode {
var key ∶ K ;
var va l u e ∶ V ;
var l e f t ∶ TNode ? ;
var r i g h t ∶ TNode ? ;
var c o l o r ∶ Color ;

}

function method i sRed ( node ∶ TNode ? ) ∶ bool
{ node ≠ nul l ∧ node . c o l o r . Red ? }

function method i s B l a c k ( node ∶ TNode ? ) ∶ bool
{ node ≠ nul l ∧ node . c o l o r . B lack ? }

Figure 5.3: TNode de�nition for red-black trees

5.2 Red-black trees in Dafny

In order to represent the color of the link between nodes we add a new �eld
to each node that signi�es the color of the link that connects that node to its
parent. The �nal de�nition is presented in Figure 5.31. In that �gure we also add
the de�nitions of isRed and isBlack. They allow us to succintly express that
one node is not null and is of a speci�c color. If we want to express that, for
example, a node is either null or black, we write !isRed(node).

In Figure 5.4 we present the formalization of the de�nition of red-black trees
shown in the previous section. We de�ne it as a predicate so that we can verify
it independently from other properties, like being a binary search tree. De�ning
red-black trees this way allows us to reuse all the code the we discussed in the
previous chapter, since red-black trees are also binary search trees. For exam-
ple, Find, Search and Get remain exactly the same, altough we will need to
rede�ne insertion and deletion so that they maintain the invariant of red-black
trees.

1Note that in our code, binary search trees also use this de�nition ignoring the color �eld.
In a commercial application this could be a bad choice, but our work is more experimental and
we �nd it acceptable and useful.
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s t a t i c predicate RedBlackTreeRec ( sk ∶ t r e e <TNode > )
reads se t x | x ∈ e lems ( sk ) ● x ‘ key
reads se t x | x ∈ e lems ( sk ) ● x ‘ c o l o r

{
match sk {

case Empty ( ) ⇒ true
case Node ( l , n , r ) ⇒

/ / Red l i n k s l e a n l e f t ∶
∧ ( r . Node ? Ô⇒ r . data . c o l o r . B lack ? )
/ / No node has two r ed l i n k s c o nn e c t e d t o i t ∶
∧ ( l . Node ? ∧ l . data . c o l o r . Red ? ∧ l . l e f t . Node ? Ô⇒ l . l e f t . data . c o l o r . B lack ? )
/ / P e r f e c t b l a c k b a l a n c e ∶
∧ BlackHe ight ( l ) = BlackHe ight ( r )

∧ RedBlackTreeRec ( l )
∧ RedBlackTreeRec ( r )

}
}

Figure 5.4: RedBlackTreeRec predicate

B B

A

insert(A)

B C

B

insert(C)

Figure 5.5: Insertion on a 2-node

5.3 Insertion

Now that we have a de�nition of red-black trees we can start to study how to
perform operations on them. We will begin with insertion. To insert a node to
a tree composed of a 2-node is easy, as shown in Figure 5.5. If the key is lower
than that of the 2-node, insert it on the left; if the key is higher, the new key
will be the parent of the old key. In both cases the resulting tree is a 3-node and
the perfect black balance is preserved. When we try to insert a node into a 3-
node, however, preserving perfect black balance becomes di�cult. To do so we
�rst need to study three auxiliary operations on red-black trees. In Figure 5.6 we
represent rotation on the left, on the right and �ipping colors, where a gray link
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(c) Flip colors

Figure 5.6: Auxiliary operations

means that the color stays the same. All of these operations preserve the perfect
black balance, although they can produce invalid red-black trees.

Now we can explore the three cases for insertion in a 3-node in Figure 5.7.
In all of them we insert the new key with a red link connected to its parent
(preserving perfect black balance) and perform the operations needed to turn it
into a valid red-black tree. If the key being inserted is larger than the keys from
the 3-node, we add it to the right and then perform a �ip-color. The perfect black
balance is preserved at the expense of sending a red link upwards. When the key
is smaller than the keys of the 3-node we need to perform a right rotation and
to �ip colors. Finally, when the key is between the other keys we perform a left
rotation on the left subtree and then we proceed as in the previous case.

The complete algorithm for the insertion recurses down the tree on the search
of a leaf, 2-node or 3-node, in which it can insert a node with the new key. Once
it �nds it, it performs the operations described and then goes back in the call
stack, going up in the tree. These operations will be repeated along the ascent
of the tree, probably sending a red link upwards, to produce a valid red-black
tree while maintaining perfect black balance, just as we do on the leaves. At the
top, if the link to the root is marked as red, we will simply turn it black again,
increasing the black height by one but preserving perfect black balance.

Once we understand the general idea on how trees are being modi�ed to
preserve perfect black balance and to remain valid red-black trees, we are going
to explore the code for these operations and the complete algorithm. In Figure 5.8
we present the three auxiliary operations on red-black trees. We prove some
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Figure 5.7: Insertion on a 3-node
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s t a t i c method Ro ta t eR i gh t (
node ∶ TNode ,
ghost sk ∶ t r e e <TNode>

)
returns (

newNode ∶ TNode ,
ghost newSk ∶ t r e e <TNode>

)
{

newNode ∶ = node . l e f t ;
node . l e f t ∶ = newNode . r i g h t ;
newNode . r i g h t ∶ = node ;
newNode . c o l o r ∶ = node . c o l o r ;
node . c o l o r ∶ = Red ;
newSk ∶ = Node (

sk . l e f t . l e f t , newNode ,
Node ( sk . l e f t . r i g h t , node , sk . r i g h t )

