SELECTION OF TESTS FOR FINITE STATE MACHINES

MIGUEL BENITO PAREJO

MASTER EN METODOS FORMALES EN INGENIERIA INFORMATICA
FACULTAD DE INFORMATICA
UNIVERSIDAD COMPLUTENSE DE MADRID

Trabajo Fin de Master en Métodos Formales en Ingenieria Informatica

Septiembre 2019

Directores:

Mercedes Garcia Merayo
Manuel Nanez Garcia
Convocatoria:

Septiembre 2019

Calificacion:

Sobresaliente - 9

Autorizacion de difusion

Miguel Benito Parejo

Septiembre 2019

El abajo firmante, matriculado en el Master en Métodos Formales en Ingenieria Infor-
matica de la Facultad de Informéatica, autoriza a la Universidad Complutense de Madrid
(UCM) a difundir y utilizar con fines académicos, no comerciales y mencionando expresa-
mente a su autor el presente Trabajo Fin de Méaster: “Selection of tests for Finite State
Machines”, realizado durante el curso académico 2018-2019 bajo la direccion de Mercedes
Garcia Merayo y Manuel Nunez Garcia en el Departamento de Sistemas Informaticos y
Computacion, y a la Biblioteca de la UCM a depositarlo en el Archivo Institucional E-
Prints Complutense con el objeto de incrementar la difusion, uso e impacto del trabajo en
Internet y garantizar su preservacion y acceso a largo plazo.

Resumen en castellano

Habitualmente no se pueden aplicar todos las posibles pruebas (tests) a una imple-
mentacion para comprobar su correccion. Por ello, es necesario seleccionar subconjuntos de
pruebas relativamente pequenos que permitan detectar el mayor niimero de errores posible.
En este trabajo proponemos diferentes enfoques para seleccionar dichos conjuntos de prue-
bas. Para determinar la calidad de un conjunto de pruebas, este se aplicard a un grupo
de mutantes. Un mutante corresponde a una variacion de la especificacion del sistema bajo
prueba que induce un error en la misma. El objetivo de nuestro trabajo es que los algoritmos
propuestos generen conjuntos de pruebas que maten el mayor nimero de mutantes posible.
Comparamos los enfoques propuestos entre los que se consideran todos los posibles subcon-
juntos dada una cota en las entradas (inputs), un algoritmo devorador inteligente y distintos
algoritmos genéticos. Finalmente, discutimos los resultados obtenidos en los experimentos
realizados para determinar su efectividad. Todas las propuestas han sido implementadas y
la herramienta desarrollada es totalmente libre y accesible.

Palabras clave

Algoritmos genéticos; testing de maquinas de estados finitos; Mutation testing; Métodos
formales.

Abstract

It is unaffordable to apply all the possible tests to an implementation in order to assess
its correctness. Therefore, it is necessary to select relatively small subsets of tests that can
detect as many faults as possible. In this paper we propose different approaches to select
the best subset of tests from the original one: all the possible subsets up to a given number
of inputs, an intelligent greedy algorithm and several genetic algorithms. In order to decide
how good a test suite is, we apply it to a set of mutants that correspond to small variations
of the specification of the system to be developed. The goal is that our algorithms generate
test suites that kill as many mutants as possible. We compare the proposed approaches and
discuss the obtained results. The whole framework has been fully implemented and the tool
is freely available.

Keywords

Genetic algorithms; Testing Finite State Machines; Mutation testing; Formal methods.

Contents

Index

Acknowledgements

Dedication

1

2

3 Related work
4 Our proposal for test cases selection
4.1 Globalsearch,
4.2 Greedy algorithm oo
4.3 Genetic algorithm oo
5 The tool
5.1 GUIand MVC
5.2 Other patterns
5.3 Classdiagram
6 Experiments
6.1 Description of the experiments
6.2 Evaluation
7 Conclusions and future work
Bibliography

Introduction

Preliminaries

2.1 Mutation Testing for Finite State Machines
2.2 Genetic Algorithms L

ii

iii

co ot Ot

11

15
15
16
18

31
31
37
38

41
41
14
51

55

Acknowledgements

[would like to thank my supervisors and Inmaculada Medina-Bulo for their effort, work,
help and advice before and during this thesis. I would like to thank these close friends who
helped through the toughest moments. Last, but definitely not least, [would like to thank

my family for all their unconditional help and support.

i

Dedication

To my parents, who made me be what I am.

1

Chapter 1

Introduction

Testing is the main technique to validate the correctness of software systems |1]. It is quite
common to find ourselves with a group of properties that should be satisfied by the system
under development and we want to reassure that it does. In testing, these properties are
encoded as tests and we have to check that the system, usually called System Under Test
(SUT), successtully passes them. In practice, this approach is unfeasible because the number
of tests may be astronomical. In particular, one property may give rise to many tests. In
addition, we may have a bound on the number of tests that we can apply (e.g. due to
budget or temporal constraints). Therefore, it is important to wisely choose among these
tests a subset that is able to detect most faults. Clearly, the method to select these tests
should rely on a measure of how good a test is. In this line, mutation testing |5, 6, 13| is a
useful tool. The idea behind mutation testing is that if a test suite distinguishes the SUT
from other faulty versions of the system then it is probably good at discovering faults. The
technique introduces small changes in the SUT by applying mutation operators to generate
a set of mutants. Intuitively, good test suites are the ones killing most of the mutants.

In this thesis we analyze different strategies to select good sets of tests. We assume

that we have a formal representation of the SUT, that is, its specification, and that we are
provided with a set of mutants and a set of tests, usually huge, that we might apply to the
SUT. The mutants, maybe constructed from the specification, present the representative
faults during the development of the systems. This is usually called a fault model. Our
goal is to select a subset of tests, up to a certain complexity, that kills as many mutants as
possible. We will measure the complexity of a test suite in terms of the number of inputs
included in it. If 7" is the whole set of tests and n is the bound on the number of inputs,
then the obvious solution is to compute all the subsets of 7" with up to n inputs, apply them
to the set of mutants and choose the subset killing more mutants. This result will always
be the best subset, since all possibilities are explored. Unfortunately, in this case we have
an exponential explosion that disallows us to use this approach for a general problem. A
second option, based on previous work [2|, considers a greedy algorithm where we select
the best tests individually, according to the number of mutants that they kill, until we
reach the specified limit of inputs. This technique will generally provide good results, both
in cost and in faults detected, but it may not always yield the best result. For instance,
there could be a combination of individually worse elements that were able to cover more
faults. In order to solve this problem, and this is the main contribution of this work, we
have developed a genetic algorithm to find better solutions than the greedy algorithm. The
algorithm is versatile and allows users to apply different variants. We have developed a tool
that fully implements all the algorithms presented in this work. Finally, we have performed
several experiments to compare the different methods. We have analyzed the performance
both in time and in goodness of the different variants of the genetic algorithm, and we have
compared them with the greedy algorithm and the full search.

The rest of this document is structured as follows. In Chapter 2 we introduce the

main concepts used in the thesis and set the background knowledge for the next chapters.

In Chapter 3 we present the state-of-the-art in the field. In Chapter 4 we introduce the
different methods that we propose to select the best subsets of tests. In Chapter 5 we
describe the tool that we have developed. In Chapter 6 we report on the experiments that
we performed. Finally, in Chapter 7 we present our conclusions and some lines for future

work.

Chapter 2

Preliminaries

In this chapter we introduce the main concepts used in this work related to mutation testing

of Finite State Machines and genetic algorithms.

2.1 Mutation Testing for Finite State Machines

Mutation testing is a software testing technique that consists in inducing faults into a
program by generating mutants, that is, faulty versions of the original program. The changes
performed to generate the mutants are defined by mutation operators. The mutants and the
original program are executed against test suites of interest with the goal of determining
their efficiency to distinguish the mutants from the original program. Given a test suite, if
a test case is able to distinguish a mutant from the original program, then we say that the
mutant is killed. Similarly, when the mutant is not detected by any test case in the test suite,
the mutant is alive. If the mutation does not change the behavior of the original program,
the mutant is called equivalent and, therefore, there is no test case able to kill this mutant.

