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Abstract 

We study the critical properties of three-dimensional O(N) models, for N = 2,3,4. Parameterizing the leading corrections- 
to-scaling for the r] exponent, we obtain a reliable infinite volume extrapolation, incompatible with previous Monte Carlo 
values, but in agreement with e-expansions. We also measure the critical exponent related with the tensorial magnetization 
as well as the v exponents and critical couplings. 
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1. Introduction 

The study of continuous spin models in low dimen- 
sions has been very useful either for the knowledge 
of some physical systems directly associated (mainly 
in condensed matter), or as toy systems for studying 
relativistic field theories. 

The 0( 4) model in three dimensions has been con- 
jectured to be on the same universality class as the 
finite-temperature chiral phase transition of QCD with 
massless flavors [ 11. The O(4) universality class has 
also appeared in perturbation-theory studies of spin- 
systems for which the 0( 3) symmetry of the action is 
fully broken on the low temperature phase [ 21. It is 
well known that the 0( 3) model in two dimensions of- 
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fers a play-ground to explore asymptotic freedom [ 31, 
although there has been recently some controversy on 
this point [ 41. Regarding the applications to condensed 
matter physics, let us remind that the three-dimensional 
0( 3) model is the low-temperature’s effective-model 
for a bidimensional quantum antiferromagnet [ 51. It 
also appears as a limiting case of a &-gauge lattice 
model for nematic phase transitions of liquid crys- 
tals [ 61. Finally, the 0( 2) model in three dimensions 
is known to be in the same universality class as super- 
fluid 4He. 

The O(N) nonlinear sigma models in three dimen- 
sions have been extensively studied either with analyt- 
ical [7-91 or numerical methods, obtaining very ac- 
curate results in the determination of the critical prop- 
erties. In particular the critical exponents have been 
measured for N 5 4 with a precision greater than a 

1% [ 10-121. However, the finite-size effects have not 
been considered in a systematic way. We find this pro- 
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cedure not harmful for v exponent measures, but quite 
dangerous for 77 exponents determinations. 

Another point we focus on, is the study of the 

second-rank tensorial magnetization. This composite 
operator is needed as an order-parameter in some ap- 
plications, for instance when the usual magnetization 
vanishes, as in studies of nematics [ 61. It is also the 
relevant order parameter for systems where the 0( 3) 
symmetry is fully broken [ 21. Naively one could ex- 
pect that the tensorial magnetization scales just as the 
square of the vectorial one, that is, pr is twice p, as a 
mean field calculation predicts (it was also assumed in 
Ref. [ 61) . Nevertheless we shall show that this is not 
so. A somehow related question, which has aroused 
interest lately, is the presence of some pathologies in 
the renormalization of composite operators in 2 + E 
expansions [ 131. 

In this paper we consider the 0( 2)) 0 ( 3) and 0 (4) 
models, centering mainly in the measures of magnetic 
exponents using a finitesize scaling method which is 
specially useful for observables that change rapidly 
at the critical point. In addition to the standard mag- 
netic exponents we measure those related with ten- 

sorial excitations. The critical couplings and v expo- 
nents are also studied. We are specially interested in 
the measure of v in the 0( 4) case in order to compare 
with the results obtained in the antiferromagnetic RP* 
model [ 141, which is related with O(4) when there 
is a total breakdown of its 0( 3) symmetry. 

2. The model 

We consider the usual Hamiltonian 

II! = -p C Vi . Vj, (1) 
c&j> 

where vi is a N components normalized vector, and 
the sum is extended over first neighbor pairs. 

It is well known that this model undergoes a sec- 
ond order phase transition for which the normalized 
magnetization M = + xi Vi is an order parameter (V 
is the lattice volume). As this model can be simulated 
using cluster algorithms [ 151, it is possible to ther- 
malize very large lattices. 

We are also interested in studying the behavior of 
composite operators that could be related with bound 
states from a quantum field theory point of view. One 

can construct orthogonal states to that generated by 
the fundamental field, just ensuring that the compos- 
ite operator transforms as a higher order irreducible 
representation. The simplest representation beyond the 
fundamental one is the second rank tensorial represen- 
tation. The associated tensorial magnetization can be 
written as 

As it happens with the vectorial magnetization, the 
mean value of M is zero in a finite lattice, so, in 
the Monte Carlo simulation we have to construct an 
estimator that avoids the tunneling effects. We define 
the (normalized) magnetizations as 

M=(hF), MT=(&@). (3) 

We also define the associated susceptibilities as 

x = V(M*) , XT = V (trM*) . (4) 

The critical behavior of those quantities is expected 
to be 

M cx tP , MT C( tpT , 

x 0s Itj-Y, XT m Itl-YT, (5) 

where t is the reduced temperature. We expect the ten- 
sorial exponents to be also related through the (hyper) 
scaling relation ?/T + 2& = Vd. 

