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Parabolic subgroups acting on the additional length graph

YAGO ANTOLÍN

MARÍA CUMPLIDO

Let A ¤ A1; A2; I2m be an irreducible Artin–Tits group of spherical type. We
show that the periodic elements of A and the elements preserving some parabolic
subgroup of A act elliptically on the additional length graph CAL.A/ , a hyperbolic,
infinite diameter graph associated to A constructed by Calvez and Wiest to show
that A=Z.A/ is acylindrically hyperbolic. We use these results to find an element
g 2 A such that hP; gi Š P � hgi for every proper standard parabolic subgroup P
of A . The length of g is uniformly bounded with respect to the Garside generators,
independently of A . This allows us to show that, in contrast with the Artin generators
case, the sequence f!.An;S/gn2N of exponential growth rates of braid groups, with
respect to the Garside generating set, goes to infinity.

20F36, 20F65

1 Introduction

It is well known that the braid group with nC 1 strands, An , acts by isometries on
the curve complex of the n–punctured disk, Dn . This fact comes from the topological
definition of An , which says that An is the mapping class group of Dn . We know a lot
about this curve complex, including its ı–hyperbolicity, which makes it a fundamental
tool when proving properties of the braid group.

On the other hand, braid groups also belong to a family of presentable groups, called
Artin–Tits groups [1]. To define them we need a finite set of generators † and a
symmetric matrix M D .ms;t /s;t2† with ms;s D 1 and ms;t 2 f2; : : : ;1g for s ¤ t .
The Artin–Tits system associated to M is .A;†/, where A is the so-called Artin–Tits
group presented in the following way:

AD
˝
† j sts � � �„ƒ‚…

ms;t elements

D tst � � �„ƒ‚…
ms;t elements

for s; t 2† with s ¤ t; ms;t ¤1
˛
:

Notice that relations in this presentation contain only positive powers of the generators.
This allows us to define AC as the positive monoid given by the same presentation.
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Figure 1: Classification of irreducible Coxeter graphs of finite type.

We also can obtain the Coxeter group WA associated to .A;†/ by adding the relations
s2 D 1:

WAD
˝
† js2D1 for s2†; sts � � �„ƒ‚…

ms;t elements

D tst � � �„ƒ‚…
ms;t elements

for s; t 2† with s¤ t; ms;t¤1
˛
:

If WA is finite, the corresponding Artin–Tits group (or Artin–Tits system) is said to be
of spherical type. If A cannot be decomposed as a direct product of nontrivial Artin–
Tits groups, we say that A is irreducible. Irreducible Artin–Tits groups of spherical
type are completely classified (see Figure 1) in ten classes; see Coxeter [7]. The main
example on these groups is the braid group An , which is provided by the presentation

An D h�1; : : : ; �n j �i�j D �j�i if ji � j j> 1; �i�j�i D �j�i�j if ji � j j D 1i:

Artin–Tits groups of spherical type share many properties with An , but to prove them we
cannot use arguments that involve the curve complex. To overcome this difficulty, new
complexes related with all Artin–Tits groups of spherical type have been introduced.

Let .A;†/ be an Artin–Tits system of spherical type. On the one hand, in [5], Calvez
and Wiest constructed the additional length graph of A, denoted by CAL.A/. As we
will see later, this complex relies on technical concepts about Garside theory and it is
in fact defined for every Garside group. The interest on CAL.A/ lies on the fact that it

Algebraic & Geometric Topology, Volume 21 (2021)



Parabolic subgroups acting on the additional length graph 1793

is ı–hyperbolic when A is irreducible. Calvez and Wiest conjectured that CAL.An/

is quasi-isometric to the curve graph (the 1–skeleton of the curve complex) of Dn
and they even made a step forward, proving that the braids that act loxodromically
on CAL.An/ are pseudo-Anosov. We recall that an element ˛ acts loxodromically
on CAL.An/ if the orbit of every element of CAL.A/ by ˛ is quasi-isometric to Z. The
element ˛ acts elliptically on CAL.An/ if the orbits are bounded.

Proposition 1 [5, Proposition 2] We consider the action of the braid group An on its
additional length graph CAL.An/ by left multiplication. Then periodic and reducible
elements act elliptically.

On the other hand, we have the complex of irreducible parabolic subgroups P.A/, de-
fined by Cumplido, Gebhardt, González-Meneses and Wiest [9]. A standard parabolic
subgroup, AX , is a subgroup generated by some X � †. A subgroup P is called
parabolic if it is conjugate to a standard parabolic subgroup, that is, P D ˛�1AY ˛ for
some standard parabolic subgroup AY and some ˛ 2 A. We say that P is irreducible,
if it cannot be decomposed as a direct product of parabolic subgroups. Given an
irreducible parabolic subgroup P, we denote by zP the unique positive element that
generates the centre Z.P / of P. The vertices of P.A/ are the irreducible ones,
that is, the parabolic subgroups that cannot be decomposed as a direct product of
nontrivial parabolic subgroups. A set of vertices fP0; : : : ; Png spans an n–simplex
if zPi

zPj
D zPj

zPi
for all i ¤ j. In [9, Theorem 2.2], it is proven that having

zPi
zPj
D zPj

zPi
is equivalent to have one of these three situations:

� Pi � Pj .

� Pj � Pi .

� Pi [Pj D f1g and pipj D pjpi for every pi 2 Pi and pj 2 Pj .

In the braid case, the subset of irreducible proper parabolic subgroups is in bijection
with the isotopy class of curves in Dn . This makes P.An/ isomorphic to the curve
complex of Dn . This complex seems then more natural for studying Artin–Tits groups
than CAL.A/. However, the hyperbolicity of the complex of irreducible parabolic
subgroups is not proven yet. One approach to solve that problem could be to find
links between the 1–skeleton of the complex of irreducible parabolic subgroups (which
is in fact a flag complex) and the additional length graph, which is precisely what
we will do in this article. We will generalize Proposition 1 of Calvez and Wiest to
irreducible Artin–Tits groups of spherical type. Due to the bijection between the curve
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complex and the complex of irreducible parabolic subgroups mentioned before, we
can realize that the reducible braids correspond to elements that preserve a family of
parabolic subgroups that form a simplex in P.A/. Notice that the action of A on P.A/
is induced by the conjugation action of A on itself. We say that x 2 A is periodic if
some power of it acts trivially on P.A/.

Theorem 2 Let A¤A1; A2; I2m be an irreducible Artin–Tits group of spherical type.
The periodic elements of A and the elements preserving some simplex of P.A/ (ie
normalizing parabolic subgroup of A) act elliptically on CAL.A/.

As explained by Calvez and Wiest [6, Proposition 4.9], the proof of this result (and
more precisely Corollary 23) is the key to proving that there is a 9–Lipschitz function
from P.A/ to CAL.A/ when A has rank at least 3. As a consequence, we can prove
that in these cases P.A/ has infinite diameter [6, Corollary 4.10].