The efficiency of the test suite for detecting the errors injected in the original program is

measured by the mutation score. The mutation score is the ratio of killed mutants over the

non-equivalent ones. Figure 2.1 graphically represents the behaviour of mutation testing.

A
wuant.)
Softhare Generation
. N

) Test
Test suite | Execution |

Figure 2.1: Mutation Testing

Finite State Machines are used in this project to represent specifications and mutants.
Although mutation testing is often used to change code in programs, in this work we apply
the mutation technique to Finite State Machines that represent the specifications of systems.
The generated mutants will be modified instances of them that will be used to determine

the efficiency of the test cases to differentiate them from the original specification.

Definition 1. A Finite State Machine, in the following FSM, is a tuple M = (S, 1,0,Tr, s;,)
where S is a finite set of states, I is the set of input actions, O is the set of output actions,
Tr s the set of transitions and s;, € S is the initial state. A transition belonging to T'r is
a tuple (s,s',i,0) where s,s' € S are the initial and final states of the transition, i € I is
the input action and o € O is the output action. We say that M is input-enabled if for each
s €S and input i € I, there exist 8 € S and o € O such that (s,s',i,0) € Tr. We say that

M is deterministic if for each s € S and i € I, there exists at most one transition (s, s',1,0)

i/01 i/03
i/OQ
o Z'1/01
(a) FSM; (c) FSM;

i/03

Figure 2.2: Three FSMs with different properties

belonging to T'r.

In this work we will restrict ourselves to input-enabled deterministic FSMs, that is, from
each state of the machine, it is possible to perform all the inputs and there will be only
one possible evolution. This restriction mimics testing of programs: programs are (usually)

deterministic and should react to any possible input.

Example 1. Figure 2.2a presents an input-enabled deterministic FSM. There exists only
one transition outgoing from each state and labelled by the only input action i. Figure 2.2b
shows a non-deterministic behavior of the machine in state so. There exist two outgoing
transitions labelled by the same input action. Finally, Figure 2.2c depicts a non itnput-
enabled FSM. State sy has no outgoing transition associated with input io. In this case, we

say that such state is not input-enabled and, as a consequence, the FSM is not input-enabled.

Next, we introduce the notions of mutant and test that are used in this work. Note that
mutants are still deterministic and input-enabled.
Definition 2. Let M = (S,1,0,Tr, s;,) be an FSM. We say that a FSM M' = (S,1,0,T7’, s;,)
is a mutant of M if Tr" differs from Tr in only one transition. This mutation can be pro-
duced either by changing the output of a transition, that is, replacing (s,s’,i,0) € Tr by
(s,8',1,0") € Tr" with o # o, or by changing the target state of a transition, that is, replac-
ing (s,s',i,0) € Tr by (s,s",i,0) € Tr', with s' # s".

7

i/Ol Z/O%

o @

(a) M

Figure 2.3: An FSM and two of its mutants

Example 2. Let us consider the FSM given in Figure 2.5a, being sqo the initial state. Two
possible mutants are shown in Figures 2.53b and 2.3c: the first one represents the change of
the final state of a transition while the second one represents the modification of an output

action.

Definition 3. Let M = (S,1,0,Tr, s;,) be an FSM. A test for M is a pair 0 = (0in, Oout)
where |0i| = |Oout|, Tin € 1™ is a sequence of inputs and o, € O* is the sequence of outputs
that M produces when applying o;y,.

Let t = (0, 0our) be a test for M. We say that a system M’ passes t if the application

of 0in produces oy ; otherwise, we say that the system M’ fails t.

Example 3. Let us consider again M, My and M, given in Figure 2.3. We have that
t1 = (i,01), to = (ii,0109) and t3 = (iii,010003) are tests for M. M passes t; and ty and

fails t3 while My passes t1 and fails ty and ts.

2.2 Genetic Algorithms

A Genetic Algorithm (GA) |11, 23| is a heuristic optimization technique, which is inspired in
a metaphor of the processes of evolution in nature. GAs and other meta-heuristic algorithms

have been used in Software Testing |7, 14, 18, 20|. Generally, a GA works with a group of

8

L "
initialize select mEE.rt ermination
ST ! T offsprings P z
the_ nncfiwdulaiﬁ —-{crossweﬂ—-{mutatmnl—» e tha crlttelnaq
population for mating population satisfied?

Figure 2.4: Genetic Algorithm flowchart

individuals or chromosomes, each representing a potential solution to the problem in hand.
In our case, chromosomes will be subsets of tests. The process can usually be divided into
five phases. An initial population is usually selected at random. Then, a parent selection
process is used to pick some individuals from the initial population. A new offspring is
produced using crossover, keeping some of the characteristics of their parents, and mutation,
which introduces some new genetic material. Crossover exchanges information between two
or more individuals. The mutation process randomly modifies individuals of the offspring.
The quality of each individual is measured by a fitness function, defined for the particular
search problem. The population is iteratively combined and mutated to generate successive
populations, known as generations. When the specified termination criterion is satisfied,
the algorithm terminates. The idea behind GAs is that the combination of good elements
will generate good elements for a future generation. In this sense, being able to select the
best elements of the current generation and properly combining them will generally improve
the partial solution obtained at the next generation. Nevertheless, we might want to keep
information about individuals of previous generations whenever such individuals have a high
quality. In addition, it is important to refresh small parts of the population by introducing
slight mutations, in order not to get stuck in a local minimum, after several evolutions. The
flowchart for a simple GA is presented in Figure 2.4. In addition, Algorithm 1 shows the

pseudo-code of the GA.

Generate an initial population;

Evaluate the population;

while termination criterion not fulfilled do

Select the individuals;

Perform the crossover of the selected individuals;
Perform mutations;

Replace the old generation by the new one;
Update the fitness value;

end

Algorithm 1: Pseudo-code of the genetic algorithm

10

Chapter 3

Related work

This chapter is devoted to present the state of the art in the field. We focus on those works

most related to ours.

Wegener et al. |25] considered GAs to obtain the longest and shortest tests, in terms of
time, in a program of 1511 lines of code. They were able to improve the results of random
tests. Their tests were likely to find real-time failures when actions were performed either
faster than the short test, or slower than the long one.

This approach considers the problem of generating a good test suite. Girgis [9] produces
a set of tests from the specification and a list of def-use paths to be covered and uses different
parameters for the GA. In a similar way, Jones et al. [19] used a library of GAs to obtain
tests able to identify faults in the areas where more mistakes could have been produced.

Following the idea of generating tests using GAs, Berndt and Watkins 4] applied them
to long sequence testing. The goal is to observe failures concerning extended periods of
operation that are not adequately captured with traditional measures of code coverage.

These errors are related to component coordination, system resource consumption or cor-

11

ruption. The authors combined search and random-like behaviors to generate many variants
of specific test cases.

Testing is a vast area that considers more complex structures than procedural program-
ming, such as object-oriented software. This is the case of the work of Gupta and Rohil [12],
where the authors used GAs to generate test cases for classes. The approach considered a
tree representation of statements in test cases in order to facilitate the automatic generation
and the evolution of the GA. In the same way, Wappler and Lammermann [24] focus on
generating white-box test cases for object-oriented software where the GAs complete some
structures obtained from the higher coverage sequences extracted from the code.

Concerning work more similar to ours, Shi et al. [22] compared test suite reduction with
other selection of tests techniques. In this case, they experimentally compared test suite
reduction with regression test selection and proposed another criterion. In the experiments,
they observed a bigger reduction of the number of tests with regression test selection. Our
proposal focuses on testing FSMs instead of code. Shi et al. also realized that a loss of
fault-detection was linked to the test suite reduction, since part of the tests are no longer
considered. In our case, we also observed a loss when we compared the methods we propose
to solve our problem with the optimal solution for the same environment.

Gligoric et al. [10]| considered regression test selection to fasten regression testing on
software. They developed a technique called EKTAZI and implemented it for Java and
JUnit. Their technique keeps track of the dynamic dependencies of tests on different files of
the SUT. Then, only the involved tests have to be executed instead of the whole test suite,
reducing the cost of testing.

