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ON THE GENUS OF MEROMORPHIC FUNCTIONS

VICENTE MUÑOZ AND RICARDO PÉREZ MARCO

Abstract. We define the class of Left Located Divisor (LLD) meromorphic func-
tions and their vertical order m0(f) and their convergence exponent d(f). When
m0(f) ≤ d(f) we prove that their Weierstrass genus is minimal. This explains
the phenomena that many classical functions have minimal Weierstrass genus, for
example Dirichlet series, the Γ-function, and trigonometric functions.

1. LLD meromorphic functions. Meromorphic functions f on C, of the variable
s ∈ C, considered in this article are assumed to be of finite order o = o(f). We recall
that the order o(f) is defined as

o(f) = lim sup
R→+∞

log log ||f ||C0(B(0,R))

logR
.

We study in this article Dirichlet series, and more generally the class of meromor-
phic of finite order with Left Located Divisor (LLD), which we call LLD meromorphic
functions:

Definition 1. (LLD meromorphic functions) A LLD meromorphic function is

a function f of finite order and left located divisor

σ1 = sup
ρ∈f−1({0,∞})

ℜρ < +∞ .

The properties that we establish in this article are invariant by a real translation.
Thus considering g(s) = f(s+ σ1) instead of f we will assume that σ1 = 0.

Examples of LLD meromorphic functions are Dirichlet series, that we normalize in
this article such that f(s) → 1 when ℜs→ +∞. A Dirichlet series is of the form

(1) f(s) = 1 +
∑

n≥1

an e
−λns ,

with an ∈ C and
0 < λ1 < λ2 < . . .
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with (λn) a discrete set, that is either finite or λn → +∞, and such that we have a
half plane of absolute convergence, i.e., for some σ̄ ∈ R we have

∑

n≥1

|an| e
−λnσ̄ < +∞ .

We refer to [6] for classical background on Dirichlet series.

2. Convergence exponent. We denote by (ρ) the set of zeros and poles of f , and
the integer nρ is the multiplicity of ρ (positive for zeros and negative for poles, with
the convention nρ = 0 if ρ is neither a zero nor a pole).

Definition 2. (Convergence exponent) The convergence exponent of f is the

minimum integer d = d(f) ≥ 0 such that
∑

ρ6=0

|nρ| |ρ|
−d < +∞ .

We have d = 0 if and only if f has a finite divisor, i.e. it is a rational function
multiplied by the exponential of a polynomial, otherwise d ≥ 1.

It is classical that the convergence exponent satisfies d ≤ [o] + 1 (see [1]), thus
it is finite for functions of finite order, but there is no upper bound of the order
by the convergence exponent since we can always multiply by expP , where P is
a polynomial, increasing the order without changing the divisor, hence keeping the
same convergence exponent.

3. Genus. When f is a meromorphic function of finite order we have the Hadamard
factorization of f (see [1], p.208)

f(s) = sn0eQf (s)
∏

ρ6=0

(Ed−1(s/ρ))
nρ ,

where
En(z) = (1− z)ez+

1

2
z2+...+ 1

n
zn ,

and Qf is a polynomial, the Weierstrass polynomial, uniquely defined up to the
addition of an integer multiple of 2πi.

The discrepancy polynomial of the meromorphic function f is

Pf = −Q′
f .

We define the Hadamard part of f as

(2) fH(s) = sn0

∏

ρ6=0

(Ed−1(s/ρ))
nρ .

Note that f ′/f = f ′
H/fH − Pf .
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The degree gW = degQf is the Weierstrass genus. The genus of f is defined as the
integer

g = g(f) = max(gW (f), gH(f)) .

where gH(f) = d(f)−1 is the Hadamard genus, which is the degree of the polynomials
in the exponential of the factors En(z). From the definition we have d ≤ g + 1, and
g ≤ o ≤ g + 1 (see [1], p.209).

We set the following useful definition:

Definition 3. (Hadamard and Weierstrass type) A meromorphic function f
is of Hadamard type when g(f) = gH(f) = d(f) − 1 ≥ gW (f). It is of Weierstrass

type when g(f) = gW (f) > gH(f).