For the second part of this article, we will use one of the key features of the graph
CAL.A/: its hyperbolicity constant is independent of the Artin–Tits group of spherical
type. Moreover, when proving Theorem 2 we will find bounds on the diameter of orbits
of parabolic subgroups acting on CAL.A/ that are again independent of the group A.
Combining this uniformity of constants and standard techniques of groups acting on
hyperbolic spaces, we will show that we can find a common “free-product complement”
for all standard proper parabolic subgroups. Namely:

Theorem 3 There exists a constant K such that for every irreducible Artin–Tits group
.A;†/ of spherical type A¤ A1; A2; I2m , there is an element g� 2 AC such that

(1) the element g� has length at most K with respect to the Garside generators (see
Section 2.1), and

(2) for every proper standard parabolic subgroup AX of A, one has that hg�; AX i Š
hg�i �AX .

The Cayley graph of an Artin–Tits group of spherical type is usually better understood
with respect to the Garside generators (explained in Section 2.1) than with respect to
the Artin generating set †. Let S denote the set of Garside generators. Then, for
every parabolic subgroup AX , one has that the natural subgroup inclusion induces a
graph isometric inclusion �.AX ; AX \S˙1/! �.A;S˙1/. Here, �.G;X/ denotes
the Cayley graph of a group G with respect to a generating set X. We will use this

Algebraic & Geometric Topology, Volume 21 (2021)



Parabolic subgroups acting on the additional length graph 1795

isometric inclusion together with the “free-product complement” to derive that the
(relative) growth rate of proper parabolic subgroups is strictly smaller than the ambient
group.

Before stating this last result, let us fix some notation. Let M be a monoid and X a
finite generating set of M. We denote the (relative) exponential growth rate of M by

!.M;X/D lim
n!1

�
#fg 2M W jgjX � ng

�1=n
;

where jgjX denotes the length of the shortest word in X representing g . Notice that
this limit exists thanks to the submultiplicativity of the word length and Fekete’s lemma.

Corollary 4 Let A¤ A1 be an irreducible Artin–Tits group of spherical type. Let SA
be the Garside generating set of A. For every proper parabolic subgroup AX of A, one
has that

!.AX ;S˙1A / < !.A;S˙1A / and !.ACX ;SA/ < !.A
C;SA/:

Moreover, the sequences f!.An;S˙1An
/g1nD1 , f!.Bn;S˙1Bn

/g1nD2 , f!.Dn;S˙1Dn
/g1nD3

(and the corresponding sequences for the submonoid of positive elements) are increasing
and unbounded.

This result contrasts with the case of standard Artin generators. In that case, it is known
that both f!.ACn ; †/g

1
nD1 and f!.An; †/g1nD1 are increasing and converge. More

specifically, for the submonoid of positive elements, a beautiful recent result of Flores
and González-Meneses [14, Theorem 6.8] shows that f!.ACn ; †/g

1
nD1 converges to

the KLV constant q1 D 3:23363 : : : .

2 Preliminaries

2.1 Garside theory

Let us briefly recall some concepts from Garside theory (for a general reference,
see [11]). A group G is called a Garside group with Garside structure .G;M; �/ if it
admits a submonoid M of positive elements such that M\M�1 D f1g and a special
element � 2M, called the Garside element, with the following properties:

� There is a partial order in G, 4, defined by a 4 b() a�1b 2M such that
for all a; b 2G there exists a unique gcd, denoted by a^ b , and a unique lcm,
denoted by a_ b , with respect to 4. This order is called prefix order and it is
invariant under left-multiplication.
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� The set of simple elements S WD fs 2 G j 1 4 s 4�g generates G. These are
also called Garside generators.

� ��1M�DM.

� M is atomic: if we define the set of atoms as the set of elements a 2M such
that there are no nontrivial elements b; c 2M such that aD bc , then for every
x 2M there is an upper bound on the number of atoms in a decomposition of
the form x D a1a2 � � � an , where each ai is an atom.

In a Garside group, the monoid M also induces a partial order which is invariant under
right-multiplication, the suffix order <. This order is defined by a < b() ab�1 2M,
and for all a; b 2G there exists a unique gcd, a �̂ b , and a unique lcm, a_� b , with
respect to <.

We say that a Garside group has finite type if S is finite. It is well known that every
Artin–Tits group of spherical type A admits a Garside structure of finite type where
the monoid M is precisely AC [3; 11]. The monoid AC injects on A [21], which
implies that the atoms of A are precisely the generators in the presentation given in the
introduction.

Remark 5 The conjugate by � of an element x will be denoted by �.x/D��1x�.
Notice that ��1M�DM implies that the set of prefixes of � equals its set of suffixes
and then � is decomposed as a � b , where a is an atom, if and only if we can write
�D b �a0, where a0 is an atom. This means that � provides a permutation of the atoms
of the Garside group.

Proposition 6 [3, Lemma 5.1, Theorem 7.1] Let .†;A/ be an Artin–Tits system of
spherical type. Then the Garside element for A is

�D
W
�i2†.�i /D

W�

�i2†
.�i /:

Moreover , the conjugation by �2 is trivial , that is , �2 D Id.

Lemma 7 Let x be an element of an Artin–Tits system .A;†/ of spherical type. Let
x D a1a2 � � � ar with ai 2†[†�1 and define Ex WD arar�1 � � � a1 . Then, E� W A! A

is an involution and a well-defined antihomomorphism (for all x; y 2 A  �
xy D Ey Ex ). In

particular , �D E�.

Proof We have a well-defined antihomomorphism because the relations in the pre-
sentation of an Artin–Tits group of spherical type are symmetric, and so, for every
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x; y2A, we have that  �xyD Ey Ex . Notice that, thanks to this symmetry, .a_b/D
 �����

. Ea_� Eb/

for every a; b 2 AC . Then, since our antihomomorphism preserves atoms,W
�i2†.�i /D

 �����������W�

�i2†
. E� i /

�
D

 �����������W�

�i2†
.�i /

�
:

This fact together with Proposition 6 implies that �D E�.

Definition 8 We say that the product of two simple elements a � b , is left-weighted
(resp. right-weighted) if ab ^�D a (resp. ab �̂�D b ).

Remark 9 In an Artin–Tits group of spherical type, the simple elements of the Garside
structure are the square-free ones, that is, every positive word representing that element
does not contain the square of an atom [3; 12]. This implies that a � b is left-weighted
(resp. right-weighted) if for every atom t such that t 4 b (resp. a < t ), we have that
a < t (resp. t 4 b ).

Definition 10 We say that xD�ks1 � � � sr is in left normal form if k 2Z, si … f1;�g
is a simple element for i D 1; : : : ; r , and si � siC1 is left-weighted for 0 < i < r .
Analogously, x D s1 � � � sr�k is in right normal form if k 2 Z, si … f1;�g is a simple
element for i D 1; : : : ; r , and sisiC1 is right-weighted for 0 < i < r . When the right
and the left normal form coincide, we will just refer to the normal form.

It is well known that the normal forms of an element are unique [11, Corollary 7.5] and
that the numbers r and k do not depend on the normal form (left or right). We define
the infimum, the canonical length and the supremum of x , respectively, as inf.x/D k ,
`.x/D r and sup.x/D kC r . Equivalents definitions of supremum and infimum are

inf.x/Dmaxfp j�p 4 xg and sup.x/Dminfp j x 4�pg:

2.2 The additional length graph

The construction of the additional length graph is made for any Garside group and its
key ingredient is the use of absorbable elements, which are defined below.

