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ABSTRACT Erythrocytes are flexible cells specialized in the systemic transport of oxygen in vertebrates. This physiological
function is connected to their outstanding ability to deform in passing through narrow capillaries. In recent years, there has
been an influx of experimental evidence of enhanced cell-shape fluctuations related to metabolically driven activity of the
erythroid membrane skeleton. However, no direct observation of the active cytoskeleton forces has yet been reported to our
knowledge. Here, we show experimental evidence of the presence of temporally correlated forces superposed over the thermal
fluctuations of the erythrocyte membrane. These forces are ATP-dependent and drive enhanced flickering motions in human
erythrocytes. Theoretical analyses provide support for a direct force exerted on the membrane by the cytoskeleton nodes as
pulses of well-defined average duration. In addition, such metabolically regulated active forces cause global membrane soft-
ening, a mechanical attribute related to the functional erythroid deformability.
INTRODUCTION
Although it was discovered some time ago that ATP is a crit-
ical factor in themaintenance of the global shape of red blood
cells (RBCs) (1–3), the metabolic regulation of red cell
deformability was clearly pointed out only recently (4–7).
The elastic properties of RBCs are dominated by the interac-
tion between the lipid bilayer and the underlying spectrin
cytoskeleton (8,9), which is a dynamical meshwork mainly
consisting of spectrin filaments linked by reconfigurable
junctional complexes (5,6). The transient binding capacity
of these complexes depends on their phosphorylation state
(10–12). This structural network endows the spectrin skel-
eton with the basic role of globally imparting structural
rigidity to the cell membrane (13) and locally regulating
its flexibility through reversible phosphorylation at the
anchoring nodes (6,14). Indeed, the ability of RBCs to un-
dergo reversible large deformations cannot be rationalized
on the basis of a fixed connectivity of the cytoskeleton, but
instead requires a model that attributes metabolically driven
forces to active remodeling of the RBC cytoskeleton (6,14).
Therefore, RBC dynamics has been postulated to be meta-
bolically regulated by continuous remodeling of the junc-
tional nodes of the spectrin skeleton (6–8,14). Under the
optical microscope, normal RBCs experience large mem-
brane undulations at the equatorial emplacement, a phenom-
enon originally referred to as the RBC flicker (15,16). This
was initially interpreted as the manifestation of metabolic
activity (17,18), although several works treated the fluctua-
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tions as purely thermal (19–21). Recently, the RBCflickering
phenomenon has been revisited (6,7,22–24), providing an
accurate catalog of static-averaged mechanical properties
measured at different physiological conditions. The renewed
interest in its metabolic causes and the possible functional
consequences for RBC dynamics have motivated theoretical
efforts hypothesizing the existence of ATP-dependent cyto-
skeleton forces (14,25–27). An adequate understanding of
this hypothesis requires that a distinction be made between
the active contribution of the cytoskeleton and passive
thermal fluctuations, a problem that awaits definite experi-
mentation. Likewise, no clear experimental evidence of the
primary forces involved in this activity has been reported
yet, and their temporal and spatial characteristics remain a
matter of debate. Experimental approaches to the flickering
phenomenon suffer from restricted time resolution and the
limited spatial discrimination of membrane motions in the
submicron scale. The use of ultrafast optical microscopy
(28) renders the classical flickering method (29,30) capable
of tracking cell contour fluctuations at very high sampling
rates with subpixel resolution, thus allowing noninvasive
detection of signal correlations over broad timescales.
Normal RBCs have a characteristic biconcave or discocyte
shape, a symmetry property that facilitates the detection, in
Fourier space, of the active contributions to the normal
modes of membrane motion at the equatorial rim. Here, us-
ing ultrafast flickering analysis at the cell equator, we show
direct evidence of ATP-dependent forces exerted on the
RBC membrane, which are detected as correlated pulses
with a well-defined average duration that cause a character-
istic nonthermal signal in the membrane fluctuation spectra.
http://dx.doi.org/10.1016/j.bpj.2015.05.005
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MATERIALS AND METHODS

Chemicals

Unless stated otherwise, all materials were purchased at Sigma-Aldrich

(Madrid, Spain).
Preparation of red blood cells

Human RBCs were obtained from blood of healthy donors freshly extracted

by venipuncture. When necessary, blood samples were stored in EDTA-

containing tubes to avoid coagulation before the erythrocyte concentrate

was obtained. The latter is obtained after centrifugation (5000 � g for

10 min at 4�C). The RBC concentrate was rinsed three times with phos-

phate-buffered saline (PBS) (RBCs/PBS, 1:5 v/v). A blood aliquot (20

mL) was diluted in PBS (250 mL) containing phosphate buffer (130 mM

NaCl, 20 mM Na3PO4, 10 mM glucose, and 1 mg/mL bovine serum albu-

min (hereinafter PBS(þ) buffer). This buffer does not contain exogenously

added ATP but is able to induce the production of ATP through glycolysis.

RBC suspensions were rinsed three times (10 min at 2300 � g) in PBS(þ).

Thereafter, the RBC pellet was resuspended (1:15) in PBS(þ). Aliquots

(10 mL) of this RBC suspension were transferred to the observation cham-

ber (37�C), which was immediately sealed with a coverglass to avoid evap-

oration and osmotic stress.
Cytoskeleton inactivation

To study the effect of inactivating the cytoskeleton, we tested RBCs under

ATP-depletion and protein-cross-linking conditions. The ATP depletion

was performed by incubating cells for 2 h at 37�C in the PBS(�) solution,

which is the PBS(þ) buffer devoid of glucose and containing 6 mM iodoa-

cetamide and 10 mM inosine, as previously described (7,17). Iodoaceta-

mide is an alkylating drug that blocks the essential active site -SH group

in both glyceraldehyde-3-phosphate dehydrogenase and hexokinase (and

hence inhibits glycolysis and ATP generation) (31). Inosine is a substrate

for human RBC metabolism, and it becomes phosphorylated via purine

nucleoside phosphorylase. In the presence of inosine, inorganic phosphate

is depleted if it is in short supply, and this starves the phosphorylation of

glyceraldehyde-3-phosphate via glyceraldehyde-3-phosphate dehydroge-

nase, thus inhibiting ADP phosphorylation further down the glycolytic

pathway. The result of combining inosine and iodoacetamide is an effective

inhibition of cytoskeletal phosphorylation. Drugged cells were maintained

in the ATP-depleted medium during experiments. Cells were fixed with

glutaraldehyde, which quickly cross-links proteins (32). RBCs were fixed

for 30 min at 37�C with a solution of glutaraldehyde (0.2% final) diluted

in PBS(�) (18). Glutaraldehyde is known to solidify the hemoglobin in

RBCs and cross-link the cytoskeleton (33). Although both treatments some-

what rigidify the RBCs and both inhibit ATP production, stiffening is ex-

pected to be weaker for iodoacetamide-treated RBCs than for fixed RBCs

treated with cross-linking agent. Passivation experiments by enolase inhibi-

tion were performed by adding potassium fluoride (KF, 150 mM) dissolved

in PBS(�) buffer. The F� anion inhibits glycolysis (in concentrations

>3 mM), and thus, extensive ATP-metabolic depletion is expected (34).
Flickering spectroscopy

Membrane fluctuations were tracked at the equatorial plane of RBCs using

an inverted Nikon 80i microscope (Tokyo, Japan) in the bright-field mode

(PlanApo objective 100�, zoom 2�) equipped with an ultrafast comple-

mentary metal oxide silicon camera (FastCAM SA3, Photron, Tokyo,

Japan; 200 kfps maximal rate, 1 Mpixel; 12 Gbytes RAM). Instantaneous

fluctuations are decomposed as a discrete series of Fourier modes, h(t) ¼
S(q)hq(t) exp(iqmx), where qm ¼ m/R is the equatorial projection of the fluc-

tuation wavevector (with R the radius and m ¼ 2,3,4,.N the azimuthal
number) (15). RBC dynamics is experimentally probed through the auto-

correlation function, defined as ACFq(t) ¼ hhq(t � t0)hq(t0)i, where the

angled brackets indicate an average over the time series obtained from a

given fluctuation sequence. The first mode (m ¼ 1), which corresponds to

the motion of the center of mass, is completely separated from the flickering

per se modes (m R 2). Consequently, contributions from translational mo-

tion are adequately eliminated from the experimental records. Good statis-

tics was achieved only when time averaging was performed over long time

series (typically 5 s at 20 kHz sampling; n z 104 frames). The ultrafast

method described here is able to track fluctuations over very long time pe-

riods, thus allowing for coherent detection of different components that

appear to be correlated over very different timescales. This technical goal

cannot be achieved with classical flickering studies involving much slower

videomicroscopy (16,22).
RESULTS AND DISCUSSION

Equatorial fluctuations: time series and
probability distribution function

In real space, the RBC-equatorial fluctuations, namely
h(x,t) ¼ R(x,t) � R0, are measured as local deviations of
the equatorial radius, R(x,t), from an average value, R0,
calculated with respect to the center of mass of the discoi-
dal profile (29,30). Fig. 1 shows flickering time traces
tracked during 5 s at a high rate (up to 5 kHz) and minimal
exposure time (0.2 ms), a set of observational conditions
adequate to enable efficient exploration of the accessible
membrane configurations. Healthy RBCs, or healthy dys-
cocytes (dysh), were studied in PBS(þ) buffer, a medium
that supports metabolic production of ATP by glycolysis.
Healthy RBCs undergo large fluctuations characterized
by long-lived excursions far away from the equilibrium po-
sition (Fig. 1 A). The statistical distribution of membrane
fluctuations is found to be broad and nearly symmetric
(Fig. 1 A). On average (calculated over a statistically sig-
nificant population of single cells), the membrane fluctua-
tions follow a normal distribution characterized by a large
RMSD value, Dh(dysh)¼ 32.2 nm (510%; N¼ 40), which
is consistent with the literature (7,20,22). An adequate ac-
count of active cytoskeleton components requires compar-
ison with discoid RBCs in an ATP-depletion medium
(dysd). We incubated RBCs for 2 h in PBS(�) buffer,
which led to energy depletion of the cell (31). We found
that a 2 h incubation was sufficient for the drugs to inacti-
vate the cytoskeleton; most of the RBCs in the sample
became rigid in the echinocyte shape (see Fig. 1 B, left),
and the remaining discocytes (dysd) exhibited significantly
reduced fluctuations (Fig. 1 B). Such drugged discoid
erythrocytes (dysd) were used to define the passive skeleton
state (7,17). In comparison with healthy RBCs (dysh), the
drugged specimens (dysd) exhibit weaker fluctuations, as
shown by the time trace in Fig. 1 B (center) The average
displacements registered in ATP-depleted cells Dh(dysd) ¼
11.2 nm (56%; N ¼ 32) were found to be significantly
smaller than for healthy cells. An additional control was
performed with rigid erythrocytes obtained after treatment
Biophysical Journal 108(12) 2794–2806



FIGURE 1 Characteristic membrane-fluctuation time traces tracked at an arbitrary (real-space) point in the equatorial profile of RBCs (both global var-

iations in the cell radius (cell swelling) and net displacements of the cell center (cell translation) have been subtracted from the data). The data correspond to

RBCs with a discocyte shape (dys) at different activity states, as shown in the micrographs (left). (A) A healthy flicker (dysh) upon cytoskeleton activity. (B

and C) Passive cases (h-scale magnified by a factor of 2 with respect to (A)) included drugged RBCs (dysd) after ATP depletion in PBS(�) buffer (B) and cells

fixed with glutaraldehyde (dysf) (C). Although most RBCs in the passive conditions appeared as nonfluctuating speckled echinocytes, some retained their

discocyte shape and continued to fluctuate (dysd and dysf). The normalized histograms at right represent the probability distributions of the membrane dis-

placements averaged over all the points in the equatorial profile (sh is the standard deviation). The line envelopes correspond to the normal distribution. To see

this figure in color, go online.
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with glutaraldehyde, a potent protein cross-linker that in-
duces solidification of both the cytoplasm hemoglobin
and the membrane cytoskeleton (32). Under this experi-
mental condition, we had practically motionless speci-
mens, herein informally called fixed erythrocytes (dysf),
which still maintained the discocyte shape (Fig. 1 C). We
observed weaker fluctuations characterized by slender dis-
tributions (Dh(dysf) ¼ 7.8 nm (55%; N ¼ 25); see Fig. 1
C) typical for rigid specimens with a null metabolism.
In treated erythrocytes, only fast local fluctuations are
observed (passive cases in Fig. 1, B and C (dysd and
dysf, respectively), which are different from the slow
large-scale undulations detected in healthy specimens
(Fig. 1 A, dysh). This distinctive feature assigns to the
healthy flicker cells a richer long-time dynamics compared
to that of passive cells, as identified by other authors
(6,7,17,18). The presence of these long-scale and ATP-
dependent motions enables us to explore the cytoskeleton
activity in two ways, 1) by determining its impact on the
global mechanical properties of the RBC membrane, and
2) by testing for signatures of active forces on the dynam-
ical correlations of the membrane motions.
RBC mechanical properties: membrane rigidities
and effective temperature