) ;
}

(a) Right rotation

s t a t i c method Ro t a t e L e f t (
node ∶ TNode ,
ghost sk ∶ t r e e <TNode>

)
returns (

newNode ∶ TNode ,
ghost newSk ∶ t r e e <TNode>

)
{

newNode ∶ = node . r i g h t ;
node . r i g h t ∶ = newNode . l e f t ;
newNode . l e f t ∶ = node ;
newNode . c o l o r ∶ = node . c o l o r ;
node . c o l o r ∶ = Red ;
newSk ∶ = Node (

Node ( sk . l e f t , node , sk . r i g h t . l e f t ) ,
newNode , sk . r i g h t . r i g h t

) ;
}

(b) Left rotation
s t a t i c method F l i pC o l o r s ( node ∶ TNode , ghost sk ∶ t r e e <TNode > )
{

node . c o l o r ∶ = NegColor ( node . c o l o r ) ;
node . l e f t . c o l o r ∶ = NegColor ( node . l e f t . c o l o r ) ;
node . r i g h t . c o l o r ∶ = NegColor ( node . r i g h t . c o l o r ) ;

}

(c) Flip colors

Figure 5.8: Auxiliary operations

properties about those methods, like the preservation of perfect black balance
(BlackHeight(newSk)==old(BlackHeight(sk))), that are not shown
in that �gure.

The operations we described to turn an invalid red-black tree (after a new
node is inserted) into a valid red-black tree are encapsulated into the Restore
method of Figure 5.10. We have omitted the proofs inside the body of the method2

but the speci�cation gives us an idea on what properties the method relies on to
produce a valid red-black tree. Namely, the �rst three preconditions enumerate
the cases that this method cannot receive. Those cases are not produced nei-
ther by the insertion algorithm nor by the deletion algorithm. If it received any
of those trees, the method would return an invalid red-black tree or it would
change the black height. To illustrate this, in Figure 5.9 we show the result of ap-

2Its body accounts for more than 100 lines of code and proofs.
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Figure 5.9: Restore executions on di�erent cases
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s t a t i c method Res t o r e ( node ∶ TNode , ghost sk ∶ t r e e <TNode > )
returns ( newNode ∶ TNode , ghost newSk ∶ t r e e <TNode > )

modifies e lems ( sk )

1 requires i sRed ( node . r i g h t ) ∧ i sRed ( node . r i g h t . l e f t ) Ô⇒
i s B l a c k ( node ) ∧ i sRed ( node . l e f t )

2 requires ¬ ( i sRed ( node ) ∧ i sRed ( node . l e f t ) ∧ i sRed ( node . r i g h t ) )
3 requires ¬ ( i sRed ( node ) ∧ i sRed ( node . l e f t ) ∧ i sRed ( node . l e f t . l e f t ) )

requires BlackHe ight ( sk . l e f t ) = BlackHe ight ( sk . r i g h t )
requires RedBlackTreeRec ( sk . l e f t )
requires RedBlackTreeRec ( sk . r i g h t )

ensures BlackHe ight ( newSk ) = old ( B lackHe ight ( sk ) )
ensures RedBlackTreeRec ( newSk )
ensures old ( i s B l a c k ( node ) ) ∧ i sRed ( newNode ) Ô⇒ ¬ i sRed ( newNode . l e f t )

{
newNode ∶ = node ;
newSk ∶ = sk ;

i f i sRed ( newNode . r i g h t ) {
newNode , newSk ∶ = GRota teLe f t ( newNode , newSk ) ;

}

i f i sRed ( newNode . l e f t ) ∧ i sRed ( newNode . l e f t . l e f t ) {
newNode , newSk ∶ = GRotateR ight ( newNode , newSk ) ;

}

i f i sRed ( newNode . l e f t ) ∧ i sRed ( newNode . r i g h t ) {
GF l i pCo l o r s ( newNode , newSk ) ;

}
}

Figure 5.10: Restore helper method

plying the Restore method to some example trees. In Figures 5.9a and 5.9b the
resulting tree after executing Restore is a valid red-black tree but the black
height has been altered, making it unsuitable for our purposes (it could pro-
duce an imbalance in the rest of the tree). Figure 5.9c illustrates the execution of
Restore on a tree that complies with the preconditions, so the �nal result is a
valid red-black tree with the same black height as the received tree. Figures 5.9d
and 5.9e, nonetheless, illustrate two cases that produce invalid red-black trees.
In Figure 5.9 we have shown all the trees that Restore cannot �x (5.9a, 5.9b,
5.9d, 5.9e). The proof that all the other cases produce a valid red-black tree is
omitted, but Dafny can prove it with some help.

In Figure 5.11 we show the complete algorithm for insertion on red-black
trees. Its veri�cation is based on the last precondition and the �rst postcondition.
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Those two lines are needed to prove the preconditions to the Restore method.
The precondition can be thought of as an alternative de�nition of red-black

trees. Nodes cannot have two red links connected to them, but that property can
be expressed in two ways: the way we used previously in this chapter (!(isRed
(node.left) && isRed(node.left.left)), as in Figure 5.43) or the
one we add as a precondition to InsertRec. Both are equivalent since the
de�nition of red-black trees is recursive and requires that all the nodes comply
with it, but we cannot prove the second one by relying only on the �rst one. To
solve this, we add it as a precondition to InsertRec and it is proved almost
automatically. This precondition is used to prove, among other properties, that
if the root of the given tree was red; then, after insertion, only one of its children
can be red, ruling out the case of isRed(node) && isRed(node.left)
&& isRed(node.right) (second precondition of Restore).

