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A quantitative description of pulses and wave trains in the spatially discrete Hodgkin-Huxley

model for myelinated nerves is given. Predictions of the shape and speed of the waves and the

thresholds for propagation failure are obtained. Our asymptotic predictions agree quite well with

numerical solutions of the model and describe wave patterns generated by repeated firing at a

boundary.

PACS numbers: 87.19.La,05.45.-a,82.40.Ck,02.30.Ks

I. INTRODUCTION

Understanding wave propagation in discrete excitable

media is challenging because of poorly understood phe-

nomena associated with spatial discreteness [1, 2, 3, 4, 5].

The study of the transmission of nerve impulses along

myelinated axons is a paradigmatic example. Myelinated

nerve fibers, such as the motor axons of vertebrates, are

covered almost everywhere by a thick insulating coat of

myelin. Only a fraction of the active membrane is ex-

posed, at small active nodes called Ranvier nodes. The

myelinated axons of motor nerves can be very long, and

contain hundreds or thousands of nodes [6]. The wave

activity jumps from one node to the next one giving rise

to “saltatory” propagation of impulses [7]. Saltatory con-

duction on myelinated nerve models has two important

features. One is the possibility of increasing the speed of

the nerve impulse while decreasing the diameter of the

nerve fiber [8]. The other is propagation failure when the

myelin coat is damaged [9], which causes diseases such as

multiple sclerosis.

The propagation of nerve impulses along a myelinated

fiber can be described by the spatially discrete Hodgkin-

Huxley system (HH) [8, 10]. For typical experimental

data, this system couples equations for two fast vari-

ables and two slow variables. Most analytical studies

of action potentials have focused on discrete FitzHugh-

Nagumo (FHN) models for one fast and one slow vari-

ables [1, 2, 11, 12, 13, 14] and discrete bistable equations

for the leading edge [3, 4, 5, 15, 16, 17]. Careful computa-

tional studies of models including more biological detail

were carried out in [18, 19, 20].

Numerical simulations show that reduced models in-

volving only one fast and one slow variables are quanti-

tatively inaccurate. Fig. 1 compares pulse solutions of

http://arXiv.org/abs/q-bio/0506005v1
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the full discrete Hodgkin-Huxley model (circles) and a

FitzHugh-Nagumo type reduction (asterisks) generated

by exciting the left end of a fiber. The pulse solutions

of the HH model are slower and narrower than the pulse

solutions of the FHN-like reduction. Discarding one of

the two fast variables produces a pulse with an increased

speed, as illustrated by Figure 1. To describe the prop-

agation of the pulse leading edge we need to keep the

two fast variables. Their evolution is described by a dis-

crete bistable equation coupled to an ordinary differential

equation. This system yields a Nagumo type equation (a

single discrete bistable equation) only in a very particular

limit. Similarly, discarding one of the slow variables pro-

duces a slightly wider pulse than the one described by the

two original slow variables. Moreover, FHN pulses and

HH pulses have different structures. Pulse solutions of

FHN-like models typically consist of two rigidly moving

wave fronts [2]. HH pulses are “triangular waves”: they

are formed by a leading wave front followed by a smooth

region, as shown in Figure 1.

In this paper we introduce an asymptotic strategy to

construct solitary pulses and wave trains in the discrete

HH model. Our asymptotic study exploits time scale sep-

aration to split the variables in two blocks. The leading

edge of the pulses is a wave front solution of the reduced

system involving the two fast variables. This selects the

speed of the wave. The two slow variables become rele-

vant to determine the width of the peaks. Our asymp-

totic constructions agree reasonably well with numeri-
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FIG. 1: Comparison of pulses for the HH model (1)-(5)

(circles), HH with hk + nk = h∗ + n∗ (crosses), HH with

mk = m∞(vk) (triangles) and the FHN-like system (6)-(7)

(asterisks): (a) D = 0.09, (b) D = 0.01. The pulses have been

generated by a short stimulation at k = 0 and have been su-

perimposed at a fixed time t. The pulse advances faster when

only one fast variable is kept (asterisks and triangles). All

variables are expressed in dimensionless units.

cal solutions for typical experimental data. For contin-

uous HH models, a quantitative approximation scheme

exploiting time scale separation was proposed in [21]. In

the discrete case, traveling impulses do not appear as so-

lutions of ordinary differential equations. Instead, more

complicated differential-difference equations have to be

analyzed.

The paper is organized as follows. In Section II we de-

scribe the discrete Hodgkin-Huxley model for myelinated

nerves. We present a few numerical solutions and dis-

cuss the reasons for the poor performance of FitzHugh-

Nagumo type reductions. Solitary pulses are constructed
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in Section III. Section IV studies wave train generation

at the boundary by periodic firing. In Section V, we de-

scribe the two main mechanisms for propagation failure,

related to damage in the myelin sheath and the action

of chemicals. Section VI contains our conclusions. In

Appendix A we recall the derivation of the model. Ap-

pendix B explains the nondimensionalization procedure.

Appendices C, D and E contain additional material on

pulses.

II. THE HODGKIN-HUXLEY MODEL FOR

MYELINATED NERVES

A. Dimensionless equations

The dimensionless Hodgkin-Huxley (HH) model for a

myelinated nerve axon is:

dvk

dt
+ I(vk, mk, nk, hk) = D(vk+1 − 2vk + vk−1), (1)

dmk

dt
= Λm(vk)

[

m∞(vk) − mk

]

, (2)

dnk

dt
= ǫΛn(vk)

[

n∞(vk) − nk

]

, (3)

dhk

dt
= ǫλΛh(vk)

[

h∞(vk) − hk

]

, (4)

with

I(v, m, n, h) = gKn4(v − VK) + gNam
3h(v − 1)

+gL(v − VL).