To get further insight into the spatial and dynamic charac-
teristics of active forces involved in the RBC flicker re-
quires a precise account of the mechanical properties of
both the passive lipid membrane and the underlying cyto-
skeleton. In the classical treatment of the fluctuation spec-
trum by Brochard and Lennon, only the fluid lipid bilayer
Biophysical Journal 108(12) 2794–2806
is considered, which is assumed to have an elasticity deter-
mined by bending (k) and tension (s) rigidities (16). Using
the Milner-Safran (MS) framework to describe membrane
fluctuations in the quasispherical geometry, the bending/
tension modes are viewed as linear combinations of the
spherical harmonics, Ylm(f, q) (35). However, in the flick-
ering experiment, we can only obtain information from
the focal plane, which is adjusted at the equatorial site
where the sharpest image can be focused. Several authors
have clarified how the MS analysis can be adapted to the
case where the equatorial contour of an axisymmetric mem-
brane is tracked by time-resolved microscopy (29,30). In
this case, the equatorial undulations correspond to the
discrete sequence of circular eigenmodes with the wavevec-
tor determined by the azimuthal number, q ¼ m/R (m ¼
2,3,4.N and R0 is the spherical radius). Every equatorial
MS mode is expressed as a sum of the azimuthal projection
of the spherical harmonics Ylm(f, q ¼ p/2) over the possible
states of polar orientations compatible with the equatorial
undulation, i.e., where l R m (combining Eq. S1.9 with
Eq. S1.4 in the Supporting Material for t ¼ 0; also see
Eq. S.12), this sum is

Pmðq ¼ m=RÞ ¼
�
h2m

�
R2

¼ kBT

k

Xlmax

l¼m

�ðlþ 1Þðl� 1Þ�lðlþ 1ÞþSeff

���1
;

(1)

where Seff ¼ sR2/k þ 4c0R � 2(c0R)
2 accounts for the

apparent membrane tension (s), which is corrected by

the local spontaneous curvature (c0R ¼ �2.4 for RBCs at
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the equator (36); see Section SI1 in the Supporting Material
for details).

In RBCs, a spectrin-based cytoskeleton is linked under-
neath to the lipid bilayer, and thus, two additional compo-
nents must be taken into account in the elastic free
energy: 1), the intrinsic shear rigidity of the spectrin
network (37), and 2) the confinement coupling between
the membrane and the cytoskeleton (13). In this case, the
MS description remains valid for a q-dependent renormal-
ized value of the bending modulus (in Eq. 1), which includes
both additional contributions (14,25):

k0keffðqÞ ¼ kþ 9kBT

16pk
mq�2 þ gq�4; (2)

where m is the shear modulus and g is a spring constant ac-
counting for the confinement energy involved in constrain-

ing large membrane excursions from the cytoskeleton. At
high q, both cytoskeleton contributions vanish and the effec-
tive bending modulus, keff, renormalizes to the bare value, k.
FIGURE 2 (A) Experimental static spectra calculated from the time-average

different states (see Materials and Methods). In the active case (red), the varian

passive cases, blue- and black-outlined circles represent the average spectra m

fits to the MS spectrum using Eqs. 1 and 2, with bending modulus keff as define

dominated by membrane tension, the MS spectrum predicts smaller fluctuations

rameters as obtained from the fits to the P(qR) spectra (see Table 1 for numerical

A) and plotted as a function of the fluctuation wavenumber, m¼ qR. The dashed

line indicates limiting behavior, Teff ~ 1/q at low q and Teff ~ 1/q2 at high q (at gs
different curves correspond to the P(qR) spectra recorded at increasing KF incu

inactivation process in (D) (open circles); the solid circles correspond to a passive

a cross-linked cytoskeleton after treatment with glutaraldehyde. To see this figu
Fig. 2 A shows the fluctuation spectra experimentally ob-
tained for RBCs under the different conditions considered in
this work. On the one hand, for passive cells (dysd in
PBS(�) buffer and dysf in PBS(�) with glutaraldehyde),
the fits of the experimental data to the MS spectrum charac-
terize the passive component of the RBC membrane as a
rigid material (see Table 1), in contrast to the high flexibility
of typical fluid bilayers (k z 10kBT, m h 0). On the other
hand, the fluctuation spectrum of normal RBCs (in the pres-
ence of ATP) shows amplitudes higher than those found for
the former passive cells (more than one order of magnitude
higher at low q; see Fig. 2 A). Any extra rigidity component,
i.e., other than those considered for the passive fluctuations,
should contribute to the reduction of the global fluctuations.
Consequently, this dynamic enhancement can be interpreted
either as 1) effective softening, leading to lower effective
elastic constants; or 2) higher effective temperature, ac-
counting for internal active forces, e.g., the cytoskeletal
kicking force hypothesized previously (7,14,38).
d amplitudes of the equatorial modes, P(qR) ¼ <hq
2>, of discocytes at

ce band represents data obtained over different healthy cells (N ¼ 40). In

easured for drugged and fixed discocytes, respectively. Lines represent the

d in Eq. 2. For the healthy RBCs (dashed yellow line), in the low-q region

than can be registered experimentally. (B) Statistics for the mechanical pa-

data). (C) Effective temperature, defined as Teff/T¼ Ph/Pd (from the data in

yellow line represents the trend expected for a direct force (the black dashed

0); see Gov (38)). (D) Inactivation kinetics for RBCs treated with KF. The

bation times. (E) Time dependence of the mechanical parameters along the

limit represented by the mechanical parameters of the fixed discocytes with

re in color, go online.
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TABLE 1 Mechanical characteristics of the RBC discocytes

Discocyte N k (10�19J) s (mN/m) m (mN/m) g (105 J/m4)

Healthy 40 2.7 5 0.6 0.23 5 0.1 4.0 5 1.0 1.7 5 0.5

Drugged 32 5.0 5 0.8 10.0 5 0.6 4.2 5 1.0 1.0 5 0.2

Fixed 25 5.4 5 1.5 13 5 4 5.6 5 1.5 1.5 5 0.5

KF-treated 6 3.5 5 0.7 5 5 2 6.5 5 1.5 1.0 5 0.2

Errors indicate N-populational standard deviations.
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For healthy cells, the values of the elastic parameters ob-
tained from the analysis of the high-q regime (where ther-
mal noise dominates) in terms of thermal fluctuations and
an effective elasticity (with Eqs. 1 and 2; see data in Table
1 and Fig. 2 B), are found to be in agreement with literature
data obtained by a similar analysis (6,7,22). Remarkably,
the effective membrane tension is found to be significantly
smaller in healthy RBCs (sh ¼ 0.23 5 0.1 mN/m) than in
passive cells, in particular when data are compared to those
for fixed cells obtained after cytoskeleton cross-linking
with glutaraldehyde (sf ¼ 13 5 4 mN/m). In view of the
large excess area available in the discocyte shape, the
low-tension state of normal RBCs could be perceived as
a loose interaction between the flexible membrane and
the rigid cytoskeleton, in contrast with the permanent
anchoring in the passive cases (see cartoon in Fig. 2 A).
In addition, the bending stiffness is found to be signifi-
cantly lower in normal RBCs than in the passive cases
(kact z kpass/2, see Table 1 and Fig. 2 B). Such mechanical
softening, observed under cytoskeleton phosphorylation,
can be understood as a dynamical effect related to the
reversibility of cytoskeleton anchoring; the mechanical
effects are much more flexible and floppy healthy RBCs,
compared to stiffer passive cells. However, no significant
changes are detected in the shear modulus (m) or in the
confinement constant (g), the two mechanical parameters
reporting global cytoskeleton connectivity (see Table 1
and Fig. 2 B). Consequently, we cannot eliminate the pos-
sibility of dynamic coupling with targeted energy transfer
at different scales as an explanation of the effective mem-
brane-softening characteristic of healthy cells with a
reversibly connected cytoskeleton. A crude analysis of
the spatial distribution of the effective softening can
be made in terms of effective temperatures calculated
from the comparison between the experimental spectra of
the normal and passive cells, after taking into account
the overall changes in the elastic moduli, i.e., Teff/T h
Ph/Pd (Fig. 2 C). (Drugged, instead of fixed, cells were
taken as the reference passive state. The reason for this
choice is that the possible additional bulk rigidity
appeared in fixed cells as a consequence of hemoglobin
cross-linking in the cytoplasm.) A high effective tempera-
ture is observed at low q (Teff/T z 20 at qR z 2), indi-
cating the global activity of the RBC. Before thermal
effects become dominant (Teff z T), the active effects
decrease first as Teff ~ q�1 at low wavenumbers (m < 4)
Biophysical Journal 108(12) 2794–2806
and then renormalize to Teff ~ q�2 for intermediate values
(4 < m < 15). This behavior is a clear signature of an
active direct force (38), in contrast to active curvature-
inducing forces, for which one expects an increase in Teff
with increasing q (38). Finally, active effects become negli-
gible compared to the thermal contribution at wavevectors
above a mesoscopic cutoff, q0 z 4 mm�1 (m > m0 z 15),
where Teff/T z 1. This cutoff corresponds to the smallest
membrane patch for which global activity is detected
(where active motion is dominant over thermal fluctua-
tions), l0 ¼ 2p/q0 z 1500 nm, a distance well above the
characteristic mesh size of the cytoskeleton network.
Because the cytoskeleton unit element is actually smaller
(39), a % 100 nm << l0, if l0 indicates the length scale
of the active patch, then the probability of a given cytoskel-
eton node being active at a given moment might be
small, as suggested for the detailed model of the
active membrane (26,27). Indeed, if many cytoskeletal
nodes became detached simultaneously, a catastrophic
decrease of the shear modulus would be detected at rest
conditions, similar to the fluidization transition experimen-
tally observed in healthy cells stressed at high rates (40).
Since no such sharp decrease of the in-plane rigidity is
observed (the shear modulus being essentially constant in
the different realizations), we conclude that most of the
cross-linking nodes of the spectrin skeleton are pinned to
the plasma membrane, and that detachment events, which
occur upon phosphorylation, are rather rare and sparsely
distributed in space and time (14). This argument also ap-
plies for the averaged membrane confinement, which is
essentially preserved with a dynamically interacting cyto-
skeleton. The detection of enhanced (active) amplitudes
supports the hypothesis of the existence of metabolically
regulated motions that are measurable over large spatial
scales (q << q0 ¼ 2p/l0). Further evidence of the meta-
bolic softening of healthy RBCs is provided by additional
experiments in which potassium fluoride was added to the
PBS(�) buffer (KF 150 mM final). In that case, enolase
was blocked by fluoride anion during glycolysis, which in-
hibited the main metabolic source of ATP (41). A progres-
sive decrease of the flickering activity is observed in the
experiments presented here (see Fig. 2 D), especially at
low q, where the spectral amplitudes are dominated by
the active component and restrained by membrane tension.
A quantitative analysis of the effective mechanical con-
stants indicates a progressive stiffening upon ATP inhibi-
tion. This is detected as an increase of the bending
modulus (Fig. 2 E, upper) and the membrane tension
(Fig. 2 E, lower) from their low effective levels, corre-
sponding to healthy RBCs, to maximal values, correspond-
ing to the bare mechanical response of the passive
cells. Note that membrane stiffening is observed after
both the increase of permanent connection with the spec-
trin network and the reduction of active forces due to
ATP inhibition.
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Time-autocorrelation function: thermal modes
plus ATP-dependent force

In the simplest description, the dynamics of the active mem-
brane fluctuations is given in the Langevin form (14,27),

vhq
vt

þ uqhq ¼ Lq½fthðtÞ þ factðtÞ�; (3)

where uq is the damping coefficient of the membrane

response that arises from the balance of the thermal (fth)
and active (fact) excitation forces with the elastic restoring
forces and viscous friction, which ultimately determine
the relaxation timescale. The latter is described by the
Oseen interaction kernel; for a free membrane, Lq z
(4hq)�1, where h is the effective viscosity of the RBC
cytoplasm (see Section SI2 in the Supporting Material
for details). The thermal force is an uncorrelated Gaussian
noise, hfth(t)fth(t0)iq ¼ 2kBTLq