The postcondition says that if the root has been turned from black to red, then
its left child is black. It is used to prove the �rst precondition of Restore, as-
serting that !(isRed(newNode.right) && isRed(newNode.right.
left)). That property is actually stronger than what Restore needs, but
Dafny veri�es it without problem nonetheless.

To �nish, in Figure 5.12 we show the user-facing method for insertion. The
only thing we need to do is turn the root black in case it was turned to red. Apart
from that, the job has already been done.

5.4 Deletion
The veri�cation and implementation of deletion for red-black trees proceeds sim-
ilarly to binary search trees: �rst implement the removal of the minimum and
then use it to implement RemoveRec. As with insertion for red-black trees, we
will use the Restore method on the way up to return a valid red-black tree,
but this time we also need to perform rotations on the way down.

We will begin our study of deletion on red-black trees with method Remove-
MinRec, as shown in Figure 5.13. Similar to insertion, it has as a precondition
the alternative de�nition of red-black trees. But this time we add another pre-
condition: the received node or its left child should be red (not both, because
of the previous precondition). This precondition ensures that when we arrive
at the base case (the left child is null) the received node is red, ensuring that by

3In that �gure that property is expressed with other syntax because it is describing the skele-
ton, not the node, but they are logically equivalent.



5.4. DELETION 51

s t a t i c method I n s e r t R e c ( node ∶ TNode ? , ghost sk ∶ t r e e <TNode > , k ∶ K , v ∶ V)
returns ( newNode ∶ TNode , ghost newSk ∶ t r e e <TNode > , ghost i n s e r t edNode ∶ TNode )

modifies e lems ( sk )
requires Va l idRec ( node , sk ) ∧ SearchTreeRec ( sk ) ∧ RedBlackTreeRec ( sk )

requires ¬ ( i sRed ( node ) ∧ i sRed ( node . l e f t ) )
ensures old ( i s B l a c k ( node ) ) ∧ i sRed ( newNode ) Ô⇒ ¬ i sRed ( newNode . l e f t )

ensures Va l idRec ( newNode , newSk ) ∧ SearchTreeRec ( newSk )
ensures RedBlackTreeRec ( newSk ) ∧ BlackHe ight ( newSk ) = old ( B lackHe ight ( sk ) )
ensures ModelRec ( newSk ) = old ( ModelRec ( sk ) ) [ k ∶ = v ]

ensures e lems ( newSk ) = e lems ( sk ) + { i n se r t edNode }
ensures i n s e r t edNode . key = k ∧ i n s e r t edNode . v a l u e = v
ensures ∀ n | n ∈ e lems ( sk ) ∧ old ( n . key ) ≠ k ●

n . key = old ( n . key ) ∧ n . v a l u e = old ( n . v a l u e )
{

i f node = nul l {
newNode ∶ = new TNode . RedBlack ( null , k , v , null , Red ) ;
newSk ∶ = Node ( Empty , newNode , Empty ) ;
i n s e r t edNode ∶ = newNode ;

} e l se {
newNode ∶ = node ;
i f k = node . key {

node . v a l u e ∶ = v ;
newSk ∶ = sk ;
i n se r t edNode ∶ = node ;

} e l se i f node . key < k {
ghost var newSkRight ;
node . r i gh t , newSkRight , i n se r t edNode ∶ = I n s e r t R e c ( node . r i g h t , sk . r i g h t , k , v ) ;
newSk ∶ = Node ( sk . l e f t , node , newSkRight ) ;

} e l se i f k < node . key {
ghost var newSkLeft ;
node . l e f t , newSkLeft , i n se r t edNode ∶ = I n s e r t R e c ( node . l e f t , sk . l e f t , k , v ) ;
newSk ∶ = Node ( newSkLeft , node , sk . r i g h t ) ;

} e l se {
as se r t f a l s e ;

}
}

as se r t ¬ ( i sRed ( newNode . r i g h t ) ∧ i sRed ( newNode . r i g h t . l e f t ) ) ;
as se r t i sRed ( newNode . l e f t ) ∧ i sRed ( newNode . r i g h t ) Ô⇒

i s B l a c k ( newNode ) ∧ ¬ i sRed ( newNode . l e f t . l e f t ) ;
as se r t i sRed ( newNode . l e f t ) ∧ i sRed ( newNode . l e f t . l e f t ) Ô⇒ i s B l a c k ( newNode ) ;

l abe l P r eRe s t o r e ∶
var newNewNode , newNewSk ∶ = Res t o r e ( newNode , newSk ) ;

as se r t old ( i s B l a c k ( node ) ) ∧ i sRed ( newNewNode ) Ô⇒ ¬ i sRed ( newNewNode . l e f t ) by {
as se r t o ld@PreRes tore ( i s B l a c k ( node ) ) ∧ i sRed ( newNewNode ) Ô⇒
¬ i sRed ( newNewNode . l e f t ) ;

i f old ( i s B l a c k ( node ) ) {
as se r t o ld@PreRes tore ( newNode . c o l o r ) = old ( node . c o l o r ) ;
as se r t o ld@PreRes tore ( newNode . c o l o r ) . B lack ? ;

}
}
newNode , newSk ∶ = newNewNode , newNewSk ;

}

Figure 5.11: Recursive algorithm for insertion on red-black trees
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method I n s e r t ( k ∶ K , v ∶ V)
modifies this , Repr ( )
requires Va l i d ( ) ∧ Sea r chTree ( ) ∧ RedBlackTree ( )
ensures Va l i d ( ) ∧ Sea r chTree ( ) ∧ RedBlackTree ( )
ensures Model ( ) = old ( Model ( ) ) [ k ∶ = v ]

{
ghost var z ;
root , s k e l e t on , z ∶ = I n s e r t R e c ( root , s k e l e t on , k , v ) ;
r o o t . c o l o r ∶ = Black ;

}

Figure 5.12: Insertion on red-black trees

returning the right child we preserve black height. Complying with that precon-
dition, nonetheless, is not trivial when we perform the recursive call. To that
end we de�ne the MoveRedLeft method in Figure 5.14. That method peforms
a series of rotations and �ip-colors to ensure that either newNode.left or
newNode.left.left is red while preserving perfect black balance and keep-
ing the black height the same. To better understand these operations we show
the two possible cases in Figure 5.15. This method is used before the recursive
call of RemoveMinRec in case the precondition does not hold.