Dominguez-Jiménez et al. [8] also presented an evolutionary technique to reduce the
cost of testing. Their framework involved mutation testing, and a genetic algorithm was

the proposed methodology to select strong mutants. Similarly, we use a GA to obtain a

12

good subset of tests. They focused on reducing the number of mutants while having a
representative set of faults. These authors were able to significantly reduce the number of
mutants without a loss of fault-detection, producing a faster execution of the tests. Our
results, despite having a different target, also exploit the power of GAs, getting a fast and
efficient solution.

We conclude that there has been research concerning GAs to generate tests as well
as a wide study regarding mutation testing. Also, selection testing techniques have been
developed to reduce the cost of testing. However, there has barely been successful work on
the combination of GAs and mutation testing, where we obtain a subset of tests from a test
suite too costly to be fully performed. This is where our work is targeted and the objective

of our contribution.

13

Chapter 4

Our proposal for test cases selection

In this chapter we present the proposed approaches to solve the problem of finding good
sets of tests. All of them are based on how good a test case is, which is given by the number

of mutants that it kills, and its length in terms of the number of inputs that it contains.

4.1 Global search

The global search approach looks through all the possible subsets of the initial set of tests
having less inputs than the given bound. This means that a full search has to be performed
in order to obtain all the subsets of tests so that every possible solution is considered,
including trivially bad choices.

The fact that the worst potential solutions are considered is due to the lack of intelligence
of this algorithm. This approach always provides the best solution because it explores all the
possible subsets. Therefore, it is useful because it helps to compare this solution with the
ones produced by other algorithms computing good enough solutions. The negative aspect

is that for non-trivial systems, it is impossible to apply it because it suffers of a exponential

15

explosion. In fact, we were only able to compute it for the smallest systems that we have

in our experiments.

4.2 Greedy algorithm

Our greedy algorithm is based on a matrix which includes information about tests and

mutants.

Definition 4. Let M = (S,1,0,Tr, s;,) be an FSM, T' = {t;}?_, be a set of tests for M
and M = {Mj};ﬁ:l be a set of mutants of M. We define the results table for T and M
as a matriz (aij)?;T’jzl, where a;; s the length of the shortest prefiz of the test t; that kills

the mutant M;. In the case that such mutant passes the test, this distance will be equal to

infinity.

Here, the rows of the n X m matrix represent the tests, while the columns represent the
mutants. For instance, the value ay, indicates the length of the shortest prefix of the test ¢y
that kills the mutant M.

Essentially, the algorithm sorts the rows of the matrix by decreasing order of the number
of mutants killed by each of the tests. In the case that different rows kill the same number
of mutants, they will be ordered increasingly by the number of inputs required to kill the
mutants. Then, we include the first test to the test suite that we are constructing. After-
wards, we remove the row of the matrix corresponding to this test case as well as all the
columns corresponding to the mutants that it kills. After reducing the matrix, we iterate
the process until either all the mutants are killed or the specified bound on the number of

inputs is reached.

Example 4. Let us consider Figure /.1a. Once the matrix is ordered, see Figure /.10, the

16

5 o0 00 00 OO 0 4 7 5 o 12 o~
00 00 00 00 00 00 13 co oo 6 1 oo
o0 9 oo 8 oo o o 9 oo 8 oo o
13 oo 0o 6 1 o 5 00 00 00 00 00
4 7 5 oo 12 o~ 00 00 0o oo oo T
00 0 0 o0 oo T 00 00 00 00 00 OO
(a) Original matrix (b) Original ordered matrix

6 o0 6 o0

8 oo oo 7

00 00 8 oo

oo 7 00 00

o0 00 o0 00
(¢) Reduced matrix (d) Reduced ordered matrix

Figure 4.1: Matrix simplification

first row corresponds to the best test, which is selected to be included in the test suite. This
test kills the mutants 1, 2, 3 and 5. Therefore, in the reduced matriz given in Figure J.1c,
one test and four mutants have been removed, that is, the selected test and the mutants that
this test kills. The resulting matriz needs to be reordered. We must take into account that
rows with the same information do not represent the same test. Thus, none of them can be
removed. As we can see in the matriz obtained in Figure 4.1d, the next tests that will be
selected for being included in our test suite are the ones corresponding to the first and the
second rows of the matriz. The total length of the generated set of tests is 25 (the length
needed to kill all the mutants). This length results from the sum of the 12 inputs of the
first test included in the test suite that must be applied to kill four mutants plus the 6 and 7
inputs corresponding to the second and the third test cases, respectively, required to kill the
other two mutants.

This shows that two tests killing the same mutants might not be equally good, as one

detecting them sooner will require a smaller number of inputs and therefore it will save

17

resources.

A good property of this algorithm is that it works in low polynomial order over a space,
the matrix, that reduces its size after each iteration. This is the less costly algorithm, in
terms of execution time, out of the ones we propose in this work. Our greedy method shows
great results and will also help to bound the number of generations and the global cost of

our next algorithm.

4.3 Genetic algorithm

GAs excel when we seek for a good approximation of the solution of problems whose optimal
solution needs an exponential approach to compute all the potential candidates. This is the
case of our problem and its solution, as discussed in Chapter 4.1. Therefore, a GA is a
sensible approach to compete with our greedy algorithm, in particular, because our greedy
algorithm computes relatively good solutions in a short time.

In Chapter 2.2 we presented the general structure of GAs. We now follow its layout to
delve into each section.

Our population is a list of individuals, that might be sorted by fitness depending on the
selected methods. In our population, an individual only has one chromosome that represents
a subset of the original test suite. Each individual is implemented using an array, where the
order of the elements does not matter. The initial population will evolve to generate better
subsets. The evolution will continue for a number of iterations specified by the user. Next,
we introduce the different elements that define the GA that we propose for the selection of
tests cases.

Our approach uses different parameters to configure the main elements of the GA. Among

these parameters we have the maximum number of inputs we expect in the solution, the

18

selection method of the population, the type and rate of the crossover method and the rate
of the mutation technique to be applied. However, all the variants of our GA use the same

fitness function that we introduce next.

The fitness function

The heuristics that we use to define our fitness function enhances the individuals that
improve the efficiency of the generated test suite. Basically, it takes into account how many
mutants are killed by the test cases. Specifically, the fitness is calculated by adding the
minimum number of inputs required to kill each mutant, considering the subset of tests
included in the chromosome at a specific moment. This value does punish the fact that
some mutants are not killed by any test in the chromosome. If this is the case, a penalty
will be added to the final value on the basis of the number of alive mutants. Therefore, the
more mutants a subset kills, the lower the score will be. This value will also be reduced
when the number of inputs required to kill a higher number of mutants decreases. This

leads us to a minimization problem (a lower value of fitness denotes a better population).

Definition 5. Let M be a FSM, T = {t;}?_, be a set of tests for M, S = {t}, be a subset
of T, M = { M}, be a set of mutants of M, (a;);Z} ;—, be the results table for T and M,
and (blj)z—lj 1 be the results table for S and M. We define the fitness function of S for M

as:
Zmln (Mg, S), P)

where a(My, S) = min(by, : 1 <1 <n') and P = 5 xmax[a;;|1 <i<n,1 <j<m]is the

penalty value.

The value 5 used in the penalty value was selected experimentally to provide small

differences in solutions with many penalties, but sufficient to be a relevant penalty.

19

3 o0 o0 6 oo o
5 oo 7 15 16 oo
© 4 o0 o0 7T o
oo o0 b oo oo 8

0 9 oo oo oo 21

Figure 4.2: Example matrix

Example 5. Let us consider Figure /.2. If we take an individual with tests ty and ts,
its fitness would be 5+ 9 + 7+ 15 + 16 + 21 = 73, which is the result that the greedy
algorithm would yield. Also, an individual containing tests t; and ty would have a fitness of
3410545+6+105+8 = 232 where we find two penalties (105 = 5%21). The best result would

be obtained by grouping tests ty, t3 and ty yielding a fitness value of 3+4+5+6+7+8 = 33.

In addition, in this work we will use the score of an individual in a population to
determine the probability of such individual to be chosen in the selection phase. Intuitively,
the score is computed as a ratio between the fitness value of the individual and the sum of
the fitness values of all the individuals in the population. A constant is required to make

the lowest fitness have the highest score.

