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1. Introduction

The study of the asymptotic properties of random matrix models in the limit of large

matrix size has revealed deep connections between random matrix theory and the

theory of integrable systems. The origin of these connections is nowadays much better

understood thanks to the use of Riemann-Hilbert (RH) techniques, which are one of

the main tools in the inverse scattering theory of integrable systems [1, 2, 3, 4, 5].

Indeed, the occurrence of RH problems leads naturally to Lax pair equations and to the

corresponding string equations [6], which in turn explain why integrable equations of

Painlevé type arise in the double scaling limit of critical random matrix models [7].

The main goal of this work is to describe in detail and in a general setting (i.e.

independently of particular examples which will be used only for illustrative purposes)

the correspondence between the full Painlevé I and Painlevé II hierarchies and critical

random matrix models.

Specifically, we consider random Hermitian matrix models with partition function

ZN =

∫

RN

e−N
∑N

i=1
V (xi)

∏

i<j

(xi − xj)
2dx1 · · ·dxN , (1)

where the integration is performed over the eigenvalues x1, . . . , xN and V is a polynomial

potential of even degree and real coefficients (coupling constants) g = (g1, . . . , g2p),

V (z) =

2p∑

n=1

gnz
n, g2p > 0. (2)

The large N asymptotics of a matrix model is related to the large N asymptotics of

the orthogonal polynomials Pn,N(x) with respect to the exponential weight e−NV (x), i.e.

monic polynomials

Pn,N(x) = xn + an−1x
n−1 + · · · (3)

that satisfy
∫ ∞

−∞

Pk,N(x)Pl,N(x)e
−NV (x)dx = δklhk,N . (4)

In fact there are several methods [8, 9, 10, 11, 12] that reduce the calculation of the

large N asymptotic behavior of the free energy

FN = −N−2 lnZN (5)

to the calculation of the asymptotic behavior of the recurrence coefficients rn,N and sn,N
in the three-term recursion relation

xPn,N(x) = Pn+1,N(x) + sn,NPn,N(x) + rn,NPn−1,N(x). (6)

The structure of these asymptotic expansions depends on the number of disjoint

intervals (cuts) in the support J of the asymptotic eigenvalue density ρ(x). In fact, the

asymptotic expansions in the multi-cut (two or more cuts) case are not in general simple

power series inN−1 but have a complicated quasi-periodic dependence onN [4, 5, 13, 14].
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However, for even potentials the recurrence coefficient sn,N is identically zero, and if

in addition the potential is in the regular (noncritical) two-cut case with eigenvalue

support J = (−β,−α)∪ (α, β), then a substantial simplification of the general behavior

occurs [13]: the odd terms of the recurrence coefficient r2n+1,N and the even terms r2n,N
admit (different) asymptotic expansions whose leading terms can be gathered in a single

formula,

rn,N =
1

4
(α− (−1)nβ)2 + O(N−2), N → ∞. (7)

Our goal is to study the critical behavior of these matrix models with respect

to a temperature parameter T > 0, i.e. we consider the family of models ZN(T ) with

potentials V (z)/T or, equivalently, with coupling constants g/T . Critical matrix models

correspond to points Tc where the asymptotic free energy ceases to be analytic as a

function of T . Some of these critical models are related to conformal (p, q) minimal

models [7, 15, 16, 17] and have asymptotic eigenvalue densities with rational singularities

ρ(x) ∼ (x− α)p/q (8)

near one of the endpoints α of J . It has been known for a long time in the physics

literature that the double scaling limit of critical matrix models in the one-cut and two-

cut cases reveals the presence of equations belonging to the Painlevé I and Painlevé II

hierarchies respectively (see [18] for a description of these hierarchies). However,

most of the existing work, specially for the two-cut case, deals only with particular

examples [5, 7, 12, 19, 20, 21, 22] and does not offer a general characterization of the

specific member of the Painlevé hierarchy associated to a critical model in terms of the

coupling constants g and of the critical value of the recurrence coefficient. More recent

works [16, 17] do prove the occurrence of the full Painlevé hierarchies in the context of

critical matrix models, but again they do not give an explicit correspondence between

Painlevé equations and critical models.

To arrive at this general correspondence, we first perform a detailed analysis of the

large N expansions of the recurrence coefficient rn,N for general even potentials in the

one-cut and two-cut cases, with special emphasis on the latter. Our analysis is based on a

method for solving continuum limits of the discrete string equation [7]. This method uses

the resolvent of the Lax operator of the underlying Toda hierarchy and can be applied

to obtain the large N expansions both in regular and in critical models [23, 24]. The

asymptotic behavior of rn,N for regular models is given by power series in N−2 whose

coefficients can be determined recursively. For critical models we apply the double

scaling method to calculate a family of asymptotic solutions of the string equation

(symmetric solutions) which are series in fractional powers of N−1 whose coefficients

are constrained by ordinary differential equations in the scaling variable. It is at this

point when we are able to give the precise connection between the complete Painlevé I

and Painlevé II hierarchies and certain families of critical models. In particular we show

how the Painlevé II hierarchy is connected to critical models featuring the merging of

two cuts [17, 21, 22].
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The paper is organized as follows. In section 2 we recall the basic definitions and

notations for multi-cut matrix models and their phase spaces. In section 3 we formulate

the discrete string equation in terms of a generating function and derive some important

identities. Sections 4 and 5 contain a detailed description of the large N asymptotics of

the recurrence coefficient rn,N in the regular and critical one-cut cases respectively. The

classification of critical one-cut models and the connection to the Painlevé I hierarchy

contained in section 5 is relatively simple but it sets the pattern for the rather more

complicated two-cut case in sections 6, 7 and 8. The generality of the classification

of critical two-cut models and their connection to the Painlevé II hierarchy achieved in

section 8 requires a somewhat complicated calculation, but the final result can be stated

concisely and is illustrated in the case of a merging of two cuts in a quartic model. The

paper ends with a brief summary and outlook section.

2. Multicut models

Let us consider a model (1) with coupling constants g. It is well known [3, 4, 5, 25] that

in the limit N → ∞ the support J of the density of eigenvalues ρ(x) is the union of a

finite number s of real intervals (cuts)

J =

s⋃

j=1

(αj, βj), α1 < β1 < · · · < αs < βs, (9)

where 1 ≤ s ≤ p = (deg V )/2. The conditions that determine the actual value of s

among those allowed by this bound can be stated in terms of a polynomial h(z) defined

in the following way: let w(z) be the Riemann surface

w(z) =

√√√√
s∏

i=1

(z − αi)(z − βi), (10)

and let w1(z) be the branch of w(z) with asymptotic behavior w1(z) ∼ zs as z → ∞;

h(z) is the polynomial part of the large z expansion of V ′(z)/w1(z), i.e.

V ′(z)

w1(z)
= h(z) + O(z−1), z → ∞. (11)

The 2s endpoints α1, . . . , βs in the s-cut case are solutions of the system of 2s equations
∫ αj+1

βj

h(x)w1,+(x)dx = 0, j = 1, . . . , s− 1, (12)

∮

γ

zj
Vz(z)

w1(z)
dz = 0, j = 0, . . . , s− 1, (13)

∮

γ

h(z)w1(z)dz = −4πi, (14)

where γ is a large positively oriented loop around J . However, these equations may not

be sufficient to determine uniquely s because they may have admissible solutions for
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several values of s. In this case the additional condition ρ(x) > 0 for x ∈ J and the

inequalities
∫ α1

x

h(x′)w1(x
′)dx′ ≤ 0, for x < α1, (15)

∫ x

βj

h(x′)w1(x
′)dx′ ≥ 0, for βj < x < αj+1, j = 1, . . . , s− 1, (16)

∫ x

βs

h(x′)w1(x
′)dx′ ≥ 0, for x > βs, (17)

characterize uniquely the solution of the problem. Finally, the polynomial h(z) is related

to the eigenvalue density by

ρ(x) =
h(x)

2πi
w1,+(x), x ∈ J, (18)

where w1,+(x) denotes the boundary value of w1(z) on J from above. A model is said

to be a regular if h(x) 6= 0 on J̄ and the inequalities (15)–(17) are strict. Otherwise it

is called critical.