Until now we have worked to comply with the preconditions, but RemoveM-
inRec also has important properties as postconditions. They are not needed to
prove that the returned tree is a valid red-black tree, but we will use them to
verify the �nal method RemoveRec. For this reason we will postpone their
discussion until we arrive at that method.

To end the discussion about method RemoveMinRec we want to describe
a problem that Dafny had verifying this method. At �rst Dafny could not verify
any property, it would simply get stuck. The problem, we discovered, was that
it could not verify the termination of the method. This is reasonable since with
the introduction of the call to MoveRedLeft we are no longer recursing purely
structurally. To solve this issue we add a decreases-clause to inform Dafny
that it should focus on the size of the tree (de�ned as the number of nodes of the
tree). Then in MoveRedLeft we prove that the left child of the node it returns
is smaller than the node it received. This way Dafny’s termination checker is
satis�ed and we can verify the properties described.

We show the complete implementation of RemoveRec in Figure 5.16. This
method is the most complicated we have veri�ed in this work. Its implementa-
tion follows the same structure as deletion for binary search trees but we need
to perform some rotations while descending the tree, the same as we did in
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s t a t i c method RemoveMinRec ( node ∶ TNode , ghost sk ∶ t r e e <TNode > )
returns ( newNode ∶ TNode ? , ghost newSk ∶ t r e e <TNode > , removedNode ∶ TNode )

decreases s i z e ( sk )
modifies e lems ( sk )

requires RedBlackTreeRec ( sk )
requires ¬ ( i sRed ( node ) ∧ i sRed ( node . l e f t ) )
requires i sRed ( node ) ∨ i sRed ( node . l e f t )

ensures RedBlackTreeRec ( newSk )
ensures BlackHe ight ( newSk ) = old ( B lackHe ight ( sk ) )
ensures i sRed ( newNode ) Ô⇒ ¬ i sRed ( newNode . l e f t )
ensures old (¬ i sRed ( node ) ) Ô⇒ ¬ i sRed ( newNode )

{
i f node . l e f t = nul l {

ca lc = {
B l ackHe ight ( sk ) ;
max ( B lackHe ight ( sk . l e f t ) , B lackHe ight ( sk . r i g h t ) ) ;
B l ackHe ight ( sk . r i g h t ) ;

}
newNode ∶ = node . r i g h t ;
newSk ∶ = sk . r i g h t ;
removedNode ∶ = node ;

} e l se {
newNode ∶ = node ;
newSk ∶ = sk ;
i f i s B l a c k ( newNode . l e f t ) ∧ ¬ i sRed ( newNode . l e f t . l e f t ) {

newNode , newSk ∶ = MoveRedLeft ( newNode , newSk ) ;
}
ghost var newSkLeft ;
newNode . l e f t , newSkLeft , removedNode ∶ = RemoveMinRec ( newNode . l e f t , newSk . l e f t ) ;
newSk ∶ = Node ( newSkLeft , newNode , newSk . r i g h t ) ;
newNode , newSk ∶ = Res t o r e ( newNode , newSk ) ;

}
}

Figure 5.13: Remove the minimum of a red-black tree
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s t a t i c method MoveRedLeft ( node ∶ TNode , ghost sk ∶ t r e e <TNode > )
returns ( newNode ∶ TNode , ghost newSk ∶ t r e e <TNode > )

modifies e lems ( sk )

requires RedBlackTreeRec ( sk )
requires i sRed ( node ) ∧ i s B l a c k ( node . l e f t ) ∧ i s B l a c k ( node . r i g h t )
requires ¬ i sRed ( node . l e f t . l e f t )

ensures RedBlackTreeRec ( newSk . l e f t ) ∧ RedBlackTreeRec ( newSk . r i g h t )
ensures BlackHe ight ( newSk . r i g h t ) = BlackHe ight ( newSk . l e f t )
ensures BlackHe ight ( newSk ) = old ( B lackHe ight ( sk ) )
ensures newNode . l e f t ≠ nul l ∧ newNode . r i g h t ≠ nul l
ensures i sRed ( newNode . l e f t ) ∨ i sRed ( newNode . l e f t . l e f t )
ensures
∨ (¬ i sRed ( newNode ) ∧ i sRed ( newNode . l e f t ) ∧ i sRed ( newNode . r i g h t )

∧ ¬ i sRed ( newNode . r i g h t . l e f t ) ∧ ¬ i sRed ( newNode . l e f t . l e f t ) )
∨ ( i sRed ( newNode ) ∧ ¬ i sRed ( newNode . l e f t ) ∧ ¬ i sRed ( newNode . r i g h t )

∧ i sRed ( newNode . l e f t . l e f t ) )
ensures s i z e ( newSk ) = s i z e ( sk )
ensures s i z e ( newSk . l e f t ) < s i z e ( sk )