(5)

Here, vk is the ratio of the deviation from rest of the

membrane potential to a reference potential, nk is the

potassium activation, mk is the sodium activation and hk

the sodium inactivation. Appendix A recalls the deriva-

tion of the model. Appendix B details the procedure
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FIG. 2: Coefficient functions in the HH equations as functions

of vk = v, in dimensionless units.

we have followed to nondimensionalize the system. The

time scale is chosen by looking at the relaxation times

τn, τm and τh for nk, mk and hk. Typically, τm ≪ τn

and τn ∼ τh. Thus, ǫ = τm

τn
is small.

The rate functions and the stationary states in (2)-(4)

can be fitted to experimental data. Figure 2 plots their

shape for the motor axon of a frog. Analytic expressions

for these functions and typical values of the parameters

for the frog nerve are collected in Appendix B and will be

used in our numerical tests. The values for gNa, gK , gL

have orders of magnitude 1, 10−1, 10−2, respectively. The

coupling parameter D ∼ 10−1 and ǫ ∼ 10−2 with λ ∼ 1.

This means that we have two separate time scales and

that discreteness effects are relevant.
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FIG. 3: Temporal action potential vk(t) (thick solid line) gen-

erated by a single stimulation at k = 0. The temporal profiles

of mk (dotted), nk (dashed-dotted), hk (dashed) have been

superimposed, all of them at a fixed node k. The thin solid

line shows the profile of mk − m∞(vk). All variables are ex-

pressed in dimensionless units.

B. Numerical solutions

System (1)-(4) displays excitable behavior when it has

a unique constant stationary state (v∗, m∗, n∗, h∗), which

is stable. Figures 3 and 4 show solitary pulses and wave

train solutions generated by solving (1)-(4) numerically

for the parameter values in Appendix B. After a short

transient, the system relaxes to a traveling wave: vk(t) =

v(k − ct), mk(t) = m(k − ct), nk(t) = n(k − ct) and

hk(t) = h(k − ct). All nodes undergo the same evolution

with a time delay 1
c
.

As shown in Figures 3 and 4, pulses and wave trains

are composed of “sharp” interfaces and “smooth” re-

gions. Let us describe the temporal profiles of a pulse

as we move from left to right starting from the equilib-
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FIG. 4: (a) Same as in Fig. 3 but generated by a periodic

stimulation at k = 0. (b) Corresponding spatial profiles at

a fixed time: vk (circles), mk (asterisks), nk (squares), hk

(triangles). Zoom in one spatial period. All variables are

expressed in dimensionless units.

rium region (1) in Figure 3. The leading edge of each

pulse is a sharp interface, marked as (2) in Fig. 3. At

this leading interface, nk and hk remain almost constant

whereas vk and mk undergo abrupt changes. The evo-

lution of vk and mk is described by a reduced bistable

system and the leading edge is a wave front solution of

this system. A smooth region follows, where nk, hk vary

slowly and vk and mk are quasi-static: mk = m∞(vk)

and I(vk, m∞(vk); nk, mk) = 0. It is marked as (3) in

Fig. 3. At the end of this region the approximation

mk = m∞(vk) breaks down, see the thin solid line in Fig-

ure 3. A trailing interface develops, where mk changes

abruptly whereas nk, hk remain almost constant. This

new region is marked as (4) in Fig. 3. Notice that the

fast variable vk happens to be near its equilibrium value
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v∗ and decreases smoothly towards it. Diffusion is negli-

gible and the evolution of vk and mk at the trailing edge

is governed by a system of ordinary differential equations.

The bistable structure is lost and no trailing wave front

is formed.

The variables seem to be split in two blocks: slow

(evolving in the dimensionless time scale T = ǫt) and

fast (evolving in the dimensionless time scale t). This

suggest the possibility of finding an asymptotic descrip-

tion of pulses by exploiting time scale separation. The

difficulty of dealing with a discrete space variable is over-

come by noticing that the traveling wave profiles are

smooth functions of a continuous variable and solve a

set of differential-difference equations (see Appendix C).

Let us first check whether the number of variables can be

reduced.

C. Failure of simple FitzHugh-Nagumo type

reductions

It is quite tempting to look for a simple asymptotic de-

scription of pulses in terms of one fast and one slow vari-

able, as in the FitzHugh-Nagumo model [2, 22]. These

reduced models usually assume that mk relaxes instanta-

neously to its equilibrium state mk = m∞(vk) and that

the sum of the two slow variables is constant during an

action potential nk + hk = r [10]:

dvk

dt
+ gKn4

k(vk−VK)+gNam∞(vk)3(r − nk)(vk−1)

+gL(vk−VL) = D(vk+1 − 2vk + vk−1), (6)

dnk

dt
= ǫΛn(vk)

[

n∞(vk) − nk

]

. (7)

In view of the numerical results described in Section II B,

these assumptions are inaccurate. The solid line in Fig.

3 shows that the difference mk−m∞(vk) is not negligible

at the leading wave front. Setting mk = m∞(vk) distorts

the speed, as shown in Figure 1. On the other hand,

nk + hk is not constant during at action potential. We

may select r = n∗+h∗ to fit the leading edge but a slightly

different value of r is required for the trailing part of the

pulse. Keeping nk + hk = r during the action potential

alters the width of the pulse, as shown in Figure 1.

In conclusion, the FHN type reduction (6)-(7) may be

useful to gain insight on pulse motion and propagation

failure in excitable media, but it is quantitatively inaccu-

rate for the HH system with realistic parameter values.