Definition 6. Let M be a FSM, T be a set of tests for M, M be a set of mutants of M

and P be a set of subsets of T'. For all S € P we define the score of S for P and M as:

K(P,M)— f(S,M)
> K (P, M) — f(S', M)]

S'eP

s(S, P, M) =

where K (P, M) = 1.05 x maxgnep f(S”, M).

It is important to note that the fitness value is always positive. Therefore, the score

is well defined, all its values will be between 0 and 1, and the sum of all the scores in a

20

population is trivially 1. Also, the value 1.05 used to compute the constant K (P, M) is

important so that the biggest element has a positive score instead of 0.

Example 6. Let us consider a population consisting of the three individuals from Ezample 5.

The first individual with fitness 73 has a score of % = 0.434. The second individual,

which s the worst of the three, has a score of % = 0.030. Finally, the best individual

has a score o 245’92;33 = (0.536.

Initialization method

We have decided to apply an incremental initialization for our algorithm. This approach
provides a variety of chromosomes, each of them with a different number of tests and inputs,
which means more diversity. Such initialization follows the idea of minimizing the number
of inputs to apply. As some chromosomes may have too few inputs and others too many,

the execution of the algorithm will mix them at some point and improve the final result.

Selection methods

Taking into account that some individuals might be better than others, the transition from
one generation to the next one has to ensure that the foremost representatives are selected.
The idea is to reward the best ones with more appearances in the selection and the worst
ones with even no appearances at all. We allow the user to choose the method to be applied

by the algorithm among alternative standard selection models |11, 21]:

e The tournament principle is based on the competition of several individuals for a
place in the new population. The user must provide the number of participants on
the tournament n and the probability of winning for the favorite player p. Then, n

chromosomes are randomly selected from the population, where the best individual

21

Fitness:

"J

L
HII l*’| |f‘|lll | ||' M (P || r'm'i” 'fl “
I" f / | LII/V I\N'l}'u \.\I'JI ﬁ NI

\\I |[|| | W sbsolute best
.EEnEﬂati::-nal best

Average fitness

. Gensrational worse

Eneration:

Figure 4.3: Tournament

of this group is chosen for reproduction with probability p. This process is repeated
until the new population reaches the specified size. Usually, the chromosome with the
highest score will have more chances to be selected, but some diversity is allowed by

enabling the underdog to be chosen despite its fitness.

e The roulette wheel technique is based on the accumulated probability of choosing an
element in a position' or any of the previous ones. In our case, given a random number
between 0 and 1, the first individual in the population that saturates it by adding its
score to a counter will be chosen. This method allows to give more variability to the

population, since the selection does not depend on the size of the population.

!The population is implemented as an array of individuals. As such, even if the individuals are unsorted,
we can use the order of the array.

22

Fitness:

|
I'r\.'lx—ﬁ' N My ™
1j|| | \I \
v | |
¥l ||

| | |

'_WI\ ava J ll ik
| W \ |II I| _W ll Ing e
||| "“'\/\' IlIII |

Illll

v‘ v

Bl Absciute best
. Generational best
Average fitness

. Generstional worse

eneration:

Figure 4.4: Roulette wheel

e The truncation method is very restrictive, because it repeatedly selects the individuals
with best fitness of the population until the sample is completed with the established
size. The positive part of this elitist method is the small likelihood to worsen, as

several individuals stay invariant from a generation to the next one.

e The stochastic universal selection tries to provide consistency to the sampling, as it
evenly distributes the selection of individuals with a single random measure. It has as
counterpart that the way the elements of the population are ordered is likely to have

an influence on the obtained result.

e The remains selection allows a chromosome to be chosen proportionally to its score.

More formally, considering an individual S of a population of £ chromosomes whose

23

Fitness:

_,..—"-

JR—

B Absolute best
U . Generational best

¥ | Average fitness

. Generational worse

eneration:

Figure 4.5: Truncation

score is p, S will be selected p - k times. As the resulting value is likely to be a real
number, we round it down. Since we want the new generation to have k individuals,
the remains method is not able to provide all of them. The remaining chromosomes

to be selected are chosen with the roulette wheel method.

We can see in Figures 4.3 to 4.7 the execution of each of the selection methods for
the same initial parameters. In general, the fitness tends to improve over the generations.
However, the tournament method, see Figure 4.3, exhibits the best behaviour. The other
methods do not have such fast improvement, since a local minimum is found, as it is the
case of the truncation method, Figure 4.5. In the case of the stochastic universal and the

remains methods, Figures 4.6 and 4.7, we find that the best fitness slowly improves in time.

24

Fitness:

W N/ W1| fii \ |||| llllrIII Il"l
|| «..|\I| r || l'g'\a || ﬁml |'u| |IIJ|I 1ﬁlu IHM ||| ,ﬂ.
|| | \ I U lﬂ\' d v / \l \I l)

v

‘f-\b&nlute best
.GEnEmtianEll best
Average fitness

. Generstional worse

eneration:

Figure 4.6: Stochastic universal

Nevertheless, there is an important difference between them: the average fitness of the
remains method tends to improve whereas the average fitness of the stochastic universal
method takes higher values (they represent worse solutions). This effect might occur due
to big values on the overall fitness, making it harder to measure the differences between
individuals that once combined with this selection technique induce a suboptimal evolution.
With the roulette wheel method, see Figure 4.4, we have a rather random behavior. All
three main graphics constantly vary within some bounds, although it seems to be a slight
improvement at the end. A longer experiment could show further results, but the same
number of iterations was considered for all the methods to illustrate their differences.

Concerning the fitness function, in Figures 4.3-4.7 we show the results of several experi-

25

Fitness:

.lﬂ | AL
\Lw ww M\ V W“ I lqﬁm

| l.l
| i'

h/

B sbsolute best
. CGeneraticnal best
Average fitness

. Genesstional worse

eneration:

Figure 4.7: Remains

ments indicating how fitness varies along generations. The results are as expected. In short,
there is a relatively big variance concerning the worse individual of each generation, that
is, the highest value of fitness. This variance is smaller for average fitness, and the value
notoriously improves after only 10 generations. The generational best graphic stabilizes,
although there are small variations. The absolute best quickly converges to a local minimum
that is sometimes improved later on. These executions only differ in the selection method,

with the goal of illustrating the slight changes among them.

26

Crossover methods

For the crossover phase, which combines the selected individuals to produce a new genera-

tion, we have considered two methods:

e The standard crossover involves two chromosomes. It consists in choosing a random
point on both individuals. Then, the tests to the right of that point are exchanged. If
such modification generates a set of tests with more inputs than the specified bound,
then the last tests are discarded until the bound is reached. Figure 4.8 shows the

application of this method.

L[]
— —
LT L

Figure 4.8: Standard crossover

e The continuous crossover also involves two chromosomes. In this case, several points
are selected and the tests at the corresponding positions are exchanged. This approach
is oriented to generate more diversity in the following generations. In this case, we
need to pay attention to the total number of inputs of the new individuals. The
inclusion of a test case cannot exceed the specified bound. Figure 4.9 represents the

application of this method.

27

N NN
—
LT ‘i 'hh

Figure 4.9: Continuous crossover

Mutation methods

As the initial population might not be sufficiently well distributed, it is sensible to refresh
the population with some slight changes that could renew some stale state. In our case, we

have designed two different techniques:

e Adding mutation is oriented to non-complete subsets. In these cases, it is possible
to introduce an extra test to an individual without exceeding the bound of inputs.
Despite increasing the number of tests on the whole population, due to the application
of the crossover methods, it is possible to generate an exchange of tests where some
of them have to be discarded. This method complements the possible loss of tests as

it reactivates stationary individuals. This approach is illustrated in Figure 4.10.

1[2[3]4]5]6]7] === [1]2]3]4]5]6]7]8

Figure 4.10: Adding mutation

28

e The replacing mutation method allows an individual to change one of its tests by
another one from the initial test suite. This technique will include some slight changes
to specific individuals that might either increase or decrease the relevance of a subset

of tests in the population. This is illustrated in Figure 4.11.