Many classical functions are of Hadamard type. One of the purposes of the article
is to explain why this holds.

4. Vertical order. For a LLD meromorphic function we look at the growth of its
logarithmic derivative on the right half plane. This growth is always polynomial
(proof in Appendix 1).

Proposition 4. The logarithmic derivative of a LLD meromorphic function has poly-

nomial growth on a right half plane, i.e. for σ2 > max(0, σ1), and for ℜs > σ2,
∣

∣

∣

∣

f ′(s)

f(s)

∣

∣

∣

∣

≤ C0|s|
max(d,gW−1) ,

more precisely we have
∣

∣

∣

∣

f ′
H(s)

fH(s)

∣

∣

∣

∣

≤ C0|s|
d

Remark 5. The exponent d is best possible in the last estimate (see the example
constructed in Appendix 2).

We define the vertical order as follows:

Definition 6. (Vertical order) The vertical order of a meromorphic function f
with left located divisor is the minimal integer m0 = m0(f) ≥ 0 such that for c > σ1,
c 6= 0,

|c+ it|−m0
f ′

f
(c+ it) ∈ L1(R) .

Lemma 7. This definition does not depend on the choice of c.

This Lemma is proved in Appendix 3.

From the estimate in Proposition 4 we have that m0(fH) ≤ d + 2. But we can do
better:
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Proposition 8. We have m0(fH) ≤ d+ 1.

For a Dirichlet series normalized as in (1) we have that f(s) → 1 and f ′(s) ∼
−λ1a1e

−λ1s uniformly with ℜs→ +∞, thus m0(f) = 2.

In this article we say that a distribution has order n if n is the minimal integer
such that it is the n-th derivative of a continuous function (there is no consensus in
the classical literature on the definition of order of a distribution, for example see [8]
and [10]). Proposition 4 implies that the inverse Laplace transform L−1(f ′/f) is a
distribution of finite order. This is because we have an explicit formula for the inverse
Laplace transform. We recall (see [10]) that

L−1(F )(t) =
1

2π

∫

R

F (c+ iu)e(c+iu)t du ,

if the integral is convergent, and

L−1(F )(t) = L−1
c (F )(t) =

1

2π

Dn

Dtn

∫

R

F (c+ iu)

(c+ iu)n
e(c+iu)t du ,

in general (the derivative is taken in distributional sense) which holds for some n
when F is holomorphic with polynomial growth on {ℜs > σ2} and it is independent
of c > σ2 > σ1.

A closely related integer to the vertical order is the distributional vertical order.

Definition 9. (Distributional vertical order) The distributional vertical order

of a LLD meromorphic function f is the minimal integer m ≥ 0 such that the inverse

Laplace transform

L−1(f ′/f)

is a distribution of order m.

It is clear that:

Proposition 10. We have m(f) ≤ m0(f).

5. Main results.

Theorem 11. For a LLD meromorphic function f we have that if m(f) 6= gW (f)+1
then f is of Hadamard type, i.e. gW (f) ≤ gH(f) = g(f).

Moreover, any Dirichlet series f is of Hadamard type, i.e. gW (f) ≤ gH(f) = g(f)
unconditionally.

Corollary 12. If a LLD meromorphic function f is of Weierstrass type then m(f) =
gW (f) + 1.
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The next corollary gives an analytic criterium to determine if a meromorphic func-
tion is of Hadamard type.

Corollary 13. If m0(f) ≤ d(f) then f is of Hadamard type.

The same argument used in the proof of the main theorem gives:

Theorem 14. Let f be a non-constant Dirichlet series. Then we have

d(f) ≥ 2 ,

and

o(f) ≥ 1 .

Before proving these results we need to introduce the Newton-Cramer distribution
and Poisson-Newton formula.

6. Newton-Cramer Distribution. In [7] we associate to the divisor div(f) =
∑

nρ ρ its Newton-Cramer distribution, which is given by the series

W (f) =
∑

nρ e
ρt

on R∗
+. This sum is only converging in R∗

+ in the distribution sense. The distribution
W (f) vanishes in R∗

−, and has some structure at 0. The precise definition follows (we
assume, in order to simplify, that ρ = 0 is not part of the divisor).