III. ASYMPTOTIC CONSTRUCTION OF

PULSES

Accurate descriptions of pulse waves in the HH model

have to deal with the full set of equations. In this Sec-

tion, we find an approximation of their temporal profiles

by matched asymptotic expansions as ǫ → 0. This con-

struction yields predictions for the speed and width of

the pulses, as well as a characterization of the parameter

ranges in which propagation fails. We explain the pro-

cedure for the parameter values indicated in (B3). The

structure of the pulse may change slightly for other pa-

rameter values. Other possible structures are discussed

in Appendix E.
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FIG. 5: Shape of the source f(v): (a) gNa = 1.49, (b) gNa =

0.745, (c) gNa = 0.497, when (n, h) = (n∗, h∗) (solid line) and

(n, h) = (n[1], h[1]) (dashed line). All variables are expressed

in dimensionless units.

In a traveling pulse we distinguish five regions (illus-

trated in Figure 3). In each of them, a reduced descrip-

tion holds. The whole profile is reconstructed by match-

ing the approximated solutions found in each region at

zeroth order (see [23] for a description of this technique).

Our reference time scale is the slow time scale T = ǫt.

The technical details of the matching are given in Ap-

pendix D.

The resulting temporal pulse profiles with k fixed have

the following structure:

1. Front of the pulse. This is region (1) in Figure 3.

Here vk ∼ v∗, mk ∼ m∗, nk ∼ n∗ and hk ∼ h∗,

(v∗, m∗, n∗, h∗) being the stable equilibrium state

of the system.

2. Leading edge of the pulse, located at T = T0 and

marked as (2) in Figure 3. The slow variables, nk

and hk, remain essentially constant but the fast

variables, vk and mk, undergo rapid changes in the

time scale t = T−T0

ǫ
∈ (−∞,∞). To leading order,

dvk

dt
+ I(vk, mk, nk, hk) = D(vk+1 − 2vk + vk−1),

dmk

dt
= Λm(vk)

[

m∞(vk) − mk

]

,

dnk

dt
= 0, dhk

dt
= 0,

(8)

Thus, nk and nk remain almost constant. Matching

with the previous region, nk = n∗ and hk = h∗

(see Appendix D). The evolution of vk and mk is

described by the ‘fast reduced system’:

dvk

dt
+ I(vk, mk, nk, hk) = D(vk+1 − 2vk + vk−1), (9)

dmk

dt
= Λm(vk)

[

m∞(vk) − mk

]

, (10)

with nk = n∗ and hk = h∗. This system dis-

plays bistable behavior. Let us denote by v =

ν(i)(n, h), i = 1, 2, 3 the three solutions of

f(v; n, h) = −I(v, m∞(v), n, h) = 0 (11)

in a neighborhood of (n∗, h∗). The system (9)-(10)

has a unique stable traveling wave front solution

vk(t) = v(k − ct), mk = m(k − ct) joining the

two stable constant states ν(3)(n∗, h∗), m∞(ν(3))

and ν(1)(n∗, h∗), m∞(ν(1)), which propagates with

a definite speed c = c+(n∗, h∗). This wave front

solution is the leading edge of the pulse.

3. Top of the pulse. This is region (3) in Figure 3.

Here, the slow variables evolve in the time scale

T and the fast variables relax instantaneously to
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their equilibrium values: mk = m∞(vk), in which

vk solves f(vk; nk, hk) = 0. The evolution of the

slow variables is governed by the ’slow reduced sys-

tem’:

dnk

dT
=Λn(vk)

[

n∞(vk)−nk

]

,

dhk

dT
=λΛh(vk)

[

h∞(vk)−hk

]

,

(12)

for T0 < T < T1. Matching with the previous stage

we get vk = ν(3)(nk, hk), nk = n∗ and hk = h∗

at T = T0 (see Appendix D). For the parameter

values indicated in (B3), the third branch of roots

vk = ν(3)(nk, hk) of f(vk; nk, hk) = 0 disappears

at (nk, hk) = (n[1], h[1]), colliding with the second

branch: ν(3)(n[1], h[1]) = ν(2)(n[1], h[1]) = v[1]. At

the corresponding time T = T1, region (3) ends.

The time T1 is characterized by nk(T1) = n[1] and

hk(T1) = h[1] [24].

4. Trailing edge of the pulse, located at T1 and marked

as (4) in Figure 3. In this region, vk is no

longer at equilibrium since the two largest roots

of f(v; nk, hk) = 0 are lost. The fast variables

evolve in the time scale t = T−T1

ǫ
∈ (−∞,∞),

whereas the slow variables remain essentially con-

stant. Matching with the previous stage, nk = n[1],

hk = h[1]. Due to the particular shape of f (see

the dashed line in Figure 5 (a)), ν(2)(n[1], h[1]) is

close enough to ν(1)(n[1], n[1]) for vk − vk−1 to be

small. Thus, we may neglect the discrete differ-

ences D(vk+1 − 2vk + vk−1) and the fast variables

are governed by a system of ordinary differential

equations:

dvk

dt
= −I(vk, mk, n[1], h[1]),

dmk

dt
= Λm(vk)

[

m∞(vk) − mk

]

.

(13)

This system has one stable equilibrium point:

v[2] = ν(1)(n[1], h[1]), m[2] = m∞(v[2]). The fast

variables evolve from their initial values vk = v[1]

and mk = m[1] = m∞(v[1]) to the equilibrium

point.

5. Pulse tail. This is region (5) in Figure 3. In the

pulse tail, the fast variables relax instantaneously

to their equilibrium values: mk = m∞(vk) and

vk = ν(1)(nk, hk). The slow variables solve (12)

with vk = ν(1)(nk, hk) for T1 < T < ∞ and evolve

smoothly from (n[1], h[1]) to their equilibrium val-

ues (h∗, n∗) as T → ∞.

Uniform approximations to the temporal profiles ob-

tained by gluing together the approximated solutions in

each region are given in Appendix D. Figure 6 compares

the asymptotic reconstruction to the actual profiles. The

agreement improves as ǫ decreases.

Our construction characterizes the speed of the trav-

eling pulse: it is the speed of the wave front solution of

(9)-(10) with nk ∼ n∗ and hk ∼ h∗. The speed of these

fronts can be predicted by a depinning analysis for small

speeds (as in [5]) or in terms of continuous waves for large

speeds (as in [3]).