{
F l i pC o l o r s ( node , sk ) ;
newNode ∶ = node ;
newSk ∶ = sk ;

i f i sRed ( newNode . r i g h t . l e f t ) {
ghost var newSkRight ;
newNode . r i gh t , newSkRight ∶ = Ro ta t eR i gh t ( newNode . r i gh t , newSk . r i g h t ) ;
newSk ∶ = Node ( newSk . l e f t , newNode , newSkRight ) ;

newNode , newSk ∶ = Ro t a t e L e f t ( newNode , newSk ) ;

F l i pC o l o r s ( newNode , newSk ) ;
}

}

Figure 5.14: Move a red link to the left
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Figure 5.15: MoveRedLeft possible executions

RemoveMinRec. The preconditions in this case account for the case when
the input node is null but the algorithm follows the same principles to com-
ply with it: when we recur on the left we call MoveRedLeft, and when we
recur on the right we call the MoveRedRight method instead, analogous to
MoveRedLeft. Note, however, that we call RotateRight in the case that
the left child of the received node is red. In that case, we comply with the pre-
condition for the right recursive call (and the call to RemoveMinRec) without
the need to call MoveRedRight.

The veri�cation of this method needs some postconditions, marked with
numbers, that we did not explore when we discussed RemoveMinRec. Both
RemoveRec and RemoveMinRec have to comply with two postconditions
to verify that the returned tree of RemoveRec is a valid red-black tree. The
�rst is the alternative de�nition of being a valid red-black tree that we have al-
ready discussed. Another way to think about this postcondition is that it is an
strengthened version of the postcondition of InsertRec by removing one of
the premises of the implication (that the received node was black). The postcon-
dition of InsertRec works in that method because we use it when we perform
recursion on the right, and in that case we know that the node is always black (by
the de�nition of red-black trees the right child is always black). In RemoveRec,
however, we sometimes turn the right child to red, at least temporarily, to comply
with the preconditions that we have described. By strengthening the postcondi-
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tion we can prove the preconditions of Restore.
Note that the postcondition of InsertRec has to stay as it is because the

strengthened version we add to RemoveRec does not hold in insertion. In fact,
to prove the strengthened postcondition we need to add other postcondition: if
the received node was not red, then the returned node will not be either. Inser-
tion is built on the principle that we add a new node with a red link when we
receive a black node, so this postcondition would not hold. Deletion, however, is
concerned with removing nodes. To understand the proof of this postcondition
you have to consider these two cases when the received node is black (if it is null
the proof is trivial):

• The received node is the node that has to be removed: then we will call
RemoveMinRec on the right child and the color (black) will be preserved.

• The received node does not have to be removed: then we will perform re-
cursion either on the left or the right. In this case MoveRedLeft and
MoveRedRight will not be executed so the node will remain black until
recursion. The recursive call cannot alter the color of the node. And, �-
nally, Dafny has to verify that there is no case in which Restore turns
the color to red.

To prove the �rst postcondition we need two assumptions: the two postcon-
ditions hold for the tree returned by recursion (the induction hypothesis) and
Restore complies with its speci�cation4. Once we have that, Dafny can verify
all the postconditions of the method (given enough time).

To illustrate how hard Dafny has to work to prove this method we add to
the source code of Figure 5.16 the number of minutes that Dafny needs to verify
each branch. The method as a whole needs more than one hour of veri�cation in
the machine of the author. Fortunately, the proofs are simple since most of the
heavy-lifting is done by Dafny. However, a great e�ort had to be made to �nd
the postconditions that Dafny needs.

During this section we have described the veri�cation of methods RemoveM-
inRec and RemoveRec. We have focused on the veri�cation of the invariant
of red-black trees, but the veri�cation of the modi�cation of the model has not
yet been completed. The proof will have to take into account the auxiliary oper-
ations (rotations, MoveRedRight, etc.), but it should not be too di�erent from
the proofs of Chapter 4 since those operations do not change the model.

4The speci�cation was expanded to accomodate for the special cases of deletion.
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s t a t i c method RemoveRec ( node ∶ TNode ? , ghost sk ∶ t r e e <TNode > , k ∶ K)
returns ( newNode ∶ TNode ? , ghost newSk ∶ t r e e <TNode > , ghost removedNode ∶ TNode ? )

decreases s i z e ( sk )
modifies e lems ( sk )

requires RedBlackTreeRec ( sk )
requires ¬ ( i sRed ( node ) ∧ i sRed ( node . l e f t ) )
requires node = nul l ∨ i sRed ( node ) ∨ i sRed ( node . l e f t )

ensures RedBlackTreeRec ( newSk )
ensures BlackHe ight ( newSk ) = old ( B lackHe ight ( sk ) )

1 ensures i sRed ( newNode ) Ô⇒ ¬ i sRed ( newNode . l e f t )
2 ensures old (¬ i sRed ( node ) ) Ô⇒ ¬ i sRed ( newNode )
{

newNode ∶ = node ;
newSk ∶ = sk ;
i f newNode = nul l {

removedNode ∶ = nul l ;
} e l se {

i f node . key > k { / / 3 ’ 5 0 "
i f i s B l a c k ( newNode . l e f t ) ∧ ¬ i sRed ( newNode . l e f t . l e f t ) {

newNode , newSk ∶ = MoveRedLeft ( newNode , newSk ) ;
}
ghost var newSkLeft ;
newNode . l e f t , newSkLeft , removedNode ∶ =

RemoveRec ( newNode . l e f t , newSk . l e f t , k ) ;
newSk ∶ = Node ( newSkLeft , newNode , newSk . r i g h t ) ;