Definition 15. (Newton-Cramer distribution) The Newton-Cramer distribution

is

W (f) =
Dd

Dtd
(Ld(t)) ,

where Ld is the continuous function on R defined on R+ by

Ld(t) =
∑

ρ6=0

nρ

ρd
(eρt − 1)1R+

.

It is easy to see that the sum converges for t ≥ 0.

In this article, only the order of distributions plays a role, and the space of test
funcitons for which the distribution belong to the dual is not so important. The
distribution W (f) is Laplace transformable, that is, it can be paired with e−st on R+,
on some half-plane ℜs > σ0. Hence, the appropriate space of distributions to use is
the dual of the space of C∞ functions on R which decay faster than Ceα|t|, for some
C > 0, α > 0.

The main property of the Newton-Cramer distribution that we need follows from
its definition:
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Proposition 16. The Newton-Cramer distribution is the d-th derivative of a contin-

uous function.

7. Poisson-Newton formula. The Newton-Cramer distribution of f is linked to the
inverse Laplace transform of the logarithmic derivative f ′/f by the Poisson-Newton
formula (see [7]):

Theorem 17. (Poisson-Newton formula) For a LLD meromorphic function f
we have on R

W (f) =

gW−1
∑

l=0

clδ
(l)
0 + L−1(f ′/f) ,

where Pf(s) = c0 + c1s + . . .+ cgW−1s
gW−1 = −Q′

f (s) is the discrepancy polynomial.

When f is a Dirichlet function, the Laplace transform L−1(f ′/f) is purely atomic
with atoms in R∗

+. We can compute it explicitely as follows. On the half plane
ℜs > σ1, log f(s) is well defined taking the principal branch of the logarithm. Then
we can define the coefficients (bk) by

(3) − log f(s) = − log

(

1 +
∑

n≥1

an e
−λns

)

=
∑

k∈Λ
bk e

−〈λ,k〉s ,

where Λ = {k = (kn)n≥1 | kn ∈ N, ||k|| =
∑

|kn| < ∞, ||k|| ≥ 1}, and 〈λ,k〉 =
λ1k1+. . .+λlkl, where kn = 0 for n > l. Note that the coefficients (bk) are polynomials
on the (an). More precisely, we have

(4) bk =
(−1)||k||

||k||

||k||!
∏

j kj!

∏

j

a
kj
j .

Note that if the λn are Q-dependent then there are repetitions in the exponents of
(3).

Since L(e−λs) = δλ, we have

L−1(f ′/f) =
∑

k∈Λ
〈λ,k〉 bk δ〈λ,k〉 .

Note in particular that suppL−1(f ′/f) ⊂ [ǫ,+∞[ for some ǫ > 0.

8. Proof of the main results. The proof of Theorem 11 consists on inspecting the
orders of the distributions in both sides of the Poisson-Newton equation:

W (f) =

gW−1
∑

l=0

clδ
(l)
0 + L−1(f ′/f) .
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We will use that for two distributions U and V , if ord(U) 6= ord(V ) then

ord(U + V ) = max(ord(U), ord(V )) .

The left hand side is of order ≤ d since W (f) is the d-th derivative of a continuous
function.

Observe that the Dirac δ0 is of order 2, and δ
(l)
0 is of order l+ 2. In particular, the

first term of the right hand side in Poisson-Newton equation is of order gW + 1.

The second term of the right hand side is of order m(f) by definition of m(f).

To prove Theorem 11 we assume first that m < gW +1. Then the order of the right
hand side in Poisson-Newton formula is gW +1. Therefore d ≥ gW +1 so g = gH ≥ gW
and f is of Hadamard type.

We look at the second case when m > gW + 1. Then the order of the right hand
side is m, thus comparing with the left hand side, we get d ≥ m > gW + 1, therefore
g = gH > gW and f is again of Hadamard type. This proves the first statement of
the main theorem.

