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ABSTRACT 

The present study was designed to investigate the modulation of the stress responses by 

the environmental conditions and its putative neurobiological mechanisms. For that  an 

integrative study on the effects of environmental enrichment and isolation housing on 1/ 

the corticosterone, dopamine and acetylcholine responses to acute restraint stress in the 

prefrontal cortex (PFC) of the awake rat; 2/ the mRNA levels of glucocorticoid 

receptors (GRs) in the PFC; and 3/ the behavioral responses to stress, related to the PFC 

(habituation to a novel environment, spatial-working memory and inhibitory avoidance 

response) was performed. Male Wistar rats were maintained from 3 to 6 months of age 

in two different conditions: enriched (EC) or impoverished (IC). Animals were 

stereotaxically implanted with bilateral guide cannulae in the PFC to perform 

microdialysis experiments to evaluate the concentrations of corticosterone, dopamine 

and acetylcholine. EC animals showed lower increases of corticosterone and dopamine 

but not of acetylcholine than IC animals in the PFC in response to acute restraint stress 

(20min). In the PFC, GR mRNA levels showed a trend towards an enhancement in EC 

animals. EC reduced the days to learn the spatial working memory task (radial-water 

maze). Spatial working memory, however, was not different between groups in either 

basal or stress conditions. Inhibitory avoidance response was reduced in EC rats. The 

changes produced by EC in the neurochemical, neuroendocrine and behavioral 

parameters evaluated suggest that EC rats could show a better coping during an acute 

stress challenge.  

Keywords: corticosterone, dopamine, acetylcholine, prefrontal cortex, spatial working 

memory, inhibitory avoidance.  



1. INTRODUCTION 

Stress activates a set of endocrine, neurochemical, and behavioral responses aimed to 

restore the actual or potentially threatened homeostasis (Bruce S 2000; Sapolsky et al. 

2000). These stress responses can be modulated by environmental conditions (Szyf et 

al. 2008). Animals reared in environmental enrichment conditions (EC) show a lower 

reactivity to different stressors compared to standard or isolation conditions (Fox et al. 

2006; Segovia et al. 2009). In fact, EC animals show lower anxiety levels (Fernández-

Teruel et al. 1997; Sztainberg et al. 2010), a faster habituation to a novel environment 

(Zimmermann et al. 2001; Schrijver et al. 2002; Segovia et al. 2008a) and a better 

recovery from psychosocial stress (Schloesser et al. 2010; Lehmann and Herkenham 

2011). These behavioral effects of EC are thought to be mediated, at least in part, by a 

lower release of plasma corticosterone under stress conditions (Mlynarik et al. 2004; 

Moncek et al. 2004). In the rat, acute stress leads to the release of corticosterone from 

the adrenal cortex through the activation of the hypothalamo-pituitary-adrenal (HPA) 

axis (Antoni 1986). Corticosterone can bind to glucocorticoid receptors (GRs), which 

are expressed in several areas of the brain (Meaney and Aitken 1985; Reul and Kloet 

1985; McEwen et al. 1986). Among those brain areas is the prefrontal cortex (PFC), 

where corticosterone modulates the activity of the HPA axis (Jankord and Herman 

2008) and also influences working and emotional memories (Lupien et al. 2007; 

Roozendaal et al. 2009b; Barsegyan et al. 2010). Since several studies have shown that 

brain levels of corticosterone may not mirror plasma levels (Lengvári and Liposits 

1977; Croft et al. 2008; Droste et al. 2009; Garrido et al. 2012a), it is not known 

whether EC also reduces the increases of corticosterone in PFC during stress. Enriched 

animals also show enhanced levels of GRs in the hippocampus (Olsson et al. 1994) but 

their levels have not been evaluated in the PFC. Measuring corticosterone levels and 



GRs in PFC could help to assign a role to corticosterone on the behavioral effects of 

EC. 

The PFC is thought to integrate the information about the stressor, thus coordinating 

neurochemical, hormonal and behavioral responses aimed to cope with a stressful 

situation (Sullivan 2004; Herman et al. 2005; Robbins 2005). Different acute stressors 

increase the release of dopamine and acetylcholine in the PFC (Thierry et al. 1976; 

Abercrombie et al. 1989; Mark et al. 1996; Del Arco et al. 2007). These 

neurotransmitters play a role in modulating working memory and attention (Sarter and 

Bruno 1997; Williams and Castner 2006), which have been suggested to be relevant to 

cope with stress (Sarter and Bruno 1997; Hains and Arnsten 2008). Animals reared in 

EC show a reduced response to acute handling (a mild stress challenge) of the 

dopaminergic but not the cholinergic systems in the PFC (Del Arco et al. 2007; Segovia 

et al. 2008; Segovia et al. 2008). It is not known whether these differences are observed 

under more intense stress protocols, such as restraint, which produces a more reliable 

increase of brain free corticosterone compared to handling (Croft et al. 2008; Garrido et 

al. 2012a). Whether the effects of EC are dependent on the intensity of the stressor 

would be relevant to ascertain the role of dopamine and acetylcholine in the 

optimisation of cortical circuits that are necessary for copying behaviors (Robbins 2005; 

Segovia et al. 2009; Mora et al. 2012). 

The effects of EC on the stress-induced increases of corticosterone, dopamine and 

acetylcholine in the PFC could lead to differences in behavioral parameters modulated 

by them in this brain area, such as working memory and consolidation of aversive 

memories (Goldman-Rakic 1995; Williams and Castner 2006; Roozendaal et al. 2009a; 

Barsegyan et al. 2010). More specifically, elevated dopamine levels in response to stress 



in the PFC are thought to be involved in the impairment in working memory produced 

by acute stress (Goldman-Rakic 1995; Williams and Castner 2006). In a previous work 

of our laboratory no effects of EC were found in the performance of a working memory 

task in a T-maze both in basal and under acute stress conditions (Segovia et al. 2008a). 