1|2[3]4]5]6]7] == [1]2]3]8]5]6]7

Figure 4.11: Replacing mutation

Replacement methods

Finally, the last step of the process corresponds to the replacement of the population by the
new one. Again, we have two possibilities. On the one hand, the trivial option would be
to substitute the current population by the new one, even if it could be worse. In this way,
less operations are performed at this stage and, as a result, the execution will be faster. On
the other hand, we could replace a percentage of the new generation by the best individuals
of the current one. This approach will always allow the population to keep the best partial
solution until it is improved. As a counterpart, more calculations have to be made and
the associated cost might decelerate the execution. In Figure 4.12 we see how this elitist

replacement behaves.

29

parents

offspring

6|7 1]23[a]s[e]7|

& best individuals G
new generation

Figure 4.12: Elitist replacement

30

Chapter 5

The tool

In this chapter we present the tool that we have developed to implement the algorithms
that we propose for selection of test cases. We focus on the Software Engineering aspects of

the implementation and the design patterns that we have used.

5.1 GUI and MVC

Our tool was created following design patterns, such as Model-View-Controller (MVC), to
make easier the interaction of the user and the tool. Figure 5.1 shows the MVC pattern
components. The model represents the algorithms that we have proposed and the FSMs.
Usually, the user interacts with the controller in order to perform changes in the model.
Finally, the view represents the visual environment that the user needs to interact properly.
The results and the relevant information are shown at the view.

In figure 5.2 we show the GUI representing the view of the pattern. The control tools
appear on the left hand side of the view, where the values associated to the main parameters

used in our algorithms can be established. Next, we introduce them.

31

Mediator strategy

(" Controller

Update

User action

<

Model

Notify

Update

View

£ IWANN2019

Figure 5.1: MVC pattern

sizs ot popatation: 100 BB EEE

lterations: ‘100 ‘

Input bound: ‘su ‘

‘ Incremental initialization

|V|

‘Toumamenl

|V|

Number of tournament participants: 13 ‘

Favorite participant ratio: 10.8 ‘

‘Conlmnous crossover

|'|

Crossover ratio: ‘U.B ‘

‘ Extra test mutation

|'|

Mutation ratio: 10.08

‘ Direct replacement

|'|

Generate data

| ‘ Global search |

Greedy algorithm

| ‘ Genetic algorithm |

Specification file: [les/FS.bt |

Tests file: [iles/Tests bt

Mutants file: "ﬁlesiMulams ot ‘

Figure 5.2: GUI of our tool

32

e Size of population indicates the number of individuals corresponding to each genera-
tion. This value will condition the evolution of the GAs. For example, a small number
of individuals would not allow enough diversity in the breed. On the opposite side, a

big number would significantly slow the process.

e [terations corresponds to the upper bound on the number of generations that will be

produced. This field provides the termination criterion for the algorithm.

e The input bound parameter acts as the budget or time constraint. It restricts the
total number of inputs that the user wants to be applied during the testing process.

Thereby, the amount of tests of each chromosome is related to the value of this field.

Currently, the type of initialization of the chromosomes is only informative because the
user cannot select it. Nevertheless, future extensions of the program for other formalisms
or different hypothesis (like non-determinism) could give rise to the application of other ini-
tialization methods and the users will have the possibility of selecting the most appropriate.

The selection method will determine the way the individuals of a generation will be
selected to be mingled and evolve towards its offspring. As we indicated in Chapter 4.3, five
different methods can be applied. Some of them, like truncation and tournament, require
the user to provide values for some specific parameters, although a value is assigned to them
by default. Those fields are only visible when the associated selection method has been

chosen.

e Truncation ratio represents the proportion of the population that will be selected. In
order to complete the full generation, these individuals will be selected as many times
as required. The selected individuals have the best fitness of the population. This

parameter is very sensitive to variations. For instance, a small value would cause a fast

33

convergence towards a value that does not have to be close to the best solution. Also,
a slightly bigger value would tend to ignore the fitness function. It would be ignored
in the sense that a big diversity of the population would be selected and, therefore,
the distribution of the chosen individuals would be uniform. The consequence of this
is that bad solutions of the problem would have the same weight as good solutions and
the evolution of the algorithm would come to a halt. This parameter is only required

for the truncation method.

o Number of tournament participants reflects how many candidates take part in the
tournament. For example, having a single candidate would be equivalent to have a fully
randomized selection, as the applicant would immediately win. As those participants
are selected at random, a small number of candidates should be selected to hasten the

process. This parameter is only required for the tournament method.

e The favorite participant ratio indicates the chances that the participant with the best
fitness has to be selected. In that way, chromosomes with a low score could win a place
in the tournament towards the next generation. This ratio adds some diversity while
still allows the individuals with high scores to have a leading role in the evolution of the
GA. If more than two participants compete for a place, then they are sorted by fitness;
their odds are computed by taking into account the ratio assigned to this parameter.
For example, for 3 players and assuming an 80% ratio for the favorite participant,
the odds would be 0.8 for the individual with best fitness, 0.16 (= 0.8 x (1 — 0.8))
for the individual with the second best fitness, and 0.04 (= 1 — 0.8 — 0.16) for the
individual with the worst fitness (among the nominees). This field is only required for

the tournament method.

Additionally, the user must select the crossover method to be used during the execution

34

of the GA. Since the number of possible changes that may be produced, depending on the
method, is significantly different, the crossover method drastically varies the value of the
next parameter.

The crossover ratio highly depends on the type of crossover selected. As we said previ-
ously, one method has a higher spectrum of changes than the other. This value represents
the percentage of changes to be performed. In this sense, this number should vary in a
higher or smaller scale in order to keep a sensible structure between generations. Usually,
the continuous crossover does not need a high value to perform as many changes as the
standard crossover does.

The mutation method for the specific algorithm that we may want to run must also be
selected. The mutation methods have a similar amount of possible changes concerning an
individual. As such, the value of the next parameter is not related to the actual choice of
the method, but to the diversity during the execution of the GA.

The mutation ratio simply decides how many mutations will be performed on a chromo-
some. We advise not to use a big ratio, as too many changes could be produced. Performing
too many mutations could drastically disturb the natural evolution of the GA.

Finally, the user has to choose how to replace the current generation by the new one.
The user can select either to replace the population or to keep the best individuals from
the previous generation. In the case that the elitist replacement is selected, the elitist ratio
must be provided. We also recommend keeping this value low. Otherwise, the evolution
could be really slow, wasting an unnecessary amount of resources.

We can run the configured algorithm in different ways. The global search mode looks
for the perfect solution over all the possible combinations. We highly recommend using
this option only in the case that the user is dealing with small problems, because in other

case the process will not terminate. The second execution mode corresponds to the greedy

35

|£] IWANN2019 - X
Size of population: ‘100 ‘

Iterations: ‘100 ‘

Input bound: ‘EU ‘

‘\nclsmenta\ initialization |v|

‘Tuumamenl |'|

Number of tournament participants: ‘3‘ ‘

Favorite participant ratio: ‘n 8 ‘

‘Conlmnoui crossover |v|

Crossover ratio: ‘n 6 ‘

‘E)(tra test mutation |v|

Mutation ratio: 0.08 |

‘D\recl replacement |v|

‘ Generate data | ‘ Global search ‘

‘ Greedy algorithm | ‘ Genetic algorithm ‘

Specification file: "ﬂlestFSMm ‘

Tests file: rﬂlesﬂ'eslsm ‘

Global best: 11487.0
Mutants file: rﬂlestMulams o | Tests:
[8, 21, 58, 55, 31, 64]

Figure 5.3: GUI with best fitness and tests

algorithm and the last one will apply a genetic algorithm that will be configured with the
values provided by the user for the different parameters. The tool also provides an option,
generate data, to generate mutants and tests from a specification. It will generate all the
mutants from a specification, and a random set of tests to be used during the execution of
the algorithms.

On the right hand side of the GUI, the graphics corresponding to the information related
to the execution of the GA is displayed. Due to the fact that the greedy algorithm and the
full search are deterministic, no graphics will appear in this area of the GUI. Nevertheless,
in all the cases, the fitness of the global best individual is shown below the graphics area.
In Figure 5.3 we see the fitness of the best individual and the tests that were used during
the execution. In Figure 5.4 we see the results of the execution of a variant of our GA.

