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Abstract. We present effective-field-theory results with unitarized interactions on the D-
meson transport coefficients in a gas populated by light mesons and baryons at finite temperature
and baryochemical potential. The Fokker-Planck equation is used to compute the drag force,
the relaxation time and the diffusion coefficients of D mesons for collisions at FAIR. At finite
baryochemical potential, the combined effect of net baryonic density and sizable meson-baryon
interaction makes the D mesons to relax more efficiently than in the µB = 0 case. We also
describe the connection with the quark-gluon plasma phase in adiabatic trajectories on the
phase diagram at both zero and finite baryochemical potential.

1. Introduction
Some of the most useful tools to study the quark-gluon plasma (QGP) phase –formed in the
early stages of a relativistic heavy-ion collision– are heavy quarks. Due to their large mass
(mc,mb � ΛQCD, T ) they can be treated as Brownian particles interacting with lighter partons.
Not only the average momentum of the heavy quarks is modified by the collisions, but also the
momentum distribution is broadened. The efficiency of these two processes is quantified by the
drag force and the momentum-space diffusion coefficient, respectively.

The previous picture also holds after hadronization. The role of the Brownian particle
is played by a D or B meson, whereas the thermal bath is now composed of pions, kaons,
nucleons and other light hadrons with whom the heavy meson may interact. Thus, the transport
coefficients of D mesons [1, 2] and B mesons [3] become of key importance in the equilibration
of these hadrons. The presence of these coefficients will amount on the modification of the final
heavy meson spectra and affect the flow harmonics vn and the nuclear suppression factor RAA.
To study these transport coefficients and quantify the energy loss of heavy quarks in the hot
and dense medium we use quantum kinetic theory.

We focus on the heavy-ion physics to be produced at the Facility for Antiproton and Ion
Research (FAIR) [4], where the collision energy will be lower than that for collisions at the
Large Hadron Collider, for instance. Lower energies typically produce a net baryon density in
the central rapidity region. This fact will imply physics at non-zero baryochemical potential
in the QCD phase diagram, maybe close to the conjectured critical point. For these collisions,
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the available energy density makes difficult the production of B mesons. Therefore, in this
manuscript we focus our attention to the calculation of D-meson transport coefficients [2].

In Sec. 2 we introduce the Fokker-Planck kinetic equation and detail the physical
interpretation of the D-meson transport coefficients. In Sec. 3 we briefly describe the interaction
of D mesons with lighter hadrons, both mesons and baryons. Finally, in Sec. 4 we present our
main results and conclusions.

2. Fokker-Planck equation and transport coefficients
The collective description of D mesons is encoded in their distribution function f(t, p). The
temporal evolution of f(t, p) follows a kinetic equation defined in the phase space, which in the
case of a Brownian particle in a thermal bath composed of lighter particles is the Fokker-Planck
equation:

∂f(t,p)

∂t
=

∂

∂pi

{
Fi(p)f(t,p) +

∂

∂pj
[Γij(p)f(t,p)]

}
, (1)

where i = 1, 2, 3 is the spatial index, Fi is the drag force or friction term accounting for the
average momentum change, and Γij is the momentum-space diffusion matrix which accounts
for the broadening of the momentum distribution. The computation of these coefficients is
performed through their microscopic expressions in terms of momentum averages,

Fi(p) =

∫
dk w(p,k) ki , Γij(p) =

1

2

∫
dk w(p,k) kikj , (2)

where the interaction measure w(p,k) represents the probability of a D meson with momentum
p to suffer a collision with a light particle, loosing a momentum k:

w(p,k) = gl

∫
d3q

(2π)9
nF,B(El(q), T ) [1± nF,B(El(q + k), T )]

1

2ED(p)

1

2El(q)

1

2ED(p− k)