3. The method 

To compute the critical exponents we have used a 
finite-size scaling analysis. Specifically, we have used 
the method of Refs. [ 141 that consists in the compar- 
ison of observables on several pairs of lattices at the 
same coupling. The mean value for the operator 0, 
measured in a length L lattice, at a coupling p in the 
critical region, is expected to behave as 

(O(LYP)) = LXOIV [~o(S(~$)IL) 

+L-“Go(&L,P)/L) + . . .] , (6) 

where FO and Go are smooth scaling functions for 
this operator, 5 is a measure of the correlation length 
and xo is the critical exponent associated with 0. Let 
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us recall that w is an universal exponent related with 
the first irrelevant operator. The dots stand for further 
scaling corrections. We have also dropped a c?’ term, 
negligible in the critical region. To eliminate the scaling 
functions we compare the measures in two different 
lattice sizes (Ll , Lz) at the same coupling. Let be 

(WL2, P>) ’ 

Q” = (WLl,P>) 

= sxo/vFo k-*P)lQ + O(L_W), 

Fo (S(LP)/Ll) 
(7) 

where s = L2/Li . It is easy to find the coupling value 
where Qf = s. Measuring 0 at that point we obtain the 

critical exponent from 

Q&_ = s”“” + O( L-7. (8) 

We remark that even if 0 is a fast varying function of 

the coupling in the critical region, as the magnetization, 
the statistical correlation between Qo and Qt allows a 
very precise determination of the exponent. 

For the correlation length, we use a second momen- 
tum definition [ 161 which is easy to measure and per- 
mits to obtain an accurate value: 

(9) 

where F is defined as the Fourier transform of the 
two-point correlation function at minimal momentum 
( (2r/L, 0,O) and permutations). 

4. Critical exponents 

For the Monte Carlo simulation, we have used the 
Wolff’s embedding algorithm with a single cluster up- 
date [ 151. We have simulated in lattice sizes from 
L = 8 to L = 64 on the critical coupling reported 
on Refs. [ 10-121. We have used the spectral density 
method to extrapolate to the neighborhood of these 
couplings. We have updated 25 million clusters for 
O(2) and O(3) and 50 million in the O(4) case. The 
autocorrelation times are very small in all cases (not 
larger than a hundred of clusters). The runs have been 
performed on several workstations. 

We have used the operator dt/ d/S to obtain the I/ 
exponent (XG,~P = 1 + v). For the magnetic expo- 
nents, we use the total magnetization (XM = /?) as well 

as the corresponding susceptibility (xX = r). From 
them we obtain the 7 exponent using the scaling rela- 
tions y/v = 2 - 7,2/3/v = d - 2 + 77. For the tensorial 

channel we obtain a different set of exponents that we 

denote as pr, ‘yT, TT respectively. 
In Table 1 we report the results for the exponents dis- 

playing also the used operator. We have checked other 
observables as well as other definitions of the correla- 
tion length but, in all cases, either the corrections-to- 
scaling or the statistical errors are greater. 

5. Infinite volume extrapolation 

In Table 1 corrections-to-scaling are clearly visible 

for the 77 exponent. To control them, we need an esti- 
mation of the w exponent. To measure this index and 
the critical coupling [ 141, we study the crossing be- 
tween the Binder cumulant of the magnetization for 
different lattice sizes, as well as the corresponding for 
t/L. The shift from the critical coupling of the crossing 
point for lattices of sizes L1 and L2 behaves as [ 171 

1 - s-O ~pw2 c( ---i---L;“-“* 
su - 1 

(10) 

As the crossing point for the Binder cumulant and t/L 
tends to the critical coupling from opposite sides, it is 
convenient to fit all the data together. We have carried 
out two types of fits, one fixing the smaller lattice and 

the other fixing the L2/Lt ratio. In Table 2 we present 
the results obtained using the full covariance matrix, 
for L1 = 8 and s = 2. 

We observe a value for the w exponent compatible 
with the 0.78( 2) value obtained from g-expansions 
fortheO(2) andO(3) models [7].Inthe0(4) case 
the result is almost twice. Lacking a theoretical pre- 
diction, this could be interpreted in two ways, the ex- 
ponent could truly be so big, or it might be that the 
coefficient of the leading corrections-to-scaling term 
is exceedingly small. 