For a Dirichlet series f the distribution L−1(f ′/f) has support away from 0, there-
fore looking at the local order at 0 (which is smaller or equal than the global order)
of both sides of the equation we get that d ≥ gW + 1 unconditionally. This gives
g = gH ≥ gW and f is always of Hadamard type. This ends the proof of Theorem 11.

Now Corollary 12 is a direct application of the main theorem.

For Corollary 13 we observe that m0(f) ≤ d(f) gives m(f) ≤ m0(f) ≤ d(f) ≤
g(f) + 1. If the last inequality is an equality, then f is of Hadamard type and we are
done. Otherwise we have g = gW and m(f) < gW (f)+1 and using the main theorem
we get also that f is of Hadamard type, and g = gW = gH = d− 1.

For the proof of Theorem 14, we inspect as before the order of the distributions
in the Poisson-Newton-formula. The right hand side contains Dirac distributions at
the frequencies, hence it is at least a second derivative of a continuous function. In
the left hand side we have W (f) that is the d-th derivative of a continuous function.
This gives d ≥ 2.

Also we know that d ≤ o+ 1, hence o ≥ 1.

9. Proof of Poisson-Newton formula. Let us prove Theorem 17. We start from
the Hadamard factorization of f (assuming that ρ = 0 is not part of the divisor in
order to simplify).

f(s) = eQf (s)
∏

ρ

(Ed−1(s/ρ))
nρ ,
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We take its logarithmic derivative:

f ′/f = −Pf +
∑

ρ

nρ

E ′
d−1(s/ρ)

Ed−1(s/ρ)

= −Pf +
∑

ρ

nρ

(

1

ρ− s
+

d−2
∑

l=0

sl

ρl+1

)

(5)

Since for l ≥ 0

L(δ
(l)
0 ) = sl ,

the polynomial Pf is the Laplace transform

Pf = L
(

c0δ0 + c1δ
′
0 + . . .+ cg−1δ

(g−1)
0

)

.

It remains to prove that

L(W (f)) =
∑

ρ

nρ

(

1

ρ− s
+

d−2
∑

l=0

sl

ρl+1

)

.

We have

Dd

Dtd
(

(eρt − 1)1R+

)

= ρdeρt1R+
+

d
∑

l=0

ρd−1−lδ
(l)
0 ,

thus for a finite set A of zeros and poles of the divisor, we have

WA(f) =
∑

ρ∈A
nρρ

−d D
d

Dtd
(

eρt − 1
)

1R+

=
∑

ρ∈A
nρ

(

eρt1R+
+

d
∑

l=0

ρ−1−lδ
(l)
0

)

.

Now we have

L(eρt1R+
) =

1

ρ− s
,

so

L (WA(f)) =
∑

ρ∈A
nρ

(

1

ρ− s
+

d−2
∑

l=0

sl

ρl+1

)

,

and we are done taking the inverse Laplace transform.
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10. Application to trigonometric functions. We check that the sine function
is of Hadamard type. For this it is enough to consider the hyperbolic sine function
which is an entire function of order 1,

f(s) = sinh(s) =
es − e−s

2i
.

The zeros are, for k ∈ Z,

ρk = πik ,

thus sinh is a LLD entire function and d(f) = 2. Also we have

f ′(s)/f(s) = cosh(s)/ sinh(s) =
1 + e−2s

1− e−2s
→ 1

when ℜs→ +∞. Therefore m0(f) = 2.

Using Corollary 13 we get

Proposition 18. The function f(s) = sinh(s) is of Hadamard type.

This is something that we know from its Hadamard factorisation (due to Euler)

sinh(s) = s
∏

k∈Z∗

(

1−
s

πik

)

e
s

πik .

Corollary 19. The function f(s) = sin(s) is of Hadamard type.

11. Application to the Γ function. We check, without computing its Hadamard
factorisation, that the classical Γ function is of Hadamard type.

The Γ-function has no zeros and has simple poles at the negative integers. Thus it
is a LLD meromorphic function and d = 2. Stirling formula indicates that we must
have m0(Γ) = 2 and we check:

Lemma 20. For c > 0 we have for some constant C0 > 0 and for |u| ≥ 1
∣

∣

∣

∣

Γ′

Γ
(c+ iu)

∣

∣

∣

∣

≤ log |u|+ C0

and m0(Γ) = 2.