However, an enhanced complexity of the task (i.e.: increasing memory load through the 

use of a radial maze instead of a T-maze) could help to reveal an effect of EC on 

working memory performance during stress. Moreover, to our knowledge no studies 

have been aimed to investigate the effects of EC on the consolidation of aversive 

memories (inhibitory avoidance) in the adult rat. 

The aim of this study was to perform an integrative study on the effects of EC on a 

range of neurochemical, neuroendocrine and behavioral parameters related to the 

responses to an acute stress. Hence, the effect of EC on 1/ the hormonal (corticosterone) 

and neurochemical (dopamine and also acetylcholine) responses to acute restraint stress 

in the PFC of the awake rat; 2/ the GR mRNA levels in the PFC; 3/ behavioral 

responses to stress and related to the PFC (habituation to a novel environment, spatial-

working memory and inhibitory avoidance response) was studied. The results of these 

experiments will help to clarify the modulation of the stress responses by the 

environmental conditions and its putative neurobiological mechanisms.  

2. METHODS 

2.1. Animals and housing conditions 

Young (3 months) male Wistar rats were housed during 12 weeks in two different 

conditions: in large methacrylate cages of 120x100x60 cm (10–12 animals per cage) 

containing 2 running wheels, a rearrangeable set of plastic tunnels, an elevated platform, 



and different objects changed every 5–6 days (EC group); or in standard Plexiglas cages 

of 55x35x20cm (1 animal per cage; IC group). Animals were provided with food and 

water ad libitum, and maintained in a temperature-controlled room under a 12:12h light-

dark cycle (lights on at 20:00). All experiments were conducted during the dark period. 

Three different sets of animals were used for microdialysis experiments, mRNA 

quantification and behavioral experiments. The animals remained in EC or IC 

conditions when the experiments were performed. All experiments were carried out in 

our laboratory at the Universidad Complutense of Madrid and followed the Spanish 

regulations for the protection of laboratory animals (RD1201/2005). 

2.2. Microdialysis experiments 

Under Equithesin (2.5mg/kg i.p.) anaesthesia rats were stereotaxically implanted with 

bilateral guide-cannulae to accommodate microdialysis probes in the medial PFC (Del 

Arco and Mora 2002), according to the following co-ordinates from bregma: -3.2mm 

rostral; +0.8mm medial; -2mm from the top of the skull, with the incisive bar set at -

3.3mm (Paxinos and Watson 1998). Six to seven days after surgery dual-probe 

microdialysis experiments were carried out in freely moving animals. Microdialysis 

probes, constructed in our own workshop, were of concentric design with an active 

dialysis membrane (5000Da, Hospal, Barcelona, Spain) of 4mm in length. The probes 

were perfused with artificial CSF consisted of (in mM): NaCl 137; CaCl2 2.4; KCl 3; 

MgSO4 1; NaH2PO4 0.5; Na2HPO4 2; glucose 3; containing the inhibitor of the 

dopamine transporter nomifensine (5µM) and the acetyl cholinesterase inhibitor 

neostigmine (0.5µM), at a flow rate of 2µl/min. After basal concentrations of 

neurotransmitters were established (3h perfusion period), 20min samples were collected 

and immediately stored at -80ºC until analyzed. The first three samples were used as a 



control (basal levels) and then it followed the stress period (20min of restraint stress, see 

2.3.). The experiments were performed from 9:00 to 17:00. 

2.3. Acute restraint stress 

Free movement of the rats was restrained for 20 minutes by wrapping them tightly using 

a cloth tied with adhesive tape. This procedure was used to study the effects of an acute 

moderate stress during microdialysis experiments and on radial arm water maze 

performance.  

2.4. HPLC analysis 

Dopamine analysis 

Dopamine was analysed by reverse-phase HPLC and electrochemical detection 

(HP1049A, Agilent, Palo Alto, USA). Samples were injected in a Rheodyne injector 

(20µl loop) running in a C18 column of 4µm particles, and 3.9mm×150mm (Nova-Pak, 

Waters, Milford, MA). The mobile phase consisted of 0.1M acetate-citrate buffer 

(pH=4.35 adjusted with HCl and NaOH 1N), 1mM EDTA, 4.7mM sodium octyl 

sulphonate, and 15% methanol. The mobile phase was re-circulated at a flow rate of 

1ml/min. These conditions allowed dopamine to be detected at 5.5min. Dopamine was 

measured by a coulometric detector (Coulochem II model 5200, ESA). Conditioning 

cell (ESA 5021) was set at 0mV and analytical cells (ESA 5011) at +275mV (cell 1) 

and −250mV (cell 2). Chromatograms were processed using the Millenium software 

(Waters). The limit of detection for dopamine (20µl samples) was 0.15 nM. 

Acetylcholine analysis  



Acetylcholine content of samples was analyzed by cation-exchange HPLC and 

electrochemical detection (Hernandez et al. 2003). Samples were injected in an auto 

sampler (Hewlett Packard, series 1100,Spain) running in a microbore column of 10mm 

particles and 530x1mm (Unijet microbore Ach/Ch analytical column. BAS, West 

Lafayette, IN). The mobile phase consisted of 50mM phosphate buffer, 0.5mM EDTA, 

and ProClin 150 microbiocide Reagent 5ml/l (BAS), pH=8.5 adjusted with NaOH 1N). 

The mobile phase was not re-circulated and the flow rate maintained at 0.15ml/min. 

These conditions allowed acetylcholine to be detected at 6.7min. Acetylcholine was 

hydrolyzed by acetylcholinesterase to choline in a post-coulmn enzyme reactor (Unijet 

microbore Ach/Ch IMER, BAS); Choline was oxidized by choline oxidase to produce 

hydrogen peroxide that was detected by an electrochemical detector (Hewlett Packard 

1049A, Spain) equipped with a platinum electrode at +500mV. The limit of detection 

for acetylcholine (8 µl samples) was 5nM. 