Let us now compute the width of the pulse. In the
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FIG. 6: Asymptotic reconstruction of the temporal profiles

of vk(t) (thick solid line), mk (thick dotted line), nk (thick

dashed-dotted line), hk (thick dashed line), versus the actual

temporal profiles (thin lines). All variables are expressed in

dimensionless units.

peak, (nk, hk) lies in the integral curve of:

dh
dn

=
λΛh

(

ν(3)(n,h)
)[

h∞

(

ν(3)(n,h)
)

−h

]

Λn

(

ν(3)(n,h)
)[

n∞

(

ν(3)(n,h)
)

−n

] , (14)

selected by h(n∗) = h∗ and h(n[1]) = n[1]. Going back to

the time scale t = T
ǫ

in (12), the peak width is:

T1 = T1−T0

ǫ
=

∫ n[1]

n∗

ds

ǫΛn

(

ν(3)(s,h(s))
)[

n∞

(

ν(3)(s,h(s))
)

−s

](15)

where the integral is calculated along the solution h(n)

of (14). Similarly, the duration of tail is:

T2 =

∫ n∗

n[1]

ds

ǫΛn

(

ν(1)(s, h(s))
)[

n∞

(

ν(1)(s, h(s))
)

− s
] ,(16)

with

dh
dn

=
λhΛh

(

ν(1)(n,h)
)[

h∞

(

ν(1)(n,h)
)

−h

]

Λn

(

ν(1)(n,h)
)[

n∞

(

ν(1)(n,h)
)

−n

] , h(n[1]) = h[1].

The integral T2 diverges due to a singularity at n∗. How-

ever, we can use it to predict how long does it take for the

tail to get close enough to n∗, h∗ replacing n∗ by n∗ − η.

The spatial length of the peak is found using the trav-

eling wave structure: vk(t) = v(k − ct). Thus, T1 is the

time elapsed from the instant at which the leading front

reaches a point k to the instant when the end of the peak

crosses the same point k. The number of nodes L1 in the

pulse peak is approximately the integer part of:

L1 ∼ c+(n∗, h∗)T1. (17)

Our asymptotic construction is consistent when L1 ≥ 1.

This yields a restriction on the size of ǫ for the existence

of pulses:

ǫ ≤ c+

∫ n[1]

n∗

ds

Λn

(

ν(3)(s, h(s))
)[

n∞

(

ν(3)(s, h(s))
)

− s
] .(18)

A similar argument can be applied in the infinite tail

to quantify the number of nodes at which nk, hk depart

noticeably from equilibrium.

The values predicted by our asymptotic theory for the

parameters in Appendix B are c = c+ = 0.069, n[1] =

0.777, h[1] = 0.099, L1 = 12, in good agreement with the

numerical measurements. The leading and trailing edges

contain about 4 more nodes, that we have neglected.

Figure 7 compares the predicted and numerically mea-

sured widths and speeds as the parameters D and gNa

change. Notice that the values (n∗, h∗) and (n[1], h[1]) are

independent of D. Thus, the dependence of the width on

D comes through the speed. This explains the similar

curves observed in Figure 7 (a) and (b). The triangles in

Figure 7 (a) represent the number of nodes in the leading

edge, that must be added to compute the total length

of a peak. Changes in gNa affect the curves ν(i)(n, h),
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FIG. 7: Spatial width of the peak (circles) compared to the

predicted width (squares) as a function of: (a) D and (c) gNa.

In (a), triangles represent the number of additional nodes

forming the leading edge; Speed of the pulse (circles) com-

pared to the predicted speed (squares) as a function of: (b)

D and (d) gNa. In (b), triangles represent the speed of the

FHN reduction. All variables are expressed in dimensionless

units.

i = 1, 2, 3, and the speed of the fronts in the reduced fast

system. As Figures 7 (c) and (d) show, the quantitative

agreement between predicted and numerically measured

widths and speeds is reasonable, as long as we are not

close to the critical thresholds Dc and ǫc for propagation

failure. We will discuss this point further in Section V.

For the parameters indicated in (B3), FHN type reduc-

tions perform poorly. The widths predicted as D changes

are particularly bad. We find 160 or 250 points in the

peak, when 18 or 34 are expected. The predictions for

the speed are better, see the triangles in Figure 7 (b).

Similar comments apply when gNa is modified.

IV. ASYMPTOTIC CONSTRUCTION OF WAVE

TRAINS

When a nerve fiber is periodically excited, we expect

propagation of signals in form of wave trains. Wave

trains resemble a sequence of identical pulses periodi-

cally spaced [25]. The asymptotic description of each

of these pulses is similar to the construction of solitary

pulses given in Section III. However, there are several

differences. First, the front of the pulses is another pulse

and not a region at equilibrium. Second, the leading edge

is a wave front solution of the fast reduced system (9)-

(10) with nk = N , hk = H , (N, H) 6= (n∗, h∗). This

wave front solution selects the speed c = c+(N, H) of

the wave train. It has to match the tail of the previous

pulse, described by the slow reduced system (12) with

vk = ν(1)(nk, hk). Thus, we find a family of wave trains

for couples (N, H) lying on an integral curve of:

dh

dn
=

λΛh(ν(1)(n, h))
[

h∞(ν(1)(n, h)) − h
]

Λn(ν(1)(n, h))
[

n∞(ν(1)(n, h)) − n
] . (19)

The curve is selected by observing that each pulse in the

wave train has one driving leading edge, as in Section III.

This means that h(n[1]) = h[1], where (n[1], h[1]) are the

values for which ν(2)(n[1], h[1]) = ν(3)(n[1], h[1]).