} e l se {
i f i sRed ( newNode . l e f t ) {

newNode , newSk ∶ = Ro ta t eR i gh t ( newNode , newSk ) ;
}

i f k = newNode . key ∧ newNode . r i g h t = nul l {
removedNode ∶ = newNode ;
newNode ∶ = newNode . l e f t ;
newSk ∶ = newSk . l e f t ;
return ;

}

i f i s B l a c k ( newNode . r i g h t ) ∧ ¬ i sRed ( newNode . r i g h t . l e f t ) {
newNode , newSk ∶ = MoveRedRight ( newNode , newSk ) ;

}

i f k ≠ newNode . key { / / 1 2 ’ 2 0 "
ghost var newSkRight ;
newNode . r i gh t , newSkRight , removedNode ∶ =

RemoveRec ( newNode . r i g h t , newSk . r i gh t , k ) ;
newSk ∶ = Node ( newSk . l e f t , newNode , newSkRight ) ;

} e l se { / / 2 5 ’
removedNode ∶ = newNode ;
ghost var newSkRight ;
var minNode ;
newNode . r i gh t , newSkRight , minNode ∶ =

RemoveMinRec ( newNode . r i g h t , newSk . r i g h t ) ;
minNode . l e f t ∶ = newNode . l e f t ;
minNode . r i g h t ∶ = newNode . r i g h t ;
minNode . c o l o r ∶ = newNode . c o l o r ;
newNode ∶ = minNode ;
newSk ∶ = Node ( newSk . l e f t , newNode , newSkRight ) ;

}
}
newNode , newSk ∶ = Res t o r e ( newNode , newSk ) ;

}
}

Figure 5.16: Recursive algorithm for deletion on red-black trees
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Chapter 6

Iterators in binary search trees

We have already explored the speci�cation of iterators in sets, maps and multi-
sets, but we have not shown yet how we can implement such iterators in tree-like
data structures. Although this part of our work has not been fully developed yet,
we still want to show the progress we have made on this front. Namely, we have
implemented and veri�ed the key operations of iterators over immutable trees.
Our work is focused on linked data structures, so this is not our �nal goal, but
it is a step in the path to a fully veri�ed implementation of iterators for binary
search trees (and eventually red-black trees). We have also made some progress
on the veri�cation and implementation of iterators for the binary search trees
that we have shown in previous chapters, but that work will not be shown in
this document since it is too experimental. The interested reader can search in
the source code provided along this document1. We expect to implement the
ideas discussed in this chapter to �nish the veri�cation of that code.

The main class of our trees is shown in Figure 6.1. Apart from being an im-
mutable tree instead of a linked data structure, this de�nition is not too di�erent
from what we have already seen. The only addition is a ghost �eld iterators
that stores all the iterators that point to the tree. That property is ensured in the
representation invariant using the Parent function of the iterators. We also
implement the First method by calling the constructor of iterators.

In Figure 6.2 we show the de�nition of iterators. These iterators traverse
the tree in inorder with the help of a stack. The top of the stack represents the
currently pointed element. While descending the tree during the traversal, the

1The code from this chapter is extracted from the src/tree/layer3/IterTestImpl.dfy
�le, and the experimental implementation of iterators for heap-allocated trees can be found in
the src/tree/layer3/OrderedMapImplIter.dfy �le.

59



60 CHAPTER 6. ITERATORS IN BINARY SEARCH TREES

datatype Tree = Empty | Node ( l e f t ∶ Tree , key ∶ K , va l u e ∶ V , r i g h t ∶ Tree )

c l a s s UnorderedMap {
var t r e e ∶ Tree
ghost var i t e r a t o r s ∶ set <UnorderedMapI te ra tor >

function Repr ( ) ∶ set <object >
reads th i s

{
{ th i s } + th i s . i t e r a t o r s

}

predicate Va l i d ( )
reads this , Repr ( )

{
∧ SearchTreeRec ( t r e e )
∧ ∀ i t | i t ∈ i t e r a t o r s ● i t . Pa ren t ( ) = th i s ∧ i t ≠ th i s

}

function Model ( ) ∶ map<K , V>
reads this , Repr ( )
requires Va l i d ( )

method F i r s t ( ) returns ( i t ∶ UnorderedMapI te ra to r )
modifies this , Repr ( )
requires Va l i d ( )
ensures Va l i d ( )
ensures Model ( ) = old ( Model ( ) )

ensures I t e r a t o r s ( ) = { i t } + old ( I t e r a t o r s ( ) )
ensures i t . V a l i d ( )
ensures i t . Pa ren t ( ) = th i s
ensures i t . T r a v e r s ed ( ) = { }

{
i t ∶ = new UnorderedMapI te ra to r ( th i s ) ;
i t e r a t o r s ∶ = i t e r a t o r s + { i t } ;

}
}

Figure 6.1: UnorderedMap class
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stack is �lled, and when the traversal cannot proceed downwards (the right child
of the top of the stack is null), the stack is used to go back up the tree. This process
will be detailed and formalized in the rest of this chapter. The Dafny de�nition
of iterators, apart from the parent and the stack �elds, has the following ghost
�elds: the traversed elements, the traversed keys and the inorder of the parent.
The properties of each of these �elds are de�ned in the representation invariant:

• stack: the nodes of the stack should not be null.

• inorderParent: the inorderParent �eld is actually the inorder
traversal of the parent, no key is repeated and every element of the in-
order is in the model and viceversa.

• traversed and traversedKeys: their length is the same, which in
turn is less than that of the inorder and traversedKeys is the sequence
of the left components of traversed.

