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Abstract : The main aim of this paper is to show how lattice theory in the very
next future will be a useful tool in analysing complex real reliability problems,
not properly modelled within classical reliability theory.. The introduction of a
complete latiice as a state space appears not only of theoretical importance that
allows to understand several phenomena with respect to reliability theory better, but
as a need claimed from practical engineering. Two important topics are discassed
in this general framework: incomparability of component and system states and the
duality principle. The strong relationship between the ideas of fuzzy set theory and
the ideas that Ied to the introduction of the theory of multistate structure functions

will become cleay,
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1. INTRODUCTION

When developing a theory of structure functions defined on arbitrary complete lat-

tices, one often meets some criticism against this choice. Some say that complete

lattices provide a too abstract framework and that there are no obvious arguments



to introduce them. In this paper, we shall try 1o show that complete lattices apply
to real life situations and that they make possible to study rather cormplex phenom-
ena with respect to reliability theory and practice. Seminal ideas ¢an be found in
Montero et al. {1988) and Cappelle (1991).

Complete lattices have been successfully applied to other fields apart from
reliability theory. We can at least trace two important applications in the past. First
of all, recent developments in the theory of mathematical morphology show that the
general framework of lantice theory is almost indispensable in explaining complex
Phenomena in an easy way. For an excellent overview and outline of this theory
werefer to Ronse {1989), Second, the introduction of L-fuzzy sets (Goguen, 1967)
provides a general framework for Zadeh's fuzzy set theory (Kerre, 1991).

In general, complete lattices apply whenever ordinal information mbst be Iep-
resented. In the theory of mathematical morphelogy we must manipulate and clas-
sify images, while in fuzzy set theory we must check the fulfillment of some prop-
erty (classical examples are the properties “young™ or “beautiful™). Sentences such
as “the aircraft is more similar to a Boeing 747 than to a Tupolev 159-M” or “our
production quality is higher than the competitor's™ make sense in patern recog-
nition and information representation. Analogous sentences are common among
éngineering practitioners.

Some claim that complete chains, i.e., totally ordered sets, can be applied
in most cases. But very often this assumption is an oversimplification of reality,
since we can not deal with incomparable elements. We encounter difficulties that
are hard to solve when dealing with complex non-single criterion based problems,
where the system state itself is evaluated according to various criteria (Montero et

al., 1992).



Hence, when we have a closer look at real Life problems, the claim for com-

parability is not so obvious. Let us suggest some concrete examples:

(i} considera genealogical tree and the set of John’s ancestors; the nat-
urel order relation on the set of ancestorsis ¢ < y ifand onlyif y is
an ancestor of z, z and y two arbitrary elements of the set of John’s
ancestors; the orderrelation on the set of John's ancestors is not lin-
ear, 1.¢., generally for each pair of ancestors neither (r, y) “z is an
ancestor of ™ nor “y is an ancestor of 2" holds;

(ii) suppose we must judge if one weather condition is more dangerous
than another weather condition while driving 2 car; mosi of us will
judge close and thick fog far more dangerous than ordinary rain, but
will most of us be able to decide which weather condition is warse:
thick fog or icy and snowy weather; some just will say that these
weather circumstances are dangerous in a different way and, hence,
somehow incomparable;

{111} consider a particular manufactured product; it can be very difficult
to define a linear order when comparing the “quality” of products
made by different people, since “quality” refers to many aspects of

the manufactured product.

The state space representation in practical reliabilicy has a deep link with preference
relations in decision making and we all know that decision making relations are
rarely linear. Hence, linearly ordered sets are not the most suitable tool to order
objects. The application of partially ordered sets {posets for short) to reliability
theory is not surprising from this point of view, since we must be able to sor the
states from ““bad” to “good” states. Even the applied uncertainty model 1o study the

probability or possibility of failure or degradation, is mainly based upor an order



relation. Indeed, the uncertainty model allows to sort the sysiem states from most
probable (most possible) to least probable (least possible). Hence, the relationship
between reliability theory and tatice theory is not artificial.

A quite different approach tries to intmodnce some kind of fuzzy uncentainty in
the basic binary model, from the existence of non-random {possibilistic) uncertain-
ties attached to real systerns and the fuzzy nature of the idea of “performance” and
“failyre”. The term “safety” or “reliability” can then be modelled in a furzy frame-
work (see Zimmermann (1983)). In the particular area of reliability, fuzziness can

lead te at least two possible basic models:

(i) characterize system reliability behaviour in a possibilistic context,

(ii) assume that the system failure is defined in a fuzzy way.

Following Cai’s notation (see Cai, 1991 for a personal report on the research done
at the Bejing University of Aeronautics and Astronautics), combination leads to at

least three types of fuzzy relizbility theories:

(i} PROFUST reliability: a theory based upon PRObability theory and
a FlUzzy STate assumption,
(ii) POSBIST reliability: a theory based upon POSsibility theory and a
Blnary STate assumption,
(iii) POSFUST reliability: a theory based upon POSsibility Theory and

a FUzzy STate assumption.