As we said in the introduction we restrict our considerations to even potentials

V (λ) =

p∑

j=1

g2jλ
j , λ = z2. (19)

For these models the eigenvalue support J is symmetric with respect to the origin. In

the one-cut case J = (−α, α) and equations (12)–(14) reduce to the single condition
∮

γ

dλ

2πi
Vλ(λ)

√
λ

λ− α2
= 1, (20)

where we have denoted Vλ(λ) = dV (λ)/dλ. Likewise, in the two-cut case J =

(−β,−α) ∪ (α, β) and equations (12)–(14) reduce to
∮

γ

dλ

2πi

Vλ(λ)√
(λ− α2)(λ− β2)

= 0,

∮

γ

dλ

2πi

λVλ(λ)√
(λ− α2)(λ− β2)

= 1.

(21)

Given a family of potentials (19) with the coupling constants g = (g2, g4, . . . , g2p)

running on a certain region G of Rp, we decompose the region G as

G =
⋃

s≥1

Gs, (22)

where g ∈ Gs if and only if g determines a s-cut regular model. The set Gs is called

the s-cut phase of the family of Hermitian models and the decomposition (22) is called

the phase diagram of the family of Hermitian models.

To illustrate these ideas we show in figure 1 the phase diagram of the quartic

model [5, 20, 22]

V (λ) = g2λ+ g4λ
2 (23)
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G1
H2L

G2

G1
H1L

Hg2, g4L

Hg2, g4L

Hg2�Tc, g4�TcL

Hg2, g4L

Hg2�Tc, g4�TcL

Figure 1. Phase diagram of the quartic model V (λ) = g2λ+g4λ
2 in the region g4 > 0.

in the region

G = {g = (g2, g4) ∈ R2 : g4 > 0}. (24)

The one-cut phase G1 can be written as

G1 = G
(1)
1 ∪G

(2)
1 , (25)

where

G
(1)
1 = {(g2, g4) ∈ R2 : g2 ≥ 0, g4 > 0}, (26)

G
(2)
1 = {(g2, g4) ∈ R2 : g2 < 0, g4 > 0, g2 > −2

√
g4}, (27)

while the two-cut phase G2 is given by

G2 = {(g2, g4) ∈ R2 : g4 > 0, g2 < −2
√
g4}. (28)

The phase diagram features the critical curve

g2 = −2
√
g4, (29)

which is the boundary between the two phases.

Figure 1 also shows the oriented paths g/T traced in the phase diagram when the

coupling constants are scaled from a given initial point g by the temperature T > 0

as T → ∞. From the figure it is clear that if g ∈ G
(1)
1 then g/T ∈ G1 for all T > 0.

However, if g ∈ G
(2)
1 ∪G2 then g/T crosses the critical curve at

Tc =
g22
4g4

. (30)

3. The discrete string equation

Given N > 0 let us denote by vn the orthogonal polynomials (3)

vn(x) = Pn,N(x), n ≥ 0 (31)
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and let us denote by L the Lax operator of the underlying Toda hierarchy [26]

Lvn = vn+1 + rn,Nvn−1, r0,N = 0. (32)

The main tool to study the asymptotics of the recurrence coefficient rn,N is the

discrete string equation [5]

Vz(L)n,n−1 =
n

N
, (33)

where

Vz(L) =

p∑

k=1

2kg2kL
2k−1 (34)

and the subindices (n, n − 1) denote the matrix element between the corresponding

elements of the basis vn. We note that (33) can be rewritten as
∮

γ

dλ

2πi
Vλ(λ)Un,N(λ) =

n

N
, (35)

where γ is a large positively oriented circle |λ| = R, and Un,N(λ) is the generating

function

Un,N(λ) = 1 + 2
∑

k≥1

(L2k−1)n,n−1λ
−k. (36)

In the next sections we calculate the large N expansions of the recurrence coefficient

rn,N by solving appropriate continuum limits of the string equation in the form (35)

with a two-step procedure: (i) we first calculate a large N expansion for the generating

function Un,N whose coefficients are functions of the expansion coefficients for rn,N ,

and (ii) we substitute this expansion for Un,N into the continuum limit of the string

equation (35), perform the contour integration (i.e. pick up the coefficient of λ−1 in the

large λ expansion of the integrand), and solve recursively for the coefficients of the rn,N
expansion.

The first step relies on two identities for Un,N(λ) which we derive in the following

theorem.

Theorem 1 The generating function Un,N(λ) satisfies the linear equation

λ(Un+1,N − Un,N) = rn+1,N(Un+2,N + Un+1,N )− rn,N(Un,N + Un−1,N) (37)

and the quadratic equation

rn,N(Un,N + Un−1,N)(Un,N + Un+1,N) = λ(U2
n,N − 1). (38)

Proof. For clarity in this proof we will drop the subindex N in Un,N and denote

the generating function (36) by Un. Let us prove first the linear equation (37). In

terms of L the recurrence relation (6) can be written as Lvn(x) = xvn(x). Therefore

L2k−1vn(x) = x2k−1vn(x) and

(L2k−1)n,n−1 =
1

hn−1,N

∫ ∞

−∞

x2k−1vn(x)vn−1(x)dµ (39)
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where dµ = e−NV (x)dx. Hence,

Un = 1 +
2

hn−1,N

∫ ∞

−∞

xvn(x)vn−1(x)

λ− x2
dµ (40)

and

λ(Un+1 − Un) =
2

hn,N

∫ ∞

−∞

xvn+1(x)vn(x)dµ − 2

hn−1,N

∫ ∞

−∞

xvn(x)vn−1(x)dµ

+
2

hn,N

∫ ∞

−∞

x3vn+1(x)vn(x)

λ− x2
dµ− 2

hn−1,N

∫ ∞

−∞

x3vn(x)vn−1(x)

λ− x2
dµ. (41)

Using xjvn(x) = Ljvn(x) for j = 1, 2 we find that
∫ ∞

−∞

xvn+1(x)vn(x)dµ = hn+1,N , (42)

∫ ∞

−∞

x3vn+1(x)vn(x)

λ− x2
dµ =

∫ ∞

−∞

xvn+2vn+1 + x(rn+1,N + rn,N)vnvn+1 + xrn,Nrn−1,Nvn+1vn−2

λ− x2
dµ, (43)

and∫ ∞

−∞

x3vn(x)vn−1(x)

λ− x2
dµ =

∫ ∞

−∞

xvn+1vn + xrn,Nvnvn−1 + xrn,Nrn−1,Nvn−1vn−2 + xrn−1,Nvn+1vn−2

λ− x2
dµ. (44)

Substituting (42)–(44) into (41) and taking into account (40) we conclude that the linear

equation (37) holds. It is now easy to prove the quadratic equation (38). Indeed, the

linear equation (37) implies

rn+1,N(Un+2 + Un+1)(Un+1 + Un)− rn,N(Un+1 + Un)(Un + Un−1) = λ(U2
n+1 − U2

n), (45)

and therefore the expression

λU2
n − rn,N(Un+1 + Un)(Un + Un−1) (46)

is independent of n. Since r0,N = 0 and U0 = 1 the quadratic equation (38) follows.

4. Regular one-cut models

In this section we show how to calculate large N asymptotic expansions in regular

one-cut models by passing to the continuum limit in the quadratic identity (38).