Therefore, both the value of the best subset of tests found and the graphic of the evolution

36

Size of population: ‘100 ‘

lterations: ‘100 ‘

Input bound: ‘SD ‘
Fitness

Incremental initialization |v| ﬁ

Tournament |V|

Number of tournament participants: ‘3 ‘ M ||
n
|

I
ML A L
Favorite participant ratio: ‘UE ‘ | f\l | ‘l ‘ Fm |‘I ‘ ‘ M “ hlﬁ I! ‘”‘“ ” A
Continuous crossover |v| |V \ ‘/\’%} U’ V‘I/ v AH” M[\Nu‘lﬂ}\ ‘ J\\JI‘ Hﬂlfl\ [l Absolute best

Wl Generstional best

Average fitness
Crossover ratio: ‘u 2 ‘ =

W Generstionsi worse.

Extra test mutation |v|

Mutation ratio: ‘[I 02 ‘

Direct replacement |v| r\l\‘\AQ\(_\"‘
[T NS

Generate data | ‘ Global search ‘

Greedy algorithm | ‘ Genetic algorithm ‘

Specification file: rﬂlesiFSMm ‘

Tosts file: fles/Tests ot |

Global best: 4352.0
Mutants file: rﬂlesiMutants T ‘ Tests:
[61, 89, 26, 94, 64, 8, 0]

Figure 5.4: GUI with graphics

of each generation appear in the GUI.

5.2 Other patterns

Concerning the controller, we follow the Singleton pattern shown in Figure 5.5a. We use this
pattern because we only need one object to manipulate the data from the view towards the
model. The controller is in charge of running the algorithms, as well as of interpreting the
inputs provided by the parameters in the view. The execution of any of our algorithms will
modify the values of the model. Those changes will be reflected in the right hand side of the
view. In the controller class we can find the critical implementation of the methods described
in Chapter 4, although some additional classes help to provide the right elements. These
classes correspond to factory classes that generate the appropriate initialization, selection,

crossover, mutation and replacement methods. If the user decides to choose them at the

37

Factory

Client [

createproduct(type)

Singleton

static uniquelnstance

singletonData

Abstract Product

static Instance() © » 0et uniquelnstance
SingletonOperations() %

GetData()

¥

Product 1 Product 2

(a) Singleton pattern (b) Factory pattern

Figure 5.5: Design patterns

GUI, then the chosen class is dynamically decided. These classes follow the Factory pattern
represented in Figure 5.5b. They provide an actual instance of a class that implements
a common interface. This helps to select a method in a dynamic execution with a good

structure.

5.3 Class diagram

We will now present a class diagram corresponding to the implementation of the tool.
The implementation and some examples are freely available under a GPL-3.0 license at
https://github.com/miguelbpsg/IWANN19.

In Figure 5.6 we see that the complexity of our tool developed forces us to present
a simplified version of the classes involved in it. As mentioned before, the high number
of attributes and methods would complicate the diagram. We also avoided showing the
multiplicities of the relationships.

First, we can clearly observe the MVC pattern structured in the packages. The view does

not need any additional classes to perform its tasks, so it does not need its own package. The

38

https://github.com/miguelbpsg/IWANN19

Cﬂntrnll;

Controller Window
InitializationFactory CrossoverFactory ReplacementFactory
SelectionFactory MutationFactory ChromosomeFactory
Mude\)
DirectReplacement
Crossover Replacement
Zk l/ ElitistReplacement
Incrementallnitialization StandardCrossover ContinuousCrossover Mutation
: Chromosome
i
| T
I |
Selection
ReplaceMutation ExtraTestMutation ESMTest
StochasticUniversal Truncation Tournament FsSM
Ranking Remains Roulette
Node Transition

Figure 5.6: Class diagram

39

controller needs all the factories to adequately choose the methods dynamically selected at
the view. Finally, the model stacks most of the classes and the distribution of the program.
In the model, several classes are grouped by the methods described in Section 4.3. They are
extended into each concrete representation and a representation for FSMs, with nodes and
transitions, can be found. We also find the core of our model: the chromosome. The FSM
class is the perfect complement to the FSMTest class. The former is able to generate all the
relevant information that will be used during the execution of the algorithm. We refer to
the generation of a set of tests as well as a ratio of mutants, or even all the possible mutants
from a specification, having as a result a complete tool to fulfill our work. The FSMTest

will be applied to mutants to generate a matrix as the one introduced in Definition 4.

40

Chapter 6

Experiments

In this chapter we report on the experiments that we have performed and the obtained
results. We discuss the results of applying the different algorithms that we have proposed.
We have considered different bounds on the number of inputs that the solution can have. We

have also analyzed the time that the different approaches need to compute their solutions.

6.1 Description of the experiments

Our experiments consisted in the execution of the three described algorithms over the same
specification, mutants, initial set of tests and maximum number of allowed inputs. We
performed the experiments for several combinations of them. Afterwards, we compared the
results both in time needed to compute the solution and in the goodness of the solution.
Note that the initial set of tests should not be confused with the set of tests produced in
the initialization of the GA. The former is provided as a precondition of the problem. This
is the set of tests that we should aim to apply but if our resources do not allow us to try

all of them, then we should apply a good subset of them. Computing this final subset is the

41

goal of our approaches. The latter is obtained during the first step of the execution of our
GA.

It is clear that the smaller the FSM is, the lesser number of mutants will be generated.
We have considered a specification with 10 states, 3 inputs and 5 outputs. We have obtained
around 300 mutants after applying the mutation operators considered in our framework. We
also considered 3 possible bounds on the number of inputs and 2 initial sets of tests, result-

ing in 6 representative cases. Next, we give the details of each of them.

Exp. 1| Exp. 2 | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6
Max. Inputs 30 80 150 30 80 150
Tests 99 99 99 957 957 957

Table 6.1: Summary of the experiments

1. The first experiment consisted in allowing a maximum of 30 inputs in the solution and
starting with a set of 99 tests. All algorithms yield a very good (if not the best) solution
on a reasonable amount of time as there are few possible results. This experiment is

a good baseline to show that all the algorithms provide good solutions.

2. Next, we increased the bound on the number of inputs, from 30 to 80, maintaining the
initial set of tests. This experiment should show us the evolution of the algorithms

depending on the number of inputs.

3. To conclude the experiments with a set of 99 initial test cases, we increased the bound

on the number of inputs up to 150 inputs.

4. The next variation considered the smallest bound on the number of inputs, that is, 30

inputs, and a bigger set of tests. We consider a set of 957 tests.

42

5. The next experiment dealt with the intermediate bound, that is, 80, and the biggest

set, of tests.

6. Finally, the last experiment considered the biggest bound on the number of inputs

and the biggest set of tests, that is, 150 inputs and 957 tests.

These experiments were performed with all the possible configurations of our GA. We
also applied the full search and the greedy algorithm. We had two goals. First, we wanted
to compare the different versions of the GA. Second, we wanted to compare the execution
of the other two algorithms with the GA. We considered the default configuration, that
is, tournament selection over 3 participants with a ratio of 80%, continuous crossover with
a probability of 0.6, an extra test mutation option with a 0.02 coefficient and a direct
replacement. The experiments were carried out on an Intel i5-8250U, with a frequency of
3.4 GHz and 8GB of RAM.

It is worth to mention that most of the configurations of our GAs gave very similar results.
It should be also noted that the difference among them only corresponds to the selected
methods (selection, mutation, crossover and replacement). The value of the parameters
required for the different configurations (mutation ratio, crossover ratio, etc.) were not
changed.

We also tested the bounds and initial sets of tests that the full search was able to
compute. We were not able to exceed a bound of 60 inputs over an initial set of 99 tests,

taking over a week to compute the solution.

43

6.2 Evaluation

As expected, as soon as the systems were sizable and we had a nontrivial initial set of tests,
the generation of all the possible subsets was unfeasible due to the combinatorial explosion
on the number of subsets. For example, if we had 40 initial tests with an average of 10 inputs
and we could choose tests up to 150 inputs, we would have more than 40 billion possible
subsets. Nevertheless, whenever we consider small bounds, it is possible to compute an
optimal solution, guaranteeing that we obtain the best subset of tests to be applied to the
SUT.