The spatial period is approximated by adding

the lengths of the smooth regions: L(N, H) =

c+(N, H)T (N ,H) where T (N, H) = T1(N, H) +

T2(N, H) is the time spent in the excited and recovery

branches. The temporal lengths T1, T2 are defined as in

Section III, with n∗, h∗ replaced by N, H . Now, T2(N, H)
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FIG. 8: Action potential near propagation failure: (a) Spatial

profiles of vk (circles), mk (asterisks), nk (squares) and hk

(triangles) superimposed at t fixed, (b) Temporal profiles of

vk(t) (solid), mk(t) (dotted), nk(t) (dotted-dashed) and hk(t)

(dashed) superimposed for k fixed. All variables are expressed

in dimensionless units.

is finite.

The values predicted by our asymptotic theory for Fig-

ure 4 are c = c+ = 0.052, n[1] = 0.755, h[1] = 0.09,

L ∼ 37− 38, in good agreement with the numerical mea-

surements. Numerically, we obtain L ∼ 43 for the spatial

period. The difference is approximately the number of

points in the edges, that we have neglected.

V. PROPAGATION FAILURE

Pulses may fail to propagate at least by two reasons:

weak coupling and inadequate time scale separation be-

tween the different variables. Weak couplings cause prop-

agation failure by pinning the leading edge of the pulse.

A small time scale separation between the two blocks

of slow and fast variables produces pulses of vanishing

width. Other scenarios for failure might arise when more

than two time scales are present. We focus here on mech-

anisms for failure associated with changes in the param-

eters due to illness or drugs.

A. Propagation failure due to damage in the

myelin sheath

The loss of myelin alters the value of the coupling co-

efficient D. Then, the leading wave front can only prop-

agate if the D is large enough to avoid the pinning in the

fast reduced system (9)-(10) with nk = n∗ and hk = h∗.

The critical coupling Dc depends on the shape of the

nonlinear sources, which is controlled by the parameters

gNa,gK ,gL, VNa,VK and VL. The general rule is that the

area A23 enclosed by f(v) between its second and the

third zeroes has to be large enough (depending on D)

for the leading edge to propagate. The proximity of fail-

ure is detected by the fact that the wave profiles develop

‘steps’. Figure 8(b) illustrates generation of ‘steps’ in the

time profile of the pulse for vk near propagation failure

D = 0.0072 ∼ Dc. As for bistable equations, the de-

pinning transition is associated with a bifurcation in the

system [5].



11

5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

k

v k   
(a)

5 10 15 20 25

0

0.2

0.4

0.6

k

   
v k

(b)

FIG. 9: Impact of decreasing gNa on pulse propagation: (a)

gNa = 0.745, (b) gNa = 0.497. The spatial action potentials

have been superimposed at different times. All variables are

expressed in dimensionless units.

B. Propagation failure due to the action of

chemicals

Many drugs block the propagation of nerve impulses

by reducing sodium and potassium conductivities [8, 10].

Figure 5(b) illustrates the impact of decreasing gNa on

the shape of f . The enclosed area decreases and so does

the propagation speed, up to a critical value at which

the width of the pulses (given by formula (17)) vanishes.

Only decremental pulses are observed, see Figure 9.

VI. CONCLUSION

We have introduced an asymptotic strategy to con-

struct solitary pulses and wave trains in the discrete

Hodgkin-Huxley model. Unlike FHN reductions, our

asymptotic descriptions agree reasonably well with nu-

merical solutions of the discrete HH system. We have

discussed two mechanisms for propagation failure. The

first one is related to damage in the myelin sheath and is

reminiscent of the depinning transitions for wave fronts

in bistable systems [5] as the coupling decreases. The sec-

ond mechanism reflects the impact of chemicals on the

time scale separation in the model. Our analysis applies

to isolated nerve fibers. However, real motor nerves of

vertebrates comprise several hundred of interacting fibers

[26]. It would be interesting to extend our asymptotic

predictions to bundles of fibers.

Our asymptotic construction may be useful to under-

stand systems with a mathematical structure similar to

HH: models for propagation of impulses through cardiac

tissue [27], models of charge transport in semiconductor

superlattices [28] or the more complex Frankenhauser-

Huxley model for myelinated nerves [19].
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APPENDIX A: THE DISCRETE

HODGKIN-HUXLEY MODEL FOR

MYELINATED NERVES

Myelinated nerve fibers are covered almost everywhere

by an insulating coat of myelin. Only at small active sites

(nodes of Ranvier) can the membrane function in the nor-

mal way. Figure 10(a) illustrates the structure of a myeli-

nated fiber. The length of the myelin sheath is typically 1

to 2 mm (close to 100d where d is the fiber diameter) and

the width of the nodes is about 1µm. The nodes have

conduction properties similar to the unmyelinated nerve

membrane, while the myelin has a much higher resis-

tance and lower capacitance than the axonal membrane

[10]. Myelinated nerve fibers can be described by a linear

diffusion equation which is periodically loaded by the ac-

tive nodes [18, 29, 30]. This picture can be simplified by

lumping the internode capacitance of the myelin together

with the nodal capacitance [8]. The myelin is considered

to be a perfect insulator. This leads to the equivalent

circuit in Figure 10(b). C and R represent lumped resis-

tance and capacitance. Vk, Ik and Iion(k) represent the

membrane potential, internodal current and ionic current

at the k-th node. Applying Kirchoff’s laws to the circuit

yields:

Vk−1 − Vk = RIk, Ik − Ik+1 = C
dVk

dt
+ Iion(k) (A1)

Adopting at each node the Hodgkin-Huxley expression

for the ion current [31], we obtain the discrete Hodgkin-

Huxley model for a myelinated axon:

C dVk

dT
+ Iion(Vk, Mk, Nk, Hk) =

D(Vk+1 − 2Vk + Vk−1),

(A2)

dMk

dT
= λMΛM (Vk)(M∞(Vk) − Mk),

dNk

dT
= λNΛN (Vk)(N∞(Vk) − Nk),

dHk

dT
= λHΛH(Vk)(H∞(Vk) − Hk),

(A3)

where the index k designs the k-th node of the fiber.