2.5. Real-time PCR 

A separate set of animals was used for mRNA expression determination of GRs in brain 

tissue. Rats reared in EC and IC conditions (12 weeks) were killed by decapitation 

between 09:00 and 11:00, and brains were frozen immediately by -20ºC isopentane 

(Sigma-Aldritch, Spain) and dry ice and stored at -80ºC. Tissue from the medial PFC 

was collected and stored again at -80ºC. Total RNAs were purified from PFC tissue by 

the single step procedure of Chomczynski and Sacchi (Chomczynski and Sacchi 1987) 

using Tri-Reagent (Sigma, Spain). The concentration and purity of RNA extracted were 

determined by an automated electrophoresis system (ExperionTM, Bio-Rad, USA). 1µg 

of total RNA extracted from PFC tissue was reverse transcribed into first strand cDNA 

using GoScriptTM Reverse Transcription system (Promega, Spain). Real-time PCR was 



performed in ABI Prism equipment using the SYBR Green PCR master mix (Applied 

Biosystems, UK) and 300nM concentrations of specific primers. The primers used for 

the determination of the concentration of GR mRNA were: 3´ 

CACCCATGATCCTGTCAGTG and 5´ AAAGCCTCCCTCTGCTAACC. 

Amplification of the 18S rRNA was used for normalization of cDNA loading in the 

PCR. Primers for 18S were CCAGTAAGTGCG GGTCATAAG C and 

CCTCACTAAACCATCCAATCGG. The amount of targets, normalized to the 

endogenous reference (18S) and relative to the calibrator, was defined by the Ct 

(threshold cycle) methods (Livak and Schmittgen 2001). In the samples of the medial 

PFC, random primer cDNA (dilution 1:10) gave cycle threshold values of around 23 for 

GRs transcripts. In the case of 18S rRNA, a dilution of 1:1000 gave cycle threshold 

values around 17. In all runs melting curves were performed to make sure that only the 

corresponding DNA fragment was amplified. 

2.6. Behavioral tests 

Every animal underwent three different behavioral tasks, in the following order: 1/ 

Exposure to open field; 2/ Radial arm water-maze task; 3/ Inhibitory avoidance task. 

The animals remained in EC or IC conditions during the time in which experiments 

were performed. 

2.6.1. Open field 

Spontaneous locomotion was evaluated in non-habituated animals in open field arenas 

(MED Associates Inc., VT, USA). The open field apparatus consisted of a Plexiglas box 

(80x80x45cm) equipped with two horizontal rows of eight infrared light sensitive 

photocell beams located at 5 and 15 cm, respectively, from the basement, allowing the 



detection of horizontal and vertical (rearing) motor activity. Interruptions of the 

photocell beams were registered automatically by a computer software connected to the 

open field apparatus (MED Associates Inc., VT, USA). Each rat was placed in the 

center of the open field and allowed to explore the open field during 60min. All animals 

were evaluated between 15:00 and 18:00h and the arena was wiped with 70% ethanol 

immediately before every new measurement to avoid odor cues.  

2.6.2. Radial arm water-maze task 

To test spatial-working memory a dark gray Plexiglas maze made up of 8 equally arms 

(40x20x40cm) radiating from a central area (60cm diameter) and filled with clear water 

(22±1ºC) was used. At the end of 7 out of 8 arms there was a platform (Plexiglas, 

15x18cm) submerged 2cm above the water. The other arm was considered as the 

starting arm. The apparatus was set on a 75cm high table in a slightly lit room (two 

bulbs of 40W in two opposite corners) and was surrounded by extra maze cues 

(different color figures, posters, doors and the experimenter). The experiments were 

performed between 13:00 and 18:00, six days a week. 

The experimental protocol used was modified and adapted to aquatic conditions from 

the delayed spatial win-shift paradigm of Seamans and Phillips (1994). Briefly, rats had 

to learn to enter in arms not visited previously, where they had to find a submerged 

platform to escape from the water. Before starting the training of the task, animals were 

habituated to handling (3 consecutive days, 2-3 minutes per rat). On the day 0, rats were 

allowed to explore the maze for 2min. None of the arms contained platforms during this 

session of free exploration. Learning steps of the task were as follows: (1) On the first 

day, all arms apart from the starting arm contained a platform. Animals were introduced 

in the starting arm and they had to swim to an arm that contained a submerged platform. 



If the animal did not reach a platform in less than 2min it was conducted to the nearest 

arm which contained a platform. When an animal reached a platform, it was placed in a 

plastic holding cage (27x27x23cm), the platform was removed from the maze and after 

an inter-trial interval of 30s the animal was again introduced in the starting arm. This 

sequence was followed until the rat reached the seven platforms. Two types of errors 

were recorded: working memory errors (the first entrance in an arm without platform) 

and perseverative errors (the second and following entrances in an arm without 

platform). Animals performed the task in this way for 9 days and then they were 

submitted to the next step of learning; (2) From this step of learning the task consisted 

of a training phase and a test phase. Before the training phase, a set of three arms was 

randomly blocked by guillotine-doors. When animals visited the four free-access 

platforms, the guillotine-doors were removed, and the test phase began. No within 

phase-delay was applied in this step of learning. Errors were scored as entries in arms 

without platform during the test phase. Two types of errors were scored during the test 

phase: across-phase errors (the first entry into an arm that was visited during the 

training phase) and within-phase errors (a re-entry into an arm that had been entered 

earlier during the test phase). The learning criterion during this step of learning was a 

mean of 1 or less across-phase errors during three consecutive days. When each animal 

reached that learning criterion, it was submitted to the next step; (3) In the last step of 

learning the within-phase delay was increased to 20min. Animals had to make again a 

mean of 1 or less across-phase errors memory errors within three consecutive days to 

reach the learning criterion. The following day after reaching the learning criterion the 

spatial-working memory was evaluated under acute restraint stress (see 2.3.) during the 

entire within-phase delay (20min). Spatial-working memory was also evaluated 



applying within-phase delays of 60min (3 consecutive days) and 300min (3 consecutive 

days).  