• Relation between them: the inorder of the parent is composed of the tra-
versed elements and all the inorder traversals of the right subtrees of the
nodes in the stack.

Some of these properties could be derived from others, for example from the
fact that the tree is a binary search tree. We keep them, nonetheless, since they
are not di�cult to prove and they may give hints to Dafny on how to verify our
methods.

Now we want to discuss the Next method, but before we show its code we
will see what operations this method does through illustrations. In Figure 6.3 we
illustrate the state of the tree before the Next operation is called. The elements
of the stack are marked in blue and the tree is divided in two parts: the left part is
composed of the already traversed nodes, and the right is composed of the nodes
of the stack and all of their right subtrees (inorderStack(stack)). Our
objective is to consume the next node, which is always at the top of the stack. In
Figure 6.4 we illustrate the state of the tree after we consume that node, that is,
we remove it from stack and add it to traversed. The tree is now divided
in three parts: the traversed elements, the right subtree of the (previous) top of
the stack (called T in the diagram) and the nodes from the stack along with their
right subtrees (inorderStack(stack)). To restore the invariant we need
to include all of the nodes in T into inorderStack(stack). To do so we
descend that tree through the left links until there is no left child, adding every
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c l a s s UnorderedMapI te ra to r {
var pa ren t ∶ UnorderedMap
var s t a c k ∶ seq < Tree >
ghost var t r a v e r s e d ∶ seq < (K , V) >
ghost var t r a v e r s edKey s ∶ seq <K>
ghost var i n o r d e r P a r e n t ∶ seq < (K , V) >

function Paren t ( ) ∶ UnorderedMap
reads th i s

{ pa r en t }

function i n o r d e r S t a c k ( s t ∶ seq < Tree > ) ∶ seq < (K , V) >
{

i f | s t | = 0 then
[ ]

e l se
var top ∶ Tree ∶ = s t [ | s t | − 1 ] ;
match top {

case Empty ⇒ i n o r d e r S t a c k ( s t [ 0 . . | s t | − 1 ] )
case Node ( _ , k , v , r ) ⇒ [ ( k , v ) ] + i n o r d e r ( r ) + i n o r d e r S t a c k ( s t [ 0 . . | s t | − 1 ] )

}
}

predicate Va l i d ( )
reads this , Pa ren t ( ) , Pa ren t ( ) . Repr ( )

{
∧ pa ren t . Va l i d ( )

/ / s t a c k
∧ (∀ i | 0 ≤ i < | s t a c k | ● s t a c k [ i ] . Node ? )

/ / i n o r d e r P a r e n t
∧ i n o r d e r P a r e n t = i n o r d e r ( pa r en t . t r e e )
∧ (∀ i , j | 0 ≤ i < j < | i n o r d e r P a r e n t | ●

i n o r d e r P a r e n t [ i ] . 0 ≠ i n o r d e r P a r e n t [ j ] . 0 )
∧ (∀ p | p ∈ i n o r d e r P a r e n t ● p ∈ pa ren t . Model ( ) . I t ems )
∧ (∀ p | p ∈ pa ren t . Model ( ) . I t ems ● p ∈ i n o r d e r P a r e n t )

/ / t r a v e r s e d , t r a v e r s e d K e y s
∧ | t r a v e r s edKey s | = | t r a v e r s e d | ≤ | i n o r d e r P a r e n t |
∧ (∀ i | 0 ≤ i < | t r a v e r s edKey s | ● t r a v e r s e d [ i ] . 0 = t r a v e r s edKey s [ i ] )

/ / R e l a t i o n be tween them
∧ t r a v e r s e d + i n o r d e r S t a c k ( s t a c k ) = i n o r d e r P a r e n t

}

Figure 6.2: RemoveRec method
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node to the stack in the process, as shown in Figure 6.5. We call this operation
descend and push. With this operation we have achieved two goals: the top of
the stack now points to the least element of the non-traversed elements, and
all the nodes of T have been added to the right part of the diagram, as shown
in Figure 6.6, where T’ represents the T tree after descend and push has been
executed on it. We have succesfully restored the invariant after consuming the
next node.

The code for the algorithm we have described is in Figure 6.7. The inorder
of the tree is divided as we have explained, and the rest of the algorithm is a
matter of modifying correctly the �elds and calling DescendAndPush. The
constructor of iterators, shown in that �gure too, also calls DescendAndPush
to build the initial stack, with no additional operations apart from initializing
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Figure 6.5: Result of descend and push
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Figure 6.6: State after calling Next
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the �elds. The code for DescendAndPush is shown in Figure 6.8: a simple
while-loop that restores the invariant.

With this implementation and veri�cation completed, we can adapt these
ideas to our linked trees. The new veri�cation should thoroughly specify how the
tree is modi�ed during the descend and push and other operations, a challenge
that we leave for future work.
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method Next ( ) returns ( p ∶ pairKV )
modifies th i s
requires HasNext ( )

{
var top ∶ = s t a c k [ | s t a c k | − 1 ] ;
p ∶ = ( top . key , top . v a l u e ) ;

ca lc = {
i n o r d e r P a r e n t ;
t r a v e r s e d + i n o r d e r S t a c k ( s t a c k ) ;
t r a v e r s e d + i n o r d e r S t a c k ( s t a c k [ . . | s t a c k | − 1 ] + [ top ] ) ;
t r a v e r s e d + ( [ p ] + i n o r d e r ( top . r i g h t ) + i n o r d e r S t a c k ( s t a c k [ . . | s t a c k | − 1 ] ) ) ;
( t r a v e r s e d + [ p ] ) + i n o r d e r ( top . r i g h t ) + i n o r d e r S t a c k ( s t a c k [ . . | s t a c k | − 1 ] ) ;