The classical Stirling’s asymptotics holds in a right cone, but we need the estimate
in a vertical line, thus we need to refine the classical estimate. We start with Binet’s
second formula (see [9] p.251):

log Γ(s) =

(

s−
1

2

)

log s− s+
1

2
log(2π) + ϕ(s) ,
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where

ϕ(s) = 2

∫ +∞

0

arctan(t/s)

e2πt − 1
dt .

Taking one derivative in the above formula, we get an identity for the digamma
function

ψ(s) =
Γ′(s)

Γ(s)
= log s−

1

2s
+ ϕ′(s) ,

and

ϕ′(s) = −2

∫ +∞

0

(

s

s2 + t2

)(

t

e2πt − 1

)

dt .

Since
∫ +∞

0

t

e2πt − 1
dt =

B2

4
=

1

24
,

and if s = c+ iu with c = ℜs > 0,
∣

∣

∣

∣

s

s2 + t2

∣

∣

∣

∣

≤
1

|c|
,

we have the estimate

|ϕ′(s)| ≤
1

24|c|
,

so |ψ(s)| ≤ log |s|+ C0, and the lemma follows.

Now we have m0(Γ) = 2 ≤ d(Γ) = 2 so the application of Corollary 13 gives:

Proposition 21. The Γ function is a meromorphic function of Hadamard type.

12. Application to the Riemann zeta function. The Riemann zeta function is
a Dirichlet series,

ζ(s) =

+∞
∑

n=1

n−s ,

and has a meromorphic extension of order 1 to the whole complex plane. So it is a
LLD meromorphic function.

We that d(ζ) ≤ 2 from the order 1, and d(ζ) ≥ 2 for the summation of the trivial
zeros that lie at the even negative integers, thus d(ζ) = 2.

The logarithmic derivative is bounded on vertical lines and so m0(ζ) = 2. Again,
using Corollary 13 we get:

Proposition 22. The Riemann zeta function ζ is a meromorphic function of Hadamard

type.
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13. Appendix 1: Proof of propositions 4 and 8. We start by considering the
analogue of (5) centered at σ1. This is

f ′/f = −Pf +
∑

ρ

nρ

(

1

ρ− s
+

d−2
∑

l=0

(s− σ1)
l

(ρ− σ1)l+1

)

We write f ′/f = −Pf +G, where G(s) =
∑

nρ gρ(s), where

gρ(s) =
1

ρ− s
+

d−2
∑

l=0

(s− σ1)
l

(ρ− σ1)l+1
=

(s− σ1)
d−1

(ρ− σ1)d−1

1

ρ− s

In order to prove Proposition 4, we need to bound |gρ(s)| ≤ C|s−σ1|
d|ρ−σ1|

−d, for a
uniform constant C, since

∑

nρ |ρ−σ1|
−d <∞. For this we need to bound uniformly

gρ(s) =
ρ− σ1

(s− σ1)(ρ− s)

on the half-plane ℜs > σ2.

If |σ1 − s| ≤ 1
2
|ρ− σ1| then |ρ − s| ≥ |ρ− σ1| − |σ1 − s| ≥ 1

2
|ρ − σ1|. So |gρ(s)| ≤

2
|s−σ1| ≤ C, as |s− σ1| ≥ σ2 − σ1 is bounded below.

If |σ1 − s| ≥ 1
2
|ρ − σ1| then |gρ(s)| ≤

2
|ρ−s| ≤ C, as |s − ρ| ≥ σ2 − σ1 is bounded

below.

We prove now Proposition 8. Fix c > σ1, and let a = c − σ1 > 0. We need to see
that G(s)|s− σ1|

−d−1 is integrable, and it is enough to see that

(6)

∫

Lc

|ρ− σ1|

|s− σ1|2|ρ− s|
ds

is bounded uniformly on ρ, for Lc = c+ iR.