2.6.3. Inhibitory avoidance task 

One month after the radial arm water-maze task was terminated (over 20 weeks of 

housing), animals were tested for fear-related memory in an inhibitory avoidance 

apparatus consisting of a shuttle-box divided into two compartments, separated by a 

guillotine-door. The starting compartment (light compartment, 45x45x19cm) was made 

of white opaque plastic, it had an open roof and was well lit by one overhead 60W bulb; 

the shock compartment (dark compartment, 25x24x19cm) was made of black plastic, it 

had a closed (removable) roof, no illumination and an electrified grid floor. The 

inhibitory avoidance test was carried out as follows. On the training day, animals were 

placed in the light compartment and allowed to explore the whole apparatus (guillotine-

door open) over a period of 300s. Five hours later (between 15:00 and 18:00), animals 

were re-exposed to the apparatus and latency to enter the dark compartment was 

recorded (training latency). When the animals placed their four paws on the dark 

compartment the guillotine-door was lowered and a single foot-shock (0.6mA, 2s) was 

delivered. After 10s animals were removed from the dark compartment and a blood 

sample was taken in a different room. Blood samples (150µL) were taken by tail-nick 

immediately after and 30min after the foot-shock delivered in the inhibitory avoidance 

apparatus. On the testing day (48h after the foot-shock), rats were re-exposed to the 

light compartment and retention of the inhibitory avoidance response was recorded as 

the latency (retention latency), up to a maximum of 300s to enter the dark compartment. 

None of the animals reached that maximum latency. Shock was not delivered at the 

retention test trial.  



2.7. Corticosterone assays 

Blood samples were collected in heparinized vials in less than 2 minutes. Vials 

containing blood samples were centrifuged for 10 minutes at 15,000 rpm to obtain 

plasma samples. Total corticosterone levels in plasma from inhibitory avoidance 

experiments and dialysate free corticosterone levels from microdialysis experiments 

(15µl samples) were measured using a radioinmunoassay kit (MP Biomedicals, Inc.). In 

the case of dialysate corticosterone levels, samples were not prior diluted, a different 

standard curve was used, and the volume of corticosterone-I125 was reduced 4 times to 

increase the sensitivity of the kit. Dialysate levels were not corrected for probe 

recovery. Although the basal levels of free corticosterone were low, they were above the 

detection limit of the assay. The inter- and intra-assay coefficient of variance were 6.5% 

and 4.4% respectively.  

2.8. Histology 

At the end of microdialysis experiments animals were anesthetized with an overdose of 

equithesin and perfused intracardially with 0.9% saline followed by 10% formalin. The 

brain was removed and the placement of the microdialysis probes was verified in 

sections cut with a cryostat microtome and viewing lens. Figure 1 shows an schematic 

representation of the location of the microdialysis probes in the medial PFC. 

2.9. Statistical analysis 

To analyse motor activity, radial-arm water-maze performance, inhibitory avoidance 

response, plasma corticosterone and dialysate concentrations of acetylcholine, dopamine 

and corticosterone, a two-way analysis of variance (ANOVA) with repeated measures 

design was used to perform planned comparisons (a priori analysis), considering Time 



and Group (EC or IC) as within- and between-subject factors, respectively. For the 

analysis of dialysate concentrations, absolute dialysate values were normalized by 

subtracting basal concentrations (average of three sample values) to each post-basal 

sample. Student t-test for independent samples was performed to analyse basal levels of 

dopamine, acetylcholine and corticosterone in dialysates, mRNA receptor quantification 

and days of learning in the radial-arm water-maze. Statistical analyses were performed 

with STATISTICA software. Statistical signification was considered in all cases 

p<0.05. 

3. RESULTS 

3.1. Effects of environmental conditions on the basal and stress-induced extracellular 

concentration of corticosterone in the PFC 

Basal extracellular concentrations of corticosterone in the PFC were 0.53±0.11ng/ml for 

IC (n=16) and 0.37±0.04ng/ml for EC group (n=16). There was a trend for EC group to 

show lower basal corticosterone levels but it did not reach statistical signification 

(t1,30=1.87; p=0.071).  

Acute stress produced an average increase of extracellular corticosterone in the PFC of 

0.45±0.11ng/ml in IC rats and 0.20±0.08ng/ml in EC rats (Figure 2). The two-way 

ANOVA showed a significant effect of Time (F3,90=7.50; p<0.001) and Group 

(F1,30=4.84; p=0.036). The interaction Group x Time did not reach statistically 

signification (F3,90=2.20; n.s.). Planned comparisons showed that acute stress increased 

extracellular concentrations of free corticosterone in the PFC (minutes 80-120) in IC 

(F1,30=25.27; p<0.001) and EC rats (F1,30=4.78; p=0.036) (Figure 2). EC rats showed 



lower levels of corticosterone in response to stress than IC rats 20 minutes after the 

stress exposure (F1,30=5.68; p=0.024).  

3.2. Effects of environmental conditions on the basal and stress-induced extracellular 

concentrations of dopamine and acetylcholine in the PFC 

Basal extracellular concentrations of dopamine in the PFC were 0.33±0.06nM for IC 

(n=9) and 0.45±0.05nM for EC group (n=13). Basal extracellular concentrations of 

acetylcholine were 27.97±3.90nM for IC (n=8) and 22.15±3.52nM (n=8) for EC group. 

Environmental conditions did not modify these parameters (Dopamine :t1,20=-1.49; n.s.; 

Acetylcholine: t1,14=1.11; n.s.). 