The values obtained for the critical couplings are 
extremely precise, and compatible with the most ac- 
curate previous determinations by Monte Carlo simu- 
lations [ 18,11,12] . Let us remark that the conjectured 
value for the critical coupling of the 0( 3) model [ 191, 
PC = log2, is ten standard deviations away from our 
measures. 
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Table 1 
Critical exponents obtained from a finite-size scaling analysis using data from lattices of sizes L and 2L for the O(N) models. In the 
second row we show the operator used for each column 

L 

8 
12 

16 
24 

32 

8 
12 
16 
24 

32 

8 
12 

16 
24 

32 

Y 71 VT 

d&l@ X M XT MT 

0.683(3) 0.0252( 10) 0.0297( 11) 1.499(2) 1.506(2) 
0.678(3) 0.0303 ( 11) 0.0333( 13) 1.496(3) lSOO(3) 
0.672( 3) 0.0329( 12) 0.0355( 12) 1.494(2) 1.497(3) 
0.676(4) 0.0344( 12) 0.0355( 13) 1.494(3) 1.495(3) 
0.670(3) 0.0366( 12) 0.0387( 13) 1.494(3) 1.496(3) 

0.724( 3) 0.0300( 10) 0.0317( 10) 1.432(2) 1.437(2) 
0.712(4) 0.0337(9) 0.0352( 10) 1.4312( 17) 1.4342( 17) 
0.712(4) 0.0344( 11) 0.0354( 12) 1.428(2) 1.429(2) 
0.716(5) 0.0378( 12) 0.0385( 13) 1.4320( 18) 1.4335(18) 
0.711(5) 0.0371(11) 0.0377( 12) 1.428(2) 1.430(2) 

0.752(2) 0.0307(6) 0.0316(6) 1.3735(10) 1.3767( 11) 
0.747(3) 0.0338(5) 0.0345(6) 1.3771( 10) 1.3790( 10) 
0.754(4) 0.0341(7) 0.0344(7) 1.3770( 14) 1.3781( 13) 
0.757(4) 0.0348(5) 0.0349(5) 1.3771( 10) 1.3774( 11) 
0.753(5) 0.0359(9) 0.0361(10) 1.3753(18) 1.3759( 18) 

To control finite-size effects the most common pro- 
cedure is to pick the smaller lattice for which there 
is no scaling corrections. That is, one uses a log-log 
plot, discard small lattices, and stop when the value of 
critical index stabilizes. Using this method, it has been 
determined that for the 0( 2) model it is enough to use 
lattices with sizes L > 16 [lo], L 2 12 for the O(3) 
model[ll],andL>8forthe0(4)model[12].We 
shall confirm this assumption for the v exponent but 
no for the magnetic ones. 

It might not be possible to find a safe &, lattice 
(in fact, to find scaling corrections is just a matter 
of statistical accuracy), we thus need an extrapolation 
procedure. With an w estimation, we can extrapolate 
to the infinite volume limit, with an ansatz for the 
exponent x0: 

(11) 

The situation is fairly different for the v and r] ex- 
ponents, therefore we shall discuss them separately. 

5.1. v type exponents. 

Due to the high accuracy that we get from the statis- 
tical correlation between the measures of C$ and x, we 

Table 2 

Fits for PC (co) and the corrections-to-scaling exponent o. The 
second error bar in w is due to the variation of v exponent within 
a 1% interval (the size of previously published error bars) 

N Fit x*/d.o.f. w Pc(co) 

2 L1 = 8 11 /8 0.86( 12) (3) 0.454169(4) 
s=2 9.816 0.81(12)(l) 0.454165(4) 

3 L1 = 8 2.018 0.64( 13) (2) 0.693001(10) 
s=2 2.316 0.71(15)(l) 0.693002( 12) 

4 L1 = 8 11.9/8 1.80(18)(6) 0.935858(8) 
s=2 8.016 1.85(21)(2) 0.935861(8) 

are able to resolve finite-size corrections. One could 
wonder if only the first correction term (c( L-“) is 
needed. To check it we have used an objective cri- 
terium: we perform the fit from Lki,, then we repeat 
it discarding Lk,, and check if both fitted parameters 
(slope and extrapolation) are compatible. If that is the 
case, we take the central value from the fit with Li,, 
and the error bar from the fit without it. In the three 
models, we find that Lti, = 8 is enough for this pur- 
pose. 