4.1. Large N expansions for regular one-cut models

Consider the continuum limit

n → ∞, N → ∞,
n

N
→ T, (47)
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in the case where g/T ∈ G1. It has been rigorously proved [3, 12, 27] that under these

assumptions there exists an asymptotic power series for the recurrence coefficient rn,N
of the form

rn,N ∼ r(ǫ, T ) =
∑

k≥0

rk(T )ǫ
2k, ǫ =

1

N
, (48)

which is uniform with respect to T in a neighborhood of T = 1. Moreover,

r0 =
α2

4
(49)

where (−α, α) is the eigenvalue support for the model with coupling constants g/T . We

write a similar series for generating function Un,N

Un,N(λ) ∼ U(λ, ǫ; r) =
∑

k≥0

Uk(λ; r0, . . . , rk)ǫ
2k, (50)

in which our notation for the coefficients Uk anticipates their dependence on the rj up

to j = k. Substituting (48), (50) and the corresponding shifted expansions

rn+j,N ∼ r[j](ǫ, T ) = r(ǫ, T + jǫ), j ∈ Z, (51)

Un+j,N(λ) ∼ U[j](λ, ǫ; r) = U(λ, ǫ; r[j]), j ∈ Z, (52)

into (38), the continuum limit of the quadratic identity is

r(U + U[−1])(U + U[1]) = λ(U2 − 1). (53)

Identifying powers of ǫ in (53) we find that the coefficients Uk can be written as

U0 =

√
λ

λ− 4r0
, (54)

Uk = U0

3k∑

j=1

Uk,j(r0, . . . , rk)

(λ− 4r0)j
, k ≥ 1, (55)

where Uk,j is a polynomial of degree j in r0, . . . , rk and their T derivatives. For example,

U1,1 = 2r1, U1,2 = 2r0r
′′
0 , U1,3 = 10r0(r

′
0)

2. (56)

It is also easy to see that in general

Uk,1 = 2rk (57)

and that the dependence of Uk in rk comes solely from Uk,1. Therefore

Uk = U0

(
2rk

λ− 4r0
+ · · ·

)
(58)

where the dots stand for terms in r0, . . . , rk−1 and their T derivatives.

Analogously, the continuum limit of the string equation (35) reads
∮

γ

dλ

2πi
Vλ(λ)U(λ, ǫ; r) = T (59)
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or using the expansion (50) for U ,
∮

γ

dλ

2πi
Vλ(λ)Uk(λ; r0, . . . , rk) = δk,0T, k ≥ 0. (60)

The first of these equations (corresponding to k = 0) can be written as

W (r0) = T, (61)

where

W (r0) =

∮

γ

dλ

2πi
Vλ(λ)

√
λ

λ− 4r0
=

p∑

k=1

(
2k

k

)
kg2kr

k
0 . (62)

Equation (61) is an implicit algebraic equation for r0 of hodograph type (linear in the

variables g and T ) which is equivalent to the normalization condition (20) due to the

identification (49).

The remaining equations (60) can be written as

3k∑

j=1

cj(r0)Uk,j(r0, . . . , rk) = 0, k ≥ 1, (63)

where

cj(r0) =

∮

γ

dλ

2πi

√
λVλ(λ)

(λ− 4r0)
j+ 1

2

=
W (j)(r0)

2j(2j − 1)!!
(64)

and where W (j)(r0) = ∂jW (r0)/∂r
j
0.

For an even potential in the one-cut case h(z) is an even function of z whose

characterization (11) in terms of λ = z2 reads

2

√
λVλ(λ)√
λ− α2

= h(λ) + O(λ−1), λ → ∞, (65)

and consequently

W ′(r0) = 2

∮

γ

dλ

2πi

√
λVλ(λ)

(λ− 4r0)3/2
= h(λ)

∣∣∣
λ=α2=4r0

. (66)

Thus, if g/T ∈ G1 then W ′(r0) 6= 0 and the implicit function theorem shows that (61)

determines r0 as a locally smooth function of T . Moreover, from the dependency of Uk

on rk shown in (58) it follows that equations (63) are of the form rkW
′(r0) = · · ·, where

the dots stand for a sum of terms on r0, . . . , rk−1 and their T derivatives. Therefore

the implicit function theorem can also be applied and (63) determine recursively all

the coefficients rk of the large N expansion (48) as locally smooth functions of T .

Furthermore, if we differentiate the hodograph equation (61) with respect to T we can

write the T derivatives of rk as rational functions of the W (j) and hence as rational

functions of r0 and g. For example, from r′0 = 1/W ′(r0) and the k = 1 equation (63)

we find

r1 =

(
W ′′(r0)

2

6W ′(r0)4
− W ′′′(r0)

12W ′(r0)3

)
r0. (67)
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4.2. The quartic potential in the regular one-cut case

As our first application of these results consider the quartic potential (23) in the regular

one-cut region. Equation (62) gives

W (r0) = 2g2r0 + 12g4r
2
0. (68)

The leading term r0(T ) of the asymptotic expansion (48) is the positive root of the

hodograph equation W (r0) = T , namely

r0(T ) =

√
g22 + 12Tg4 − g2

12g4
. (69)

To calculate the next term r1(T ) we first use (67) and (68) to obtain r1 as a function of

r0, and then we substitute the former explicit expression of r0(T ) to get

r1(T ) =
g4(
√

g22 + 12Tg4 − g2)

2(g22 + 12Tg4)2
. (70)

Higher coefficients rk(T ) of the asymptotic expansion (48) can be easily calculated

iterating this procedure. We postpone a graphical illustration of r0(T ) until we discuss

the two-cut region of the same model in section 6.

4.3. The Brézin-Marinari-Parisi potential in the regular one-cut case

As our second example we consider the sixtic potential

V (λ) = 90λ− 15λ2 + λ3, (71)

introduced in [28] by Brézin, Marinari and Parisi to generate a non-perturbative

ambiguity-free solution of a string model. The matrix model corresponding to V (λ)/T

is regular except at Tc = 60, but this critical temperature does not mark the boundary

between a one-cut region and a two-cut region. The function W takes the form

W (r0) = 180r0 − 180r20 + 60r30, (72)

and the unique positive root of the hodograph equation W (r0) = T is given by

r0(T ) = 1 + 3
√
T/60− 1. (73)

Proceeding as in the previous example, equations (67) and (73) yield

r1(T ) =
1 + 3

√
T/60− 1

64800(T/60− 1)2
. (74)

In figure 2 we plot r0(T ) as a function of T in a neighborhood of the critical Tc = 60.

Note how the vertical tangent to the graph marks a critical point which is qualitatively

different from the graph of the quartic potential that we will discuss in section 6.
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Figure 2. Leading coefficient r0(T ) as a function of T for the Brézin-Marinari-Parisi

potential V (λ) = 90λ− 15λ2 + λ3 with a critical point at Tc = 60.

5. Critical one-cut models and the Painlevé I hierarchy

In this section we first give a precise definition of singular solution of order m in a one-

cut model, then we show how the algorithm to calculate the asymptotic expansion of

the recurrence coefficient developed in the previous section has to be modified by means

of a suitable double scaling, and finally we give a general proof of the relation between

a one-cut singular model of order m and the (m− 1)-th Painlevé I equation.

5.1. Critical one-cut models and double scaling limit

Definition 1 A solution (r0, T ) = (rc, Tc) of the hodograph equation W (r0) = T is

called a singular solution of order m ≥ 2 if

W (rc) = Tc, W ′(rc) = · · · = W (m−1)(rc) = 0, W (m)(rc) 6= 0. (75)

The identity

W (k)(r0) = (2k − 1)!!2k
∮

γ

dλ

2πi

√
λVλ

(λ− 4r0)
k+ 1

2

=
(2k − 1)!!2k−1

(k − 1)!

∂k−1

∂λk−1
h(λ)

∣∣∣
λ=4r0

(76)

shows that singular solutions of orderm of the hodograph equation correspond to critical

matrix models for which the function h(z) has zeros of order m − 1 at the endpoints

of the eigenvalue support J = (−α, α). We note also that the eigenvalue density ρ(x)

verifies

ρ(x) ∼ (x∓ α)m− 1

2 , x → ±α. (77)

These critical matrix models correspond to conformal (2m−1, 2) minimal models [7, 16].