Acute stress produced an average increase of extracellular dopamine in the PFC of 

0.28±0.10nM in IC rats and 0.06±0.02nM in EC rats (Figure 3A). The two-way 

ANOVA showed a significant effect of Time (F3,63=11.70; p<0.001) and Group 

(F1,21=7.76; p=0.011) on the levels of dopamine in the PFC. There was a trend for the 

interaction Group x Time to reach statistical signification (F3,63=2.48; p=0.069). Planned 

comparisons showed that acute stress increased extracellular concentrations of 

dopamine (minutes 80-100) in the PFC of IC (F1,21=22.79; p=0.001) but not EC rats 

(F1,21=0.61; n.s.). The increases of dopamine were lower in EC than IC rats immediately 

after (F1,21=14.00; p=0.001) and 20 minutes after the stress exposure (F1,21=6.83; 

p=0.016).  

Acute stress produced an average increase of acetylcholine in the PFC of 15.43±3.17nM 

in IC rats and 9.07±2.90nM in EC rats. The two-way ANOVA showed that Time 

(F3,42=3.88; p=0.015) but not Group (F1,14=1.88; n.s.) modified significantly the 

extracellular concentration of acetylcholine in the PFC. The interaction Group x Time 



was not statistically significant (F3,42=0.21; n.s.). Planned comparisons showed that 

acute stress increased the extracellular concentration of acetylcholine in the PFC in both 

IC (F1,14=25.74; p<0.001) and EC rats (F1,14=8.90; p=0.010) (Figure 3B).  

3.3. Effects of environmental conditions on GR mRNA levels in the PFC 

There was a non significant trend for EC rats to show enhanced levels of GRs mRNA 

levels in the PFC (t1,20=-1.79; p=0.088)(Figure 4).  

3.4. Effects of environmental conditions on spontaneous motor activity 

The two-way ANOVA showed that horizontal activity was significantly modified by 

Time (F11,220=45.16; p<0.001) and Group (F1,20=6.62; p=0.018). The interaction Group 

x Time was also statistically significant (F11,220=2.14; p=0.019), produced by the faster 

habituation of EC rats to the open field (see Figure 5A for a point to point analysis). 

Vertical activity was modified by Time (F11,220=29.34; p<0.001) but not by Group 

(F1,20=0.54; n.s.) (Figure 5B). The interaction Group x Time did not reach statistical 

signification (F11,220=1.43; n.s.). As shown in Figure 5B, EC animals showed higher 

levels of vertical activity during the first 5 minutes of exposure to the open field 

(F1,20=5.55; p=0.028). 

3.5. Effects of environmental conditions on spatial working-memory 

The two-way ANOVA showed that the number of working memory errors during the 

first step of learning was modified by Time (F7,54=8.10; p<0.001) and Group 

(F1,22=6.60; p=0.017) and there was a trend for the interaction Time x Group 

(F7,154=1.87; p=0.078). Planned comparisons showed that EC rats showed lower 

working memory errors on days 2 (F1,22=8.25; p=0.009) and 8 (F1,22=6.90; p=0.015) 



(Figure 6A). The number of perseverative errors during the first step of learning was 

modified by Time (F7,154=5.29; p<0.001) and Group (F1,22=5.37; p=0.030). The 

interaction Group x Time was not statistically significant (F7,154=0.93; n.s.). Planned 

comparisons showed that, on day 5, EC rats made less perseverative errors than IC rats 

(F1,22=7.50; p=0.011) (Figure 6B).  

EC rats needed less days to reach the learning criterion of the last step of training 

(t1,18=7.02; p<0.001) (Figure 7A). In fact, 3 out of 12 IC rats (25% of total) were 

excluded from the study, while only 1 out of 12 EC rats (8.3% of total) was excluded 

from it. Once the animals reached the learning criterion, the number of across-phase 

errors was modified by Delay (F2,36=23.75; p<0.001) but not by Group (F1,14=1.14; n.s.) 

(Figure 7B). The interaction Group x Delay was not statistically significant (F2,36=1.21; 

n.s.). Planned comparisons showed that the 300min delay increased the number of 

across-phase errors in both IC (F1,18=26.56; p<0.001) and EC rats (F1,18=12.01; 

p=0.003) compared to 20min delay. Within-phase errors were not modified by Group 

(F1,18=2.79; n.s.), Delay (F2,36=1.56) or Group x Delay interaction (F1,36=0.23; n.s.)(not 

shown). 

Acute stress significantly increased the number of across-phase errors (F1,18=7.41; 

p=0.014) but they were not modified by Group (F1,18=0.19; n.s.) (Figure 7C). The 

interaction Group x Stress was not statistically significant (F1,18=1.65; n.s.). Acute 

restraint stress increased the number of across-phase errors in IC (F1,18=7.30; p=0.014) 

but not in EC rats (F1,18=1.14; n.s.). Within-phase errors remained at very low levels and 

they were not modified by stress (F1,18=0.77; n.s.), Group (F1,18=0.77; n.s.) or Group x 

Stress interaction (F1,18=0.25; n.s.)(not shown). 



3.6. Effects of environmental conditions on the inhibitory avoidance task and plasma 

corticosterone in response to foot-shock 

Latency to enter the dark compartment of the inhibitory avoidance apparatus was 

modified by Shock (F1,19=9.95; p=0.005) and Group (F1,19=5.54; p=0.029). The 

interaction Time x Group was statistically significant (F1,19=5.95; p=0.025) (Figure 8A). 

Planed comparisons showed that on the testing day, IC rats but not EC rats showed a 

higher latency to enter the dark compartment compared to the training day (IC group: 

F1,19=16.43; p=0.001; EC group: F1,19=0.24; n.s.). EC rats showed a lower retention of 

the inhibitory response than IC rats (F1,19=5.79; p=0.026).  