We consider two sets:

• A = {s ∈ Lc | |ρ − σ1| ≤
3
2
|ρ − s|}. This is an infinite portion of Lc. The

integral is bounded by

3

2

∫

Lc

1

|s− σ1|2
ds <∞.

• B = {s ∈ Lc | |ρ− σ1| ≥
3
2
|ρ− s|}. This is the intersection of a disc of radius

2
3
|ρ− σ1| with Lc. So its length is bounded by 4

3
|ρ− σ1|. The integral there is

bounded by
4

3
max

{

|ρ− σ1|
2

|s− σ1|2|ρ− s|
| s ∈ B

}

.
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We have that |ρ − s| ≥ a, so |ρ − s|−1/2 ≤ 1√
a

≤ 1
2
, for a ≥ 4. Then

|ρ− s|+ |ρ− s|1/2 ≤ 3
2
|ρ− s| and

|ρ− s|+ |ρ− s|1/2 ≤ |ρ− σ1| ≤ |ρ− s|+ |s− σ1|.

So |ρ− s|1/2 ≤ |s− σ1| and

|ρ− σ1|
2

|s− σ1|2|ρ− s|
≤

(|ρ− s|+ |s− σ1|)
2

|s− σ1|2|ρ− s|
≤

1

|ρ− s|
+

2

|s− σ1|
+

|ρ− s|

|s− σ1|2
≤ 1 +

3

a
.

This proves that (6) is uniformly bounded.

14. Appendix 2: The exponent d in Proposition 4 is best possible. We
construct an example that has the sharp exponent.

We construct a meromorphic function with convergence exponent d = 1. More
precisely, let f be an entire function with zeros at ρ = n22ni, n ≥ 1, and with
multiplicities nρ = 2n. Then

∑

nρ|ρ|
−1 < ∞. The logarithmic derivative of such

function is given by

g =
f ′

f
=
∑ nρ

s− ρ

Now let us see that it is not controlled as |f ′/f | ≤ C|s|1−ǫ with ǫ > 0. For this
take s = c+ k22ki, k a fixed integer, c > 0. We decompose

g(s) =

k−1
∑

n=1

2n

c+ (k22k − n22n)i
+

2k

c
+

∞
∑

n=k+1

2n

c + (k22k − n22n)i

The first term is bounded by

k−1
∑

n=1

2n

k22k − (k − 1)22k−1
≤

2k−1

2k−1(k2 + 2k − 1)
< C0,

for some universal constant. The third term is bounded by

∑ 2n

n22n − k22k
≤
∑ 2n

n22n−1
< C1,

for another universal constant. Hence |g(s)| ≥ 2k

c
−C0−C1. For fixed c, take k large

enough. Then

|g(s)|

|s|1−ǫ
≥

2k/c− C0 − C1

(c2 + k42k+1)(1−ǫ)/2
≈

2ǫ

c k2−2ǫ
,

which gets as large as we wish.
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15. Appendix 3: Proof of Lemma 7. Fix c > σ1 and let m0 be the minimal
integer such that

∣

∣

∣

∣

(c+ it)−m0
f ′

f
(c + it)

∣

∣

∣

∣

∈ L1(R) .

Consider the holomorphic function

g(s) = s−m0
f ′(s)

f(s)

on the right half-plane ℜs ≥ c. The function F (t) = g(c+ it) satisfies the conditions
of the Representation Theorem 6.5.4 in [2] with α = 0, c = 0, and we get using the
last inequality of that Theorem

log |g(c′ + iu)| ≤ (c′ − c)π−1

∫

R

log |g(c+ it)|

(t− u)2 + (c′ − c)2
dt .

Now taking the exponential and using Jensen’s convexity inequality we get

|g(c′ + iu)| ≤ (c′ − c)π−1

∫

R

|g(c+ it)|

(t− u)2 + (c′ − c)2
dt .

Now Fubini gives

∫

R

|g(c′+iu)|du ≤ (c′−c)π−1

∫

R

(

|g(c+ it)|

∫

R

1

(t− u)2 + (c′ − c)2
du

)

dt =

∫

R

|g(c+it)|dt <∞.
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