Definition 11 [5, Definition 1] Let G be a Garside group. We say that y 2G is an
absorbable element if the two following conditions are satisfied:

(1) inf.y/D 0 or sup.y/D 0.

(2) There is an x 2G such that inf.xy/D inf.x/ and sup.xy/D sup.x/.

In this case we say that x absorbs y .

Algebraic & Geometric Topology, Volume 21 (2021)



1798 Yago Antolín and María Cumplido

We say that x absorbs y because the length of the normal form of xy is the same
length of the normal form of x . So, loosely speaking, the normal form of x “absorbs”
the factors of the normal form of y .

Example Consider the braid group An with n > 2. As �1 commutes with �3 , if we
let x D �1 � � � �1 and y D �3 � � � �3 , we have that xy D .�1�3/ � � � .�1�3/. Hence, x
absorbs y .

On the other hand, if x D ���1i and y D �i , then x does not absorb y because
inf.x/D 0 and inf.xy/D 1.

Definition 12 [5, Definition 2] Let .G;GC; �/ be a Garside structure. We define
the additional length graph of G, CAL.G/ as follows:

� The vertices are in one-to-one correspondence with G=h�i, that is, the equiva-
lence classes g�Z D fg�p j p 2 Zg. Every class v has a unique representative
with infimum 0, denoted by xv .

� Two vertices v D xv�Z and w D Sw�Z are connected by an edge if and only if
we have one of the two following situations:

(1) There is a simple element m¤ 1;� such that xvm 2 w .

(2) There is an absorbable element y 2G such that xvy 2 w .

We give a metric structure to this complex by saying that the length of every edge in
the graph is 1. We denote the distance between two vertices v and w by dCAL.v; w/.

3 Normalizers of parabolic subgroups act elliptically

The aim of this section is to prove Theorem 2, that is, we prove that the normalizers of
parabolic subgroups of an irreducible spherical Artin–Tits group A¤ A1; A2; I2m act
elliptically on the additional length graph.

In [19] it is proven that any standard parabolic subgroup AX of an Artin–Tits group of
spherical type is an Artin–Tits group of spherical type itself. This means that AX has
also a Garside structure, whose Garside element is denoted by �X and equals the least
common multiple of the elements in X. We denote by �X the conjugation by �X .
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3.1 Ribbons

We will use some objects defined in [8; 9] that we call ribbons. We shall remark that
these ribbons are slightly different from the classical concept of ribbon introduced
in [16].

Definition 13 Let .A;†/ be an Artin–Tits system of spherical type and let X ¨ †

and t 2†. We define

rX;t D�X[ftg�
�1
X ; rt;X D �X[ftg.rX;t /D�

�1
X �X[ftg:

We will say that rX;t is a right-ribbon and rt;X is a left-ribbon.

Remark 14 Notice that �X[ftgDrX;t�X is simple and so it is square-free (Remark 9).
As �X can start with any letter of X, if t … X, the only suffix letter of rX;t is t .
Analogously, t is the only prefix letter of rt;X .

Lemma 15 Let .A;†/ be an Artin–Tits system of spherical type and let X � †.
Then rt;X D

 ��
rX;t . In particular, if t …X, then both rX;t � rt;X and rt;X � rX;t are left-

and right-weighted.

Proof By Lemma 7, we have that

 ��
rX;t D

 ��

��1X �
 �����

�X[ftg D�
�1
X �X[ftg D rt;X :

Also notice that, as we have seen in that lemma, the atoms that are suffixes of x coincide
with the atoms that are prefixes of Ex and vice versa. Then, by Remark 9, rX;t � rt;X
and rt;X � rX;t are both left- and right-weighted.

Remark 16 By definition, conjugations by rX;t and rt;X are equivalent to applying
�X ı �X[ftg and �X[ftg ı �X , respectively (recall that �2 D Id). So, by Remark 5, con-
jugation by rX;t and rt;X induces a permutation of the atoms of X [ftg. This implies
that there exists a unique Y �X [ftg such that rX;tX D Y rX;t and Xrt;X D rt;XY .
We say that rX;t is an elementary X –ribbon–Y .

Also, since t is the only atomic prefix of rt;X (Remark 14), rX;ts is simple for every
s 2 X. So Y is formed by all atoms u 2 X [ ftg such that u 64 rX;t and rt;X 6< u

(Remark 9). Moreover, rX;t has a unique atomic prefix and rt;X has a unique atomic
suffix.
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Definition 17 Let .A;†/ be an Artin–Tits system of spherical type and X; Y ¨†. We
say that ˛ 2A is an X –ribbon–Y if ˛ can be decomposed as a product of left-ribbons
r1 � � � rm and there exists a sequence of subsets of † of the form X1DX, X2; : : : ; Xm ,
XmC1 D Y such that ri is an elementary Xi –ribbon–XiC1 .

3.2 Proof of Theorem 2

We will prove that we can write any normalizer of a proper standard parabolic subgroup
as the product of at most nine absorbable elements.

Lemma 18 Let .A;†/ with A¤ A1; A2; I2m be an Artin–Tits system of spherical
type with Garside element � and let X ¨†. Then , for every k 2 Z, �k is a product
of at most three absorbable elements and �kX is a product of at most two absorbable
elements.

Proof Suppose that k > 0. Take AD �ki and B D �kj , where �i 2 † and �j 2 †
commute, and C D B�1 � A�1 � �k . We claim that A, B and C are absorbable.
If this is true, ABC is the desired decomposition for �k . Also, by [5, Lemma 1],
C�1 �B�1 �A�1 is the desired decomposition of �k when k < 0.

Firstly, we have that inf.A/D inf.B/D 0. We want to see that also inf.C /D 0. As
A �B D .�i�j /

k , we can write

(1) C D��..�i�j /
�1/ ���2..�i�j /

�1/ � � ���k..�i�j /
�1/:

Notice that ��pC1..�i�j /�1/ D �p..�i�j /�1/� D �p..�j�i /�1/�. By Lemma 7,
we have that for every q > 0 and every atom �m ,

��q..�i�j /
�1/< �m () �m 4 �q..�j�i /

�1/�;

meaning that ��p�1..�i�j /�1/ ���p..�i�j /�1/ is left- and right-weighted for every
p > 0. Hence, (1) is the normal form of C and inf.C /D 0.

We can easily see that A and B absorb each other. Now let us see that B absorbs C.
We have that

B �C D .�i /
�k
��k D��.��1i / ���2.��1i / � � ���k.��1i /:

As before, this expression is the normal form of B �C. Then inf.B/D inf.B �C/D 0
and sup.B/D sup.B �C/D k , as desired. This concludes that �k is a product of at
most three absorbable elements.
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In most of the cases, �kX is absorbable itself. It suffices to have an atom �j that
commutes with X, so that �kj absorbs �kX . If this is not the case, we can take �i 2X
and �j … X such that �i�j D �j�i and let A D �ki and B D A�1�kX . Then A is
absorbed by �kj and A absorbs B.