For the 0( 2) and 0( 3) models, we have a very pre- 
cise knowledge of w = 0.78 (2)) from series analysis. 
We plot in Fig. 1 our data as a function of L-“. For 
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Infinite volume extrapolation for 7 from X and M. The second error is due to the uncertainty on o. For the O(4) model, the first column 

has been calculated with w = 0.78 and the second with w = 1.8( 2). In the last three rows we present, respectively, the results for this 

exponent from E, g-expansions and previously published Monte Carlo values 

X 
h4 

+expansion 

g-expansion 

Previous MC 

O(2) O(3) O(4) 

0.0424( 23) (2) 0.0413(15)(l) 0.0384( 12) 0.0359(6)(3) 

0.0421(25)(2) 0.0414(18)(l) 0.0381(13) 0.0359(6) (2) 

0.040(3) 171 0.040(3) [71 0.03(l) 1211 

0.033(4) [Sl 0.033(4) 181 _ 

0.024(6) [ 101 0.028(2) [ll] 0.025(4) [ 121 

i_i:.! 
0 0.05 0.10 0.15 0.20 

Fig. 1. v estimation from X for pairs of lattices of sizes L and 2L, 
as a function of L-O, w = 0.78, in the O(2) model (upper part), 

and O(3) model (lower part). Lines correspond to the Lmin = 12 

fit. 

O(2), the fit has X2/d.o.f. = 0.85/3. For O(3) we ob- 
tain x2/d.o.f. = 2.9813. We then find no reason to ex- 
pect higher order corrections to be significant. We have 
also performed a simulation on a L = 6 lattice, finding 
that, for the 0( 2) model, the corresponding v value is 
one standard deviation away from the corresponding 
point in the fit performed for Ltii, = 12. Therefore, 
it seems even reasonable to keep the error from the 
kin = 8 fit (7 = 0.0424( 14)). For the O(3) model, 
the L = 6 point is three standard deviations away from 
the fit for hn = 12 due to higher order corrections- 
to-scaling. Notice in Fig. 1 that the slope for O(2) 
is significantly larger, which could mask higher order 
corrections. For the O(4) model, lacking a theoreti- 
cal knowledge of w, there are stronger uncertainties. 
We find the change from w = 0.78(2) for O(2) and 
O(3), to w = 1.8(2) for O(4) very surprising (see 
Table 2). This might arise from an unexpected cance- 

lation of first order scaling-corrections for the Binder 
cumulant and the correlation length. We show in Ta- 
ble 3 the extrapolated values for 7 exponents. For the 
O(4) model we present the extrapolation with w = 
0.78 (x2/d.o.f. = 2.9/3) and with w = 1.8(2) with 
x2/d.o.f. = 1.0/3. Both values are hardly compatible. 

The determination of 7 from x and M are of course 
coincident in all cases due to the strong statistical corre- 
lation between both observables. We find that the value 
for 0( 2) and 0( 3) are compatible with e-expansions 
and not too far from g-expansions, but incompatible 
with the previous Monte Carlo results. High tempera- 
ture series [9] also predict ~7 values close to the ob- 
tained in this letter, but the error bars are large. For 
O(4) both r] values are significantly lower than for the 
other models which is not surprising because, in the 
large N limit, this exponent should go to zero. 

Let us consider the or exponent. From Table 1 

corrections-to-scaling are not self-evident. If one 
adopts this optimistic point of view and performs a 
mean of all values in the table one finds that only for 
L > 16, x2/d.o.f. becomes acceptable. Errors for the 
means are much smaller than for individual measures, 
and so, maybe smaller than scaling-corrections. We 
show these mean values on Table 4. We think safer to 
perform a fit to the functional form ( 11). We show the 
extrapolated values on Table 4. Errors coming from 
the uncertainty on w are smaller than a 10% of the 
quoted errors. Even more, the two values for O(4) 
are compatible. The value of x2/d.o.f. for O(4) and 
O(2) models is about 0.6/3. For the O(3) model is 
higher (about 6/3). Regarding the conjectured rela- 
tion 2/? = pr proposed in Ref. [ 61, notice that it can 
be formulated equivalently as 1 + 277 = 7~ which is 
absolutely ruled out by our data. 
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For every model we show in the first column the mean values for r]r from XT and Mr for L 2 16. The second columns display the 
infinite volume extrapolation for 7~ from xr and Mr.For the O(4) model, the second column has been calculated with w = 0.78 and the 
third with w = 1.X(2) 

O(2) O(3) 014) 

XT 1.494(l) 1.489(4) 1.431(l) 1.427(3) 1.3766(5) 1.374(S) 1.376(2) 
MT 1.496( 1) 1.491(4) 1.429(l) 1.427(3) 1.3773(5) 1.375(5) 1.376(2) 

>~_:i 

0 0.05 0.10 0.15 0.20 

Fig. 2. Y estimation from pairs of lattices of sizes L and 2L, as 
a function of L-o.78, in the O(4) (upper part), O(3) (middle 
part), and O(2) model (lower part). 