�1d(t�t0), producing Brow-
nian motion with exponentially decaying time correlations
when convoluted with viscous friction. The active force
introduces additional correlations in the form of a charac-
teristic timescale describing the pulse duration. If one
considers stochastic pulse lengths, t, with a Poissonian
distribution P(t), the correlations of the direct forces
take a shot-noise form, that is, hfact(t)fact(0)iq ¼ (nm/2)
F2 exp(�t/t). To describe such an active component
(27,34), the model implements a direct force of amplitude,
5f0, and duration, t, produced by kicking motors
randomly distributed on the membrane with an areal den-
sity, nm. This results in an effective force, F (~ponf0, where
pon is the probability of an individual motor being on),
globally exerted by the active motors on the membrane,
which consequently moves at a velocity proportional to
F/h (h is the bulk viscosity). To discriminate active forces
from regular thermal motions in the RBC flicker consid-
ered here, we analyze time autocorrelation in the equato-
rial fluctuation modes, which actually arise from a
combination of spherical harmonics projected on the
azimuthal plane (see Sections SI1 and SI2 in the Support-
ing Material for a detailed discussion). Fig. 3 shows the
experimental height-to-height temporal autocorrelation
functions, ACFq(t) ¼ hhq(t)hq(0)i, measured for the equa-
torial eigenmodes of discocytes (q ¼ m/R). A pure-thermal
relaxation is expected in the passive case of a viscous
membrane (Fig. 3 A, left), where the relaxation profile is
described by an exponential decay modified by the special
function exponential integral, Ea(x) (see Eq. S2.15c in the
Supporting Material),

ACFðthÞ
q ðq; t;aÞze�uqt � �

uqt
	
E3=ð2þaÞ

�
uqt

	
; (4)

with a shape parameterized by a, a renormalization param-

eter that varies in the interval comprised between a ¼ 1
(regular fluid membrane) and a ¼ 0 (viscous membrane)
(see Section SI2 in the Supporting Material for details).
The decay rate, uq, is essentially determined by the relaxa-
tion rate of the fundamental spherical harmonic, l ¼ m (see
Eq. S1.10a),

uqðl ¼ m ¼ qRÞ ¼ keff

heffR
3

lðlþ 1Þ þ Seff

ZðlÞ ; (5)

where Z(l)¼ (2lþ 1)(2l2þ2l�1)/l(lþ 1)(lþ 2)(l�1). In the
high-q limit, Z(l) z 4/l, so Eq. 5. converts to the usual
dispersion equation for the planar membrane model in a
bulk fluid of effective viscosity heff, i.e., uq z (kq4 þ sq2

þ g)/4heffq. If the membrane has an intrinsic surface viscos-
ity mm, the bulk viscosity takes a q-dependent effective
value, heff ¼ h(1 þ mmq/2h) (42). This can be rewritten in
terms of a characteristic length, LC¼ mm/2h, that determines
the crossover between bulk- and membrane-dominated fric-
tional regimes, that is, heff ¼ h(1 þ qLC) (for details, see
Eqs. S2.13 and S2.14 in the Supporting Material).

We first probed for relaxation rates of the low-q modes in
drugged cells (Fig. 3 A, left), where a single relaxation cor-
responding to the thermal fluctuations is indeed observed. In
this case, data can be accurately described by the modified
exponential profile in Eq. 4. As expected, the fitted values
of the relaxation rates, uq (Fig. 3 B, left), follow the theoret-
ical prediction in Eq. 5 for thermal modes in a quasispheri-
cal membrane subjected to cytoskeleton confinement.
Taking the experimental values of Table 1, c0R ¼ �2.4
(36) and h ¼ 6 cP (43), one gets LC ¼ 260 5 80 nm (best
fit value). Below this characteristic length (q> LC

�1), which
is compatible with the mesh size of the cytoskeleton, fric-
tional dissipation is controlled by the intrinsic viscosity of
the membrane; from the current experiments, mm ¼ 2hLC
z 3 � 10�9 kg/s, in agreement with previous estimations
(42).

Once the passive realization was found to be consistent
with the regular dynamics of the thermalmotions in a viscous
membrane, the dynamics of the RBC flicker was tested in
the PBS(þ) medium containing glucose, thus enabling
glycolysis and therefore the production of ATP (Fig. 3 A,
right). The presence of ATP in the active case makes relaxa-
tion significantly slower than in the former passive case
(compare the two curves in Fig. 3 C), which suggests a
dynamical softening caused by the cell activity. Furthermore,
a correlation bump is systematically observed in the long-
time tail of the relaxation functions obtained for healthy cells
(Fig. 3 A, right), a feature absent in drugged cells (Fig. 3 A,
left). The observation of this extra contribution to the
mechanical relaxation of the healthy RBC flicker–in
addition to the primary thermal component—is the main
experimental result of this study and demonstrates the
presence of temporally correlated forces in the stress field
driving the membrane fluctuations. A similar correlated
component was recently identified to be a direct consequence
of nonequilibrium molecular activity in a model system
with artificially reconstituted membrane motors (44). The
Biophysical Journal 108(12) 2794–2806



FIGURE 3 (A) Experimental autocorrelation functions of the RBC flicker in the passive (drugged, left) and active (healthy, right) cases; wave numbersm¼
qR ¼ 4 (blue), 5 (green), 6 (red), and 7 (black). Solid lines correspond to fits of the experimental data to the stretched exponential model in Eq. 4 for the

thermal modes in passive cells (left) and to the bimodal function in Eq. 6 for the healthy cells (right). (B) Relaxation rates in the passive (left) and active

(right) cases, with open circles corresponding to thermal modes, uq, and solid circles to the active component, uact. MS frequencies were fitted using

Eq. 5 with h ¼ 6 cP and keff from Eq. 2, taking values from Table 1 (dotted line, tensionless membrane, S ¼ 0; solid line, tensioned membrane, S > 0;

dashed line: tensioned and viscous membrane, S > 0, g > 0, with LC ¼ 260 5 80 nm). (C) Comparison between autocorrelation (m ¼ 4) in passive cells

with Eq. 4 (blue) and in healthy cells with Eq. 6 (red). (D) Relative amplitudes of the active component decaying according to the direct-force model (red

line, Eq. 7) and the curvature-force model (black dashed line). To see this figure in color, go online.
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active component observed in RBCs is ATP-dependent and
emerges at a timescale that is clearly distinguished from
the relaxation of the thermal mode, which indicates addition-
ally correlated membrane motion caused by direct forces
with a similar duration. Consequently, if this active force is
assumed to be uncorrelated with the thermal forces in Eq.
S3.3, the autocorrelation function ACF(t) takes the bimodal
form

ACFðactÞ
q ðtÞ ¼ �

1� Aq

	
ACFðthÞ

q ðtÞ þ Aq expð�uacttÞ; (6)

where the first term is the regular thermal component and

the second term accounts for the additional correlations
that appear at timescale t (¼ 1/uact) as a result of metabolic
activity (Fig. 3 B, right). From the fits, both the relaxation
rates and the relative amplitudes of the two modes are ob-
tained, the faster due to the properties of the thermal fluctu-
ations and the slower to metabolic activity. When timescales
are compared, the presence of ATP (Fig. 3 B, right) makes
the whole relaxation significantly slower than in the former
passive case (Fig. 3 B, left). This slowing-down effect sug-
gests a dynamic softening in healthy cells, compatible
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with the effective decrease of elasticity moduli deduced
from the static data in Fig. 2, i.e., uq(normal)/uq(ATP-
depleted) ¼ kh/kd z 1/2. Indeed, from the comparison of
the relaxation rates of the thermal modes, assuming an
effective bending-like regime in the high-q limit (Fig. 3
B), we estimate uq(healthy)/uq(drugged) z kh/kd z 0.5,
showing that the relaxation rate of the mechanical response
is affected by the cytoskeletal activity, an intrinsic property
of the equation of motion (Eq. 3) and in agreement with the
values presented in Table 1.

Thereafter, we analyzed the correlation bump that occurs
in healthy cells. We observed that in drugged cells, it disap-
peared as a consequence of ATP synthesis inhibition. Sur-
prisingly, such a slower, and ATP-dependent, component
is found with a near-constant relaxation rate, uact z 10
s�1, regardless of the probed wavevector (Fig. 3 B, right).
With respect to its amplitudes, at low wavevector, the active
component is found to be comparable to the thermal
bending mode (Aq z 0.5 at qR % 4); however, its relative
amplitude decreases with increasing q, indicating a larger
dominance of the thermal mode at higher q (Fig. 3 D).
The two characteristics that support an active nature (see



FIGURE 4 (A) PSDs of the RBC flickers using the fast-Fourier transform

(FFT) algorithm, PSD(u) ¼ {FFT[h(t)]}2, for healthy cells (dysh) (red re-

gion), drugged cells (dysd) (blue region), and fixed cells (cyan region). Ver-

tical bars correspond to experimental data; lines indicate theoretical

predictions (see Eqs. S3.3 and S3.4 for the pure thermal spectrum (dashed

lines) and the thermal spectrum plus the active component arising from

direct cytoskeletal forces (with 5% residual activity in the passive case)

(solid lines)). (B) Time evolution of the experimental PSDs of RBC flickers

under KF treatment. (C) KF-passivation kinetics measured as the decrease

in effective temperature calculated from the data in (B) interpolated at

different frequencies. To see this figure in color, go online.
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Section SI3 in the Supporting Material) are 1) a single-ex-
ponential decay, ACF(act) ~ exp(�t/t), compatible with
shot-noise correlations; and 2) a nondispersive q-depen-
dence, t z uact

�1 ~ q0, indicative of a direct force
(26,27) with a given characteristic timescale independent
of the spatial scale probed. These features could represent
the dynamical signature of the reaction cycle of a metabolic
process producing nonequilibrium membrane forces of
average duration t. The observed correlation bump may
be related to a force applied by kicking active elements on
the membrane, similar to the correlation effect of pumping
activity described in Bouvrais et al. (44). This active
force should be pulsed, as it is applied during a short
time,t z uact

�1 z 100 ms, which may be related to the
quick metabolic remodeling of the cytoskeleton (14,26).
The model in Ben-Isaac et al. (27) and Gov (38) can be
used to predict the relative amplitude of the active mode;
for a direct force of amplitude F (see Eqs. S3.2 and S3.3
in the Supporting Material), one gets

Aq

1� Aq

f
nm

�
FLq

	2
2kBTLq

uq


u2
q � u2

act




: (7)

Taking the values nm(F/4h)
2 ¼ 2.5 105 nm2/s2 and uact ¼

t�1¼ 10 s�1, this expression predicts the active mode driven
by a direct force with a relative amplitude that compares
well with the observation (Fig. 3 D). In the tension-domi-
nated regime, this ratio is expected to decay as ~1/q4 when
uq >> uact and as ~1/q0 for uq z uact, in agreement with
experimental results.We also note that the active-component
amplitude inEq. 7 is predicted to diverge (in the linearmodel)
when uact ¼ uq, but in the healthy RBC, we are everywhere
far from this resonance, uact < uq (Fig. 3 B, right). An alter-
native case corresponds to active forces that induce mem-
brane curvature. In this case, the force is coupled to the
local membrane curvature, V2h (instead of h), so we get F
/ F(qr)2 in Eq. 7 (with r being the spontaneous radius of
curvature associated with the active conformational change)
(38). Consequently, the effect of curvature-inducing forces
increases with increasing q, which is the opposite of what
was observed, thus ruling out this force mode (Fig. 3 D).
As a proof of consistency, we analyzed themutual correspon-
dence between the characteristic time of the cytoskeletal
motions and the spatial scale where membrane activity dom-
inates (Teff > T at q < q0; see Fig. 2 C). From the theoretical
model of an active membrane pumped by direct forces (38),
in the tension-dominated regime, one expects a renormaliza-
tion between two limiting regimes at a crossover wavevector,
qc z 2ht�1/g, which determines the boundary between an
active force-dominated regime (q < qc) and a kinematic
regime governed by membrane tension (q > qc). Assuming
t z 0.1 s, one estimates that qc z 1 mm�1, so that mc ¼
qc � R z 4–5, in agreement with experimental crossover
behavior (see Fig. 2 C).
Power spectra: Brownian flicker versus
cytoskeleton forces