Proposition 19 Let A¤A1; A2; I2m be any Artin–Tits group of spherical type. Every
element in a proper standard parabolic subgroup of A is a product of at most three
absorbable elements. In particular, the orbit on CAL.A/ of every proper standard
parabolic subgroup of A has diameter at most 3.

Proof Let AX be a proper standard parabolic subgroup of A and take x 2AX . As AX
is an Artin–Tits group of spherical type, we can take the left normal form of x in AX ,
which is of the form �kXs1 � � � sl . By Lemma 18, �kX is a product of at most two
absorbable elements. So, we assume that xD s1 � � � sl . We want to see that this element
is absorbable.

If there is �i 2 † nX that commutes with X, then � li absorbs s1 � � � sl . Otherwise,
take an atom t 2† nX not commuting with X. We claim that

(2) y D � l�1X[ftg.rX;t / � �
l�2
X[ftg.rX;t / � � � �X[ftg.rX;t / � rX;t

absorbs s1 � � � sl . Firstly, recall that �X[ftg.rX;t /D rt;X and that, by Lemma 15, the
expression (2) is the normal formal of y , so inf.y/D0 and sup.y/D l . As conjugations
by r�1X;t and r�1t;X are equivalent to applying �X[ftg ı �X and �X ı �X[ftg , respectively,
conjugation by r�1X;tr

�1
t;X fixes every element in AX . This allows us to write

(3) yx D s0l � s
0
l�1 � � � s

0
1;

where s0i D rX;t � sl�iC1 if i is odd and s0i D sl�iC1 � rt;X if i is even. We want to
prove that (3) expresses the normal form of yx and s0i ¤� for 1� i � l . To do that,
it suffices to show the following:

(1) srt;X and rX;ts are simple and different from � for every s 4�X , s ¤�X .

(2) If a � b is left-weighted for a; b 4�X , then art;X � rX;tb and rX;ta � brt;X are
left-weighted.

To prove the first statement, notice that there exists a simple element s0 2 �X such
that ss0 D �X . On the other hand, by definition, �X[ftg D �Xrt;X D ss0rt;X . By
Remark 16, there is a positive element s00 2�X[ftg such that s0rt;X D rt;Xs00, hence
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�X[ftgD srt;Xs
00. Hence srt;X is simple, which is different from � because s¤�X .

For rX;ts , the reasoning is analogous, using that �X < s .

Let us now prove the second statement. Let u 2 X [ ftg be the only atomic suffix
of rt;X (Remark 16). By Lemma 15, u 4 rX;t , so take an atom u0 ¤ u such that
u0 4 rX;tb . By Remark 16, we have u0rX;t D rX;t�X .�X[ftg.u0//D u0 _ rX;t 4 rX;tb ,
which means that �X .�X[ftg.u0// 4 b . But, as a � b is left-weighted, this implies
that a < �X .�X[ftg.u

0//, which implies art;X < u0. This proves that art;X � rX;tb is
left-weighted.

For the other product, notice that

rX;taD �X[ftg.�X .a//rX;t and brt;X D rt;X�X[ftg.�X .b//:

As rX;t � rt;X is left-weighted (Lemma 15) and the permutation induced by �X[ftg ı �X
preserves normal forms for elements in AX , �X[ftg.�X .a// � �X[ftg.�X .b// is also
left-weighted, and we can apply the same arguments as above.

Therefore, we have proved that inf.yx/D inf.y/D 0 and sup.yx/D sup.y/D l , as
we wanted to show.

Remark 20 Let us see why the later results do not work for A1 , A2 and I2m . Notice
that, by definition, any absorbable element lies in AC or in A� (the negative monoid
of A). We also recall that the only simple elements that are not absorbable are the ones
of the form ��1i � [5, Example 1]. For A1 the set of absorbable elements is trivial
and for A2 the only absorbable elements are �1 , ��11 , �2 and ��12 , so x cannot be
obtained as product of fewer than 3 � jxj absorbable elements. Here j � j denotes the
word length with respect to the set of standard Artin generators, †.

On the other hand, the only absorbable elements in I2m are the absorbable simple
elements and their inverses, that is, the elements of the form

�1�2�1 � � �„ ƒ‚ …
p elements

or �2�1�2 � � �„ ƒ‚ …
p elements

with p <m� 1 and their inverses. To see that no other element is absorbable, take an
element in I2m of infimum 0 whose normal form is s1 � s2 . By [5, Lemma 3] if s1 � s2
is absorbable, then it is absorbed by an element of infimum 0 with normal form s01 � s

0
2 .

Let s01 < �i 4 s02 and s1 < �j 4 s2 . If we suppose that �1 4 s1 (the case with �2 is
analogous), then, by absorbability, s02 < �2 . If s02s1 were not simple, we would have
that inf.s01 � s

0
2 � s1 � s2/ > 0, contradicting absorbability. Hence, let us assume that s02s1
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is a simple element of the form �i � � � �2�1 � � � �j . This implies that the normal form of
s01 �s

0
2 �s1 �s2 is s01 �s

0
2s1 �s2 of length 3, which also contradicts absorbability. Therefore,

the length of the minimal expression of x as a product of absorbable elements in I2m
depends on jxj.

The support of a positive element u, denoted by supp.u/, is the set of generators that
appear in every positive word representing u. Notice that supp.�X / D X for any
X �†. The next lemma is a generalization of [20, Lemma 5.6; 16, Lemma 2.2], which
use the classical concept of ribbon.

Lemma 21 Let .A;†/ be an Artin–Tits system of spherical type, X; Y ¨ † and
u; v 2 AC with supp.u/DX and supp.v/D Y . Then any element z 2 AC such that
z�1uz D v can be written as z D ˛ˇ , where ˛ 2 AX and ˇ is an X –ribbon–Y .

Proof We will use [9, Proposition 6.3], which says that if c 4 z is a minimal element
conjugating u to a positive element (meaning that there is no c0 4 c with c0 ¤ 1; c
such that c0�1uc0 2 AC ), then either c 2 AX , or c D rt;X for some t 2 † such
that t … X. Using this, we can write z as a product c1 � � � cr , where c1 is a minimal
conjugator from v0 WD u to a positive element and ci is a minimal conjugator from
vi WD .c1 � � � ci�1/

�1u.c1 � � � ci�1/ to a positive element for 1 < i � r . If we let
Yi D supp.vi /, then either ci 2 AYi

(type 1), or ci D rt;Yi
for some t 2† such that

t … Yi (type 2).

Suppose that we have some ci of type 2 and ciC1 of type 1. In this case, ciciC1 D
c0iC1ci , where c0iC1 2 AYi

, having an element of type 1 before an element of type 2.
This allows us to arrange the product c1 � � � cr to have c1 � � � cr D ˛ˇ , where ˛ 2 AX
and ˇ is an X –ribbon–Y , as we wanted.