An alternative combined approach has been developed by Cnisawa (see Onisawa,
1989 for a personal review of his research), by considering simultaneously equip-
ment “failure possibility” and human “error possibility”, both derived from the

estimation of failure/error probabilities based on a safety criterion,



Our paper deals with multistate structure functions. Hence, we consider the
case that each component or system may assume one of many states. Since we as-
sume that a state space can be any complete lattice, ane notices the deep link with
the L-fuzzy sets of Goguen (1967). Indeed, a structure function can be vicﬁad as
a kind of fuzzy se1 that models the relationship between the fuzzy notions failure,
almost failure, almost functioning and perfect functioning between the components
and the system. From that point of view, a state of & component is a kind of mem-
bership degree in the fuzzy set of “good states.” The main aim of this paper is to
show how complele Jattices provide a general framework to explain complex phe-
nomena in non-classical reliability theory. One will notice the deep link with the

main ideas of fuzzy set theory.

2. COMPLETE LATTICES IN RELIABILITY THEORY
When studying classical reliability theory. two parts can be distinguished: a gen-
eral theory of binary structure functions and a probabilistic (time-dependent} un-
certainty model. By means of a strucmire function the deterministic relationship
between the states of the components and the system state is modelled, while prob-
ability theory provides a general framework to define the notion reliability prop-
erly: the reliability of an ifem (component or systern) is the probability that the
item functions properly. According to classical reliability theory, the items must
always assume either one of two possible states: perfect functionin g or total failure,
The system reliability is then caiculated from the (basic) component reliabilities.
Since many real life situations are simply not binary in nature, a dichotomons
approximation, initially introduced by Bimbaum et al. (1961), sometimes is far

tooinaccurate, The model has been extended systematically from 1978 on in order



to allow intermediate states between perfect functioning and total failure!. Among
others we mention the finite models of EX-Neweihi etal. (1978), Griffith (1980) and
Natvig (1982) and the infinite or continuous models inraduced by Block and Savits
(1984) and Baxter (1984, 1986). Some technical difficulties arise depending on the
complexity of the state space, and a variety of solutions to particular problems can
be found in the literature. We remind the reader, e.g., of the overwhelming number
of notions of the coherence of structure functions, moess of them reduce to the well-
known coherence property when applied to binary structure functions (Ohi and
Nishida (1984) mention at least fourteen different notions).

By assuming that the state space is a complete lattice, we are not just extending
the notion of binary structure function to a multistate model, we are also modelling
many real life systems where more restrictive approaches da not apply and, more-
over, creating & general framework with notions that allow a better comprehension
of the basic concepts initially defined for particular systems only.

In the sequel two problems are discussed in order to exernplify our approach:
the possible incomparebility of stutes and a general duality principle. The first
problem requires a complete lattice as a state space, while the second one can be

propetly justified by considering the complete lattice of saructure Functions.

3. A STATE SPACE FOR COMPONENTS AND SYSTEMS

Let us assume that each component provides a set of parameters that can be eval-
uated. FThe evaluation of these parameters is called a stafe, that is, a characteristic
for the behaviour of the component at a certain time. The performance level of a
copy machine, e.g., can be tested by making a copy of a special grey chart; this grey

chart copy can be an excellent parameter for the evaluation of the performance of

" The ideas and first attempts to formulate multistate stracture functionsare much older, cf,, Premo

{19432), and some notes in Goedenko et al, {1972},



the copy machine. Hence, an eveluzetion is a mapping from the set of parameters
into a set L, the set of all the possible states of the item. In order to be able to dis-
tinguish between worse and better states, L must be provided with an order relation
< (Birkhoff, 1967). For any statesa and b, a < & implies that state & is better than
state a or, equivalently, that state e is worse than stzie b.

The couple (L, <] is called a poset, and as pointed out above, in general the
order relation is not linear. The state space must be a complete letiice, ie., given
any subset in L, at least its greatest lower bound, called infimum, and its smallest
upper bound, called supremum, exist. Although an exiensive justification of the
completeness is far beyond the scope of this paper, this demand allows, e.g., the
development of general reliability bounds. A chein or totally ordered sel is a poset

where any two elements are comparable, i.e.,
(¥(a,b) € L*)e < bhorb < a).