To better characterize the chromatic characteristics of the
flickering noise, the power spectral densities (PSDs) were
computed by Fourier transform of the fluctuations:
PSD(u) ¼ k!h(t)eiutdtk2. Fig. 4 shows the results from ex-
periments under different conditions. Membrane motion is
found to have much larger spectral densities in healthy
RBCs than in ATP-depleted cells (Fig. 4 A). The spectral
density of healthy cells is found to be enhanced at low fre-
quencies compared to that in the passive cases, indicating
that active cells have more energy in the slower motions,
even more than expected for the mechanically soft Brow-
nian flicker (with mechanical constants given in Table 1
Biophysical Journal 108(12) 2794–2806
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for healthy RBCs). We attribute the extra fluctuations to
active forces (Fig. 4). Our model of active RBC flicker con-
siders membrane-driving forces superposed on passive ther-
mal motions (27,38); in the ideal tensionless case (see Eq.
S3.4 in the Supporting Material),

PSDðuÞzPSDthðuÞ þ
�
F

4h

�2
nmt

u2ð1þ u2t2Þ: (8)

No correlation between active motions and thermal fluc-
tuations is assumed in this (simplest) approximation (25,27),
and thus, we consider additive contributions to the spectral
amplitudes. The first component represents passive Brow-
nian flickering composed of the dynamic superposition of
the thermal modes in a flexible membrane (16). At
high frequencies, a Brownian-noise decay is expected,
PSDth(u / N) ~ u�5/3 (7,16). In the low-frequency
regime, thermal fluctuations are dominated by the tension
of the membrane (seff) and the confinement term (g), so
an upper bound with a value determined by seff is expected
in the passive spectra, PSDth(u /0) ~ kBT/seff. This is the
pure thermal behavior found for the glutaraldehyde-fixed
discocytes (Fig. 4 A). In addition, the second summand in
Eq. 8 accounts for the spectral density corresponding to
the ideal shot noise produced by active elements exerting
pulsed forces on a tensionless membrane (s / 0) (27,38).
If present, the active term should contribute mainly at low
frequencies, measurable as an increase of the spectral den-
sity. However, at high frequencies, where Brownian noise
dominates, the active component is expected to strongly
decrease as ~u�4. Indeed, the flickering spectrum of healthy
cells is observed with the u�5/3 decay corresponding to ther-
mal components at high frequencies, in agreement with pre-
vious experiments (7,25). However, at frequencies <10 Hz
(zuact), the healthy flicker dissipates additional power
compared to the pure thermal component corresponding to
the Brownian flicker (Fig. 4 A). Taking the values we fitted
for Fig. 3, i.e., t ¼ 1/uact ¼ 100 ms and nm(F/4h)

2 ¼ 2.5 �
105 nm2/s2, the model provides an accurate prediction of the
active fluctuations in both frequency regimes (Fig. 4 A).
This implies a breakdown of the equilibrium description at
frequencies <10 s�1, leading to a frequency-dependent
dissipative component due to active motions. Such fre-
quency dependence resembles the results of the Betz exper-
iment with an optical trap, from which the same timescale
was inferred for the active component (7). By contrast,
RBCs with a passive cytoskeleton (treated with either
ATP-inhibitory drugs or glutaraldehyde) are observed to
dissipate significantly less power, with a comparatively ligh-
ter spectral distribution compared to that of healthy cells at
low frequencies. In particular, for fixed cells, the observed
PSD is compatible with pure thermal fluctuations of a rigid
membrane, as deduced from the PSD ratio calculated at low
frequencies, [PSDh/PSDf]u/0 z (sf/sh)eff z 102, which is
in accordance with data shown in Table 1. Some remaining
Biophysical Journal 108(12) 2794–2806
activity is detected in drugged cells, and it is measured as
additional power dissipated at low frequencies with respect
to fixed cells (~5% of the activity of healthy cells in dysd at
u % uact z 10 s�1; Fig. 4 A). The expression for the active
contribution of the PSD, given in Eq. 8, is an approximation
for the limit of zero tension, and therefore, it strictly applies
to the high-u regime where tension is not dominant. Numer-
ically integrating the PSD for the active component for low
u, where the tension is dominant (27,38), gives the well-
behaved function plotted in Fig. 4 A. Further evidence for
the existence of active elements dissipating additional po-
wer is provided from experiments of glycolysis breakdown
with fluoride anions (F�). Fig. 4 B shows the time evolution
of the PSDs during treatment of RBCs with potassium fluo-
ride (KF). A significant decrease of the dissipated power is
observed alongside the kinetic process of enolase inhibition,
especially at low frequencies. Because ATP levels progres-
sively decrease after glycolysis inhibition, a proportional
decrease of the metabolic activity is expected in accordance
with the observed decrease of the mechanical power. The
relative decrease of the dissipated power is plotted in
Fig. 4 C as a function of time, i.e., Teff(t)/T ¼ PSD(t)/
PSD(t/N), taking the PSD registered after 2 h as the refer-
ence passive state (PSD(t/N) z PSDth, for which Teff z
T). The results presented in Fig. 4 C indicate a first-order ki-
netics for the inactivation process, Teff(t; u) ~ e�k(u)t, char-
acterized by a frequency-dependent inhibition rate, k, which
determines how fast the mechanical activity is inhibited in
the presence of KF. Indeed, the lower the frequency probed,
the faster the observed rate of decrease of activity, a fact
consistent with the presence of correlated effects due to
cytoskeleton forces only at timescales longer than the pulse
time (Fig. 4 C; k > 0 at u < 102 s�1 z 1/t).
Cytoskeleton pinning and active dynamics

We gain further insight about the spatial characteristics of
the detected shot forces by discussing our results in struc-
tural terms. The RBC membrane is composed of a flexible
lipid bilayer, mainly composed of phospholipids and choles-
terol, which is linked to a metabolically active cytoskeletal
network. The native structure of unstressed membrane RBC
skeleton has been determined by transmission electron mi-
croscopy (TEM) (45,46). TEM images of intact membranes
reveal a foam-like meshwork of spectrin filaments with a
gradual decrease in density from the center of the cell to
the equatorial edge. The ultrastructure of stretched patches
of the RBC cytoskeleton reveals a network organization
(see Fig. 5 A) in which spectrin filaments are the main struc-
tural component (2,3). In vivo, the characteristic length of
the network is a ¼ 46 5 15 nm (46), indicating that on
average, the size of spectrin filaments in the native mem-
brane skeleton is a fraction of its contour length (L z
190 nm) observed in membrane patches stretched on TEM
grids (39). Spectrin filaments are pinned to the membrane



FIGURE 5 (A) Cartoon of the molecular structure of the RBC cytoskel-

eton in which we explain our dynamical model. A near-hexagonal spectrin

network is assembled by means of multiprotein junctional complexes (see

details in the text), which act as primary attachments to the plasma mem-

brane via a specific membrane domain of band 4.1 protein that reversibly

interacts with glycophorin C in an ATP-dependent manner. Secondary

attachment is provided by ankyrin, which interacts with transmembrane

band 3 dimers. (B) Pinning model of cytoskeleton activity at junctional no-

des. Complete membrane attachment to a rigid cytoskeleton causes effec-

tive stiffening, shown as low-amplitude fluctuations, Dh (upper). Node

phosphorylation causes the membrane to pinch off from the cytoskeleton,

resulting in an effective kicking force of amplitude f0 in the membrane,

which undergoes a normal displacement, d (lower). In this case, the mem-

brane experiences larger fluctuations of average amplitude Dh þ d. To see

this figure in color, go online.
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via transmembrane- and membrane-associated proteins
(47,48). To assemble the network, the distal tails of the spec-
trin filaments are connected at pinning nodes via junctional
complexes consisting of actin, tropomyosin, protein band
4.1, and other regulatory proteins (Fig. 5 A, inset)
(39,47,48). On average, at a given 4.1-based node, six
spectrin ends make a reversible complex with each actin
oligomer, producing an almost hexagonal network (39).
Membrane attachment of the junctional nodes is provided
by protein band 4.1 (49), which associates with spectrin/
actin complexes, forming a high-affinity ternary complex
that recognizes specific membrane pinning domains in the
transmembrane protein glycophorin C (8,50,51). Ankyrin
provides additional membrane linkage through spectrin as-
sociation at a binding site located close to the filament mid-
region (52). This domain creates a tight linking association
between spectrin and the cytoplasmic domain of protein
band 3, the RBC anion exchanger (9). Network stability is
mainly dependent on those two interactions, the one defined
by the junctional complex at the distal ends of spectrin tet-
ramers and the one defined by ankyrin (5). All the RBC
cytoskeletal proteins except actin can be phosporylated by
several kinases present in the erythrocyte (3–5). Regarding
spectrin, an increased phosphorylation is known to decrease
the mechanical stability of intact RBCs via cytoskeletal
disentanglement (12). However, spectrin phosphorylation
has been shown not to affect spectrin bound to ankyrin
(3–5). The question then arises: how does ATP cause the dy-
namic remodeling of the cytoskeletal attachment? The
answer should be puzzling, but some authors have plausibly
argued in favor of ATP-dependent phosphorylation of the
4.1 protein (7,14), which controls the spectrin-membrane
connections at the junctional nodes in the cytoskeletal
network. Indeed, at a high level of phosphorylation, protein
band 4.1 drastically reduces its ability to associate with
spectrin, which triggers the dissociation of glycophorin C
from the membrane skeleton (10,12,51,53). This phosphor-
ylation is catalyzed by protein kinase C (PKC), which
disassembles the spectrin/actin/4.1 trimer, the essential
cytoskeletal complex that determines the mechanical stabil-
ity of the RBC membrane (12). Indeed, PKC activation is
known to lead to a decreased overall stability of the
membrane skeleton (12,53,54), a structural effect that is
consistent with a measurable increase of the dynamic fluctu-
ations of the RBC membrane, as revealed by Betz et al. (7).
Therefore, assuming the currently accepted mechanochem-
ical model of the 4.1 nodes (51,53), every unpinning event
bears a reaction kicking force that should be stressed on
the lipid membrane upon dissociation of a spectrin filament
from the junctional complex (14,26). The timescale in-
volved in the unbinding process has not yet been deter-
mined, but our experiments suggest that the active shots
last for ~0.1 s (see Fig. 3), in agreement with the active time-
scale detected by Betz et al. (7). The cartoon in Fig. 5 B
depicts a generic kicking event where the active element
of the membrane undergoes a net displacement, d, occurring
during time t under a reaction force of amplitude f0, exerted
after unpinning phosphorylation at a junctional complex. In
this model, a single-shot event is visualized as the net
displacement, d, of a membrane, which is driven by a kick-
ing force of amplitude f0. In view of the experimental data
presented here, if the observed overcorrelation corresponds
to the collective action of single kicking events of duration
t z 0.1 s, assuming the active model of Fig. 5 B, on
average, every elemental membrane patch undergoes a
transverse displacement of length d z Dhh � Dhf z
25 nm, a distance compatible with the dimensions of the
elemental cell of the cytoskeletal network (46).
Active forces driven by the RBC cytoskeleton
dynamics

At every single cytoskeleton phosphorylation event, the
membrane is reversibly pinched off from one pinning
element, which individually exerts a kicking force of
amplitude f0 with a well-defined duration t z 0.1 s, which
Biophysical Journal 108(12) 2794–2806
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determines the average burst time of the active component
revealed in the correlation function; uact ¼ t�1 z 10 s�1

(Fig. 3 B). This characteristic time should define the fre-
quency threshold to detect activity in the power spectrum.
In native membranes, assuming that every skeletal unit
cell contains only one potential kicker, the average surface
density of active elements should be of the order nm z
a�2 z 500 kickers/mm2. This estimation is compatible
with the numerical density of membrane anchors (3). There-
fore, assuming their homogeneous distribution along the
cell with an average area of A z 140 mm2 (2,3), a maximal
density of nm % 103 mm�2 is calculated. It is noteworthy
that the direct-force model in Eq. 8 (25,27) is able to
describe the experimental PSDs of healthy cells taking the
values nm(F/4h)