Here, Vk is the deviation from rest of the membrane po-

tential, Nk is the potassium activation, Mk is the sodium

activation and Hk the sodium inactivation. The ion cur-

rent is given by:

Iion(V, M, N, H) = gNaM3H(V − V Na,R)

+gL(V − V L,R) + gKN4(V − V K,R).

(A4)

The fraction of open K+ channels is computed as N4
k .

The fraction of open Na+ channels is approximated by

M3
kHk. The parameters have the following interpreta-

tion. gNa and gK are the maximum conductance val-

ues for Na+ and K+ pathways, respectively. gL is a

constant leakage conductance. The corresponding equi-

librium potentials are V Na, V K and V L, respectively.
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Then, V Na,R = V Na − V R, V K,R = V K − V R and

V L,R = V L − V R, where V R is the resting poten-

tial. C is the membrane capacitance. The coefficient

D = 1
L(ri+re) = 1

R
, where L is the length of the myelin

sheath between nodes and ri, re the resistances per unit

length of intracellular and extra-cellular media.

This model is adequate for the long axons of peripheral

myelinated nerves. More biological detail can be included

by adding an equation for the membrane potential V (x, t)

across the myelin sheath in the internodes [18]:

c
∂V

∂T
=

1

ri + re

∂2V

∂2x
−

V

r
, x ∈ (xk, xk+1), t > 0 (A5)

V (xk, t) = Vk(t), V (xk+1, t) = Vk+1(t) (A6)

coupled with (A3) and:

C
dVk

dT
+ Iion(Vk, Mk, Nk, Hk) = Ik(t), (A7)

Ik(t) =
1

ri + re

[
∂V

∂x
(x+

k , t) −
∂V

∂x
(x−

k , t)]. (A8)

This model produces a good quantitative approximation

of the conduction velocity for toad axons [18]. Numerical

simulations of the sensitivity to different parameters (di-

ameter, nodal area...) produce results in agreement with

experiments [19, 20]. The discrete model (A2)-(A3) is

recovered by assuming that the axial currents along the

myelin sheath ∂V
∂x

(x, t) are constant in each internode.

Then, ∂V
∂x

(x, t) = Vk+1(t)−Vk(t)
L

in [xk, xk+1] with L =

xk+1−xk. As a result, Ik(t) = 1
L(ri+re) (Vk+1−Vk+Vk−1).

This approximation is reasonable in view of the numeri-

cal results in [18] (see Figure 2 therein).

APPENDIX B: DIMENSIONLESS EQUATIONS

For our numerical tests we have selected the param-

eters and coefficient functions of a frog. For the motor

nerve of a frog, the data in [32] can be fitted by the fol-

lowing rate and stationary state functions:

ΛM (V )=0.03
[

2.5−0.1V
exp(2.5−0.1V )−1 + 4 exp(−V

18 )
]

,

M∞(V )=
[

1 + 4 exp(−V
18 ) exp(2.5−0.1V )−1

(2.5−0.1V )

]

−1
,

ΛH(V )=
[

0.07 exp(−V
20 ) + 1

exp(3−0.1V )+1

]

,

H∞(V )=
[

1 +
exp( V

20 )

0.07
(

exp(3−0.1V )+1
)

]

−1
,

ΛN (V )=0.79
[

0.1−0.01V
exp(1−0.1V )−1 + 0.125 exp(−V

80 )
]

,

N∞(V )=
[

1 + 0.125 exp(−V
80 ) exp(3−0.1V )−1

(0.1−0.01V )

]

−1
.

(B1)

Typical values of the parameters [8, 32] are given below:

D gNa gK gL

1/28(MΩ)−1 0.57 µmho 0.104 µmho 0.025 µmho

V R V Na V K V L

−75 mV 47 mV −75 mV −75 mV

C λM λH λN

2.6 − 4.7 pF 127 (ms)−1 1.76 (ms)−1 2 (ms)−1

We nondimensionalize the model by choosing as new vari-

ables vk = Vk

V Na,R

, t = TλM , mk = Mk, nk = Nk,

hk = Hk. The dimensionless equations are:

dvk

dt
+ gKn4

k(vk − VK) + gNam3
khk(vk − 1)+

gL(vk − VL) = D(vk+1 − 2vk + vk−1),

dmk

dt
= Λm(vk)

[

m∞(vk) − mk

]

,

dnk

dt
= λnΛn(vk)

[

n∞(vk) − nk

]

,

dhk

dt
= λhΛh(vk)

[

h∞(vk) − hk

]

.

(B2)
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Set G = CλM . Then, the dimensionless parameters are

given by:

gNa gK gL D VK VL λn λm

gNa

G

gK

G

gL

G
D
G

V K,R

V Na,R

V L,R

V Na,R

λN

λM

λH

λM

The new rate functions and stationary states are ob-

tained from (B1) replacing V by vV Na,R. In dimension-

less units, the parameters for a frog nerve become:

D gNa gK gL VK VL λh λn

0.093 1.49 0.27 0.065 0 0 0.014 0.015

(B3)

In our asymptotic analysis, we choose λn = ǫ as small

parameter and write λh = ǫλ, λ = λh

λn
∼ 1.

APPENDIX C: EQUATIONS FOR THE WAVE

PROFILES

The wave profiles and speeds solve an eigenvalue prob-

lem for a system of differential-difference equations:

−cvz(z) = D(v(z + 1) − 2v(z) + v(z − 1))

−I(v(z), m(z), n(z), h(z)),

−cmz(z) = Λm(v(z))
[

m∞(v(z)) − m(z)
]

,

−cnz(z) = ǫΛn(v(z))
[

n∞(v(z)) − n(z)
]

,

−chz(z) = ǫλΛh(v(z))
[

h∞(v(z)) − h(z)
]

.