Proposition 22 Let .A;†/ with A¤ I2m; A1; A2 be an Artin–Tits system of spheri-
cal type, X ¨† and u 2 AC with supp.u/DX. Then any element x 2 A such that
x�1ux 2 AC is a product of at most nine absorbable elements.

Proof Let �kx1 � � � xr be the left normal form of x . Notice that x1 � � � xr is a
positive element that conjugates �k.u/ 2 AC to a positive element. If we write
X 0 D supp.�k.u//, by Lemma 21 we have the decomposition x1 � � � xr D ˛ �ˇ , with
˛ 2 AX 0 and ˇ an X 0–ribbon–Y , where Y WD supp.x�1ux/.

Suppose that ˇ is an X 0–ribbon–Y of the form r1 � � � rm , satisfying ri ¤ 1 and
Xiri D riXiC1 , where Xi ¨ †, for every 1 � i � m. Thanks to [20, Theorem 5.1]
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and the proof of [15, Lemma 2.2] we know that if Z1s D sZ2 for some Z1; Z2 ¨†

and s 2 A, then �Z1
s D s�Z2

. Hence, using the definition of left-ribbon we can
write ˇ in the form ��mX �X1[ft1g � � ��Xm[ftmg , where ti 2†nXi for every 1� i �m.
Let q � 0 be the maximum number such that �q 4�X1[ft1g � � ��Xm[ftmg and write
ˇ0 WD �X1[ft1g � � ��Xm[ftmg D �

q
 for some positive 
 . By conjugating, we can
“move” �q to the left in order to have

x D�kCq � �q.˛/ ���mY 0 
;

where �Y 0 D �q.�X 0/, so Y 0¨†. As �q.˛/2AY 0 , by Lemma 18 and Proposition 19
the element �kCq � �q.˛/ is a product of at most six absorbable elements. Notice that
q �m.

We claim that ��mY 0 
 is product of at most three absorbable elements. Observe that �q

and �mX 0 are prefixes of ˇ0, hence �q _ �mX 0 D �
m�q
X 0 �

q D �q�
m�q
Y 0 is a prefix

of ˇ0. This means that �m�qY 0 4 
 and then inf.�q�mY 0 
/ D 0. Then we decompose
��mY 0 
 D �

�q
Y 0 ��

q�m
Y 0 
 . We know that ��qY 0 is a product of at most two absorbable

elements. Finally, we claim that �m�qY 0 absorbs �q�mY 0 
 . Since, by construction,
inf.
/ D 0, we just need to prove that sup.
/ D m� q . Notice that �m�qY 0 4 
 and
�
m�q
Y 0 64�p for 1� p �m�q�1, hence sup.
/ is at least m�q . On the other hand,

ˇ0 4�m , so 
 4�m�q and inf.
/ �m� q . Thus inf.
/Dm� q , as we wanted to
prove.

Corollary 23 Let .A;†/ with A¤ I2m; A1; A2 be an Artin–Tits system of spherical
type and X ¨†. The elements of A normalizing AX are the product of at most nine
absorbable elements.

Proof In [8, Lemma 7], it is proven that ˛ 2 A normalizes AX if ˛ commutes with
an element, called the central Garside element of AX , which turns to be a positive
power of �X . Therefore, Proposition 22 applies and ˛ is the product of at most nine
absorbable elements.

Proof of Theorem 2 We proceed as in the proof of [5, Proposition 2]. Firstly, notice
that by definition some power of a periodic element x acts trivially on CAL.A/. This
means that x acts as finite-order isometries and then it acts elliptically on CAL.A/.

If y is an element normalizing some standard parabolic subgroup AX , by Corollary 23
the orbit of the trivial element by the action of y on CAL.A/ remains at distance at
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most 9 from the trivial element (yp normalizes AX for every p > 1). Hence, y acts
elliptically on CAL.A/. Finally, each element that normalizes the parabolic subgroup
P D ˛�1AX˛ for some ˛ 2 A is the conjugate of an element normalizing AX , and
therefore it also acts elliptically on CAL.A/.

4 Free-product complement

In this section we prove Theorem 3, that is, the existence of a “free-product complement”
for standard parabolic subgroups. The proof involves theory about groups acting on
hyperbolic spaces.

4.1 WPD elements and elementary subgroups

Let G be a group acting on a hyperbolic metric space H by isometries.

We say that g 2G satisfies the WPD (weak proper discontinuity) condition if for every
� > 0 and every v 2H , there exists RDR.�/ such that

#fh 2G W dH.v; hv/� � and dH.g
Rv; hgRv/� �g<1:

According to [10, Lemma 6.5 and Corollary 6.6], for every WPD element g 2G
acting loxodromically, there exists a unique maximal virtually cyclic subgroup, denoted
by EG.g/, which consists of the elements that stabilize a quasigeodesic axis for hgi.
Moreover, it can be shown that

EG.g/D fh 2G j hg
ih�1 D gj for some i; j 2 Zg:

Notice that the torsion-free elements in EG.g/ are also loxodromic. Otherwise, the
WPD condition would not be satisfied.

The starting point for proving Theorem 3 is the hyperbolicity of CAL.A/ proved by
Calvez and Wiest. We summarize the facts in [5, Theorem 1; 4, Theorems 1 and 2,
Propositions 5 and 6 and Remark 1] about CAL.A/ in the next theorem:

Theorem 24 The additional length graph CAL.A/ associated to the classical Garside
structure of an irreducible Artin–Tits group of spherical type A is 60–hyperbolic. Let
v D h�i be a vertex in CAL.A/. There is an element g 2 A=Z.A/ satisfying:

(i) g has a preimage zg in AC of Garside length bounded by 12, that is , jzgjS � 12.

(ii) g acts loxodromically and dCAL.v; g
nv/� 1

2
n.
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(iii) g is WPD and , in particular, for every � > 0 there is N D N.�/D 4�C 319
such that the cardinality of the set

fh 2 A=Z.A/ W dCAL.v; hv/� �; dCAL.g
N v; hgN v/� �g

is bounded above by F.�/D 8�C 638.

It is extremely important for our applications to notice that the constants involved in
Theorem 24 are independent of the Artin–Tits group A.

4.2 A technical lemma

The proof of Theorem 3 is a standard application of techniques of groups acting on
hyperbolic spaces and it can be deduced easily from the results in [10]. However, it is
not easy to trace back in the literature the exact dependency of the constants needed to
have a unique constant K in the statement of Theorem 3. For that reason we will repeat
some well-known arguments. The main point is showing that “cancellations” between
products of elements of hgn; P �Z.A/=Z.A/i � A can be uniformly controlled when
n is large enough.

Lemma 25 Let AX be a proper standard parabolic subgroup of an irreducible Artin–
Tits group A ¤ A1; A2; I2m of spherical type. Let v D h�i be a vertex in CAL.A/

and let g be the element in Theorem 24. Denote by ı D 60 the hyperbolicity constant
of CAL.A/ and d WD dCAL . Let a � 0 and n be big enough (only depending on
a , g and CAL.A/). Then, for all e; f 2 fg�1; gg and for any nontrivial element
t 2 .AX �Z.A//=Z.A/, the following hold :

(4) d.env; tf nv/�maxfd.v; env/; d.v; tf nv/gC 2ıC a.