2¼ 2.5� 105 nm2 s�2 and t¼ 0.1 s. If these
parameters are related to the structural model, and assuming
a maximal areal density of potentially active elements
(kickers) of nm z 5 � 10�4 nm�2, one gets F z 5 �
10�4 pN (taking h ¼ 6 cP). This value could become even
higher if a lower density of membrane active sites is
assumed at the equatorial cell site: F z 2 � 10�3 pN
assuming nm z 2.5 � 10�5 nm�2 (for a z L z 200 nm).
Because F % 2 � 10�3 pN is the average force necessary
to explain the additional power associated with the active
motions of the healthy RBC flicker observed at large scales,
only a small fraction (<10%) of spectrin-based cytoskeleton
elements are required to be sparsely activated at a given
time; since F ¼ ponf0, assuming f0 z 5 � 10�3 pN, one es-
timates pon % 0.1, the probability for an active cytoskeletal
node to be on at a given moment. For an individual kicker,
the probability of being on is pon ¼ t/(Dt þ t), where Dt is
the waiting time between consecutive pulses of duration t.
Since pon % 0.1, taking t z 0.1 s, we calculate a delay of
DtR 1 s as the time necessary for a single node in the cyto-
skeleton to reattach the spectrin filament and to exert a new
kick on the membrane. The mechanical work associated
with a single shot is Wshot ¼ f0d z 1 pN � nm z kBT,
just a fraction of the chemical energy released under the
hydrolysis of one ATP molecule (DEATP z 13kBT). In
healthy cells, the ATP-induced dissociation of spectrin fila-
ments is transient and reversible. A decreased activity is ex-
pected under the ATP-depletion condition, since the waiting
time, Dt, for the forthcoming kicking event increases,
thereby decreasing pon and thus decreasing the strength of
the effective force that produces the enhanced fluctuations.
This is the case for drugged cells or after the use of KF. In
the cross-linked cytoskeleton condition (glutaraldehyde
treatment), no spectrin dissociation is possible (pon ¼ 0),
and therefore a completely passive behavior is observed in
the fixed RBCs. In healthy cells, every kicking event in-
volves single pulses of amplitude f0z 5� 10�3 pN sparsely
applied during a short time, t z 0.1 s. Each cytoskeletal
element that becomes active only sporadically (pon % 0.1)
is expected either to locally extend the membrane or to
change curvature. To cause local membrane extension, a
Biophysical Journal 108(12) 2794–2806
normal force of fs z sd z 5 � 10�3 pN must be applied
on its own cytoskeletal node (sh z 0.2 mN/m). However,
to produce a local change in membrane curvature, a larger
force, of the order fk z k/d z 10 pN (where k z kh z
65kBT), has to be applied. Therefore, a single pulse exerting
a direct force as low as f0z 5� 10�3 pN would be able only
to cause local membrane dilation, not change the local
curvature, as deduced from the q-dependence of the active
amplitudes (see Fig. 3 D). At a global scale, the action of
Nm ¼ Anm z 105 kickers working sparsely at a probability
as low as pon z 0.1 will produce a global force in the mem-
brane of Fkick ¼ Nm

1/2f0pon z 1 pN. This force is enough
to pump the breathing mode of the cytoskeleton network,
Fk z k/Rz 0.1 pN, and even to drive the large-wavelength
tension modes involved in the global area dilation required
for changing cell shape, Fs z sR z 1 pN. In healthy cells,
in addition to the direct forces causing out-of-equilibrium
activity at global scales (observed as enhanced low-q fluctu-
ations), we detect a global membrane softening associated
with ATP-dependent cytoskeletal activity. Although this
mechanical softening could be merely compositional (due
to cytoskeletal reorganization), membrane detachment is
sparse and transient, which suggests a dynamical coupling
between active forces and passive mechanical modes of
the membrane. Bouvrais and colleagues reported a similar
softening associated with the activity of pumping forces
reconstituted in artificial bilayers devoid of a structural cyto-
skeleton (44), thus supporting the hypothesis of mechanical
coupling rather than a pure compositional effect.
CONCLUSIONS

The results presented here represent an experimental proof
of the existence of temporally correlated active forces
exerted on the RBC membrane due to metabolic activity.
Furthermore, these results strongly support the notion that
such forces arise within the spectrin cytoskeleton. The
active force appears as sporadic pulses of weak amplitude
(f0 z 5 � 10�3 pN) with a relatively long duration (t z
0.1 s). This kicking activity is spatially sparse over the cyto-
skeleton, but its dynamical correlation causes global effects
on the cell membrane. This cytoskeletal force is shown to be
metabolically driven (ATP-dependent) and to produce
enhanced membrane fluctuations extending over large dis-
tances and relaxing over long times. Although the details
of the dynamic mechanism of this activity in the RBC mem-
brane remain unknown, our observations are compatible
with the superposition of two stochastic motions that are
different in nature, the active pulses due to cytoskeleton
detachments and the mechanical modes driven by thermal
motions. In healthy RBCs, spectrin detachment events are
relatively infrequent and sparse, but sufficient to produce
enhanced motions over cellular scales and overall mechan-
ical softening. A more precise look at the constitutive rela-
tionships and the regulatory network of this cytoskeleton
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force will allow for a detailed description of the active
flicker mechanism and therefore a better understanding of
the dynamic pathways underlying the active mechanics of
RBCs in physiological conditions.
SUPPORTING MATERIAL

Supporting Materials and Methods and four figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(15)00489-0.
AUTHOR CONTRIBUTIONS

R.R.G. performed research, contributed analytic tools, analyzed the data,

and discussed the results. I.L.M. contributed analytic tools, analyzed the

data, and discussed the results. M.M. contributed analytic tools, analyzed

the data, and discussed the results. G.E. discussed the results and wrote

the article. N.S.G. and F.M. performed the research, contributed analytic

tools, analyzed the data, discussed the results, and wrote the article.
ACKNOWLEDGMENTS

We are grateful to the Universidad Complutense de Madrid Medical Service

(Medicina del Trabajo School of Medicine) for blood extractions.

This work was supported by grants FIS2009-14650-C02-01, FIS2012-

35723, and CSD2007-0010 (Consolider-Ingenio Nanociencia Molecular)

from the Ministerio de Economı́a y Competitividad (MINECO) and

S2013/MIT-2807 (NanoBIOSOMA) and S2009MAT-1507 (NOBIMAT)

from CAM to F.M.; and BFU2012-33932 from MINECO to G.E. N.S.G.

gratefully acknowledges funding from the Israel Science Foundation (grant

no. 580/12). R.R.G. was supported by the Formación de Personal Investiga-

dor program (MINECO). I.L.M. was supported by ‘‘Programa Ramon y

Cajal’’ (RYC-2013-12609) from MINECO (Spain) and the European

Research Council-European Union under grant ERC-StG-338133.
REFERENCES

1. Nakao, M., T. Nakao, and S. Yamazoe. 1960. Adenosine triphos-
phate and maintenance of shape of the human red cells. Nature.
187:945–946.

2. Alberts, B., A. Johnston,., P. Walter. 2007. Molecular Biology of the
Cell. Garland Science, New York.

3. Yawata, Y. 2004. Cell Membrane: The Red Blood Cell as a Model. Wi-
ley-Blackwell, Hoboken, NJ, pp. 27–46.

4. Discher, D. E. 2000. New insights into erythrocyte membrane organi-
zation and microelasticity. Curr. Opin. Hematol. 7:117–122.

5. Mohandas, N., and P. G. Gallagher. 2008. Red cell membrane: past,
present, and future. Blood. 112:3939–3948.

6. Park, Y., C. A. Best,., M. S. Feld. 2010. Metabolic remodeling of the
human red blood cell membrane. Proc. Natl. Acad. Sci. USA.
107:1289–1294.

7. Betz, T., M. Lenz, ., C. Sykes. 2009. ATP-dependent mechanics of
red blood cells. Proc. Natl. Acad. Sci. USA. 106:15320–15325.

8. Bennett, V. 1990. Spectrin-based membrane skeleton: a multipotential
adaptor between plasma membrane and cytoplasm. Physiol. Rev.
70:1029–1065.

9. Mohandas, N., and E. Evans. 1994. Mechanical properties of the red
cell membrane in relation to molecular structure and genetic defects.
Annu. Rev. Biophys. Biomol. Struct. 23:787–818.

10. Eder, P. S., C. J. Soong, and M. Tao. 1986. Phosphorylation reduces the
affinity of protein 4.1 for spectrin. Biochemistry. 25:1764–1770.
11. Cianci, C. D., M. Giorgi, and J. S. Morrow. 1988. Phosphorylation of
ankyrin down-regulates its cooperative interaction with spectrin and
protein 3. J. Cell. Biochem. 37:301–315.

12. Manno, S., Y. Takakuwa,., N. Mohandas. 1995. Modulation of eryth-
rocyte membrane mechanical function by b-spectrin phosphorylation
and dephosphorylation. J. Biol. Chem. 270:5659–5665.

13. Boal, D. H. 2002. Mechanics of the Cell. Cambridge University Press,
Cambridge, United Kingdom.

14. Gov, N. S., and S. A. Safran. 2005. Red blood cell membrane fluctua-
tions and shape controlled by ATP-induced cytoskeletal defects.
Biophys. J. 88:1859–1874.

15. Blowers, R., E. M. Clarkson, and M. Maizels. 1951. Flicker phenome-
non in human erythrocytes. J. Physiol. 113:228–239.

16. Brochard, F., and J. F. Lennon. 1975. Frequency spectrum of the flicker
phenomenon in erythrocytes. J. Phys. (France). 36:1035–1047.

17. Tuvia, S., A. Almagor,., S. Yedgar. 1997. Cell membrane fluctuations
are regulated by medium macroviscosity: evidence for a metabolic
driving force. Proc. Natl. Acad. Sci. USA. 94:5045–5049.

18. Tuvia, S., S. Levin,., R. Korenstein. 1998. Mechanical fluctuations of
the membrane-skeleton are dependent on F-actin ATPase in human
erythrocytes. J. Cell Biol. 141:1551–1561.

19. Strey, H., M. Peterson, and E. Sackmann. 1995. Measurement of eryth-
rocyte membrane elasticity by flicker eigenmode decomposition.
Biophys. J. 69:478–488.

20. Evans, J., W. Gratzer, ., J. Sleep. 2008. Fluctuations of the red blood
cell membrane: relation to mechanical properties and lack of ATP
dependence. Biophys. J. 94:4134–4144.

21. Puckeridge, M., and P. W. Kuchel. 2014. Membrane flickering of the
human erythrocyte: constrained random walk used with Bayesian anal-
ysis. Eur. Biophys. J. 43:157–167.

22. Yoon, Y. Z., H. Hong,., P. Cicuta. 2009. Flickering analysis of eryth-
rocyte mechanical properties: dependence on oxygenation level, cell
shape, and hydration level. Biophys. J. 97:1606–1615.

23. Park, Y., C. A. Best, ., G. Popescu. 2010. Measurement of red blood
cell mechanics during morphological changes. Proc. Natl. Acad. Sci.
USA. 107:6731–6736.

24. Yoon, Y. Z., J. Kotar, ., P. Cicuta. 2011. Red blood cell dynamics:
from spontaneous fluctuations to non-linear response. Soft Matter.
7:2042–2051.

25. Lin, L. C., N. Gov, and F. L. Brown. 2006. Nonequilibrium membrane
fluctuations driven by active proteins. J. Chem. Phys. 124:74903.

26. Gov, N. S. 2007. Active elastic network: cytoskeleton of the red blood
cell. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75:011921.

27. Ben-Isaac, E., Y. Park, ., Y. Shokef. 2011. Effective temperature of
red-blood-cell membrane fluctuations. Phys. Rev. Lett. 106:238103.

28. Rodrı́guez-Garcı́a, R., M. Mell,., F. Monroy. 2011. Subdiffusive fluc-
tuation dynamics of rigid membranes as resolved by ultrafast videomi-
croscopy. Europhys. Lett. 94:28009.

29. Faucon, J. F., M. D. Mitov, ., P. Bothorel. 1989. Bending elasticity
and thermal fluctuations of lipid membranes. Theoretical and experi-
mental requirements. J. Phys. (France). 50:2389–2414.

30. Pecreaux, J., H. G. Dobereiner,., P. Bassereau. 2004. Refined contour
analysis of giant unilamellar vesicles. Eur. Phys. J. E Soft Matter.
13:277–290.

31. Plishker, G. A. 1985. Iodoacetic acid inhibition of calcium-dependent
potassium efflux in red blood cells. Am. J. Physiol. 248:C419–C424.

32. Tsukita, S., S. Tsukita, ., M. Nakao. 1981. Electron microscopic
study of reassociation of spectrin and actin with the human erythrocyte
membrane. J. Cell Biol. 90:70–77.