(C1)

In a solitary pulse, the profiles tend to the equilibrium

states as z → ±∞. In a wave train, the profiles are

periodic: v(z) = v(z + L), m(z) = m(z + L), n(z) =

n(z +L) and h(z) = h(z +L), L being the spatial period.

APPENDIX D: RECONSTRUCTION OF THE

TEMPORAL PROFILE

We describe below the matching conditions and the

uniform reconstruction of the pulse profiles in the dif-

ferent regions. The superscripts (I),...,(V) refer to the

reduced descriptions corresponding to regions (1),...,(5).

We have:

• The matching conditions for the reduced descrip-

tions of the front of the pulse and the leading edge

at T = T0 are:

v∗ − v
(II)
k (T−T1

ǫ
) ≪ 1, m∗ − m

(II)
k (T−T1

ǫ
) ≪ 1,

if ǫ ≪ T0 −T ≪ 1. The uniform approximations of

the profiles for T ≤ T0 are:

vunif
k = v

(II)
k (T−T0

ǫ
), nunif

k = n∗,

munif
k = m

(II)
k (T−T0

ǫ
), hunif

k = h∗.

• The matching conditions for the reduced descrip-

tions of the peak of the pulse and the leading edge

at T = T0 are:

ν
(3)
1 (n

(III)
k (T ), h

(III)
k (T )) − v

(II)
k (T−T0

ǫ
) ≪ 1,

m∞

(

ν
(3)
1 (n

(III)
k (T ), h

(III)
k (T ))

)

− m
(II)
k (T−T0

ǫ
) ≪ 1,

n
(III)
k (T ) − n∗ ≪ 1, h

(III)
k (T ) − h∗ ≪ 1,

if ǫ ≪ T −T0 ≪ 1. The uniform approximations of

the profiles in regions (II)-(III) are:

vunif
k = v

(II)
k (T−T0

ǫ
) + ν

(3)
1 (n

(III)
k (T ), h

(III)
k (T ))

−ν
(3)
1 (n∗, h∗),

munif
k = m

(II)
k (T−T0

ǫ
) + m∞

(

ν
(3)
1 (n

(III)
k (T ), h

(III)
k (T ))

)

−m∞

(

ν
(3)
1 (n∗, h∗)

)

,

nunif
k = n

(III)
k (T ), hunif

k = h
(III)
k (T ).
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• The matching conditions for the reduced descrip-

tions of the peak of the pulse and the trailing edge

at T = T1 are:

ν
(3)
1 (n

(III)
k (T ), h

(III)
k (T )) − v

(IV )
k (T−T1

ǫ
) ≪ 1,

m∞

(

ν
(3)
1 (n

(III)
k (T ), h

(III)
k (T ))

)

− m
(IV )
k (T−T1

ǫ
) ≪ 1,

n
(II)
k (T ) − n∗ ≪ 1, h

(II)
k (T ) − h∗ ≪ 1,

if ǫ ≪ T1 −T ≪ 1. The uniform approximations of

the profiles in regions (II)-(III)-(IV) are:

vunif
k = v

(II)
k (T−T0

ǫ
) + v

(IV )
k (T−T1

ǫ
)

+ν
(3)
1 (n

(III)
k (T ), h

(III)
k (T ))

−ν
(3)
1 (n∗, h∗) − ν

(3)
1 (n[1], h[1]),

munif
k = m

(II)
k (T−T0

ǫ
) + m

(IV )
k (T−T1

ǫ
)

+m∞

(

ν
(3)
1 (n

(III)
k (T ), h

(III)
k (T ))

)

−m∞

(

ν
(3)
1 (n∗, h∗)

)

− m∞

(

ν
(3)
1 (n[1], h[1])

)

,

nunif
k = n

(III)
k (T ), hunif

k = h
(III)
k (T ).

• The matching conditions for the reduced descrip-

tions of the tail of the pulse and the trailing edge

at T = T1 are:

ν
(1)
1 (n

(V )
k (T ), h

(V )
k (T )) − v

(IV )
k (T−T1

ǫ
) ≪ 1,

m∞

(

ν
(1)
1 (n

(V )
k (T ), h

(V )
k (T ))

)

− m
(IV )
k (T−T1

ǫ
) ≪ 1,

n
(V )
k (T ) − n∗ ≪ 1, h

(V )
k (T ) − h∗ ≪ 1,

if ǫ ≪ T −T1 ≪ 1. The uniform approximations of

the profiles for T ≥ T1 are:

vunif
k = v

(IV )
k (T−T1

ǫ
) + ν

(1)
1 (n

(V )
k (T ), h

(V )
k (T ))

−ν
(1)
1 (n[1], h[1]),

munif
k = m

(IV )
k (T−T1

ǫ
) + m∞

(

ν
(1)
1 (n

(V )
k (T ), h

(V )
k (T ))

)

−m∞

(

ν
(1)
1 (n[1], h[1])

)

,

nunif
k = n

(V )
k (T ), hunif

k = h
(V )
k (T ).

APPENDIX E: PULSES FORMED BY TWO

WAVEFRONTS

For the choice of parameters indicated in (B3), the

third region of the pulse ends when two branches of roots

of the cubic source collapse. For other parameters, the

situation might be different. It might happen that along

the integral curve (14) we find a couple (n[1], h[1]) such

that there are wave front solutions of the reduced fast

system traveling with speed c−(n[1], h[1]) = c+(n∗, h∗).

Then, the top of the pulse ends at this point and the

fourth region is now a traveling wave front. The pulse is

formed by two rigidly moving traveling wave fronts.