Let us thus consider a model that (locally) for T < Tc is in the regular one-cut case

and that for the critical temperature T = Tc the corresponding hodograph equation (61)

has a singular solution rc of order m ≥ 2. Since W ′(rc) = 0 we cannot invoke the
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implicit function theorem to solve (61) near T = Tc with r0(Tc) = rc. In fact, r0(T ) can

be expanded in powers of (T −Tc)
1/m and therefore the system (60) does not determine

the coefficients rk of the expansion (48) as locally smooth functions of T at T = Tc. We

regularize this critical behavior introducing a scaling variable x and a scaled expansion

parameter ǭ defined by

ǭ = ǫ1/(2m+1) = N−1/(2m+1), (78)

T = Tc + ǭ2mx. (79)

In terms of these scaled variables the string equation (59) reads
∮

γ

dλ

2iπ
Vλ(λ)U(λ, ǭ; r) = Tc + ǭ2mx, (80)

and we look for an asymptotic expansion of the form

r(ǭ, x) = rc +
∑

k≥1

rk(x)ǭ
2k. (81)

The shifts T → T ± ǫ correspond to x → x± ǭ and therefore U(λ, ǭ; r) is determined by

the quadratic equation

r(U + U[−1])(U + U[1̄]) = λ(U2 − 1), (82)

where we are denoting f[k̄](x) = f(x+ kǭ).

The rest of the calculation is straightforward and can be carried out in complete

analogy with the previous section. The corresponding expansion of U is

U(λ, ǫ; r) =
∑

k≥0

U [k](λ, r1, . . . , rk)ǭ
2k. (83)

Substituting (81) and (83) in (82) and equating powers of ǭ we find that

U [0] =

√
λ

λ− 4rc
, (84)

U [k] = U [0]
k∑

j=1

U [k,j](r1, . . . , rk−j+1)

(λ− 4rc)j
, k ≥ 1 (85)

and that the coefficients U [k,j] are polynomials in r1, . . . , rk−j+1 and their x derivatives,

which can be determined recursively [23]. In particular

U [k,1] = 2rk. (86)

The first few U [k,j] are

U [2,2] = 6r21 + 2rcr
′′
1, (87)

U [3,2] = 12r1r2 + 2r1r
′′
1 + 2rcr

′′
2 +

1

6
rcr

(4)
1 , (88)

U [3,3] = 20r31 + 10rc(r
′
1)

2 + 20rcr1r
′′
1 + 2r2cr

(4)
1 . (89)

In the following theorem we prove that the diagonal coefficients U [k,k](r1) are the well-

known Gel’fand-Dikii differential polynomials of the KdV theory and that the coefficient

r1(x) is a solution of a member of the Painlevé I equation.
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Theorem 2 The coefficient u = r1 for a singular one-cut model of order m satisfies the

(m− 1)-th Painlevé I equation (Pm−1
I equation)

cm(rc)Rm(u) = x, (90)

where Rm(u) is the differential polynomial in u determined recursively by

∂xRm+1 = (rc∂
3
x + 4u∂x + 2ux)Rm, R0 = 1, (91)

and

cm(rc) =
W (m)(rc)

2m(2m− 1)!!
. (92)

Proof. The linear equation

r[1̄](U[2̄] + U[1̄])− r(U + U[−1]) = λ(U[1̄] − U) (93)

follows immediately from the quadratic equation (82), and substituting the expansion

for U given by (83) and (85) into (93) we find that the diagonal coefficients U [k,k] satisfy

the recursion relation of the Gel’fand-Dikii differential polynomials,

∂xU
[k+1,k+1] = (rc∂

3
x + 4r1∂x + 2(r1)x)U

[k,k], U [0,0] = 1. (94)

If we now substitute the expansion (83) for U into the scaled string equation (80), equate

powers of ǭ, and take into account (64) as well as the definition of singular solution (75),

we obtain
k∑

j=m

cj(rc)U
[k,j](r1, . . . , rk−j+1) = δk,mx, k ≥ m, (95)

so that

cm(rc)U
[m,m](r1) = x, (96)

m+k∑

j=m

cj(rc)U
[m+k,j](r1, . . . , rm+k−j+1) = 0, k ≥ 1. (97)

This system provides for each coefficient rk(x) (k ≥ 1) an ordinary differential equation

involving the previous coefficients rj(1 ≤ j < k). In particular (96) takes the form (90)

as stated. The set of ordinary differential equations (90) constitutes the Painlevé I

hierarchy, whose m = 2 member is the familiar Painlevé I equation

c2(rc)(2rcuxx + 6u2) = x. (98)

Note that a more precise notation for Rm(u) and cm(rc) in theorem 2 would be

Rm(rc, u) and cm(rc, g), which emphasizes the explicit dependence on the critical value

rc and the coupling constants g.
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5.2. The critical Brézin-Marinari-Parisi model

We can apply immediately Theorem 2 to the Brézin-Marinari-Parisi potential. The

singular solution (rc = 1, Tc = 60) of the corresponding hodograph equation is of third

order, since

W (rc) = Tc, W ′(rc) = 0, W ′′(rc) = 0, W ′′′(rc) = 360. (99)

Therefore u = r1 is as solution of the P 2
I equation

uxxxx + 10uuxx + 5u2
x + 10u3 =

1

6
x. (100)

6. Regular two-cut models

In this section we study regular two-cut models (i.e. g/T ∈ G2 for a given T > 0)

following the same pattern used in our previous study of regular one-cut models. The

main difference is that now, due to (7), we need two distinct asymptotic expansions: one

expansion for the odd recurrence coefficients r2n+1,N and a second expansion for the even

recurrence coefficients r2n,N . This fact leads us to introduce two different generating

functions V and W for Un,N with n odd and even, respectively. It also requires the

splitting of the quadratic equation (38) for Un,N into a system of two coupled equations.

6.1. Large N expansions for regular two-cut models

In view of (7) we formulate the asymptotics of rn,N in the limit

n → ∞, N → ∞,
2n

N
→ T (101)

as

r2n+1,N ∼ a[1](ǫ, T ), r2n,N ∼ b(ǫ, T ), (102)

where we use again the bracket notation for shifts and we assume that a(ǫ, T ) and b(ǫ, T )

are asymptotic power series

a(ǫ, T ) =
∑

k≥0

ak(T )ǫ
2k, b(ǫ, T ) =

∑

k≥0

bk(T )ǫ
2k, ǫ =

1

N
. (103)

We notice that contrarily to the one-cut case and with the exception of the quartic

model [5, 20, 22], to our knowledge there is no rigorous proof that power series with

smooth coefficients are truly asymptotic to the recurrence coefficients.

To calculate the coefficients ak and bk we perform the continuum limit (101) in the

string and quadratic equations (35) and (38), and introduce two generating functions

V(λ, ǫ; a, b) =
∑

k≥0

Vk(λ; a0, b0, . . . , ak, bk)ǫ
2k,

W(λ, ǫ; a, b) =
∑

k≥0

Wk(λ; a0, b0, . . . , ak, bk)ǫ
2k,

(104)
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such that

U2n+1,N(λ) ∼ V[1](λ, ǫ; a, b), U2n,N(λ) ∼ W(λ, ǫ; a, b), (105)

and more generally

U2(n+j)+1,N(λ) ∼ V[2j+1](λ, ǫ; a, b), U2(n+j),N (λ) ∼ W[2j](λ, ǫ; a, b). (106)

Then (38) is equivalent to the system

a(V +W[−1])(V +W[1]) = λ(V2 − 1),

b(W + V[−1])(W + V[1]) = λ(W2 − 1).
(107)

Identifying the coefficients of ǫ0 in these equations we get

V0 =
a0 − b0 + λ

w
, W0 =

b0 − a0 + λ

w
, (108)

where

w =
√

λ2 − 2λ(a0 + b0) + (b0 − a0)2 =
√

(λ− α2)(λ− β2). (109)

The last equality follows from (7), which allows us to express a0 and b0 in terms of the

endpoints of the eigenvalue support J = (−β,−α) ∪ (α, β) of the model with coupling

constants g/T :

a0 =
1

4
(α + β)2, b0 =

1

4
(α− β)2. (110)

Recursive identification of the coefficient of ǫk for k > 0 in (107) leads to a system

of two linear equations in Vk and Wk of the form

(λV0 − 2w−1λa0)Vk − 2w−1λa0Wk = · · ·
−2w−1λb0Vk + (λW0 − 2w−1λb0)Wk = · · ·

(111)

where the right-hand sides are functions of a0, b0, . . . , ak, bk and their T derivatives.