In terms of relative cost, we observed that the greedy algorithm was always the fastest as
we can see in Table 6.2. The time needed to compute the solution mainly depended on the
size of the given set of tests but it also had a small dependence on the maximum number of
allowed inputs. This dependence arises from determining how many times the matrix has
to be sorted. Considering its efficiency, our GA was able to provide very good results. In
the only experiment where we were able to compute all the combinations, the result was
almost equivalent to the optimal one, as Table 6.3 shows. These values are 11.761 of fitness
for full search! versus 11.887 of fitness on the GA. However, the solution was computed in
less time, showing evidence of the usefulness of the approximate technique.

Focusing on Tables 6.2 and 6.3, we have that a higher bound on the number of inputs
always increases the execution time. In contrast, the fitness of the obtained solution is
improved. Also, comparing all the experiments, we observe that a bigger initial set of tests
induces a higher execution time, but better results are obtained for the same bound of
inputs.

These experiments show that the GA can adequately compete, depending on the re-

!The fitness for full search and greedy algorithm is how we calculate the aggregate value of the solution.
In this way, all three methods have the same evaluation function and are easy to compare.

44

sources, and complement the results of the greedy algorithm. It is true that the GA requires
some more time to be evaluated, but considering the obtained results we find it worth to

use this extra computing power.

Time Time Time Time Time Time

Exp. 1| Exp. 2 | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6

Genetic 91 190 220 208 296 462

Greedy 22 23 26 147 178 263

Full search 1.355 — — — — —
Table 6.2: Time results (in milliseconds)

Fitness | Fitness | Fitness | Fitness | Fitness | Fitness

Exp. 1 | Exp. 2 | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6

Genetic 11.887 5.866 2.877 | 12.225 3.212 1.988

Greedy 16.166 7.687 5.415 | 22.746 | 13.543 7.429

Full search | 11.716 — — — — —

Table 6.3: Fitness results (higher values denote worse results)

Fitness | Fitness | Fitness | Fitness | Fitness | Fitness

Exp. 1 | Exp. 2 | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6
S,A.D | 11.887 4.966 2.311 | 12.059 3.795 1.926
S, AJE | 11.887 5.575 2.094 | 11.141 4.520 1.748
S,R,D | 11.887 4.508 2.435 | 12.511 4.502 1.896
S,R.E | 11.683 4.737 2.649 | 12.012 4.567 1.957
C,A,D | 12.042 3.863 2.116 | 11.376 2.919 1.729
C,AE | 11.683 3.745 | 2.034 | 10.376 2.763 1.675
C,R,D | 11.863 3.968 2.063 | 12.118 3.676 1.764
CR,E | 11.887 3.978 2137 | 11.172 | 2.625 1.683

Table 6.4: Fitness results for Tournament

Tables 6.4-6.8 show us that the best results for each experiment are distributed on the

different configurations of the GAs, but some important conclusions can be extracted for

45

Fitness | Fitness | Fitness | Fitness | Fitness | Fitness

Exp. 1 | Exp. 2 | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6
S,A,D | 13.209 6.992 2.840 | 13.196 5.339 3.253
S,AJE | 11.847 5.864 2778 | 11.227 4.687 2.361
S,R,D | 14.483 7.246 3.272 | 13.449 6.446 3.654
S,R.E | 11.683 4.966 2.476 | 11.291 5.274 2.241
C,A,D | 13.255 6.626 2.548 | 12.675 6.564 3.319
C,AE | 12.059 5.339 2.446 | 11.672 4.758 2.410
C,R,D | 13.944 6.540 3.779 | 13.298 6.727 3.451
C,R,E | 12.059 4.720 2.610 | 12.663 3.852 1.943

Table 6.5: Fitness results for Roulette wheel

Fitness | Fitness | Fitness | Fitness | Fitness | Fitness

Exp. 1 | Exp. 2 | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6
S,A.D | 11.863 5.659 2.419 | 11.731 4.397 2.212
S,AJE | 11.887 4.121 2.283 | 10.619 3.732 2.045
S,R,D | 12.412 5.113 2.437 | 11.367 4.257 1.826
S,R.E | 11.683 4.808 2.200 | 10.806 4.304 2.025
C,AD | 11.863 3.745 2.280 | 11.245 3.596 1.769
C,AE | 11.683 3.765 2.196 | 10.860 2.903 1.799
C,R,D | 11.887 4.384 2.274 | 10.992 3.888 1.857
C,R,E | 11.683 4.121 2.065 | 11.434 3.187 | 1.626

Table 6.6: Fitness results for Remains

Fitness | Fitness | Fitness | Fitness | Fitness | Fitness

Exp. 1| Exp. 2 | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6
S,A.D | 12.465 4.171 2.417 | 13.055 5.383 2.576
S,AJE | 12.059 5.159 2.420 | 12.753 5.323 2.030
S,R,D | 11.887 6.425 2.170 | 13.634 5.742 2.655
S,R,E | 13.369 5.201 2.587 | 12.498 5.383 2.301
C,AD | 12.465 4.117 2.158 | 12.664 3.587 1.896
C,AE | 12.200 4.172 2.111 | 11.345 2.972 1.869
C,R,D | 12223 | 3.625 2.211 | 12.503 4.169 1.808
C,R,E | 11.887 4.160 2.183 | 11.667 3.476 1.729

Table 6.7: Fitness results for Truncation

46

Fitness | Fitness | Fitness | Fitness | Fitness | Fitness
Exp. 1 | Exp. 2 | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6
S,AD | 12.465 6.366 3.317 | 12.302 6.510 3.206
S,AJE | 12.116 4.822 2.639 | 11.505 5.327 2.509
S,R,D | 13.955 6.717 3.414 | 13.501 5.049 3.150
S.R,E | 12.059 5.937 2.956 | 11.858 5.011 2.713
C,AD | 12.465 6.545 2.709 | 12.994 6.023 2.965
C,AE | 11.847 4.996 2.248 | 11.035 3.669 1.957
C,R,D | 12.483 6.612 3.412 | 13.532 6.444 3.318
C,R,E | 11.847 4.447 2.271 | 12.185 3.788 2.020

Table 6.8: Fitness results for Stochastic universal

the SUT and the tests applied. The best fitness found for each experiment is highlighted in
blue and boldface in each of the corresponding tables. We can observe that the tournament
selection with elitist replacement had the most appearances among all the configurations,
showing more adequacy to this concrete system.

Nevertheless, such selection method was not overwhelmingly dominant over the oth-
ers. In that sense, we consider that all the algorithms proposed had some good features.
The roulette wheel, remains, tournament and truncation methods got at least one minimal
solution for a different experiment, on different configurations of crossover, mutation and
replacement. Concerning stochastic universal, despite not providing any excellent solution,
the values obtained are not distant enough to be considered a useless method.

In terms of the time needed to execute the different GAs that appear in Tables 6.9-6.13,
the main observation is the big increase of time required when an elitist replacement is
considered. In addition, we can also observe that the truncation selection had a bigger cost
in terms of time in every experiment. All the delays are due to the need of sorting several

times the population considering the order induced by the fitness function.

47

Time Time Time Time Time Time

Exp. 1 | Exp. 2 | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6

S,A,D 70 101 171 171 222 270
S,AJE 406 669 984 476 745 1055
S,R,D 71 101 172 172 202 254
S,R.E 415 586 921 515 791 910
C,AD 81 102 192 173 215 297
CAE 202 316 516 311 403 700
C,R,D 81 121 192 174 222 293
C,R,E 233 303 518 344 436 669

Table 6.9: Time results for Tournament

Time Time Time Time Time Time

Exp. 1 | Exp. 2 | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6

S,A,D 73 81 111 164 192 215
S,AE 152 262 414 263 395 556
S,R,D 68 73 99 160 174 213
S,.R.E 162 233 374 281 337 485
C,AD 70 103 152 174 202 245
CAE 162 246 458 253 355 556
C,R,D 79 92 121 172 194 223
C,R,E 171 231 417 243 341 566