× 1

2El(q + k)
(2π)4δ(ED(p) + El(q)− ED(p− k)− El(q + k)) |M|2 , (3)

with gl being the spin-isospin degeneration of the light particle, nF,B its equilibrium distribution
function following Fermi-Dirac or Bose-Einstein statistics, respectively; ED(p) is the energy of
the D meson with momentum p, El(q) the energy of the light particle with momentum q and

|M2| is the average scattering matrix element squared of the binary collision.
If we consider an isotropic gas and focus on the static limit (where p → 0) there is

only one independent transport coefficient. For definiteness, we take it to be the drag force
F (p) = Fip

i/p2, while the momentum-space diffusion coefficient Γ is related to F through the
Einstein relation Γ = FmDT (where mD is the D-meson mass and T the temperature of the
thermal medium).

In several talks at this workshop some emphasis was put on the concept of relaxation time.
This coefficient describes how efficient the relaxation of the non-equilibrium distribution function
is, while it relaxes towards the equilibrium state (Boltzmann’s H theorem). Consider for
simplicity the one dimensional case of Eq. (1) and assume constant transport coefficients F
and Γ. The analytical solution of the kinetic equation is

f(t, p) =

√
F

2πΓ(1− e−2Ft)
exp

[
− F

2Γ

(p− p0e−Ft)2

1− e−2Ft

]
, (4)

where p0 is the initial D-meson momentum. It is immediate to see that F−1 should play the
role of an intrinsic time for the relaxation process. In particular, the average momentum reads

〈p〉 ≡
∫ ∞
−∞

dp pf(t, p)
/∫ ∞
−∞

dp f(t, p) = p0 e
− t
τR , (5)
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where we have defined the relaxation time τR ≡ 1/F , which provides a characteristic time
accounting for the exponential decay of the average momentum.

We can also introduce the diffusion coefficient in position space Dx. The standard result for
the average square displacement

〈(x(t)− x0)2〉 = 2Dxt , (6)

shows that Dx is a measure of the “speed” of the diffusion in space. A large Dx implies that
the D meson can diffusively travel larger distances for a given time. In the static limit this
coefficient is related to the drag force by the relation Dx = T/(mDF ).

All these coefficients depend on the temperature and baryochemical potential. In a heavy-ion
collision both variables change with time along the fireball’s trajectory in the phase diagram.
For simplicity, we assume adiabatic trajectories –with a constant entropy per baryon consistent
with the energies expected at FAIR collisions– which give us the implicit relation µB = µB(T ).

3. Interaction and effective field theories
The interaction between the D mesons and the light hadrons –as it lies in the nonperturbative
and confined regime of QCD– can be described by effective models. The global symmetries
of the QCD Lagrangian should be implemented into the effective models allowing a reliable
description of the hadronic interaction. We take the chiral and heavy-quark-spin symmetries to
be the fundamental guides in order to construct our effective Lagrangian (therefore, it results in
a double expansion). In addition to these symmetries, our third principle is the exact satisfaction
of the unitarity condition of the scattering matrix.

To account for the D meson–light meson scattering we introduce pions, kaons, antikaons
and η mesons. Details on the effective theory based on chiral and heavy-quark-spin expansions
can be found in Refs. [1, 2, 5]. Using Feynman rules we construct the perturbative amplitude
(or potential) V for each scattering channel. In the meson-baryon sector we also construct the
effective Lagrangian based on heavy-quark-spin symmetry which accounts for the interaction of
D mesons with nucleons and ∆ baryons. Details on the effective theory and the computation of
the potential V can be found in [2, 6, 7, 8, 9].

In both sectors we apply a unitarization method [10] (based on a Bethe-Salpeter (BS)
equation) to extend the interaction description up to temperatures T ' 140 MeV without
loosing physical sense. In addition, we are able to dynamically generate resonant states like
the D0(2400) in the meson–meson sector and the Σc(2800) and Λc(2595) in the meson–baryon
sector, which are automatically taken into account in the interaction. The scattering matrix
element in Eq. (3) is related to the perturbative amplitude as:

M(s) ∝ V (s)

1−G(s)V (s)
, (7)

where G represent the diagonal matrix of the two intermediate propagators in the BS equation.