Since the determinant of the coefficients of (111) equals λ2 we can solve uniquely (111)

for Vk and Wk as functions of a0, b0, . . . , ak, bk and their T derivatives. Moreover, if

V(λ, ǫ; a, b) and W(λ, ǫ; a, b) satisfy (107), so do the functions

Ṽ(λ, ǫ; a, b) = W(λ, ǫ; b, a), W̃(λ, ǫ, a, b) = V(λ, ǫ; b, a). (112)

From these equations and taking into account that as λ → ∞
V(λ, ǫ; a, b) ∼ 1 + O(λ−1), W(λ, ǫ; a, b) ∼ 1 + O(λ−1), (113)

it follows that V and W are related by

W(λ, ǫ; a, b) = V(λ, ǫ; b, a). (114)

Using induction in the quadratic system (107) we find that the coefficients Vk can

be written in the form

Vk =

3k∑

j=0

Rk,j + λSk,j

w2j+1
, k ≥ 0, (115)
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where Rk,j = Rk,j(a0, b0, . . . , ak, bk) and Sk,j = Sk,j(a0, b0, . . . , ak, bk) are polynomials in

a0, b0, . . . , ak, bk and their T derivatives. It is immediate to prove that the dependence

of Vk on (ak, bk) is given by

Vk =
2ak
w

+
(2λ(a0 + b0)− 2(b0 − a0)

2)ak + 4λa0bk
w3

+ · · · , k ≥ 1, (116)

where the dots stand for terms dependent on a0, b0, . . . , ak−1, bk−1 and their T derivatives.

The next step is to calculate the ak and bk as functions of T . Substituting the

expressions for V and W into the continuum limit of the string equation (35) it splits

into the system of equations
∮

γ

dλ

2πi
Vλ(λ)V(λ, ǫ; a, b) = T,

∮

γ

dλ

2πi
Vλ(λ)V(λ, ǫ; b, a) = T,

(117)

or, equivalently,
∮

γ

dλ

2πi
Vλ(λ)Vk(λ; a0, b0, . . . , ak, bk) = δk,0T,

∮

γ

dλ

2πi
Vλ(λ)Vk(λ; b0, a0, . . . , bk, ak) = δk,0T.

(118)

For k = 0 we have a system of two hodograph equations for a0(T ) and b0(T ),

W (a0, b0) = T, W (b0, a0) = T, (119)

where

W (a0, b0) =

∮

γ

dλ

2πi
Vλ(λ)

λ+ a0 − b0
w

. (120)

Note that in view of (110) the equations (119) are equivalent to the equations (21) which

determine the two-cut support for a model with coupling constants g/T .

Finally, we say that (a0, b0) is a regular solution of (119) if the Jacobian determinant

of (119) with respect to (a0, b0) does not vanish. Otherwise (a0, b0) is called a singular

solution. Equation (116) shows that if (a0, b0) is a regular solution of (119), then the

system (118) determines recursively all the coefficients ak and bk as locally smooth

functions of T .

6.2. The quartic model in the regular two-cut case

As we have discussed at the end of section 2, for g2 < 0 and T < Tc = g22/(4g4) the

quartic model (23) is in the regular two-cut case, and we can calculate expansions of

the form (103). The first coefficient V0 can be read off directly from (108). Thus, the

string equations (118) for k = 0 are

2g2a0 + 4g4(a
2
0 + 2b0a0) = T,

2g2b0 + 4g4(b
2
0 + 2a0b0) = T,

(121)
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and we find immediately the leading coefficients

a0(T ) =

√
g22 − 4Tg4 − g2

4g4
, (122)

b0(T ) =
−
√

g22 − 4Tg4 − g2
4g4

. (123)

Then we solve (107) for the next term V1, of which in the notation of equation (115)

we need the following coefficients:

R1,0 = 2a1, S1,0 = 0, S1,1 = 2(a0 + b0)a1 + 4a0b1 + 2a0b
′′
0. (124)

With these expressions we find that the string equations (118) for k = 1 are

2g2a1 + 2g4(4a0a1 + 4b0a1 + 4a0b1 + 2a0b
′′
0) = 0,

2g2b1 + 2g4(4b0b1 + 4a0b1 + 4b0a1 + 2b0a
′′
0) = 0.

(125)

Hence, the second coefficients are

a1(T ) = −g4(g
2
2 + 4Tg4 − g2

√
g22 − 4Tg4)

2(g22 − 4Tg4)5/2
, (126)

b1(T ) =
g4(g

2
2 + 4Tg4 + g2

√
g22 − 4Tg4)

2(g22 − 4Tg4)5/2
. (127)

In figure 3 we illustrate these asymptotic behaviors for a quartic model with g2 = −2 and

g4 = 1, so that the critical temperature is Tc = 1. For 0 < T < Tc we plot the leading

coefficients a0(T ) and b0(T ) of the asymptotic expansions for the odd and even terms

of the recursion coefficient in the two-cut region given by equations (122) and (123)

respectively, while for T > Tc we plot the leading coefficient r0(T ) of the asymptotic

expansion in the one-cut region given by equation (69). As the temperature increases

through Tc the model features a merging of two cuts [20]. In fact this is the simplest

example of the general processes that we classify in the next section.

7. Critical two-cut models with merging of two cuts

In order to classify critical models in the two-cut case it is useful to consider the function

F (a0, b0) =

∮

γ

dλ

2πi
Vλ(λ)w(λ, a0, b0) + T (a0 + b0), (128)

where

w(λ, a0, b0)
2 = λ2 − 2λ(a0 + b0) + (b0 − a0)

2, (129)

because the solutions of the system

∂F

∂a0
= 0,

∂F

∂b0
= 0, (130)

are precisely the solutions of the hodograph system (119). Moreover, it is convenient to

change variables from (a0, b0) to a new pair (σ, τ) defined by

σ = α2 = a0 + b0 − 2
√
a0b0, τ = β2 = a0 + b0 + 2

√
a0b0, (131)
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Figure 3. Leading terms r0, a0 and b0 as a function of T for the quartic model

V (λ) = g2λ+ g4λ
2 with g2 = −2 and g4 = 1.

where α and β determine the endpoints of the eigenvalue support J (cf. (110)). In these

new variables the function (128) is given by

F (σ, τ) =

∮

γ

dλ

2πi
Vλ(λ)

√
(λ− σ)(λ− τ) +

T

2
(σ + τ), (132)

and satisfies the Euler-Poisson-Darboux equation [29]

2(τ − σ)
∂2F

∂σ∂τ
=

∂F

∂σ
− ∂F

∂τ
. (133)

Hence it is clearly advantageous to analyze the solutions (a0, b0) of the hodograph

system (130) in terms of the solutions (σ, τ) of the transformed system

∂F

∂σ
= 0,

∂F

∂τ
= 0, (134)

because for any solution (σ, τ) of (134) with σ 6= τ the Euler-Poisson-Darboux equation

permits to express any mixed derivative ∂i+jF/∂σi∂τ j as a linear combination of

unmixed derivatives ∂nF/∂σn and ∂mF/∂τm.

7.1. Merging of two cuts

We are interested in solutions of (134) with σ = 0 (i.e. a0 = b0). Since

∂F

∂a0
=

(
1−

√
b0
a0

)
∂F

∂σ
+

(
1 +

√
b0
a0

)
∂F

∂τ
, (135)

∂F

∂b0
=

(
1−

√
a0
b0

)
∂F

∂σ
+

(
1 +

√
a0
b0

)
∂F

∂τ
, (136)
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we have that ∣∣∣∣∣∣∣∣∣∣

∂2F

∂a20

∂2F

∂a0∂b0

∂2F

∂a0∂b0

∂2F

∂b20

∣∣∣∣∣∣∣∣∣∣

= 32
∂2F

∂τ 2
(0, τ)

∂F

∂σ
(0, τ) = 0. (137)

Therefore these solutions of (134) with σ = 0 determine singular solutions of (130).