33. Brown, J. N. 1975. The avian erythrocyte: a study of fixation for elec-
tron microscopy. J. Microsc. 104:293–305.

34. Gumi�nska, M., and J. Sterkowicz. 1976. Effect of sodium fluoride on
glycolysis in human erythrocytes and Ehrlich ascites tumour cells
in vitro. Acta Biochim. Pol. 23:285–291.
Biophysical Journal 108(12) 2794–2806

http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)00489-0
http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)00489-0
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref1
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref1
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref1
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref2
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref2
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref3
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref3
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref4
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref4
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref5
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref5
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref6
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref6
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref6
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref7
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref7
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref8
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref8
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref8
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref9
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref9
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref9
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref10
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref10
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref11
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref11
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref11
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref12
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref12
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref12
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref13
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref13
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref14
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref14
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref14
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref15
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref15
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref16
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref16
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref17
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref17
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref17
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref18
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref18
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref18
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref19
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref19
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref19
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref20
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref20
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref20
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref21
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref21
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref21
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref22
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref22
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref22
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref23
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref23
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref23
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref24
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref24
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref24
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref25
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref25
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref26
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref26
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref27
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref27
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref28
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref28
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref28
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref29
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref29
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref29
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref30
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref30
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref30
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref31
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref31
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref32
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref32
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref32
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref33
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref33
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref34
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref34
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref34
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref34


2806 Rodrı́guez-Garcı́a et al.
35. Milner, S. T., and S. A. Safran. 1987. Dynamical fluctuations of droplet
microemulsions and vesicles. Phys. Rev. A. 36:4371–4379.

36. Deuling, H. J., and W. Helfrich. 1976. Red blood cell shapes as ex-
plained on the basis of curvature elasticity. Biophys. J. 16:861–868.

37. Zeman, K., H. Engelhard, and E. Sackmann. 1990. Bending undula-
tions and elasticity of the erythrocyte membrane: effects of cell shape
and membrane organization. Eur. Biophys. J. 18:203–219.

38. Gov, N. 2004. Membrane undulations driven by force fluctuations of
active proteins. Phys. Rev. Lett. 93:268104.

39. Liu, S. C., L. H. Derick, and J. Palek. 1987. Visualization of the hex-
agonal lattice in the erythrocyte membrane skeleton. J. Cell Biol.
104:527–536.

40. Li, J., G. Lykotrafitis, ., S. Suresh. 2007. Cytoskeletal dynamics of
human erythrocyte. Proc. Natl. Acad. Sci. USA. 104:4937–4942.

41. Feig, S. A., S. B. Shohet, and D. G. Nathan. 1971. Energy metabolism
in human erythrocytes. I. Effects of sodium fluoride. J. Clin. Invest.
50:1731–1737.

42. Camley, B. A., and F. L. Brown. 2011. Beyond the creeping viscous
flow limit for lipid bilayer membranes: theory of single-particle micro-
rheology, domain flicker spectroscopy, and long-time tails. Phys. Rev. E
Stat. Nonlin. Soft Matter Phys. 84:021904.

43. Cokelet, G. R., and H. J. Meiselman. 1968. Rheological comparison of
hemoglobin solutions and erythrocyte suspensions. Science. 162:275–
277.

44. Bouvrais, H., F. Cornelius, ., O. G. Mouritsen. 2012. Intrinsic reac-
tion-cycle time scale of Naþ,Kþ-ATPase manifests itself in the lipid-
protein interactions of nonequilibrium membranes. Proc. Natl. Acad.
Sci. USA. 109:18442–18446.
Biophysical Journal 108(12) 2794–2806
45. Nans, A., N. Mohandas, and D. L. Stokes. 2011. Native ultrastructure
of the red cell cytoskeleton by cryo-electron tomography. Biophys. J.
101:2341–2350.

46. Liu, F., J. Burgess,., A. Ostafin. 2003. Sample preparation and imag-
ing of erythrocyte cytoskeleton with the atomic force microscopy. Cell
Biochem. Biophys. 38:251–270.

47. Byers, T. J., and D. Branton. 1985. Visualization of the protein associ-
ations in the erythrocyte membrane skeleton. Proc. Natl. Acad. Sci.
USA. 82:6153–6157.

48. Shen, B. W., R. Josephs, and T. L. Steck. 1986. Ultrastructure of the
intact skeleton of the human erythrocyte membrane. J. Cell Biol.
102:997–1006.

49. Conboy, J. G. 1993. Structure, function, and molecular genetics of
erythroid membrane skeletal protein 4.1 in normal and abnormal red
blood cells. Semin. Hematol. 30:58–73.

50. Bennett, V. 1989. The spectrin-actin junction of erythrocyte membrane
skeletons. Biochim. Biophys. Acta. 988:107–121.

51. Discher, D. E., R. Winardi,., N. Mohandas. 1995. Mechanochemistry
of protein 4.1’s spectrin-actin-binding domain: ternary complex inter-
actions, membrane binding, network integration, structural strength-
ening. J. Cell Biol. 130:897–907.

52. Davis, L. H., and V. Bennett. 1990. Mapping the binding sites of human
erythrocyte ankyrin for the anion exchanger and spectrin. J. Biol.
Chem. 265:10589–10596.

53. Manno, S., Y. Takakuwa, and N. Mohandas. 2005. Modulation of eryth-
rocyte membrane mechanical function by protein 4.1 phosphorylation.
J. Biol. Chem. 280:7581–7587.

54. de Oliveira, S., A. S. Silva-Herdade, and C. Saldanha. 2008. Modula-
tion of erythrocyte deformability by PKC activity. Clin. Hemorheol.
Microcirc. 39:363–373.

http://refhub.elsevier.com/S0006-3495(15)00489-0/sref35
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref35
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref36
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref36
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref37
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref37
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref37
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref38
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref38
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref39
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref39
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref39
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref40
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref40
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref41
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref41
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref41
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref42
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref42
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref42
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref42
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref43
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref43
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref43
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref44
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref44
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref44
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref44
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref44
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref44
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref45
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref45
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref45
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref46
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref46
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref46
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref47
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref47
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref47
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref48
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref48
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref48
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref49
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref49
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref49
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref50
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref50
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref51
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref51
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref51
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref51
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref52
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref52
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref52
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref53
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref53
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref53
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref54
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref54
http://refhub.elsevier.com/S0006-3495(15)00489-0/sref54


1 

 

Supplementary Information 

Direct cytoskeleton forces cause membrane 
softening in red blood cells 

Ruddi Rodríguez-García1, Iván López-Montero1,2, Michael Mell1,2, 
Gustavo Egea3, Nir S. Gov4 and Francisco Monroy1,2,* 

1Department of Physical Chemistry, Universidad Complutense. Ciudad Universitaria s/n 28040 Madrid, Spain. 
2Instituto de Investigación Hospital Doce de Octubre (i+12). Avenida de Córdoba, s/n 28041 Madrid, Spain. 

3Departament of Cell Biology, Immunology and Neurosciences, University of Barcelona, School of Medicine and Instituts 
d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Nanociències i Nanotecnologia (IN2UB), 08036 Barcelona, Spain. 

4Department of Chemical Physics, Weizmann Institute of Science. Rehovot 76100, Israel. 

 

SI1. Thermal fluctuations of quasi-spherical vesicles 

a) Bending modes in the spherical harmonic base: quasi-spherical spectrum. 

Currently the only membrane geometry whose flickering spectrum can be solved in a 

purely analytical way is the quasi-spherical vesicle (1). The fluctuating vesicle is assumed 

with a time-averaged spherical shape with volume and area being conserved quantities. 

Under this assumption, Milner and Safran considered the fluctuations of a spherical 

membrane with bending energy given by the Helfrich expression (2): 
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F c c dA    (S1.1) 

where  is the bending modulus of the membrane, c = 1/r1 + 1/r2, the local value of the 

mean curvature which is defined by two principal radii of curvature and c0 the 

spontaneous curvature. 

In spherical coordinates, with origin in the centre of the vesicle, assuming the quasi-

spherical approach the local radius of the deformed vesicle can be expressed as: 

    , , , ,r t R h t       (S1.2) 

where R is the average spherical radius and h the normal displacement. 

Since the change in curvature depends only on the normal displacement, h is chosen to 

express the local curvature and its relative value expanded in spherical harmonics (SH-

base): 
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with dimensionless amplitudes Ulm(t) given for the SHs defined for the discrete values of 

the azimuthal (m) and polar (l) integer numbers. The sum starts from l = m = 2 because 

the fundamental swelling mode l = m = 0 does not conserve volume and l = m = 1 

represents a uniform displacement of the center of mass of the entire sphere. 

Using this solution, the bending energy in Eq. (S1.1) is minimized with the constraint of 

constant area, which is treated introducing the membrane tension  as a Lagrange 

multiplier (2). Within the harmonic approximation for the fluctuation energy, after 

applying the equipartition theorem for the amplitudes Ulm, their quadratic time-averages 

are obtained as (2): 
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with the dimensionless parameter: 
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accounting for an effective tension that depends of the excess area () and of the local 

spontaneous curvature (2). The amplitudes in Eq. (S1.4) represents the quadratic 

coefficients of the discrete expansion in Eq. (S1.3) using the HS base.  

Every spherical harmonics can be viewed as a normal mode of membrane fluctuation in 

the quasi-spherical object, the 2D-fluctuation geometry of every discrete mode being 

defined by the degree l and the order m (azimuthal) of the corresponding spherical 

harmonic. In practice, what is seen under the optical microscope in a flickering 

experiment is the equatorial cross section of a quasi-spherical membrane. Consequently, 

only the normal displacements h(/2, , t) are measurable along the equatorial contour 

defined by the variation range of the azimuthal angle   [0, 2. As far the quasi-

spherical approach is assumed (only one radius defines the average profile), the normal 

equatorial displacements, in Fourier space, are given by: 

    
2

0

1
, 2, ,

2

im

mh q t h t e d



    
 

 (S1.6) 
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with m = 2, 3, …) representing the discrete values of the azimuthal number describing the 

allowed undulations in the circular equator; the discrete wavelengths m = 2R/m , thus 

qm = 2/m = m/R. 

From the expansion in Eq. (S1.3), using the SH base, for a given equatorial mode Eq. 

(S1.6) re-writes as: 

      
max

2

0

, 2,
2

l
im

m lm lm

l m

R
h q t U t Y e d



 



 
    

  
   (S1.8) 

where lmax is the cut-off number characterizing the fluctuation mode of the shortest 

possible wavelength. Its order is given by the bilayer thickness, d  5nm, thus lmax  qmax 

R  2R/d  103. 

The amplitude of the equatorial modes can be expressed as a sum of the equatorial 

projection ( = /2) of the spherical harmonics over the possible states of polar 

orientations with wavelengths compatible with the equatorial undulation, i.e. with l  m.  

b) Autocorrelation function. In the intent to describe fluctuation dynamics of quasi-

spherical membranes to obtain the autocorrelation function (ACF), MS considered linear 

response together with the fluctuation-dissipation theorem and obtained the height-to-

height correlations as a progressive sum of exponential decays corresponding to the 

different spherical harmonics (2). When particularized to the equatorial fluctuations, for 

the ACF one gets: 

    
max

2 2,0 ,  l

l
t

m m lm

l m

ACF h q h q t R U e




  
  (S1.9) 

where the square amplitude of the m-equatorial mode is given by Eq. S1.4 (3,4), and the 

relaxation frequencies of the discrete modes are given by (1,2): 

  
 

 3

1
l

l l
q

R Z l

 
 


, (S1.10a) 

where Z(l) is a geometrical factor given by: 
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The above formulas describe discrete modes in the quasi-spherical geometry. This 

imposes periodical boundary conditions which make emerge the quantization rules 

intrinsic to the spherical harmonics base. However, in the limit of small curvature (R 

), the characteristics of the spherical modes would coincide with solutions in a planar 

membrane. Indeed, in the limit of high wavevectors (high l, q  l/R), one has Z(l)  4/l so, 

in the absence of spontaneous curvature (c0 = 0), the relaxation rates in Eq. (S1.10a) 

should be found to vary following the approximate formula: 

 
3

4
q

q q 
 


 (S1.10b) 

which coincides with the well-known expression for the relaxation rate of the 

bending/tension mode in a planar membrane (5). 