4. Results and Conclusions
We present our main results taken from Ref. [2]. In Fig. 1 we show the drag coefficient
F (p = 100 MeV) for a D meson as a function of the temperature when the baryochemical
potential is set to zero. The largest contribution comes from the pions, as these mesons populate
the gas at temperatures below the hadronization one. The kaons, antikaons and η mesons
contribute appreciably only at high temperatures T > 100 MeV, being the baryon contribution
(N + ∆) negligible at µB = 0.

The position-space diffusion coefficient Dx is shown at µB = 0 in Fig. 2, when all hadrons
are included in the calculation. We normalize this coefficient by the thermal wavelength 2πT
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Figure 1. Drag force F (p) for a D
meson with momentum p = 100 MeV as a
function of temperature for several species
in the thermal bath at µB = 0 (LHC
collisions). Clearly the dominant contribution
comes from pions as they are the most
abundant in the bath. The contribution
of baryons is practically negligible. The
diffusion coefficient in momentum space is
related to this coefficient via the Einstein
relation Γ = FmDT .

to construct an adimensional number. The calculation for the QGP (Rapp and Hees) is a T -
matrix calculation from Ref. [11] and the lattice-QCD computation (Banerjee, Datta, Gavai and
Majumdar) is taken from Ref. [12].
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Figure 2. Diffusion coefficient multiplied by
the thermal wavelength 2πT as a function of
temperature, around the crossover tempera-
ture at µB = 0. The solid line represents our
results for hadronic matter with all species in-
cluded. The dashed line shows the result of
Ref. [11] for a quark-gluon plasma. Dots rep-
resent the result from the lattice-QCD calcu-
lation extracted from Ref. [12].

Turning to the µB 6= 0 case –relevant for the physics at FAIR– we consider three characteristic
adiabatic trajectories in the phase diagram for different initial collision energies (

√
s ≈ 5− 40A

GeV [4]). In the left panel of Fig. 3 we sketch our trajectories on the phase diagram. They
correspond to fixed entropy per baryon of 10 − 30 [13]. In the right panel we plot our results
in the hadron gas (at low temperature) and the results of a perturbative QGP at finite quark
chemical potential based on the computation of Ref. [14].

Finally, we show the relaxation time for each adiabatic trajectory plus the result at µB = 0
as a function of temperature in Fig. 4. Notice that the presence of baryons at finite µB enhances
the D-meson stopping and the relaxation time is accordingly reduced. Therefore collisions at
FAIR put the D mesons closer to the equilibrium state than at the LHC. These relaxation times
should be compared to the fireball’s lifetime which is of the order of tf ∼ 10 fm. In any case, the
D mesons cannot totally relax through collision as τR > tf , confirming that D mesons should
be sensible to some properties of the initial QGP.

In summary, we have presented our latest results on the transport coefficients of D mesons
that describe the energy loss and diffusion of these states in a hadronic medium at finite
temperature and baryochemical potential. Focusing on FAIR physics, we have obtained that the
collisions with baryons make the D mesons more thermally relaxed than the case at vanishing
baryochemical potential. We have obtained a nice connection with the results of QGP at high
temperature, providing an indication for a possible minimum of 2πTDx at both the crossover
temperature (at µB = 0) and at the first-order transition temperature (at FAIR collisions).
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Figure 3. Left panel: Adiabatic trajectories for different initial conditions at FAIR collisions.
Right panel: Dx as a function of temperature for the three adiabatic trajectories.
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Figure 4. Relaxation time for the adiabatic
trajectories as a function of temperature.
The trajectories with larger baryonic density
(those with smaller entropy per baryon) make
the D meson to have a lower relaxation
time and hence, to follow a more efficient
relaxation via baryonic collisions.
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