Moreover, the corresponding matrix models have an eigenvalue support with α = 0 so

that they represent a critical process of merging of two cuts. This motivates our next

definition:

Definition 2 A solution (σ, τ) of (134) with σ = 0 and τ > 0 determines a singular

solution of the system (130) with a merging of two cuts of order m ≥ 1 if

∂kF

∂σk
(0, τ) = 0, k = 1, . . . , m;

∂m+1F

∂σm+1
(0, τ) 6= 0,

∂F

∂τ
(0, τ) = 0,

∂2F

∂τ 2
(0, τ) 6= 0.

(138)

For these solutions of (130) we have that

∂k+1F

∂σk+1
(0, τ) = −(2k − 1)!!

2k+1

∮

γ

dλ

2πi

(λ− τ)Vλ

λkw

= − (2k − 1)!!

2k+1(k − 1)!

∂k−1

∂λk−1

(
(λ− τ)h̃(λ)

)∣∣∣∣
λ=0

, k ≥ 1, (139)

where h̃ is the polynomial in λ = z2 given by

h̃(λ) =
h(z)

2z
. (140)

Thus h(z) has a zero of order 2m− 1 at z = 0 and the eigenvalue density ρ(x) verifies

ρ(x) ∼ x2m, x → 0. (141)

These critical models are related to conformal (2m, 1) minimal models [16, 17].

Note that there is a difference between the definitions of order of a singular solution

in the one-cut (definition 1) and two-cut (definition 2) cases, which in turn entails a

difference in the statements of our main results (theorems 2 and 3). However, with

these definitions we achieve a complete analogy in the form of both scaling expansion

parameters ǭ (78) and (151) as well as the corresponding string equations (80) and (160).

7.2. Merging of two cuts in the quartic model

As an illustration of these ideas, consider the quartic model (23). The function (132) is

F (σ, τ) =
1

8
(−g4σ

3 − g2σ
2 + g4τσ

2 + 2g2τσ + g4τ
2σ − g2τ

2 − g4τ
3) +

1

2
T (σ + τ). (142)

It follows at once that at the critical temperature Tc = g22/(4g4) we have a solution

(0, τc) of the system

∂F

∂σ
(0, τc) = 0,

∂F

∂τ
(0, τc) = 0, (143)
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given by τc = −g2/g4. Moreover, since

∂2F

∂σ2
(0, τc) = −g2

2
6= 0, (144)

this solution describes a merging of two cuts of order m = 1 .

7.3. Double-scaling limit and string equations

Let us consider a matrix model V (λ)/T with a critical point at T = Tc such that locally

for T < Tc the model is a regular two-cut model, and at T = Tc the model features a

singular two-cut merging of order m as described in the previous subsection. Then

lim
T→Tc−0

a0(T ) = lim
T→Tc−0

b0(T ) = rc, (145)

so that the two cuts of the eigenvalue support merge to J = (−βc, βc) where β2
c = 4rc,

and the hodograph system (119) reduces to
∮

γ

dλ

2πi
Vλ(λ)

λ

wc

= Tc,

∮

γ

dλ

2πi
Vλ(λ)

1

wc
= 0,

(146)

where

wc =
√

λ(λ− 4rc). (147)

Note that the hodograph system (146) in effect determines both Tc and rc in terms of

the coupling parameters g. Moreover, the definition (138) of singular solution with a

merging of order m reads
∮

γ

dλ

2πi

(λ− 4rc)
k+1Vλ

w2k+1
c

= 0, k = 1, . . . , m− 1, (148)

∮

γ

dλ

2πi

(λ− 4rc)
m+1Vλ

w2m+1
c

6= 0,

∮

γ

dλ

2πi

λ2Vλ

w3
c

6= 0. (149)

Equations (148) and (149) characterize the subset of the phase space G representing

these critical models.

As in our study of critical one-cut models, the implicit function theorem cannot be

applied to solve (59) near T = Tc, with a0(Tc) = b0(Tc) = rc. In analogy with (79) we

regularize this critical behavior in the continuum limit

n → ∞, N → ∞,
2n

N
→ T (150)

using a scaling variable x and a scaled expansion parameter ǭ defined by

ǭ = ǫ1/(2m+1) = N−1/(2m+1), (151)

T = Tc + ǭ2mx. (152)

The continuum limit of the recurrence coefficient can be written as

r2n+1,N ∼ a[1](ǭ, x), r2n,N ∼ b(ǭ, x), (153)
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where we denote f[k̄](x) = f(x + kǭ) and a(ǭ, x) and b(ǭ, x) denote asymptotic power

series

a(ǭ, x) = rc +
∑

k≥1

ak(x)ǭ
k, b(ǭ, x) = rc +

∑

k≥1

bk(x)ǭ
k. (154)

We introduce again two generating functions

V(λ, ǭ; a, b) =
∑

k≥0

V[k](λ; a1, b1, . . . , ak, bk)ǭ
k,

W(λ, ǭ; a, b) =
∑

k≥0

W[k](λ; a1, b1, . . . , ak, bk)ǭ
k,

(155)

such that the asymptotic behaviors of the odd and even terms of the generating function

Un are given respectively by

U2n+1(λ) ∼ V[1](λ, ǭ; a, b), U2n(λ) ∼ W(λ, ǭ; a, b). (156)

Thus the continuum limit of the quadratic equation (38) for Un splits into the system

a(V +W[−1])(V +W[1]) = λ(V2 − 1),

b(W + V[−1])(W + V[1]) = λ(W2 − 1).
(157)

Identification of the coefficients of ǭ0 in (157) leads to

V[0] = W[0] =
λ

wc
, (158)

and recursive identification of the coefficients of ǭk for k > 0 to a system of two linear

equations for V[k] and W[k] of the form

(2λ− 4rc)V
[k] − 4rcW

[k] = · · · ,
−4rcV

[k] + (2λ− 4rc)W
[k] = · · · ,

(159)

where the right-hand sides are functions of a1, b1, . . . , ak, bk and their x derivatives. Once

more, the determinant of the coefficients does not vanish and (157) uniquely determine

the coefficients V[k] and W[k] as polynomials in the functions a1, b1, . . . , ak, bk and their

x derivatives.

Finally, the continuum limit of the string equation (35) splits into the system
∮

γ

dλ

2πi
Vλ(λ)V(λ, ǭ; a, b) = Tc + ǭ2mx,

∮

γ

dλ

2πi
Vλ(λ)W(λ, ǭ; a, b) = Tc + ǭ2mx.

(160)

8. Critical models with merging of two cuts and the Painlevé II hierarchy

In this section we finally show how a particular class of solutions of the string equations

for two-cut merging models is related to the Painlevé II hierarchy, but before embarking

on this calculation we anticipate informally our result, recall briefly our two-step

procedure to calculate the formal asymptotic expansion of the recurrence coefficient

and discuss the source of the technical complications we will have to deal with.
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Theorem 3 will essentially state that the coefficient a1(x) in the formal asymptotic

expansion of the recurrence coefficient (154) for a symmetric solution of a two-cut

merging model of order m satisfies the m-th Painlevé II equation. The general

strategy to prove this theorem is again (i) to calculate large N expansions for the

generating functions V and W whose coefficients are functions of the ak and bk (and

their derivatives) by using the continuum limit of the “separated odd-n even-n” version

of theorem 1 given by equations (157), and (ii) to substitute these expansions for V

and W into the continuum limit of the “separated odd-n even-n” version of the string

equation (35) given by equations (160), perform the contour integrations, and solve

recursively to obtain differential equations for the coefficients ak and bk of the odd-n

and even-n terms of the rn,N expansions. This recursive solution is, however, difficult to

carry out in full generality because the order k in (155) at which the x dependent term

in (160) enters the expansions depends on the order of the critical model.

8.1. Symmetric solutions of the string equations for two-cut merging models

In this section we discuss asymptotic expansions of the recurrence coefficient (154) for

which bk(x) = (−1)kak(x) (symmetric solutions), and show that for these solutions the

odd and even generating functions V and W can be replaced by a single generating

function V.