Whether a traveling wave front is formed in the back

of the pulse or not, can be guessed from the shape of the

nonlinear source f . Figure 5(a) depicts f(v; n, h) with

the parameters values (B3) when (n, h) = (n∗, h∗). It

is strongly asymmetric. The magnitude of the speed of

the leading wave front is intuitively related to size of the

area enclosed by f(v; n∗, h∗) between its second and third

zeroes, A∗. If we vary (n, h) along the curve (14), the

speed of a back front is related to the area A enclosed by

f(v; n, h) between its first and the second zeroes. We find

that such areas are always smaller than A∗ and the cubic

structure is finally lost. A trailing wave front moving

at the same speed as the leading wave front cannot be

formed. Back wave fronts can only be observed for more

symmetrical sources, when varying (n, h) along the curve

(14) we can make A equal to A∗.

We describe here how to modify the asymptotic con-
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struction in Sections III and IV to account for pulses

formed by two rigidly moving wave fronts. In the asymp-

totic description of these pulses we distinguish again five

regions. The first three are similar:

• The front of the pulse is described by vk ∼ v∗,

mk ∼ m∗, nk ∼ n∗ and hk ∼ h∗.

• The leading edge of the pulse is a wave front solu-

tion of the fast reduced system (9)-(10) with nk =

n∗ and hk = h∗ joining (ν(1)(n∗, h∗), m∞(v∗)) =

(v∗, m∗) and (ν(3)(n∗, h∗), m∞(ν(3)(n∗, h∗)). This

front propagates with a definite speed c =

c+(n∗, h∗).

• In the transition between interfaces, vk =

ν(3)(nk, hk), mk = m∞(vk) and nk, hk solve the

slow reduced system (12), evolving from (n∗, h∗) to

(n[1], h[1]).

The fourth region is different:

• The trailing edge is the wave front so-

lution for the fast reduced system (9)-

(10) with nk = n[1] and hk = h[1], join-

ing (ν(3)(n[1], h[1]), m∞(ν(3)(n[1], h[1])) and

(ν(1)(n[1], h[1]), m∞(ν(1)(n[1], h[1])), respec-

tively. n[1] and h[1] are now selected in

such a way that this front travels with speed

c = c−(n[1], h[1]) = c+(n∗, h∗).

The fifth is similar:

• In the pulse tail, vk = ν(1)(nk, hk), mk = m∞(vk)

and nk, hk solve the slow reduced system (12),

evolving from (n[1], h[1]) to (n∗, h∗) as t → ∞.

The temporal and spatial width of the peak can be

computed as in Section III. Now, the number of points

in the leading and trailing wave fronts are neglected.

For wave trains, the construction in Section IV has

to be modified as follows: (N, H) and (n[1], h[1]) must

lie in the same integral curve of (19) and satisfy c =

c−(n[1], h[1]) = c+(N, H).
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[4] G. Fáth, Physica D, 116, 176 (1998).

[5] A. Carpio, L.L. Bonilla, Phys. Rev. Lett, 86, 6034,

(2001).

[6] J.J. Struijk, Biophys. J., 72, 2457 (1997).

[7] W.A.H. Rushton, J. Physiol., London, 115, 101 (1951).

[8] A. C. Scott, Rev. Modern Phys., 47, 487 (1975); A.C.

Scott, Neuroscience, Springer, Berlin, 2002.

[9] S. Pluchino, A. Quattrini, E. Brambilla et al, Nature

422, 688 (2003).

[10] J.P. Keener, J. Sneyd, Mathematical Physiology,

Springer, New York, 1998, Chapters 4 and 9.

[11] H. Kunov, Proc. IEEE, 55 (1967) 427-428.



17

[12] V. Booth, T. Erneux, SIAM J. Appl. Math., 55, 1372

(1995).

[13] X. Chen, S.P. Hastings, J. Math. Biol., 38, 1 (1999).

[14] A. Tonnelier, Phys. Rev. E, 67, 036105, (2003).

[15] I. Richer, IEEE Trans. Circuit Theory, CT-13, 388

(1996).

[16] B. Zinner, J. Diff. Eq., 96, 1 (1992).

[17] T. Erneux, G. Nicolis, Physica D, 67, 237 (1993).

[18] R. FitzHugh, Biophys. J., 2, 11 (1962).

[19] L. Goldman, J.S. Albus, Biophys. J., 8 596 (1968).

[20] J.W. Moore, R.W. Joyner, M.H. Brill, S.D. Waxman, M.

Najar-Joa, Biophys. J., 21, 147, (1978).

[21] C.B. Muratov, Biophys. J., 79, 2893, (2000).

[22] R. FitzHugh, Biophys. J., 1, 445 (1961); J. Nagumo, S.

Arimoto, S. Yoshizawa, Proc. Inst. Radio Engineers, 50,

2061 (1962).

[23] P. A. Lagerstrom, Matched asymptotic expansions.

Springer, N. Y. 1988.

[24] In fact, stages (3)-(5) can be considered as one region de-

scribed by the reduced system of four ordinary differen-

tial equations obtained setting D = 0. The three regions

arise by further reducing the system using the splitting

between fast and slow variables.

[25] J.P. Keener, SIAM J. Appl. Math., 39, 528, (1980).

[26] S. Binczak, J.C. Eilbeck, A.C. Scott, Physica D, 148,

174 (2001).

[27] G.W. Beeler, H.J. Reuter, J. Physiol., 268, 177, (1977).

[28] L.L. Bonilla, H.T. Grahn, Rep. Prog. Phys., 68, 577-683,

(2005).

[29] W.F. Pickard, J. Theoret. Biol., 11, 30, (1966).

[30] V.S. Markin, Yu. A. Chimadzhev, Biophys. J., 12, 1032,

(1967).

[31] A.L. Hodgkin, A.F. Huxley, J. Physiol., London, 117,

500 (1952).

[32] K. S. Cole, Membranes, ions and impulses, Univ. Calif.

Press, Berkeley, 1968.