Plasma corticosterone levels were modified by Shock (F1,19=35.80; p<0.001) but not by 

Group (F1,19=0.83; n.s.). The Group x Shock interaction did not reach statistical 

signification (F1,19=1.60; n.s.). Planed comparisons showed that the foot-shock delivered 

in the dark compartment of the inhibitory avoidance apparatus increased plasma 

corticosterone levels both in IC (F1,19=27.58: p<0.001) and EC rats (F1,19=10.62; 

p=0.004)(Figure 8B). 

DISCUSSION 

The aim of the present study was to investigate the effects of EC on several 

neurochemical, neuroendocrine and behavioral measures related to the responses to an 

acute stress. This study shows for the first time that EC reduces the stress-induced 

levels of corticosterone in response to an acute stress in the PFC. Moreover this study 

confirms, through the use of a different protocol of acute stress (Segovia et al. 2008a, b) 

that the increase of dopamine but not acetylcholine in the PFC in response to acute 

stress is lowered by EC in young adult rats. In line with this lower reactivity to stress, 



EC rats show an enhanced learning capacity on a spatial-working-memory task under 

stressful (aquatic) conditions and a faster habituation to a novel environment. 

Furthermore, EC rats showed a reduced latency to enter the dark compartment in an 

inhibitory avoidance task. EC, however, did not change working memory either under 

basal or stress conditions and it did not modify the stress-induced increase of 

corticosterone after a foot-shock. On the whole, these results suggest that EC conditions 

lead to lower neurochemical and hormonal responses to stress, which could reflect a 

better coping behavior under stress conditions.  

Acute stress and corticosterone in the PFC 

Acute stress (20 min, restraint) increased the extracellular levels of free corticosterone 

in the PFC, as it has been previously shown using the microdialysis technique 

(Kitchener et al. 2004; Thoeringer et al. 2007; Droste et al. 2009; Garrido et al. 2012a). 

The stress-induced increase of corticosterone in the PFC was significantly lower in EC 

rats, which suggests a lower reactivity to stress of the HPA axis in these animals. This 

result agrees with previous studies examining the effect of EC on the stress-induced 

increases of plasma corticosterone (Mlynarik et al. 2004; Moncek et al. 2004; Peña et al. 

2009; Sztainberg et al. 2010). Our results extend these findings to the free levels of 

corticosterone in the brain, where it acts to modulate the HPA axis activity and 

behavioral adaptation to stress (Bruce S 2000; Herman et al. 2005; Sandi and Pinelo-

Nava 2007). Moreover, measuring free levels of corticosterone in the brain is a relevant 

issue since several studies have shown that brain levels may not mirror plasma levels of 

corticosterone, either in basal or under stress conditions (Lengvári and Liposits 1977; 

Croft et al. 2008; Droste et al. 2009; Garrido et al. 2012a). However, in the case of EC 

versus IC rats it seems that plasma and free corticosterone levels in the brain do run in 



parallel because the results of other studies on plasma corticosterone and those showed 

in the present study on free corticosterone in the brain suggest a lower stress-induced 

increase in EC animals.  

The mechanism by which EC rats show a lower increase of corticosterone in response 

to an acute stress remains unexplained. It has been suggested that since the PFC and 

also the hippocampus exert a negative control on the release of corticosterone under 

stress conditions (Jacobson and Sapolsky 1991; Diorio et al. 1993; Sullivan 2004; 

Herman et al. 2005; Radley et al. 2006), EC animals would show an enhanced 

expression of GRs in those brain areas, thus leading to a more effective corticosterone 

signal, which would drive a faster recovery of basal levels of corticosterone under stress 

conditions (Larsson et al. 2002). In line with this hypothesis, EC rats showed a trend 

towards enhanced GR mRNA levels in the PFC. Also similar results have been reported 

for the hippocampus (Olsson et al. 1994).  

Acute stress, dopamine and acetylcholine in the PFC 

The extracellular concentrations of dopamine and acetylcholine were increased by acute 

moderate stress (restraint) in the PFC, as it has been previously shown using different 

stressors (Thierry et al. 1976; Abercrombie et al. 1989; Feenstra et al. 1995; Mark et al. 

1996; Day et al. 2001; Del Arco et al. 2007; Mora et al. 2007; Segovia et al. 2008a, b). 

The stress-induced increase of dopamine but not acetylcholine was lower in EC rats, 

which suggests a lower reactivity of the mesocortical dopaminergic system to stress in 

these animals. These differences seem not to depend on the intensity of the stress 

protocol since similar results were also obtained using handling, a milder stress 

challenge (Segovia et al. 2008a,b). Since different studies have shown that 

corticosterone can modulate dopamine levels in the PFC (Imperato et al. 1989; 



Mizoguchi et al. 2004; Ago et al. 2009), it is possible that the reduced increases of 

dopamine are secondary to the lower increases of corticosterone observed in the PFC of 

the EC rats. This would be in agreement with the reduction of stress-evoked dopamine 

release after blockade of GRs locally within PFC (Butts et al. 2011). As shown in the 

Results section, restraint produces a reliable increase of free corticosterone in PFC 

(Garrido et al. 2012a). In contrast, we have observed that handling does not increase 

free corticosterone in PFC using microdialysis (unpublished results), which is in 

agreement with previous studies (Croft et al. 2008). These findings do not support the 

possibility of a role of corticosterone in the effects of EC on dopamine responses, since 

EC reduces these responses to both restraint and handling.  

The activity of the dopaminergic mesocortical system has been proposed to be 

modulated by the amygdala (Davis et al. 1994; Goldstein et al. 1996). It is therefore 

possible that changes in the amygdala produced by EC could lead to a lower reactivity 

of this system in response to the presence of a stressor. This lower reactivity of the 

dopaminergic system in EC rats could be related to a better coping strategy displayed by 

these animals in response to a stress situation (Carlson et al. 1993; Horger and Roth 

1996; Berridge et al. 1999; Bland et al. 2003).  