For the comparison between the critical exponents 
of the 0( 4) model and those of the antiferromagnetic 
RP2 one, notice that the 77 value for O(4) is fully 
compatible with the corresponding exponent for the 
staggered magnetization of the RP2 model( ‘)lStag = 
0.0380(26) [ 141). The q exponent associated with 
the usual magnetization for the RP2 model (rl~p2 = 
1.339( 10) [ 141) is not compatible with VT, the dif- 
ference being of order 7. 

5.2. v exponent. 

In Fig. 2, we plot the estimation of Y that we get 
from pairs of lattices of sizes L and 2L as a function 
of L-O. Indeed one would be tempted to claim that 
for the 0( 4) model, finite-size effects are beyond our 
resolution for L > 8, as stated in Ref. [ 121. For the 
O(3) model this also seems to be the case for L 2 
12 [ 111. However the question is not so clear for the 
0 (2) model. Nevertheless, the experimental value is 
known to be yexP = 0.6705 (6) [ 201, and we do find 
that for L 2 16 our Y estimation is consistent with it. 
If we actually believe that the corrections-to-scaling 
are negligible for L 1 hn, we can take the mean of 
the safe lattices, getting 

~~~~~ = 0.6721( 13) , ,$/d.o.f. = 1.7/2, 

vo(3) = 0.7128( 14) , X2/d.o.f. = 0.6/3, 

vo(4) = 0.7525( 10) , x2/d.o.f. = 3.4/4. (12) 

Error bars decrease strongly compared to the data in 
Table 1, therefore it is not clear if scaling-corrections 
are still negligible. A more conservative point of view 
would ask for the consideration of these corrections. 
For this we use the ansatz ( 11) . However, from the plot 
in Fig. 2, it seems clear that the scaling corrections for 
L = 8,12 in the O(2) model, and L = 8 in the O(3) 
model, could hardly be linear on L-“. Performing the 
fitsuggestedbyEq. (ll),withw=O.78(2) forO(2) 
and 0( 3) [ 71 from the safe Lki,, we get a compatible 
value, but with a very increased error bar: 

voC2) = 0.670( 10) , i70’o(3) = 0.711( 10) . (13) 

In the 0( 4) case, we perform the extrapolation with 
both w values. The extrapolation does not increase 
significantly the error bars. Therefore we consider two 
values of &,. For h, = 8 we obtain Y = 0.754(3) 
forw=0.78andv=0.7531(15)(3)forw= 1.8(2). 
On the other hand, with Ltii, = 12 we get Y = 0.765( 8) 
forw=0.78andv=0.7585(34)(7),forw= 1.8(2). 

Regarding the relation with the antiferromagnetic 
RP2 model (V = 0.783 ( 11) ) , we find it unlikely that 
both values could coincide, but we cannot rule it out. 
Notice that if we accept the value w = 1.8 (2) we would 
find a significant difference on this universal exponent 
fromRP2 (w = 0.85(5)). 

6. Conclusions 

We have obtained accurate measures of critical ex- 
ponents and couplings for three dimensional O(N) 
models. The method used, based on the finite-size scal- 
ing ansatz, has a remarkable performance when com- 
puting magnetic exponents. The values for 71 expo- 
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nents presented are incompatible with previous Monte 
Carlo results and they have smaller statistical errors. 
We should point out that our values agree with those 
obtained with 4 - E expansions, and are not incompati- 
ble with those computed by means of g-expansions, in 
opposition with previous results. We also show that the 
statistical accuracy that can be reached on three dimen- 
sional systems is such that the strongest uncertainties 
come from finite-size effects, for which a reliable the- 
oretical parameterization would be highly desirable. 

We present measures of the exponent corresponding 
to the tensorial magnetization, which is not twice the 
corresponding to the usual magnetization as previously 
stated. 

We increase significantly the precision of previous 
measures of the exponents of 0( 4)) showing that the 
differences with the v exponent from the values of the 
antiferromagnetic RP2 model [ 141 are two standard 
deviations appart. However whether they belong to the 
same universality class or not is not yet completely 

established. 
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