When ({0, 1}, <} is the state space for both the system and its components, where
< is the well-known order relation, we obtain the classical binary model, intro-
duced by Birnbaurn et al. (1961). When L = {0,1,... .M}, with M > 2, the
finite state models of El-Neweihi et al. {1978) appear. When both the state space
of components and systern equal ([0, 1], <}, Baxter’s continuous infinite model is
obtained (Baxter, 1984). It must be pc:iﬁted out that Block and Savits (1984) also
considered an infinite continuous model based on the chain {R*, <). However,
this chain is not complete and therefore this model has not been considerad here?.
Obviously under our general approach, the state space for each component is not
required to be always the same. Hence, the following definition applies (see Mon-

tero et al., 1988, and Cappelle, 19917

%From our point of view, a greatest element, called infinity, must be added as the perfoct func-

tioning state to transform (R, <) imo a complete tatlice.



Definition I Let(L;, <),0 < { < n, ben arbitrary complete lattices and assume
that (Ly x --- % Ly, <) has been provided with its product ordering, i.e., for an

arbiraryxandy inl, = --- x L,

x <y & (¥i€ {L...,n})z < g).

An Ly x -«- x Ly, — L, mapping ¢ is a structure function if and only if

(i) ¢ isisotone, ie.,

(X, ¥} € (L1 x - x La)*)(x € ¥ = 9(x) < ¢(y)),

(i) #0,...,0)=0Cand¢(1,...,1) =1.

Since a systemn that assumes a worse stale when every component assumes a
beter state is quite unusual or poorly designed (Barlow, 1975}, the isotonicity is
justified. The boundary condition is also widely accepted and applied. Tt reflects
the fact that whenever each component assumes it worst (best) state, the system
must assume its worst (best) state.

When L; = {0,1},0 < ¢ < n, the structure functions are called binary struc-
ture functions (Barlow and Proschan, 1975). An El-Neweihi et al. (1978) structure

function ¢ appears when L; = {0,1,...., M}, 0 < { < n, and 4 is idempotent, i.c_,

(Ve € {0,1,... ,M})o(z,... ,5) =z}



4. INCOMPARABLE STATES

In section 3 we have introduced arbitrary complete lattices as the state space for
both components and systems. It has been pointed out that not every two states
are comparable. For an arbitrary poset (P, <), two elements ¢ and b of P are
incemparable if and only if -(a < b) and ~(b < a} holds (Birkhoff, 1967), and it
isdenoted by a || b.

As pointed out above, incomparable states are of particular interest in the the-
ory of structure functions. Very ofien we cannot determine if state a is better or
worse than another state b, or when both states are similar. When dealing with
systemns subject to r: different kinds of failure, e.g., where a transition diagram in-
dicates the possible transitions between all the states, the diagram often suggests
a poset with n + 1 elements. Element 1 represents the perfect functioning state
and the elements a;, 1 < ¢ < n, represent the failure of type f {see for example
Proctor (1976), Elsayed (1979) and Yamashiro ( 1980)). Hence, the order relation

< imposed on the set {ay.... ,a,, 1} is obvious:
(Vie {l,... .o} Ma; € Dand (Y(i,5) € {1,... .2})i #j & a; || o).

Itis quite useless to consider a failure of type ¢ better or worse than another different
failure of type j, since different types of failure do not refiect a degradation in

several stages. Adding a smallest element 0, ie.,
{FI = {D,ﬂl,--- 3an11})|{ﬂ E 'T}u

transforns the given state space into the complete lattice ({0, a;, ... .aq, 1}, <).
In fact, the souctural model of a component subject to n different types of fail-
ure 15 more complex if only structural information had been taking into account.
However, it has been simplified by considering some extra (probabitistc) informa-

tion: having n binary failures a;, 1 < ¢ < n, a binary space {0,1} is associated



te each failure, such that the initial state space for the system is the complete lat-
tice ({0, 1}, <}, whereas 1 and 0, respectively, are the perfect functioning and the
total failure state, respectively. If we additionally know that failure times are con-
tinuously distributed and that the system completely fails when the first failure is
observed, all states within the lagice ({0, 1}*, <) except n + 1 will have zero prob-
ability. Therefore, only n + 1 states can be observed: no failure (1) and the first
failure of type 7, a;, 1 < { < n. Hence, the proposed stale space simplifies the
model, since many non-observable states are excluded,

Let us consider 2 motor opened valve, MOV for short. The MOV can fail 1o
open when it is closed or fail to close when it is open. Hence, the MOV is subject
to two kinds of failure which can hardly be compared. Practical considerations

suggest & complete lattice with five elements as u state space:

{1) state 1: the MOV is in optimal condition,

(ii) state a: the MOV must be maintained but still functions,
(iii) state b: the MOV can be opened but can ne longer be closed,
(iv) state ¢: the MOV can be closed but can no longer be opened,

(v) state 0: a total failure of the MOV is observed.