Table 6.10: Time results for Roulette wheel

48

Time Time Time Time Time Time
Exp. 1 | Exp. 2 | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6
S,A,D 81 101 164 181 212 281
S,ALE 235 333 536 435 444 667
S,R,D 70 109 164 172 204 263
S.R.E 291 333 558 372 526 677
C,AD 73 111 185 171 220 293
CAE 222 283 523 293 414 645
C,R,D 70 111 182 172 203 292
C,R.,E 201 283 508 333 405 669
Table 6.11: Time results for Remains
Time Time Time Time Time Time
Exp. 1 | Exp. 2 | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6
S,A,D 366 730 1137 503 820 1343
S,AE 1559 3405 6170 1711 3630 6448
S,R,D 387 758 1206 465 870 1367
S,.R.E 1480 3497 6158 1649 3659 6343
C,AD 193 343 507 301 425 618
CAE 1063 2381 4378 1164 2591 4605
C,R,D 195 334 536 324 426 670
C,R,E 1196 2383 4389 1266 2653 4508
Table 6.12: Time results for Truncation
Time Time Time Time Time Time
Exp. 1| Exp. 2 | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6
S,A,.D 70 91 131 171 192 233
S,ALE 162 215 325 261 326 446
S,R,D 71 81 121 170 184 232
S,R.E 151 192 2901 251 293 396
C,AD 80 103 162 181 211 262
CAE 161 212 385 233 314 485
C,R,D 71 93 143 172 192 242
C,R.,E 160 192 342 234 484 447

Table 6.13: Time results for Stochastic universal

49

Chapter 7

Conclusions and future work

In this thesis, based on recent conference paper |3], we present different solutions to the
problem of obtaining good sets of tests out of big test suites. Ideally, if a tester is provided
with a set of tests, then the tester should apply all of them to the SUT. However, the time
and resources devoted to testing are usually limited and the tester can apply only a subset
of these tests. If we are working within a framework where the tester applies inputs and
receive outputs, then this bound is given by the number of inputs that the tester can apply.
This is an important problem in testing and in addition to provide a sound theoretical
framework, it is a must to develop tools supporting the frameworks. We have developed a
tool implementing all the algorithms presented in this work. Our tool is able to, given an
initial set of tests and the maximum number of inputs that we can really apply, compute a
subset of the initial test suite with any of the proposed algorithms. It can be done with the
different variants of the GA and the greedy algorithm discussed in this work. In addition,
the tool supports the process of generating mutants from a specification of the SUT.

The results show that our GA usually finds an excellent solution. In general, the GA

beats the greedy algorithm, needing a slightly higher amount of time to compute the result.

ol

For smaller experiments, where full search could be effectively computed, the differences
between the best solution and the one obtained applying the GA were very small: the
fitness of the full search approach was around 1,5% better but it needed 14 times longer to
compute it. Therefore, we can be satisfied with the results considering the complexity of
the problem.

As future work, we plan to extend the framework to deal with other FSM-like for-
malisms. A first line of work is to consider probabilistic FSMs, where nondeterminism is
probabilistically quantified. We will take as initial step previous work on mutation testing
of probabilistic FSMs [15] complemented with recent work on conformance relations for
probabilistic systems [17]. An orthogonal line or work that we would like to pursue is to
adapt our framework to test in the distributed architecture [16], where several users interact
over the same data but cannot observe what the others are doing. We plan to perform
experiments on real-world frameworks where bigger systems will be evaluated, presumably
clarifying the metrics. Finally, we would like to improve the usability and report features
of our GUI so that the whole interaction with the algorithms and its extensions could be

followed and such that more complex graphs could be shown and compared.

52

1]

2]

3]

4]

[5]

6]

7]

Bibliography

P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University

Press, 2nd edition, 2017.

C. Andrés, M. G. Merayo, and M. Nunez. Formal passive testing of timed systems:

Theory and tools. Software Testing, Verification and Reliability, 22(6):365-405, 2012.

M. Benito-Parejo, I. Medina-Bulo, M. G. Merayo, and M. Nuanez. Using genetic algo-
rithms to generate test suites for FSMs. In 15th Int. Work-Conf. on Artificial Neural

Networks, IWANN’19, LNCS 11506, pages 741-752. Springer, 2019.

D. J. Berndt and A. Watkins. High volume software testing using genetic algorithms.
In 38th Annual Hawaii Int. Conf. on System Sciences, HICSS 05, page 318b. IEEE

Computer Society, 2005.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for

the practicing programmer. IEEE Computer, 11(4):34-41, 1978.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Program mutation: A new approach
to program testing. In Infotech State of the Art Report on Software Testing, pages

107-126, 1979.

K. Derderian, M. G. Merayo, R. M. Hierons, and M. Nufiez. A case study on the use
of genetic algorithms to generate test cases for temporal systems. In 11th Int. Conf. on

Artificial Neural Networks, IWANN’11, LNCS 6692, pages 396-403. Springer, 2011.

23

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J. J. Dominguez-Jiménez, A. Estero-Botaro, A. Garcia-Dominguez, and I. Medina-Bulo.
Evolutionary mutation testing. Information and Software Technology, 53(10):1108—

1123, 2011.

M. R. Girgis. Automatic test data generation for data flow testing using a genetic

algorithm. Journal of Universal Computer Science, 11(6):898-915, 2005.

M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test selection with dynamic
file dependencies. In 24th Int. Symposium on Software Testing and Analysis, ISSTA 15,

pages 211-222. ACM Press, 2015.

D.E. Goldberg. Genetic Algorithms in Search, Optimisation and Machine Learning.

Addison-Wesley, 1989.

N. K. Gupta and M. K. Rohil. Using genetic algorithm for unit testing of object
oriented software. In 1st Int. Conf. on Emerging Trends in Engineering and Technology,

ICETET 08, pages 308-313. IEEE Computer Society, 2008.

R. G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions on

Software Engineering, 3:279-290, 1977.

M. Harman and P. McMinn. A theoretical and empirical study of search-based test-
ing: Local, global, and hybrid search. IEEE Transactions on Software Engineering,

36(2):226-247, 2010.

R. M. Hierons and M. G. Merayo. Mutation testing from probabilistic and stochastic

finite state machines. Journal of Systems and Software, 82(11):1804-1818, 20009.

R. M. Hierons, M. G. Merayo, and M. Nunez. Bounded reordering in the distributed

test architecture. IEEE Transactions on Reliability, 67(2):522-537, 2018.

o4

[17]

18]

[19]

20]

21]

[22]

23]

[24]

25]

R. M. Hierons and M. Nunez. Implementation relations and probabilistic schedulers in

the distributed test architecture. Journal of Systems and Software, 132:319-335, 2017.

B. F. Jones, D. E. Eyres, and H.-H. Sthamer. A strategy for using genetic algorithms to

automate branch and fault-based testing. The Computer Journal, 41(2):98-107, 1998.

B. F. Jones, H.-H. Sthamer, and D. E. Eyres. Automatic structural testing using genetic

algorithms. Software Engineering Journal, 11:299-306, 1996.

C. C. Michael, G. McGraw, and M. A. Schatz. Generating software test data by

evolution. IEEE Transactions on Software Engineering, 27(12):1085-1110, 2001.

Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer,

3rd, revised and extended edition, 1996.

A. Shi, T. Yung, A. Gyori, and D. Marinov. Comparing and combining test-suite
reduction and regression test selection. In 10th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering, ESEC/FSE’15, pages 237-247. ACM Press, 2015.

M. Srinivas and L. M. Patnaik. Genetic algorithms: A survey. IEEE Computer, 27:17—

27, 1994.

S. Wappler and F. Lammermann. Using evolutionary algorithms for the unit testing
of object-oriented software. In 7th Genetic and Evolutionary Computation Conference,

GECCO’05, pages 1053-1060. ACM Press, 2005.

J. Wegener, H. Sthamer, B. F. Jones, and D. E. Eyres. Testing real-time systems using

genetic algorithms. Software Quality Journal, 6(2):127-135, 1997.

25

	Portada
	Autorización
	Resumen
	Abstract
	Index
	Acknowledgements
	Acknowledgements
	Dedication
	Dedication
	Introduction
	Preliminaries
	Mutation Testing for Finite State Machines
	Genetic Algorithms

	Related work
	Our proposal for test cases selection
	Global search
	Greedy algorithm
	Genetic algorithm

	The tool
	GUI and MVC
	Other patterns
	Class diagram

	Experiments
	Description of the experiments
	Evaluation

	Conclusions and future work
	Bibliography