Proof We follow the argument of [2, Proposition 6]. In fact, what we are going to
show is that if (4) does not hold for n large enough, then t 2 EA=Z.A/.g/. Since t
stabilizes AX and AX is proper parabolic, Theorem 2 implies that t acts elliptically
on CAL.A/. On the other hand, t is an infinite-order element because h�i\AX D f1g
and t is a nontrivial element of .AX �Z.A//=Z.A/. As t lies in EA=Z.A/.g/, we have
that t has to act loxodromically on CAL.A/, which is a contradiction.

Notice that d.v; env/D d.v; f nv/ for any choice of e; f 2 fg�1; gg. Also, for any
element t 2 .AX �Z.A//=Z.A/, we have that d.v; tv/ � 9 by Corollary 23. By the
triangle inequality, we have that d.v; tf nv/� d.v; tv/Cd.tv; tf nv/� 9Cd.v; f nv/.
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v

tv
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tf nv



0


tv


v

utv

uv

� 2ı � d.v; env/C 2ıC aC 9

Figure 2: 4–gon in the proof of Theorem 3.

Thus, jd.v; env/� d.v; tf nv/j � 9, and, if (4) does not hold, then d.env; tf nv/ �
d.v; env/C 2ıC aC 9.

Suppose that (4) does not hold for some long enough n that will be specified later. Con-
sider the geodesic 4–gon in CAL.A/ with geodesics 
0 from v to tv , 
v from v to env ,

tv from tv to tf nv and finally 
 from env to tf nv (see Figure 2). Note that 
0 has
length at most 9 (Corollary 23), and 
 has length less than d.v; env/C 2ıC aC 9.
Let uv be a vertex in 
v that is the furthest one away from v with the property of
being at distance at most 2ı of a vertex of 
tv . Let utv be the vertex in 
tv with
d.uv; utv/� 2ı . Note that d.v; uv/� 9Cd.tv; utv/C2ı � d.v; uv/C18C4ı . Thus
d.v; uv/ and d.tv; utv/ only differ by a constant independent of n.

We claim that d.v; uv/ grows linearly with n. Indeed, since uv is the vertex in 
v
furthest away from v with the property of being at distance at most 2ı of a vertex of 
tv ,
there must be a vertex u in 
 such that d.uv; u/�2ıC1. If d.u; env/� 1

2
d.env; tf nv/,

then

d.uv; env/� 2ıC 1C 1
2

d.env; tf nv/� 2ıC 1C 1
2
.d.v; env/C 2ıC 9C a/:

Since d.v; env/D d.v; uv/C d.uv; env/, we see d.v; uv/ grow as 1
2

d.v; env/� 1
4
n.

We similarly derive the same conclusion if d.u; tf nv/ � 1
2

d.env; tf nv/, since then
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d.utv; tf nv/� 4ıC1C 1
2

d.env; tf nv/, and d.v; uv/ and d.tv; utv/ only differ by a
constant independent of n. Therefore, by increasing n we can make d.v; uv/ as large
as needed.

Fix geodesic paths p0; p�10 in CAL.A/ from v to gv and v to g�1v , respectively. With-
out loss of generality, p�10 is the path g�1p0 traversed backwards. Since jzgjS �12, p0
and p�10 have length less than 12. For m> 0, we write p.gm/ to denote the path con-
sisting in concatenating p0; gp0; : : : ; gm�1p0 . Similarly, for m< 0, we write p.gm/
to denote the path consisting in concatenating p�10 ; g�1p�10 ; : : : ; g�mC1p�10 . As g
acts loxodromically, and d.v; g˙nv/ � 1

2
n, the paths p.en/ and p.f n/ are .�; c/–

quasigeodesics for �D 24 and c D 24. Now, since CAL.A/ is ı–hyperbolic, there is
some constant ~ D ~.ı; �; c/D ~.60; 24; 24/ such that any .�; c/–quasigeodesic is
in the ~–neighbourhood of a geodesic path with the same initial and final vertices.

By increasing n, we can guarantee that 
v and 
tv have arbitrarily long initial subpaths
that lie in the 2ı–neighbourhood of each other. Since p.en/ is in the ~–neighbourhood
of 
v and tp.f n/ is in the ~–neighbourhood of 
tv , we can take arbitrarily long
initial subpaths of p.en/ and tp.f n/, say p.ek/ and tp.f k/, such that they lie
in the .2~C2ıC`.p0//–neighbourhood of each other. Moreover, it is a standard
argument to show that there must be a constant D D D.�; c; ~; ı; `.p0// such that
p.ek/ and tp.f k/ synchronously D–fellow-travel and, in particular,

d.eiv; tf iv/�D for i D 0; 1; : : : k:

Note that D is independent of k , and k can be made as large as needed.

Let N DN.2D/D4.2D/C319 and F DF.2D/D8.2D/C638 as in Theorem 24(iii).
Take n large enough so that k >F CN C1. By increasing F , if necessary, we assume
kDF CN C1. Let sDF C1. We are going to apply the WPD condition on esv and
eN esv D ekv . We are going to act by tf i t�1e�i for i D 1; : : : ; F C 1. First, since
d.tf .k�i/v; e.k�i/v/�D and d.tf .s�i/v; e.s�i/v/�D, we have

d.tf kv; tf i t�1e.k�i/v/�D and d.tf sv; tf i t�1e.s�i/v/�D:

As d.tf kv; ekv/�D, we conclude that

d..tf i t�1e�i /ekv; ekv/D d.tf i t�1ek�iv; ekv/

� d.tf i t�1e.k�i/v; tf kv/C d.tf kv; ekv/� 2D:

An analogous argument, using that d.tf sv; esv/�D, gives that

d..tf i t�1e�i /esv; esv/� 2D:
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By the WPD condition, there are 1 � i < j � F C 1 such that tf i t�1e�i D
tf j t�1e�j and thus, as e; f 2 fg�1; gg, tgi�j t�1 D gi�j or tgi�j t�1 D gj�i .
Hence t 2EA=Z.A/.g/ has the desired contradiction.

Corollary 26 Let AX be a proper standard parabolic subgroup of an irreducible Artin–
Tits group A¤A1; A2; I2m of spherical type. Let v D h�i be a vertex in CAL.A/ and
let g be the element in Theorem 24. Denote by ı D 60 the hyperbolicity constant of
CAL.A/ and d WD dCAL . Let a � 0 and n big enough. Then , for all �; � 2 f�1; 1g and
for any nontrivial t; t 0 2 .AX �Z.A//=Z.A/, the following hold :

d.v; g2nv/� d.v; gnv/C 2ıC a,(5)

d.g�nv; tg�nv/�maxfd.v; g�nv/; d.v; tg�nv/gC 2ıC a,(6)

d.v; tg2nv/�maxfd.v; tgnv/; d.v; gnv/gC 2ıC a,(7)

d.g�nt 0v; tg�nv/�maxfd.v; g�nt 0v/; d.v; tg�nv/gC 2ıC a:(8)

Proof Claim (5) follows from the fact that g is loxodromic. Claim (6) was proved in
the previous lemma.