Just like in the previous example, this state space is a simplified version of a more
complex state space, by considering two failure rypes each having a three element
evaluation set: {0, 3,1}, the intermediate state & represents functioning with main-
tenance. One must notice that in the proposed state space, the associated order rela-
tion is not the product ordering, i.e., ({0, ,1}2, <, since the engineer—according
to the chosen state space—prefers functioning though any maintenance is needed
of both opening and closing mechanisms to complete failure of one of the mecha-

nisms, despite the other is perfectly functioning.



5. A GENERAL DUALITY PRINCIPLE

In the previcus sections we have pointed out that the order relation on the set of
passible states determines whea states are similar, better, worse or incomparable
and that the assumpticn of a linear ordering of the state space is not appropriase
for many practical problems. In this section we shall exemplify how our general
appraach will gain insight into the standard concepts in reliability theory.

A duality principle deals with a reversed order on the set of states. The “bet-
ter” states become the “worse™ states, and vice verse. In fact, many systems subject
to two dual failure types (Barlow and Proschan, 1973) can be represented as the
conjunction of two dual systems. Structural duality, however, very often is defined
without any special consideration. From our point of view, this particular property
of the state space, i.e., the possibility of exchanging the good and the bad states,
is a special case of the selfduality of a poset. An arbitrary poset { P, <) is selfdual
1f and only if there exists an order reversing permutation 6 on P {Birkhoff, 196,

that is,

(V(a,b) € PP)a < b 6(b) < 6(a)).
Therefore, the following definition is proposed:

Definition2 (Montero 1988, Cappelle 1991} Let b; be an order reversing permu-
tation of (L;, <), 1 € i < n, and 8, be an order reversing permutation of ( L,, <).
The dual {w.rit. by, ... b, and 8,) of a structure function ¢, denoted by AfP), is
defined as

&{‘lﬁ} t Ly wox Ly =L, xrm En(ﬁﬁ(él(l'l }1-“ 1\‘511{3’:1&”)-

The mapping A on the set of structure functions is called a duality,



ByM{L; x---xL,,L)wedenote the setof all Ly x---x L, — L, structure
funcdons, and we provide it with a pointwise order relation <, such that for any

two arbitrary structure functions ¢, and ¢-
$1 X d2 = (¥x€ L) x--- x L,){¢1{x) < $z({x)).

Ttis easily venfied that (M(L; x --- x L,, L}, <} is a complete lattice (Cappelle
1991) and that A is an order veversing permutation of (M{L; x --- x L,, L), %).

From this point of view, structural duality is an order reversing permuiation
of (M{L, x --- x L,, L), %). As a special case we find that the classical duality
in the binary case and linearly ordered finite multistate models is nnique, Indeed,

there exists a unique order reversing permutation & on the chain ({0,... , M}, <},
S:{0,... M} —>{0,... M}:z— M-z

Hence, the duality & transforms any structare function ¢ into a structure function

A ),
Alg){0,... M}" - {0,... M}:xm—M-9¢(M-=x,,.._. M — ).

This is exactly the duality principle introduced in the past, for the linearly ordered
finite state systems.

Problems arise when considering more general state spaces, e.g., when deal-
ing with ¢ontinuous systems, i.e., the complete chain ([0, 1], <) as the state space
for both the system and its components. It is obvious that there is more than one
order reversing permutation on ([0, 1], <). Hence, an enormous variety of order
reversing permutations on (M({0, 1)™, [0, 1]}, %) can be constructed, making Bax-

ter’s duality principle,

Alg): [0,1]" = {0,1]):x =1~ @(1 —&y,-.. , 1 —z,},



for any [0,1]" —~ [0,1] structure Function ¢, not so evident. Still Montero et al.
(1988) provide a very imporiant argument to consider Baxter's choice: the order

reversing permutation 4,

6:00,1] - [0,1): 21—z,

is the only order reversing permutation that is measure preserving with respect to
the Lebesgue measure”. However, when a possibilistic uncertainty modet is ap-

plied, there is no reason to consider only Baxter's definition (cf. Cappelle, 1991},

6. CONCLUSION

On the one hand, the existence of components and systems with incomparable
states requires a lattice-based reliability approach in order to capture all 1he essen-
tial information without anificial oversimplification of the mathematical model,

On the other hand, it has been pointed out that besides a real increase in po-
tential applications, a general approach is useful in order to clarify basic concepts
and notions. In particular, it has been shown that the idea of a duality must be
related to the strocture of {M{L; % .- x L,,, L,), =), and alchough the standard
duality principle for the finite chain model is unique, this result does not apply in
general. Hence, in the near future, {attice theory must have a deep influence on
System reliability, from a theoretical as well as from a practical point of view,

It must be pointed out that in this paper we have focused our atiention strictly
on the problem of the state space representation. We did not discuss the possi-
bilistic uncertainty models (see, €.g., Cai , Chuan and Zhang (1991}, and Cappelle
{19917).

S The result is more general, being the key assumption 1o the exisience of an 7 -finile measure

associated 10 the space of gtawes.
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