This corresponds to a planar mode of wavevector q with elastic energy Fq  q2 + q4 

(taking Eq. S1.4 in the high-l limit, where l  q/R), which dissipates energy by viscous 

friction with the bulk fluid. For a liquid of viscosity , considering the usual expression 

of the bulk Oseen tensor; in Fourier space (6): 

 
1

4
q

q
 


 (S1. 12) 

Solving the stochastic equation of motion for the thermal modes of a flexible membrane 

in a pure viscous fluid (7) (q is the stochastic field describing a thermal white noise): 

 
q

q q q q q

h
E h

t


    


 (S1.13) 

one recovers the relaxation rate in Eq. (S1.10b) as: 

 
2 4 3

4 4
q q q

q q q q
E

q

     
    

 
 (S1.10b)bis 

 

SI2. Autocorrelation function of the equatorial modes 

SI2.a) Fluid membrane vesicles fluctuating in a viscous fluid. In a typical flickering 

experiment one detects radial deflections in the equatorial plane, which are described as 
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quadratic amplitudes of the equatorial modes; in terms of the SH base, each equatorial 

fluctuation characterized by an azimuthal wavevector qm (= R/m) is described by the 

discrete sum defined in Eq. (S1.9). The key point is that the dynamic correlations are 

given by an infinite sum of harmonic contributions projected in the equator, where the 

summation starts with a fundamental spherical harmonic of equal wavevector than the 

considered equatorial mode, i.e. l0 = m. For pure bending modes ( 0; neglecting the 

spontaneous curvature, c0 = 0 thus   0), in the continuous approximation*, Eq. (S1.9) 

can be re-written in the integral form: 

    
 3

2
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exp 4
,0 , B

bend
q

q tk T
h q h q t R Rdq

q R

    
 

   (S2.1) 

with dm = R dq. 

To perform integration, we consider the change of variable: 
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 (S2.2) 

Then, Eq. (S2.2) can be rewritten with the simplified form: 
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   (S2.3) 

and performing the integration: 
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
   
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  

  (S2.4a) 

with the special function E1(x) defined as: 

  1E
u

x

e
x du

u

 

  , (S2.5) 

                                                 
* In the continuous approximation to Eq. (S1.9), the integration is performed as the 

continuous summation under all the possible values of l (= qR), taking now q as a 

continuous variable instead of the discrete variable l. The integration in Eq. (S2.1) is 

performed over the “continuous” l, with the differential element being dl = Rdq.  
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which takes the limiting value E1() = 0; consequently, the integral in Eq. (S2.4a) rewrites 

as: 

 
 

 
3 3 3

1
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qtz z
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dz t

z z t

    
     

  
  (S2.4b) 

Finally, substituting Eq. (S2.4b) in Eq. (S2.3), one finds: 

        13

1
,0 , E
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qtB
q qbend

k T
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R q

    
 

 (S2.6) 

The expression in Eq. (S2.6) defines bending-dominated correlations as an exponential 

decay corrected by the sharply decaying function E1(x) (see Fig. S1.A). If bending-

dominated, the amplitude of the equatorial modes is expected with an effective heq
2bend 

 (1/3R) kBT/q3 dependence, in agreement with the calculation performed by Pécreaux 

et al. (4) for the 1D-projection of the rms amplitude of the surface modes projected on the 

equatorial circumference. Similarly, if membrane tension dominates (R2 , in the 

continuous limit Eq. (S2.1) can be expressed as: 

    
 

2 2

exp 4
,0 , B

tens
q

q tk T
h q h q t Rdq

q R

     
  , (S2.7) 

which, following the same integration schema as above, can be finally written as: 

        1

1
,0 , EqtB

q qtens

k T
h q h q t e t t

R q

    
 

 (S2.8) 

This expression for the correlation function of the tension mode exhibits the same time-

dependence as Eq. (S2.6), the corresponding function for bending-dominated modes. 

However, the equatorial amplitude varies as heq
2tens  (1/R) kBT/q, as predicted by 

Pécreaux et al. (4). To understand the time dependences in Eqs. (S2.6/S2.8) which are 

similar in the two different cases (bending/tension modes with bulk friction), the mother 

expression in Eq. (S2.1) teaches that, when detected at the equatorial plane, the time 

autocorrelation function (ACF) actually corresponds to a summation over all the 

relaxations existing in the spherical modes that are congruent (l  m) with the equatorial 

undulation (characterised by qm = m/R). The sum in Eq. (S2.1) actually superposes a 

number of exponential decays corresponding to the different l-modes projected over the 

equatorial plane, thus the time dependence of the ACF cannot be obtained in a closed 
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form. From the characteristics of the tension/bending modes in fluctuating membranes 

with bulk friction, two important properties are deduced for the successive off-plane 

modes that contribute to a given equatorial undulation: a) they contribute with a decaying 

amplitude, b) they relax at an increasingly faster rate. Consequently, relaxation of a given 

equatorial mode (m) should be chiefly dominated by the rate of the master spherical 

harmonic (l = m) with minor contributions from (weaker and faster) higher harmonics (l 

> m). In the case of an incompressible fluid membrane, the relaxation of the equatorial 

fluctuations in vesicles is described by a time-decay of the functional form: 

      / 1Eqteq

tens bend q qACF e t t


    , (S2.6/S2.8)bis 

which is common to modes of the two classes, tension/bending modes with a dissipation 

due to bulk friction (see Fig. S1A). 

 

Fig. S1. A) Functional dependence of the relaxation profile of a single spherical mode, () f(x) ~ exp(-
x), and the summation function accounting from its harmonics, (―) f(x) ~ E1(x). B) ACF-single-
exponential master decay of a given equatorial mode (―), compared with its actual relaxation (―), 
which is a faster with a non-exponential profile affected by all of their higher harmonics present in the 

grey zone. (‐ ‐ ‐) Single exponential of equivalent relaxation time, eff  1.30 q. C) Comparison 
between the exact solution in Eqs. (S2.6)/(S2.8) for the time dependence of the ACF of equatorial 
fluctuations in vesicles and the approximate solution to Eq. (S2.1) as truncated series. 
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The first term of this function corresponds to the master relaxation of the fundamental 

contribution (l = m) to the equatorial mode with q = m/R and relaxation rate q given by 

Eqs. (S1.12). The second term, which takes-off the exponential decay making it faster, 

arises from the weighted summation over the higher harmonics (l > m). Such 

contributions give rise to a slight increase of the phenomenological relaxation rates up to 

an effective value faster than the one expected for the master mode q (see Fig. S1B). 

This cumulative effect of the higher harmonics was previously discussed by Yoon et al. 

( 8 ) in the context of RBC flickering, although no analytic solution was explicitly 

calculated. From the numerical analysis of the cumulative ACF, those authors proposed 

a global relaxation interpolated by a single exponential profile, ACF(t) ~ exp[q
(eff)t] 

with an effective decay rate, q
(eff)   1.30 q, faster than the master mode (8) (see Fig. 

SB). However, such a single exponential approximation, albeit successful in describing 

the relaxation rates, it provides a quite poor description of the exact shape of the 

cumulative relaxation profile (see Fig. S1B). The multimodal relaxation intrinsic to the 

observation of the equatorial modes produces a cumulative effect, i.e. the progressively 

smaller contribution of the faster harmonics at shorter times. In practice, such a 

heterogeneous relaxation could be accounted for by phenomenological functions, like a 

“stretched exponential” profile. However, since analytic solutions are available for 

bending- and tension-governed equatorial fluctuations in vesicles, the experimental ACFs 

should be fitted to the physically significant functions in Eqs. (S2.6) and (S2.8), 

respectively.  

SI2.b) Thermal fluctuations of the RBC membrane. The RBC membrane is 

significantly more complex than the lipid bilayer in a vesicle. The first theoretical studies 

emphasized on the global bending stiffness and the bulk viscosity as the two only relevant 

parameters to explain RBC fluctuations (9,10). The first as the only restoring force 

exerted by the membrane upon a shape fluctuation. The second as the only viscous 

parameter relevant to account for frictional dissipation. Obviously, possible intrinsic 

effects arising from the internal structure of the RBC membrane were almost missed in 

those models. In the case of RBCs, an underlying cytoskeleton is reinforcing the lipid 

bilayer, thus shear elasticity must be added as an additional restoring force as well. 

Furthermore, the coupling between membrane and cytoskeleton must be additionally 

considered as a confinement contribution which contributes to increase the local value of 
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the membrane elastic energy upon separating the bilayer from the cytoskeleton. 

Therefore, the landscape is significantly more complex in RBCs than in bilayer vesicles, 

so a progressive approximation to the complete physical problem is required, first, 

considering the indispensable ingredients in a minimal model.   

Static spectrum: Planar membrane approximation. In the approximate planar-

membrane description, which is exact at high wavevectors, the elastic free energy for a 

RBC membrane is the sum of the usual Canham-Helfrich Hamiltonian with isotropic 

bending and tension elastic components describing the elasticity of the fluid membrane 

plus new terms accounting for the additional contributions of the cytoskeleton, namely, a 

shear component due to in-plane rigidity and a confinement term, these are: 

    
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 (S2.9) 

where the planar strain field (h) is defined as the changes in membrane height with respect 

to the unstressed reference state in which the membrane is assumed in the flat 

configuration.  

The presence of a rigid cytoskeleton introduces two additional internal components to the 

elastic response in Eq. (S2.9): 1) in-plane shear, characterized by a shear modulus (µ) 

(11) and 2) cytoskeleton confinement, which makes the free energy to increase with 

increasing the separation between the membrane and the cytoskeleton (described as a 

harmonic potential characterized by a spring constant (γ) (12). Since all these new 

harmonic contributions to the elastic Hamiltonian are summative, in Fourier-space, they 

contribute altogether as cumulative summands to the effective restoring force. Therefore, 

similarly to the case of thermal fluctuations in a fluid membrane, considering 

equipartition of the thermal energy in the different thermal modes, in the planar 

membrane approximation the spectral amplitudes write as (11,12): 
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 (S2.10) 

with a q-dependent effective bending constant (11): 
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 (S2.11) 
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where the shear contribution is considered in the regime of intermediate q’s, where shear 

modes are effectively decoupled of bending modes (13). In that regime, differently to 

bending modes whose energy varies as Fbend q4, the energy of the shear contribution 

goes as Fshear q2, similarly to the q-dependence assumed by Sackmann and cols (16) 

and Brochard and Lennon (14) for the contribution of shear rigidity to the RBC flicker.      

Static spectrum: Equatorial fluctuations in the quasi-spherical approximation. 

Following the seminal work by Brochard and Lennon (14), we will take the sphere as the 

reference state to describe the equatorial fluctuations of the RBC flicker. Although this is 

of course only an approximation, it is however adequate to resolve the variational problem 

of the free energy minimization with a reasonable spherical harmonic base and well 

adapted to the circular symmetry of the equatorial fluctuations. Therefore, when applied 

to describe the RBC discocyte, the calculated elastic moduli must be considered as 

apparent values (not absolute) referred to the hypothetical spherical reference. This 

consideration was early pointed out by Brochard and Lennon (14), who considered this a 

reasonable approximation to the RBC flicker. Following the MS description for the 

bending fluctuations of spherical vesicles and droplets, Faucon et al. (3) discussed the 

limitations of the quasi-spherical method to describe the equatorial flickering of non-

 

Fig. S2. A) Coordinate system for the quasi-spherical description of the discocyte geometry. B) 
Equatorial geometry: The equatorial modes of fluctuation are described as one-dimensional 
displacements h(t) with respect to the average radius measured at the equatorial emplacement. C) 
Discrete mode decomposition of the equatorial fluctuations. The equatorial modes are described as 

the discrete eigen-modes in the circular orbit with wavelengths m = 2R/m obtained as integer 

submultiple of the elemental length 2R. In the spherical harmonics decomposition, these equatorial 
eigen-modes correspond to the different values of the azimuthal number m.  
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spherical vesicles (see Fig. S2). In practice, one could use the MS expressions with 

apparent values of the two main mechanical parameters ( and ), which must be affected 

by the other intrinsic characteristics of the membrane due to the presence of the 

cytoskeleton. Faucon et al. (3) demonstrated that an approximate description of the 

flickering fluctuations as Fourier modes describes quite accurately the exact MS 

equations for the quasi-spherical case. So, the quasi-spherical modes with azimuthal 

wavelength m = 2R/m at the equatorial emplacement of average radius R, practically 

coincide with a Fourier modes of wavenumber qm = 2/m = m/R. For m  5, they differ 

very little (by less than the experimental error), which justifies using the much simpler 

solutions in Eq. (S2.10-S2.11) with the exact MS equations (2). In the quasi-spherical 

approach to the RBC flicker the equatorial fluctuations are described as a discrete set of 

spherical harmonics with polar axis parallel to the symmetry normal axis of the discoid 

cell (15,16). At this quasi-spherical emplacement, the spectrum of the discrete normal 

modes is given by (2,17): 

  
 

     
1

1 1 1B
m eff

l meff

k T
P q m R l l l l

q





       
  (S2.12) 

with effective parameters eff (q) given by Eq. (S2.11) and eff by Eq. (S1.5). Here, the 

membrane tension can be effectively reduced by the amount of excess area (Δ). 