By contrast to dopamine, stress-induced levels of acetylcholine in the PFC were not 

modified by EC in young adult rats, as we showed in a previous study (Segovia et al. 

2008b). However, rats of 15 and 24 months of age maintained in EC conditions showed 

reduced increases of acetylcholine in the PFC in response to acute stress (Segovia et al. 

2008b). Therefore, it is possible that the cholinergic system is less sensitive to EC 

conditions than the dopaminergic system, needing a longer period to be modified by the 

environmental conditions.  



Spontaneous motor activity 

EC rats showed lower total levels of horizontal activity, which are the result of a faster 

habituation during the 60min of exposure to the open field apparatus (Figure 5A). This 

result has been consistently shown in several studies (Zimmermann et al. 2001; 

Schrijver et al. 2002; Elliott and Grunberg 2005; Segovia et al. 2008a) and suggests an 

enhanced ability of EC rats to habituate to a novel environment. This lower motor 

activity shown by EC rats in a novel environment has been suggested to be related to an 

increased exploratory efficacy of those animals, due to their higher possibilities to 

explore a changing environment in their usual conditions of life (Zimmermann et al. 

2001; Schrijver et al. 2002), a possibility reinforced by the enhanced vertical activity of 

EC rats during the first 5min of exposure to the open field (Figure 5B). This last result 

has also been observed during an object recognition test (Zimmermann et al. 2001; Lee 

et al. 2003). Additionally, EC rats could experience a lower reactivity to stress that 

would facilitate habituation to the novel environment. In line with this suggestion, it has 

been proposed that glucocorticoids can modulate motor activity in a novel environment 

(Oitzl et al. 1994; Sandi et al. 1996). Therefore, a lower increase of corticosterone in EC 

rats in response to their exposure to the open field could lead to the observed 

differences.  

Spatial working memory 

The protocol used in this study to evaluate spatial working memory is an aquatic 

version of the spatial delayed win-shift protocol used by Seamans and Phillips (1994). 

Although different radial arm water-maze paradigms have been used in several studies 

(Diamond et al. 1999; Bimonte et al. 2003; Shukitt-Hale et al. 2004), this is the first 

time that the delayed win-shift paradigm has been performed under aquatic conditions. 



The performance of this task is dependent on PFC integrity (Floresco et al. 1997; 

Seamans et al. 1998) and, interestingly, the learning protocol used in this study also 

allows to measure spatial memory in a less complex way because in the first step of 

learning there are no delays or arms blocked, which resembles the common protocols 

used to evaluate spatial memory in the radial arm maze (Paul A 2004).  

Animals of both experimental groups were able to reach the learning criterion, however, 

EC reduced the time needed to reach it (Figure 6B), which is in accord with a previous 

study (Richard C 1999). During the first step of training EC rats made less working 

memory and perseverative errors than IC rats (Figures 6A and 6B). Interestingly, some 

studies have found a lower number of errors in EC animals only on the first days of 

training of this task (Leggio et al. 2005; Galani et al. 2007; Hoffmann et al. 2009). This 

lower number of errors could reflect an enhanced cognitive flexibility of EC rats, since 

during the first days rats have to avoid re-entering in a previously visited arm against 

their natural tendency to do it. Interestingly, the PFC plays a key role in cognitive 

flexibility (Birrell and Brown 2000; Ragozzino 2002; Robbins and Roberts 2007), 

which could be the main role of the PFC in the performance of the radial-maze win-shift 

paradigm (Gisquet-Verrier and Delatour 2006; Rich and Shapiro 2007). Therefore, the 

faster learning of the task by EC rats could be due to changes in the PFC that would 

enhance their ability to adapt to the changes faced across the different steps of learning 

of the task.  

There were no differences between EC and IC rats in the performance of the task with 

the different delays used (20, 60 and 300min) (Figure 6C). This result suggests that EC 

conditions do not modify working memory, and it agrees with a previous study of our 

laboratory using an aquatic version of the T-maze, which implied lower delays (10-



100s) and egocentric rather than visual cues to perform the task (Segovia et al. 2008). 

Furthermore, the highest delay used in this study (300min) increased the number of 

across-phase errors made by both experimental groups, which confirms that this aquatic 

version of the radial-arm maze is delay-dependent.  

Acute restraint stress during the delay period increased the number of across-phase 

errors in both experimental groups. This increase, however, reached statistical 

significance only in IC rats. Different studies have shown that different acute stressors 

lead to a deficit in working memory (Diamond et al. 1996; Murphy et al. 1996; Arnsten 

and Goldman-Rakic 1998; Del Arco et al. 2007; Park et al. 2008; Segovia et al. 2008a). 

This effect of acute stress on working memory has been suggested to be related to either 

an over activation of D1 receptors in the PFC (Williams and Castner 2006) or to an over 

activation of GRs (Park et al. 2006; Barsegyan et al. 2010). However, in spite of the 

lower increases of corticosterone and dopamine in the PFC of EC rats in response to 

acute stress obtained in the microdialysis experiments (Figures 2 and 3A), there were no 

differences in the effect of restraint stress on spatial working memory. This result agrees 

with a previous work of our laboratory (Segovia et al. 2008a), in which a different task 

(T-maze) and a different stressor (novel environment) were used. As a whole, these 

results suggest that EC does not modify working memory performance either in basal or 

under acute stress conditions.  

Inhibitory avoidance response 

EC rats showed a lower latency to enter the dark compartment than IC rats 48h after the 

foot-shock. In fact, latency of EC rats on the test phase was not statistically different 

from the latency on the training phase. A very recent study in mice has shown that EC 

(3 weeks) increases the latency 24h after the training phase (Leger et al. 2012). 