Definition 3 A solution a(ǭ, x), b(ǭ, x) of the system (160) is said to be symmetric if

b(ǭ, x) = a(−ǭ, x). (161)

Note that if the functions V(λ, ǭ; a(ǭ, x), a(−ǭ, x)) and W(λ, ǭ; a(ǭ, x), a(−ǭ, x)) satisfy

the scaled quadratic system (157) so do the functions

Ṽ(λ, ǭ; a(ǭ, x), a(−ǭ, x)) = W(λ,−ǭ; a(−ǭ, x), a(ǭ, x))

W̃(λ, ǭ; a(ǭ, x), a(−ǭ, x), ) = V(λ,−ǭ; a(−ǭ, x), a(ǭ, x)).
(162)

Hence symmetric solutions satisfy

W(λ, ǭ; a(ǭ, x), a(−ǭ, x)) = V(λ,−ǭ; a(−ǭ, x), a(ǭ, x)). (163)

Consequently, it is convenient to introduce the function

V(λ, ǭ; x) = V(λ, ǭ; a(ǭ, x), a(−ǭ, x)) (164)

since the scaled string equations (160) reduce to a single equation for V, namely
∮

γ

dλ

2πi
Vλ(λ)V

[k](λ; a1, . . . , ak) = δk,0Tc + δk,2mx, k ≥ 0. (165)

The function V has an expansion of the form

V(λ, ǭ; x) =
∑

k≥0

V
[k](λ; a1, . . . , ak)ǭ

k, (166)

and the corresponding coefficients V[k] are determined using the first equation of (157)

a(ǭ, x)(V(λ, ǭ; x)+V(λ,−ǭ; x− ǭ))(V(λ, ǭ; x)+V(λ,−ǭ; x+ ǭ)) = λ(V(λ, ǭ; x)2−1).(167)
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For example, the first few coefficients are

V
[0] =

λ

wc
, (168)

V
[1] =

2a1
wc

, (169)

V
[2] =

2a2
wc

+
λ(8rca2 − 2a21)

w3
c

, (170)

V
[3] =

2a3
wc

+
8r2ca

′′
1 − 4a31 + λ(4a1a2 − 2rca

′′
1)

w3
c

. (171)

8.2. Structure of the coefficients V[k]

To proceed further we need a general expression for the structure of the coefficients

V
[k] as functions of a1, . . . , ak and their x derivatives, which could be derived by a

direct analysis of the quadratic equation (167). Although straightforward in principle,

in practice the resulting intermediate expressions are complicated. We achieve a certain

simplification by forming suitable linear combinations of shifted equations that exhibit

well-defined parity. In fact, we resort to this method twice (propositions 1 and 2).

Proposition 1 The following linear expressions in V are even functions of ǭ:

λV(λ, ǭ; x− ǭ/2)− a(ǭ, x− ǭ/2) [V(λ, ǭ; x− ǭ/2) + V(λ,−ǭ; x− 3ǭ/2)] , (172)

λV(λ, ǭ; x+ ǭ/2)− a(ǭ, x+ ǭ/2) [V(λ, ǭ; x+ ǭ/2) + V(λ,−ǭ; x+ 3ǭ/2)] . (173)

Proof. If we perform the shift x → x− ǭ/2 in (167) we get

λ(V(ǭ; x− ǭ/2)2 − 1) = a(ǭ, x− ǭ/2) [V(ǭ; x− ǭ/2) + V(−ǭ; x− 3ǭ/2)]

× [V(ǭ; x− ǭ/2) + V(−ǭ; x+ ǭ/2)] . (174)

The difference between this equation and its version with the substitution ǭ → −ǭ yields

λ [V(ǭ; x− ǭ/2)− V(−ǭ; +ǭ/2)] = a(ǭ, x− ǭ/2) [V(ǭ; x− ǭ/2) + V(−ǭ; x− 3ǭ/2)]

− a(−ǭ, x+ ǭ/2) [V(−ǭ; x+ ǭ/2) + V(ǭ; x+ 3ǭ/2)] (175)

which means that (172) holds. Similarly, if we introduce the shift x → x+ ǭ/2 in (167)

and perform the difference between the resulting equation and its version with the

substitution ǭ → −ǭ we get (173).

The vanishing of the coefficients for odd powers of ǭ in (172) and (173) provide

us with a series of λ-dependent constraints. To take advantage of these constraints we

first make explicit the λ dependence of V in a convenient form. Thus, using recursion

in (167) we deduce that the functions V[k] can be written as

V
[2i] =

1

wc

(
C [2i] +

i∑

j=1

(
fj(λ)A

[2i]
j + gj(λ)B

[2i]
j

))
, i ≥ 1,

V
[2i+1] =

1

wc

(
C [2i+1] +

i∑

j=1

(
fj(λ)A

[2i+1]
j + gj(λ)B

[2i+1]
j

))
, i ≥ 1,

(176)
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where

fj(λ) =
(λ− 4rc)

j+1

w2j
c

=
λ− 4rc

λj
, gj(λ) =

λj+1

w2j
c

=
λ

(λ− 4rc)j
(177)

and A
[k]
j , B

[k]
j , C [k] are λ-independent polynomials in a1, . . . , ak and their x derivatives.

Then V can be expressed in the form

V =
1

wc

(
λ+ V0 +

∑

j≥1

(
fj(λ)V

[j]
0 + gj(λ)V

[j]
1

))
, (178)

where

V0 =
∑

k≥1

C [k]ǭk, V
[j]
0 =

∑

i≥0

A
[2j+i]
j ǭ2j+i, V

[j]
1 =

∑

i≥0

B
[2j+i]
j ǭ2j+i. (179)

For example, from (170) and (171) we find

A
[2]
1 = 0, A

[3]
1 =

1

2
a
′′
1 −

a
3
1

4r2c
,

B
[2]
1 =

1

2rc
(4rca2 − a

2
1), B

[3]
1 =

a1

4r2c
(4rca2 − a

2
1),

C [2] =
a
2
1

2rc
, C [3] = 2a3 −

1

2
a
′′
1 +

a1

2r2c
(a21 − 2rca2).

(180)

Proposition 2 The following expressions are even functions of ǭ:

V0(ǭ; x− ǭ/2) + V
[1]
0 (ǭ; x− ǭ/2) + V

[1]
1 (ǭ; x− ǭ/2)− 2a(ǭ, x− ǭ/2),

4rcV
[1]
0 (ǭ; x− ǭ/2) + a(ǭ, x− ǭ/2)

[
V0(ǭ; x− ǭ/2) + V0(−ǭ; x− 3ǭ/2)

]
,

V
[j+1]
0 (ǭ; x− ǭ/2)− a(ǭ, x− ǭ/2)

[
V

[j]
0 (ǭ; x− ǭ/2) + V

[j]
0 (−ǭ; x− 3ǭ/2)

]
,

4rcV
[j]
1 (ǭ; x− ǭ/2) + V

[j+1]
1 (ǭ; x− ǭ/2)

− a(ǭ, x− ǭ/2)
[
V

[j]
1 (ǭ; x− ǭ/2) + V

[j]
1 (−ǭ; x− 3ǭ/2)

]
.

(181)

Proof. It is enough to substitute (178) into the expression (172) and identify coefficients

in the λ-dependent functions λ, 1, fj(λ), gj(λ) (j ≥ 1) taking into account that

λf1 = λ− 4rc, λg1 = λ+ 4rcg1,

λfj = fj−1, λgj = −4rcgj + gj−1, j ≥ 2.