Recall that by Corollary 23, d.v; tv/�9 for all t 2 .AX �Z.A//=Z.A/. Let a2A=Z.A/
and u an arbitrary vertex. Observe the following: d.atv; u/� d.atv; av/Cd.av; u/D
d.tv; v/Cd.av; u/� 9Cd.av; u/ and, similarly, d.av; u/� d.av; atv/Cd.atv; u/�
9C d.atv; u/. Therefore,

jd.atv; u/� d.av; u/j � 9:

Also observe that d.v; tav/D d.t�1v; av/� d.t�1v; v/Cd.v; av/� 9Cd.v; av/, so
d.v; tav/�d.v; av/�9. Similarly, d.v; av/�d.v; t�1v/Cd.t�1v; av/�9Cd.v; tav/,
so d.v; av/� d.v; tav/� 9. Therefore,

jd.v; tav/� d.v; av/j � 9:

For claim (7), we have that jd.v; g2nv/�d.v; tg2nv/j�9 and d.v; gnv/C2ıCaC9�
maxfd.v; tgnv/; d.v; gnv/g. Thus (7) follows from the fact that g is loxodromic.
Finally, claim (8) follows from the previous lemma and

jd.g�nt 0v; tg�nv/� d.g�nv; tg�nv/j � 9;

and ˇ̌
maxfd.v; g�nt 0v/; d.v; tg�nv/g�maxfd.v; g�nv/; d.v; tg�nv/g

ˇ̌
� 9:
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4.3 Proof of Theorem 3

The strategy to prove Theorem 3 relies on the application of the following lemma.

Lemma 27 [13, Lemma 1.1] Let .xi / be a sequence of points on a ı–hyperbolic
geodesic metric space such that

d.xiC2; xi /�maxfd.xiC2; xiC1/; d.xiC1; xi /gC 2ıC a:

Then d.xi ; xj /� ajj � i j.

We proceed now to prove that there is a free product complement:

Proof of Theorem 3 Let v D h�i be a vertex in CAL.A/ and let g be the element in
Theorem 24. Fix a > 0 and n big enough that the conclusions of Corollary 26 hold.

We are going to prove that a reduced word w over ADhgn; g�ni[.AX �Z.A//=Z.A/
represents a nontrivial element of A=Z.A/. Indeed, if w is a reduced word over A
then it has the form

w D t1g
k1nt2g

k2n � � � tsg
ksn;

with ki 2Znf0g for i < s and ks 2Z, and ti 2 .AX �Z.A//=Z.A/nf1g for i > 1, and
t1 2 .AX �Z.A//=Z.A/. If sD 1, we already know that w cannot represent the identity
since hgi and .AX �Z.A//=Z.A/ have trivial intersection. Thus we can assume that
s > 1. If t1 D 1, conjugating w by gk1n

1 and then performing free reductions, we
obtain a shorter word w0 D t 01g

k01nt 02g
k02n � � � t 0s0g

k0
s0
n (with respect to the alphabet A)

with the new t 01¤ 1. Moreover, w represents the trivial element if and only if w0 does.
So we will assume that t1 ¤ 1. With a similar argument, we can assume that ks ¤ 0.

Let sgn W Z ! f�1; 0; 1g be the sign function. We can consider the orbit of v un-
der prefixes of w . Since t1 ¤ 1 and ks ¤ 0 we can view w as a word over
fgn; g�n; tgn; tg�n W t 2AX �Z.A/=Z.A/g, having the following sequence of vertices
fxig

P
jki j

iD0 in CAL :

x0 D v; x1 D .t1g
sgn.k1/n/v; x2 D .t1g

sgn.k1/2n/v; : : : ; xjk1j
D .t1g

k1n/v;

xjk1jC1 D .t1g
k1n/.t2g

sgn.k2/n/v; xjk1jC2 D .t1g
k1n/.t2g

sgn.k2/2n/v; : : : ;

xjk1jCjk2j
D .t1g

k1n/.t2g
k2n/v; : : : ; xP jki j

D t1g
k1nt2g

k2n � � � tsg
ksnv D wv:

We want to check that this sequence of vertices satisfies the hypothesis of Lemma 27.
We can suppose that xi D hv . Then we have several possibilities:
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� Assume that xiC1 D hg�nv , with � 2 f�1; 1g. If xiC2 D hg2�nv , use (5) to
check the inequality of the hypothesis. If on the other hand xiC2D hg�ntj vg�n ,
with � 2 f�1; 1g, use (6).

� Assume that xiC1D htjg�nv . If xiC2D htjg2�nv , use (7) to check the desired
inequality. If on the other hand xiC2 D htjg

�ntjC1g
�nv with � 2 f�1; 1g,

use (8).

Then, by Lemma 27, we have that

d.v; wv/D d.x0; xP jki j
/� a

� sX
iD1

jki j

�
:

In particular, d.v; wv/D 0 if and only if w D t1 and hence, since t1 ¤ 1, w does not
represent the trivial element

Hence, we have that .hAX ; gni �Z.A//=Z.A/6 A=Z.A/ is isomorphic to�
.AX �Z.A//=Z.A/

�
�
�
.hgni �Z.A//=Z.A/

�
:

Since Z.A/ is generated by a power of � and we have that h�i \ AX D f1g D
hgni\h�i, we get that .hAX ; gni�Z.A//=Z.A/6A=Z.A/ is isomorphic to AX�hgni.
Fix a preimage zg of g in A. We know that zg can be taken to be positive with length
at most 12. Finally, notice that AX � hzgni maps onto hAX ; zgni 6 A, which maps
onto .hAX ; gni �Z.A//=Z.A/ Š AX � hgni. Therefore, hAX ; zgni Š AX � hzgni and
g� D zg

n .

Remark 28 By Corollary 23, NA.AX / (the normalizer of AX in A) acts elliptically
with a diameter bounded by 9. Note that �2 2 NA.AX / and therefore hNZ.A/; zgni
cannot be a free product since �2 commutes with zg and hence hNZ.A/; zgni has
nontrivial centre. However, if one takes H 6NA.AX / such that H \Z.A/D f1g then
our proof shows that hH; zgni ŠH � hzgni.

5 Exponential growth rate

In this last section we prove the Corollary 4 about exponential growth rate of parabolic
subgroups with respect to the Garside generating set.

The coproduct in the category of monoids is constructed in the same way as in groups.
If A and B are two monoids, their coproduct is denoted by A �B. Its elements are
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reduced words in A[B and its operation is the concatenation (followed by reduction).
If M is a monoid and T is some subset, we write hT iC for the submonoid generated
by T .1 To prove Corollary 4 we need the following lemma, which is a standard
application of generating functions (see [18, VI.A, Proposition 4]), modified to give
some weight to a free generator.

Lemma 29 Let G be a group , S be a finite generating set and M be a submonoid. Let
1�˛�!.M;S/. Suppose that g2G satisfies that jgjS �k and hM;giCŠM �hgiC .
Also let 
 be the positive root of 1� ˛x � xk . Then 1=
 > ˛ is a lower bound for
!.hM;giC;S/.