However, the disagreement in the results could be explained by the differences in the 

EC protocol and in the species used. Although we cannot completely discard a memory 

deficit in the EC animals, the lower latency of EC animals to enter the dark 

compartment on the test phase could reflect a lower reactivity to the foot-shock on the 

training phase. Different studies have shown that corticosterone mediates the 

consolidation of aversive memory (Roozendaal et al. 2009a). In our study, however, the 

levels of corticosterone 30min after the foot-shock were not different between EC and 

IC rats (Figure 8B). Alternatively, a study showed that the consolidation of the 

inhibitory avoidance response needs the activation of the dopaminergic ventral 

tegmental neurons (Rossato et al. 2009). It is possible that a lower activation of the 

ventral tegmental area in EC rats, as it has been shown in the case of restraint stress, 

could lead to the reduced memory consolidation observed in EC animals.  

It is also of interest to note that while restraint stress led to differences in the increases 

of prefrontal corticosterone levels between EC and IC rats, the foot-shock did not reveal 

this difference between both groups. The possibility exists for these differences being 

due to the nature of the stressor (more psychogenic in the case of restraint, more 

physical in the case of foot-shock). In fact, it has been shown that PFC control over the 

HPA axis activity is exerted under psychogenic stressors rather than under physical 

stressors (Diorio et al. 1993; Jones et al. 2011). Nonetheless, the possibility of 

differences beyond the unique time point of stress evaluated (30min after stress) cannot 

be excluded.  

Final considerations 

The results of this study show that lower corticosterone and dopamine increases in the 

PFC fit well with a better coping with stressful events of EC animals. The enhanced 



learning capacity under stressful (aquatic) conditions and the faster habituation to a 

novel environment are in line with this suggestion.  

Acute stress increases the neuronal activity (measured as cFos expression) of the PFC 

(Cullinan et al. 1995; Weinberg et al. 2010). Interestingly, animals able to control a 

stress situation show reduced increases of dopamine and serotonin in the PFC (Carlson 

et al. 1993; Berridge et al. 1999; Bland et al. 2003) and these effects are thought to 

depend on the ventromedial PFC activation (Amat et al. 2005; Maier et al. 2006). 

Moreover, animals allowed to display coping behaviors (i.e., chewing while exposed to 

novelty or restraint) show lower stress-induced increases of corticosterone (Hennessy 

and Foy 1987) and an enhanced expression of cFos in the PFC (Coco and Weiss 2005; 

Stalnaker et al. 2009). Last, the activation of the medial PFC by a local picrotoxin 

microinjection reduces the increase of corticosterone in response to acute restraint stress 

(Weinberg et al. 2010; Garrido et al. 2012b). Therefore, as previously proposed 

(Segovia et al. 2009), EC may induce changes in the PFC leading to the increase of the 

activity of this brain area in response to acute stressors that could explain, at least in 

part, the results obtained in this study. In line with this hypothesis it has been recently 

reported that EE improves the resilience from a psychosocial stress and this effect is 

produced by an enhanced activity of the prelimbic cortex in EE mice (Lehmann and 

Herkenham 2011).  
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FIGURE LEGENDS.  

Figure 1.Schematic representation showing the location of microdialysis probes in the 

PFC. Locations of guide cannulas (grey area) and membrane of the microdialysis probes 

(black area) are shown. Modified from Paxinos and Watson (1998). 

Figure 2. Temporal profile of the effect of restraint stress (20min, shaded area) on the 

free corticosterone dialysate concentrations in the PFC of IC and EC rats. Data (mean 

SEM) are shown as percentage values related to basal corticosterone concentrations. 

The number of animals is shown in parenthesis. ***p<0.001 compared to basal levels; 

#p<0.05 compared to IC group (planned comparisons in a two-way ANOVA). 

Figure 3. Temporal profile of the effect of restraint stress (20min, shaded area) on the 

dopamine (A) and acetylcholine (B) dialysate concentrations in the PFC of IC and EC 

rats. Data (mean  SEM) are shown as percentage values related to basal dopamine 

concentrations. The number of animals is shown in parenthesis. *p<0.05, **p<0.01, 

***p<0.001 compared to basal levels; #p<0.05; ##p<0.01 compared to IC group 

(planned comparisons in a two-way ANOVA). 



Figure 4. mRNA GRs levels in the PFC of IC and EC animals. Data (mean ± SEM) are 

shown as absolute values. Number of animals is shown in parenthesis.  

Figure 5. Temporal profile of horizontal activity (A) and rearing (B) of IC and EC rats 

during 60min in an open field. Data (mean  SEM) are shown as absolute values The 

number of animals is shown in parenthesis. *p<0.05, ***p<0.001 compared to IC group 

(planned comparisons in a two-way ANOVA). 

Figure 6. Spatial (A) and perseverative (B) errors of IC and EC rats on the performance 

of a non-delayed version of a radial arm water-maze. Data (mean ± SEM) are shown as 

absolute values. The number of animals is shown in parenthesis. *p<0.05 compared to 

IC group (planned comparisons in a two-way ANOVA). 

Figure 7. A) Days to reach the learning criterion of IC and EC rats on a spatial delayed 

win-shift version of the radial arm maze under aquatic conditions. ***p<0.001 

(Student´s t-test); Effect of delay (B) and acute restraint stress (C) on across-phase 

errors. Data (mean SEM) are shown as absolute values. The number of animals is 

shown in parenthesis. *p<0.05 compared to 20min delay (B) or pre-stress (C) (planned 

comparisons in a two-way ANOVA).  

Figure 8. A) Latency of IC and EC rats to enter the dark compartment of a inhibitory 

avoidance apparatus; B) Plasma corticosterone levels produced immediately and 30min 

after the foot-shock delivered to IC and EC rats in the dark compartment of the 

inhibitory avoidance apparatus. Data (mean SEM) are shown as absolute values. The 

number of animals is shown in parenthesis. **p<0.01, ***p<0.001 compared to training 

phase (A) or basal levels (B); #p<0.05 compared to IC rats (planned comparisons in a 

two-way ANOVA). 
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