Equating to zero the coefficients of the odd powers of ǭ in the third and fourth

expressions (181) we obtain a series of equations involving the functions A
[k]
j , B

[k]
j and

ai(i = 1, . . . , k). Moreover, since (173) follows from (172) under the substitutions

V(ǭ; x) → V(−ǭ; x), a(ǭ, x) → a(−ǭ, x), (182)

then the relations provided by (173) are those supplied by (181) with the substitutions

A
[k]
j → (−1)kA

[k]
j , B

[k]
j → (−1)kB

[k]
j , ai → (−1)iai. (183)
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Setting to zero the coefficients of ǭ2j+1 and ǭ2j+3 in (181) we obtain

− a1A
[2j]
j + rc(A

[2j]
j )′ = 0, (184)

−2a1A
[2j+2]
j + A

[2j+3]
j+1 − a1(A

[2j+1]
j )′ + 2rc(A

[2j+2]
j )′ − 1

2
(A

[2j+2]
j+1 )′ + rc(A

[2j+1]
j )′′ = 0, (185)

−a1B
[2j]
j + 2rcB

[2j+1]
j = 0, (186)

−2a3B
[2j]
j − 2a1B

[2j+2]
j + 4rcB

[2j+3]
j +B

[2j+3]
j+1 +B

[2j]
j a

′
2

+ 2a2(B
[2j]
j )′ − a

′
1(B

[2j]
j )′ − a1(B

[2j+1]
j )′ − 1

2
(B

[2j+2]
j+1 )′ (187)

− 1

4
B

[2j]
j a

′′
1 −

5

4
a1(B

[2j]
j )′′ +

3

2
rc(B

[2j+1]
j )′′ +

1

2
rc(B

[2j]
j )′′′ = 0. (188)

If we now sum and subtract these equations with their corresponding versions under the

substitution (183) we get for j ≥ 1

A
[2j]
j = 0, (189)

2rc∂xA
[2j+2]
j = a1∂xA

[2j+1]
j , (190)

A
[2j+3]
j+1 = −rc∂

2
xA

[2j+1]
j + 2a1A

[2j+2]
j , (191)

2rcB
[2j+1]
j = a1B

[2j]
j , (192)

2rc∂xB
[2j+2]
j+1 = (2r2c∂

3
x + 2(4rca2 − a

2
1)∂x + (4rca2 − a

2
1)x)B

[2j]
j . (193)

Furthermore, using the expression (180) for B
[2]
1 we have that (193) can be rewritten as

∂xB
[2j+2]
j+1 = (rc∂

3
x + 2B

[2]
1 ∂x + (B

[2]
1 )x)B

[2j]
j . (194)

8.3. Symmetric solutions of the string equations and the Painlevé II hierarchy

Let us see now how the Painlevé II hierarchy emerges from the string equation of two-cut

merging models. Substituting (178) into (165) and identifying powers of ǭ we obtain an

infinite series Σi (i ≥ 0) of systems of two equations. The system Σ0 is (146), and the

system Σi for i ≥ 1 is given by

i∑

j=1

(ϕjA
[2i]
j (a1, . . . , a2i) + γjB

[2i]
j (a1, . . . , a2i)) = δi,mx,

i∑

j=1

(ϕjA
[2i+1]
j (a1, . . . , a2i+1) + γjB

[2i+1]
j (a1, . . . , a2i+1)) = 0, i ≥ 1,

(195)

where

ϕj =

∮

γ

dλ

2πi

Vλ

wc
fj(λ), γj =

∮

γ

dλ

2πi

Vλ

wc
gj(λ), j ≥ 1. (196)

Moreover, in view of the constraints (148)–(149) for two-cut merging singular models of

order m we have

ϕ1 = · · · = ϕm−1 = 0, ϕm 6= 0, γ1 6= 0. (197)
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Therefore the first m systems (195) reduce to

i∑

j=1

γjB
[2i]
j = 0,

i∑

j=1

γjB
[2i+1]
j = 0,

(198)

for i = 1, . . . , m− 1, and

ϕmA
[2m]
m +

m∑

j=1

γjB
[2m]
j = x,

ϕmA
[2m+1]
m +

m∑

j=1

γjB
[2m+1]
j = 0,

(199)

for i = m. We are now ready to prove the following theorem:

Theorem 3 The coefficient u = a1 for a symmetric solution of a two-cut merging model

of order m satisfies the m-th Painlevé II equation (Pm
II equation)

2rcϕm(rc)Rm(u) + xu = 0, (200)

where Rm(u) is the differential polynomial in u determined recursively by

Rm+1 = −rc∂xxRm + 2uSm,

2rc∂xSm = u∂xRm,
(201)

with

R0 = − 1

2rc
ux, S0 = − 1

8r2c
u2, (202)

and

ϕm(rc) =

∮

γ

dλ

2πi

(λ− 4rc)
m+1Vλ

w2m+1
c

. (203)

Proof From (198) we see that the system Σ1 is

γ1B
[2]
1 = 0, γ1B

[3]
1 = 0, (204)

so that B
[2]
1 = B

[3]
1 ≡ 0 . Then using (190) and (194) recursively we get

B
[2j]
j = B

[2j+1]
j ≡ 0, j ≥ 1. (205)

Equating to zero the coefficients of ǭ2j+5 and ǭ2j+7 in the fourth expression of (181) we

obtain

2rcB
[2j+3]
j = a1B

[2j+2]
j , (206)

∂xB
[2j+4]
j+1 = (−rc∂

3
x + 2B

[2]
1 ∂x + (B

[2]
1 )x)B

[2j+2]
j . (207)

Then, since the system Σ2 is

γ1B
[4]
1 = 0, γ1B

[5]
1 = 0, (208)
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it follows that B
[4]
1 = B

[5]
1 ≡ 0. Hence, using (206) and (207) recursively we get

B
[2j+2]
j = B

[2j+3]
j ≡ 0, j ≥ 1. (209)

Repeating this process using the systems Σi up to i = m− 1 we get

B
[2m]
j = B

[2m+1]
j = 0, j = 2, . . . , m, (210)

and

2rcB
[2m+1]
1 = a1B

[2m]
1 . (211)

Moreover, taking into account (189), the system Σm reduces to

γ1B
[2m]
1 = x,

ϕmA
[2m+1]
m + γ1B

[2m+1]
1 = 0.

(212)

Therefore, using (211) we get

2rcϕmA
[2m+1]
m (a1) + a1x = 0, (213)

which in view of (190) and (191) proves that a1 is a solution of the (m− 1)-th member

of the Painlevé II hierarchy (201) with

Rm(u) = A[2m+1]
m (u), Sm = A[2m+2]

m (u). (214)

Moreover, taking into account (201) and the expression of A
[3]
1 (u) in (110) we get (202).

Again, a more precise notation for Rm(u) and ϕm(rc) in theorem 3 would be

Rm(rc, u) and ϕm(rc, g), which emphasizes the explicit dependence on the critical value

rc and the coupling constants g.

8.4. The quartic model and the P 1
II equation

Although the derivation of theorem 3 has been somewhat complicated, its applications

are fairly simple. For example, we have already seen that the quartic model (23) at

Tc = g22/(4g4) is a two-cut merging model of order m = 1 with rc = −g2/(4g4). It also

follows that ϕ1 = 2g2. Thus we have that the first coefficient u = a1 of a symmetric

solution (161) of the corresponding string equation in the double scaling limit satisfies

the P 1
II equation [22]

g22uxx − 2g4(4g4u
3 + xu) = 0. (215)

9. Concluding remarks

In this paper we have presented a method to characterize and compute the large N

formal asymptotics of regular and critical Hermitian matrix models with general even

potentials in the one-cut and two-cut cases. This method also leads to an explicit

formulation, in terms of coupling constants and critical parameters, of the members of

the Painlevé I and Painlevé II hierarchies associated with one-cut and two-cut critical

models respectively.
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As we pointed out in the introduction, the asymptotic form of the recurrence

coefficient in the multi-cut case in general is not represented by (integer or fractional)

power series in N−1 but involves a quasi-periodic dependence on N . Asymptotic

expansions of the recurrence coefficients containing explicitly this quasi-periodic

dependence on N have been considered by Bleher and Eynard [21] to prove the presence

of the Painlevé II hierarchy in a class of nonsymmetric models with merging of two cuts.

It would be interesting to investigate if our method can be generalized to deal with

this type of asymptotic expansions. This generalization would require new appropriate

formulations of the continuum limits for both the recurrence coefficients rn,N and sn,N , as

well as for the generating function Un,N . A possible application could be the investigation

of critical models featuring the birth of a cut [30, 31], which do not seem to correspond

to any conformal field theory and it is not clear if any integrable equation underlies the

asymptotics of the associated recurrence coefficients in the double scaling limit.
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