In particular , if M is a subgroup , since hM;gi contains hM;giC we have that 1=
 >˛
is a lower bound for !.hM;gi;S/.

Proof Let ˇM .n/D #fh 2M W jhjS � ng. Since ˇM is submultiplicative, Fekete’s
lemma implies that

˛ � !.M;S/D lim
n!1

n
p
ˇM .n/D inf

n�1

n
p
ˇM .n/

exists and therefore ˛n � ˇM .n/ for all n� 1.

Now, an element of t 2 hM;giC has a unique expression written in the form

(9) m1g
n1m2g

n2m3 � � �m`g
n` ;

where mi 2M with mi ¤ 1 for i > 1, and ni 2 Z�0 with ni ¤ 0 for i � `. The
S–length of the element in (9) is bounded above by

ktk WD
X̀
iD1

jmi jS CjgjS �

�X̀
iD1

ni

�
:

Notice that jt jS � ktk. Thus

(10) ˇhM;giC.n/� ˇ
k � k

hM;giC
.n/ WD #ft 2 hM;giC W ktk � ng:

We are going to estimate the growth rate of ˇk � k
hM;giC

.n/. For that, for s 2 N let
L.s/ � hM;giC denote the subset of elements of hM;giC that when written in the
form (9) give `D s , that is,

L.s/D
˚
m1g

n1 � � �msg
ns 2 hM;giC Wmi 2M;ni 2 Z�0 for all i;

mi ¤ 1 for i > 1; ni ¤ 0 for i < s
	
:

1The notation hY iC usually is reserved for the subsemigroup generated by Y . Note that the subsemigroup
generated by a set T and the submonoid generated by T just differ by one element and thus the growth
rates are equal.
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Since
F
s�1L.s/D hM;gi

C , letting ˇk � k
L.s/

.n/ denote #ft 2 L.s/ W ktk � ng we have
that

(11) ˇ
k � k

hM;giC
.n/D

X
s�0

ˇ
k � k

L.s/
.n/:

For a function ˇ WN!N , we denote by Gˇ .x/ the growth series
P
n�0 ˇ.n/x

n . Also
let

G1.x/ WD
X
n�0

˛nxn D
1

1�˛x
and G2.x/ WD

X
n�1

.xjgjS /n D
1

1� xjgjS
:

Since ˇM .n/ � ˛n , we have that GˇM
.x/ � G1.x/. Also observe ˇhgiC.n/ � 1 and

thus Gˇ
hgiC

.x/� G2.x/. Then

G
ˇ
k � k

L.s/

.x/D GˇM
.x/
�
.Gˇ
hgiC

.x/� 1/.GˇM
.x/� 1/

�s�1Gˇ
hgiC

.x/

� G1.x/
�
.G2.x/� 1/.G1.x/� 1/

�s�1G2.x/
for s � 1. Using (10) and (11) and the previous inequality, we get that

Gˇ
hM;giC

�

X
s�1

G
ˇ
k � k

L.s/

.x/

�

X
s�1

G1.x/
�
.G2.x/� 1/.G1.x/� 1/

�s�1G2.x/
D G1.x/G2.x/

X
s�1

�
.G2.x/� 1/.G1.x/� 1/

�s�1
D G1.x/G2.x/

1

1� .G2.x/� 1/.G1.x/� 1/

D
1

1�˛x� xjgjS :

Therefore, the exponential growth rate of ˇ
hM;giC

.n/ is bounded below by the inverse
of the convergence radius of the growth series of .1 � ˛x � xjgjS /�1 which is the
positive root 
0 of 1�˛x�xjgjS . It is easy to see that 1=
0 is strictly greater than ˛
and, moreover, if jgjS � k , then the positive root 
 of 1�˛x� xk is bigger than 
0
(and thus 1=
 < 1=
0 is a lower bound for the growth rate).

To finally prove Corollary 4, we need one more result. This is a result that is well
known for Artin–Tits groups of spherical type (see an explanation in [9, Section 3]),
which has been generalized for Garside groups in [17, Theorem 1.13]:
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Lemma 30 Let A be an Artin–Tits group of spherical type, AX be a parabolic
subgroup and S the set of Garside generators of A. Then S \ AX is the set of
Garside generators of AX and the embedding of AX into A with respect to the Garside
generators is isometric, that is , for every g 2 AX the length of g with respect to S˙

and A\S˙1 is the same.

Proof of Corollary 4 Let A be an Artin–Tits group of spherical type and S be its set
of Garside generators of A. Let AX be a proper parabolic subgroup. Suppose first that
AD A1 . Then A is cyclic and the only proper parabolic subgroup is trivial. It is easy
to see that !.AX ;S˙1/D !.A;S˙1/D 1. Now suppose that A is equal to either A2
or I2m . Both of these groups (and their monoids) have exponential growth since they
contain nonabelian free semigroups. Therefore !.A;S˙1/ > 1. However, the only
proper parabolic subgroups are trivial or cyclic and thus !.AX ;S˙1/ < !.A;S˙1/.

Henceforth, we assume that A¤ A1; A2; I2m . By Theorem 3, there is a constant K
and an element g 2 A satisfying jgjS � K such that hAX ; gi Š AX � hgi. By
Lemma 29, we have that !.AX ;S˙1/ < !.hAX ; gi;S˙1/. By definition, we also
have !.hAX ; gi;S˙1/ � !.A;S˙1/. Notice that, since hAX ; gi Š AX � hgi, the
submonoid hACX ; gi

C is isomorphic to the coproduct of monoids ACX � hgi
C and

similarly !.ACX ;S/ < !.A
C;S/. This proves the first claim of the corollary.

Let us show that the sequence f!.An;S˙1An
/gnD1 goes to infinity. The proofs for the

other five claims are analogous. Consider each Ai sitting inside AiC1 as a standard par-
abolic subgroup A16A26A36 � � � . Observe that by Theorem 24 there are gi 2Ai for
iD1; 2; 3; : : : satisfying jgi jSAi

�K and such that hAi�1; gi ; giC1; : : : ; giCsi6AiCs
is isomorphic to Ai�1 � hgi i � hgiC1i � � � � � hgiCsi. Thus we can use Lemma 29
inductively to get a lower bound for !.AiCs;S˙1AiCs

/. Notice that, by Lemma 30, we
have !.Ai ;S˙1Ai

/D!.Ai ;S˙1An
/ for every n� i . Let ˛1D!.A1;S˙1A1

/D 1. For i � 1,
let 
i be the root of 1�˛ix�xK and let ˛iC1D 1=
i . By the previous discussion and
Lemma 29, ˛i � !.Ai ;S˙1Ai

/. So it is enough to show that f˛ig goes to infinity. Note
that, also by Lemma 29, ˛i < ˛iC1 for all i 2N . So the sequence f˛ig is increasing
and either converges or goes to infinity. If it converges to some value, say �, then 1=�
must be a root of 0D 1��x�xK. But this means that 0D 1=�K. Therefore, f˛ig1iD1
diverges and then f!.An;S˙1An

/gnD1 goes to infinity.
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