}
s t a c k ∶ = s t a c k [ . . | s t a c k | − 1 ] ;
t r a v e r s e d ∶ = t r a v e r s e d + [ p ] ;
t r a v e r s edKey s ∶ = t r a v e r s edKey s + [ top . key ] ;

as se r t t r a v e r s e d + i n o r d e r ( top . r i g h t ) + i n o r d e r S t a c k ( s t a c k ) = i n o r d e r P a r e n t ;
DescendAndPush ( top . r i g h t ) ;

as se r t t r a v e r s e d + i n o r d e r S t a c k ( s t a c k ) = i n o r d e r P a r e n t ;
}

constructor ( pa r en t ∶ UnorderedMap )
requires pa ren t . Va l i d ( )
ensures Va l i d ( )
ensures T rav e r s ed ( ) = { }
ensures Paren t ( ) = pa ren t

{
th i s . p a r en t ∶ = pa ren t ;
th i s . t r a v e r s e d ∶ = [ ] ;
th i s . t r a v e r s edKey s ∶ = [ ] ;
th i s . s t a c k ∶ = [ ] ;
th i s . i n o r d e r P a r e n t ∶ = i n o r d e r ( pa ren t . t r e e ) ;
DescendAndPush ( pa ren t . t r e e ) ;

}

Figure 6.7: Next method and the iterator constructor



67

method DescendAndPush ( t ∶ Tree )
modifies this ‘ s t a c k
requires ∀ i | 0 ≤ i < | s t a c k | ● s t a c k [ i ] . Node ?
ensures ∀ i | 0 ≤ i < | s t a c k | ● s t a c k [ i ] . Node ?
requires t r a v e r s e d + i n o r d e r ( t ) + i n o r d e r S t a c k ( s t a c k ) = i n o r d e r P a r e n t
ensures t r a v e r s e d + i n o r d e r S t a c k ( s t a c k ) = i n o r d e r P a r e n t

{
var t ’ ∶ = t ;
while t ’ . Node ?

decreases t ’
invar iant ∀ i | 0 ≤ i < | s t a c k | ● s t a c k [ i ] . Node ?
invar iant t r a v e r s e d + i n o r d e r ( t ’ ) + i n o r d e r S t a c k ( s t a c k ) = i n o r d e r P a r e n t

{
s t a c k ∶ = s t a c k + [ t ’ ] ;
t ’ ∶ = t ’ . l e f t ;

}
}

Figure 6.8: DescendAndPush method
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Chapter 7

Conclusions

In this chapter we will give a general review of this work, specially regarding the
goals set in Chapter 1. The results of this work are the following:

• We have formalized the speci�cation of sets, multisets and maps.

• We have implemented and veri�ed binary search trees, including search,
insertion and deletion operations.

• We have implemented and veri�ed red-black trees and insertion and dele-
tion on them.1

• We have veri�ed the implementation of the map ADT using linked lists.

• We have veri�ed the implementation of the operators (without iterators) of
the map ADT with binary search trees (not with red-black trees, but their
interfaces are the same).

• We have veri�ed a test implementation of iterators in binary search trees.
This implementation uses immutable trees instead of the heap-allocated
trees used in the rest of our work. We hope to use this transient veri�ca-
tion to verify the �nal implementation of the iterators for the linked trees
that we have developed. This veri�cation is already in progress and its
completion is left for future work.

1Some parts of the veri�cation of deletion have not been completed, but they are not expected
to cause problems or involve new techniques. In particular, the veri�cation of the changes made
to the model.
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7.1 Di�culties encountered and lessons learned

Dafny may be an automatic veri�er, but that automation is served at the expense
of interactivity. Veri�cation times of several minutes were usual (breaking almost
completely the feedback loop), and sometimes the veri�cation times reached 10
to 20 minutes, or one hour in the most extreme case (like RemoveRec of Chap-
ter 5). These issues are not inconveniences that should be overlooked. If we want
to make formal veri�cation mainstream (or at least as mainstream as it can be),
the user experience should be on par on what a programmer expects from non-
veri�ed programming environments. Veri�cation environments should also be
predictable and reliable. If something cannot be proven automatically, the veri-
�er should fail quickly and guide the programmer to write the proofs manually.

Red-black trees are an elegant data structure that simpli�es the implemen-
tation and understanding of self-balancing trees, but they are still a much more
complex data structure than the usual binary search trees. Since this work fo-
cused on veri�cation, I needed to not only understand red-black trees, but to be
able to express their key properties and the invariants of their operations in a
su�ciently simple way that Dafny could use for veri�cation. This involved dis-
covering invariants that were not initially found in the literature and going deep
into each and every case of the correctness proofs. All in all, I think I now have a
much deeper understanding of red-black trees than the one I had when I initially
studied them in an undergraduate course.

7.2 Future work

We left for future work �nishing the uncomplete parts of this work, namely the
implementation and veri�cation of iterators for binary search trees and the last
parts of the veri�cation of deletion for red-black trees. Some other extensions of
the current work are the following:

• Implementation and veri�cation of threaded binary trees, a version of bi-
nary trees that should help with the implementation of iterators for red-
black trees. In this version, a new �eld is added to nodes that points to the
next node in the traversal of the tree. These links pose a challenge to the
implementation and veri�cation since the have to be maintained after tree
operations.
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• Speci�cation, implementation and veri�cation of graphs, using the map
and set ADTs developed in this work.
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