Deviations from the equilibrium curvature should also contribute to create effective 

surface area eventually increasing fluctuations; in the MS theory this effect is accounted 

for the curvature parameter c0
 (c0 = 2.4 for the RBC-discocyte shape) (9). 
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Autocorrelation function. Fluid lipid bilayers in model membranes are usually 

considered to dynamically behave as an incompressible fluid without internal dissipation. 

However, the lipid bilayer of real cell membranes is composed by a crowded mixture of 

lipids and proteins, a molecularly heterogeneous system which is expected with a 

 

Fig. S3. A) Hydrodynamic compliance as a function of the wavevector. For ideal fluid membrane (zero 

membrane viscosity, m = 0), one expects a monotonic q-dependence bulk = 1/4q. As the membrane 

viscosity increases, also the characteristic length does, LC =m/2, so one finds renormalization to 

membrane dominated frictional regime at progressively lower wavevectors, memb  1/2mq2. B) 
Decrease of the hydrodynamic compliance with membrane viscosity. The relative value of the Oseen 

tensor (with respect to the bulk value) decreases with m, the decrease being progressively faster at 
higher q. C) Dispersion of the tension/bending mode in a membrane with variable membrane 

viscosity. The typical crossover between tension-like (q ~ q) and bending-dominated (q ~ q3) modes 

in a fluid membrane is only observed with zero membrane viscosity (m = 0). The increase of 
membrane viscosity causes: 1) an absolute decrease of the relaxation rates, 2) a displacement of the 
tension/bending crossover at smaller wavevectors, and 3) an overall change of the dispersion 
behavior characterized by a decrease of the dispersion exponents; in the limit of high membrane 

viscosity (m >> 2/q or qLc >> 1), the tension mode renormalize to a non-dispersive behavior, q  

q0/2m, and the bending mode to the membrane-dominated frictional dependence q
(memb)  

q2/2m, comparatively weaker than the bulk-dominated dispersion q
(bulk)  q3/4. D) Dependence 

with membrane viscosity of the relaxation rates of the tension/bending mode. At low wavevectors 

(qLc << 1), a crossover between a m-independent bulk-like regime and a membrane-like regime is 
observed. At wavevectors high enough, a monotonous membrane-dominated regime is expected.  
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comparatively higher intrinsic viscosity than single lipid bilayers. Consequently, 

significant contributions to frictional dissipation are expected from the internal viscosity 

of the RBC membrane. Many theoretical works have addressed the hydrodynamics of 

viscous membranes in the linear flow regime (18,19). In addition to the usual bulk friction 

accounting for the viscous dissipation of the moving membrane in a bulk fluid of viscosity 

, in the simplest approach the membrane is considered a two-dimensional viscous 

continuum susceptible of planar viscous flow characterized by an intrinsic surface 

viscosity m. In analogy with the similar tensor for bulk fluids in Eq. (S1.12), the Oseen 

tensor of the viscous membrane embedded in a bulk fluid is (6,20): 
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q

mq q
 
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, (S2.13a) 

which can be rewritten as the usual bulk hydrodynamic compliance, with an effective 

value of the bulk viscosity whose q-dependency is determined by the ratio of the intrinsic  

membrane friction to the bulk friction, this is: 
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 (S12.13b) 

The global effect of membrane viscosity on membrane dynamics is to introduce an 

effective increase of frictional dissipation at spatial scales smaller than a characteristic 

length, LC ≈ m/2, below which the intrinsic effects of membrane viscosity become 

dominant. At large distances (q << LC
1), one expects a regular friction governed by the 

constant value of the bulk viscosity eff ≈ . However, at short distances (q >> LC
1), the 

effective viscosity is expected to increase as eff(q) ≈ mq, in a thickening regime 

governed by the intrinsic membrane viscosity. At q ≈ LC
1 the hydrodynamic compliance 

smoothly crossovers from the regular bulk regime into a new frictional regime dominated 

by membrane viscosity (see Fig. S3). As far the relaxation rates of the modes are 

determined by the strength of the hydrodynamic compliance, the above described 

renormalization implies important consequences on the relaxation dynamics depending 

on the relevant frictional regime. For the sake of simplicity, we first consider the influence 

of renormalized friction on the relaxation of the pure bending modes. In this particular 

case, the relaxation rates are expected to renormalize between two limiting regimes: 
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 (S2.14) 

In practice, one expects a dispersive behavior in the relaxation rates, q ~ q with a 

dispersion exponent (2) that renormalizes as  = 1 (bulk regular)  0 (membrane). If 

one looks at the equatorial fluctuations, depending on the value of , the dynamic 

correlations of the combined spherical harmonics are expected to vary as:     

    
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   (S2.15a) 

Similarly to the integration performed with Eq. (S2.1), we consider the change of 

variable: 
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 (S2.16) 

Then, Eq. (S2.15a) can be rewritten with the simplified form: 
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which equals to Eq. (S2.4) in the case of regular friction ( = 1).  

The integral kernel in the right side of Eq. (2.15b) can be expressed in terms of the special 

function Generalized Exponential Integral Ea(x) as: 
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with the special function Ea(x) defined as: 

  
1

E
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a a

e
x du

u

 

  , (S2.17) 

which takes the limiting value Ea() = 0 in the upper limit of the definite integrate in Eq. 

(S2.16a), so, one gets: 
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which, using the recurrence relation: 

 
1E ( ) E ( )x

a aa x e x x

    (S2.18) 

converts to: 
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Therefore, the ACF in Eq. (S2.15b) can be re-written as: 
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, (S2.15c) 

which exactly coincides with Eq. (S2.6) in the regular case of bulk friction ( = 1). 

At the opposite limit of non-regular membrane friction ( = 0), one has: 
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, (S2.19) 

which is equivalent to the limiting solution of Eq. (S2.15a) in the hydrodynamic regime 

where membrane viscosity dominates over bulk viscosity (eff  mq/2), this is: 
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In this case, making the appropriate change of variable, 
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after integration, the expression for the ACF takes the asymptotic form: 
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with the special function erfc(x) defined as: 
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The expression in Eq. (S2.21) is analytically equivalent to the more compact formula in 

Eq. (S2.15c), which can be alternatively implemented in fitting algorithms when a 

hydrodynamic regime dominated by membrane viscosity is expected. In practice, a 

continuous crossover between bulk controlled (= 1) and membrane dominated (= 0)          

relaxation is expected with increasing q, thus, for bending-like modes, the time 

dependence of the ACF is expected with the generalized profile given by Eq. (S2.15c) as 

a function of the dispersion parameter , varying as  = 1  0 as q increases.  

 

Fig. S4. Experimental autocorrelation function ACF of the passive RBC-flicker. A) Typical experimental 

ACF for m = 4 (symbols) with fits to a single-exponential profile (red) and the exact dependent 
profile in Eq. (S2.17c). The single exponential model is poor in describing the experimental decay and 

largely overestimates the actual values of the relaxation times (see arrows marking the values of 4 

obtained from the two models). B) Fits of several ACFs of consecutive modes (m = 4  7) to the exact 

profile in Eq. (S2.17c) (the fitted values of  are plot in D)). C) Relaxation rates as obtained from the 
fits to the single-exponential model (red) and to the exact model in Eq. (S2.17c) (green). Systematically 
slower rates are obtained with the single-exponential model (red) with respect to the exact decay 
rates of the experimental profiles (green) obtained from the fits to exact model. D) Experimental 

values of the q-dependent renormalization exponent describing the effective dispersion of the 

bending mode q ~ q. As expected a monotonous increase from a bulk-like regime ( = 1) down to 

a membrane-dominated regime is observed with increasing q (values from fits in B)).   
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The results in Figure S4 evidence the adequacy of the dependent model to describe the 

experimental profiles of the ACF of the equatorial thermal modes in the RBC. In 

particular, Figure S4.A shows a representative ACF for the thermal fluctuations in a 

drugged RBC (q = m/R with m = 4). The experimental relaxation clearly deviates from 

the single-exponential profile as a stretched-like profile corresponding to a broad 

distribution of relaxation times rather than to a single relaxation time. The single 

exponential describe a homogenous relaxation at a rate effectively slower than the 

phenomenological relaxation rate estimated as an inverse decay time,   (when 

ACF(t) = 1/e  0.37). However, the sum-of-modes function in Eq. (S2.15c) is 

perfectly able to fit the experimental profiles (see Fig. S4A/B) with relaxation rates higher 

than those provided by the single-relaxation model (see Fig. S4C) and reasonable values 

of the dispersion exponent  accounting from effective relaxation between the two 

limiting frictional regimes, from   1 (bulk friction at low q) down to   0 (membrane 

friction at high q) (see Fig. S4D).  

 

SI3. Power spectral density 

The power spectral density (PSD), or simply power spectrum, is a positive real function 

that measures the frequency content of the stochastic process, this is, how the energy of 

the signal is distributed with frequency. For a flickering signal h(t), this can be calculated 

as: 
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(S3.1) 

 

SI3.a) Experimental determination. In this work, the experimental PSDs were 

computed from the experimental time series h(t) using Matlab pwelch function. The 

pwelch uses the sample rate specified in Hz to compute the PSD and the related 

frequencies vector in Hz, corresponding to a given temporal trace. The spectral density 

obtained is calculated in units2/Hz. Briefly, following the Welch method ( 21 ), the 

algorithm pwelch perform the calculation as:  
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1. The time trace h(ti) is divided into m overlapping segments (hk) each with 50% 

overlap.  

2. A Hamming window is applied to each segment hk 

3. An FFT is applied to the windowed data. 

4. The (modified) periodogram of each windowed segment is computed S(ei)  

5. The set of modified periodograms is averaged to form the spectrum estimate  

6. The resulting spectrum estimate is scaled to compute the power spectral density 

as S(ei)/fs where fs is the sample rate in Hz. 

SI3.b) Theoretical model: 

Active contribution to the height-height correlation function. We begin with the 

model of active membranes (12), to calculate the active contribution to the height-height 

correlation function ACFq
 (act)(t). This essentially amounts to the inverse Fourier 

transform of ACFq
 (act)() with respect to frequency. In the ideal tensionless state, the 

function ACFq
 (act)() for the direct force mode is (22): 
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where nm is the areal density of motors on the membrane, pon is the probability of a motor 

to be active at any given time, f0 is the intrinsic force per motor, q is the hydrodynamic 

Oseen tensor for a free membrane, ωq is the response frequency of the membrane and ωact 

is the inverse of the mean burst time of each motor. For the curvature-force model f0 is 

replaced by f0(rq)2, where r is the radius of the induced curvature. Fourier transforming 

we get: 
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  (S3.2) 

We see that the active force contributes to the temporal correlations two terms: The first 

term on the l.h.s. of Eq. (S3.2) decays with the membrane natural frequency ωm, as do the 

thermal fluctuations (see Eq. (S2.1)). Compared to the thermal fluctuations in Eq. (S1.9), 

the amplitude of the active correlations with this decay behaviour decreases with 

increasing wavevector as q11 compared to q4 (for a free membrane and direct force). 
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This contribution is therefore negligible for all wavevectors whereq act, which is 

the case for the current experiments (Fig.1b, right panel). The second contribution in Eq. 

(S3.2) decays at the natural “frequency” of the motoract. Both contributions diverge 

when there is a form of resonance, qact, which does not occur in the red-blood cell 

case (Fig. 3b; right panel). The divergence in Eq. S3.2 can be eliminated if the time-scale 

of the active bursts act  is in fact not completely decoupled from the relaxation modes 

of the membrane q (which we assumed for simplicity). Such coupling would mean that 

in fact the resonance-like condition is averted, for example, if long-range (and large-

amplitude) slow membrane modes also slow down the rate of active bursts at that 

wavelength.  

Calculation of the height-height PSD. The frequency-dependent power spectral density 

(PSD) for thermal fluctuations is given by 
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The PSD for the direct force model is 
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We numerically integrate these expressions for the following range of wavevectors: π/L 

< q < 0.2nm-1, where L = 8μm is the lateral size of the RBC membrane. Numerically 

integrating the PSD for the active component for small, where the tension is dominant, 

gives the well-behaved function plotted in Fig. 4A. 
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