
SELECTION OF TESTS FOR FINITE STATE MACHINES

MIGUEL BENITO PAREJO

MÁSTER EN MÉTODOS FORMALES EN INGENIERÍA INFORMÁTICA

FACULTAD DE INFORMÁTICA

UNIVERSIDAD COMPLUTENSE DE MADRID

Trabajo Fin de Máster en Métodos Formales en Ingeniería Informáti
a

Septiembre 2019

Dire
tores:

Mer
edes Gar
ía Merayo

Manuel Núñez Gar
ía

Convo
atoria:

Septiembre 2019

Cali�
a
ión:

Sobresaliente - 9

Autoriza
ión de difusión

Miguel Benito Parejo

Septiembre 2019

El abajo �rmante, matri
ulado en el Máster en Métodos Formales en Ingeniería Infor-

máti
a de la Fa
ultad de Informáti
a, autoriza a la Universidad Complutense de Madrid

(UCM) a difundir y utilizar
on �nes a
adémi
os, no
omer
iales y men
ionando expresa-

mente a su autor el presente Trabajo Fin de Máster: �Sele
tion of tests for Finite State

Ma
hines�, realizado durante el
urso a
adémi
o 2018-2019 bajo la dire

ión de Mer
edes

Gar
ía Merayo y Manuel Núñez Gar
ía en el Departamento de Sistemas Informáti
os y

Computa
ión, y a la Bibliote
a de la UCM a depositarlo en el Ar
hivo Institu
ional E-

Prints Complutense
on el objeto de in
rementar la difusión, uso e impa
to del trabajo en

Internet y garantizar su preserva
ión y a

eso a largo plazo.

Resumen en
astellano

Habitualmente no se pueden apli
ar todos las posibles pruebas (tests) a una imple-

menta
ión para
omprobar su
orre

ión. Por ello, es ne
esario sele

ionar sub
onjuntos de

pruebas relativamente pequeños que permitan dete
tar el mayor número de errores posible.

En este trabajo proponemos diferentes enfoques para sele

ionar di
hos
onjuntos de prue-

bas. Para determinar la
alidad de un
onjunto de pruebas, este se apli
ará a un grupo

de mutantes. Un mutante
orresponde a una varia
ión de la espe
i�
a
ión del sistema bajo

prueba que indu
e un error en la misma. El objetivo de nuestro trabajo es que los algoritmos

propuestos generen
onjuntos de pruebas que maten el mayor número de mutantes posible.

Comparamos los enfoques propuestos entre los que se
onsideran todos los posibles sub
on-

juntos dada una
ota en las entradas (inputs), un algoritmo devorador inteligente y distintos

algoritmos genéti
os. Finalmente, dis
utimos los resultados obtenidos en los experimentos

realizados para determinar su efe
tividad. Todas las propuestas han sido implementadas y

la herramienta desarrollada es totalmente libre y a

esible.

Palabras
lave

Algoritmos genéti
os; testing de máquinas de estados �nitos; Mutation testing; Métodos

formales.

Abstra
t

It is una�ordable to apply all the possible tests to an implementation in order to assess

its
orre
tness. Therefore, it is ne
essary to sele
t relatively small subsets of tests that
an

dete
t as many faults as possible. In this paper we propose di�erent approa
hes to sele
t

the best subset of tests from the original one: all the possible subsets up to a given number

of inputs, an intelligent greedy algorithm and several geneti
 algorithms. In order to de
ide

how good a test suite is, we apply it to a set of mutants that
orrespond to small variations

of the spe
i�
ation of the system to be developed. The goal is that our algorithms generate

test suites that kill as many mutants as possible. We
ompare the proposed approa
hes and

dis
uss the obtained results. The whole framework has been fully implemented and the tool

is freely available.

Keywords

Geneti
 algorithms; Testing Finite State Ma
hines; Mutation testing; Formal methods.

Contents

Index i

A
knowledgements ii

Dedi
ation iii

1 Introdu
tion 1

2 Preliminaries 5

2.1 Mutation Testing for Finite State Ma
hines 5

2.2 Geneti
 Algorithms . 8

3 Related work 11

4 Our proposal for test
ases sele
tion 15

4.1 Global sear
h . 15

4.2 Greedy algorithm . 16

4.3 Geneti
 algorithm . 18

5 The tool 31

5.1 GUI and MVC . 31

5.2 Other patterns . 37

5.3 Class diagram . 38

6 Experiments 41

6.1 Des
ription of the experiments . 41

6.2 Evaluation . 44

7 Con
lusions and future work 51

Bibliography 55

i

A
knowledgements

I would like to thank my supervisors and Inma
ulada Medina-Bulo for their e�ort, work,

help and advi
e before and during this thesis. I would like to thank these
lose friends who

helped through the toughest moments. Last, but de�nitely not least, I would like to thank

my family for all their un
onditional help and support.

ii

Dedi
ation

To my parents, who made me be what I am.

iii

Chapter 1

Introdu
tion

Testing is the main te
hnique to validate the
orre
tness of software systems [1℄. It is quite

ommon to �nd ourselves with a group of properties that should be satis�ed by the system

under development and we want to reassure that it does. In testing, these properties are

en
oded as tests and we have to
he
k that the system, usually
alled System Under Test

(SUT), su

essfully passes them. In pra
ti
e, this approa
h is unfeasible be
ause the number

of tests may be astronomi
al. In parti
ular, one property may give rise to many tests. In

addition, we may have a bound on the number of tests that we
an apply (e.g. due to

budget or temporal
onstraints). Therefore, it is important to wisely
hoose among these

tests a subset that is able to dete
t most faults. Clearly, the method to sele
t these tests

should rely on a measure of how good a test is. In this line, mutation testing [5, 6, 13℄ is a

useful tool. The idea behind mutation testing is that if a test suite distinguishes the SUT

from other faulty versions of the system then it is probably good at dis
overing faults. The

te
hnique introdu
es small
hanges in the SUT by applying mutation operators to generate

a set of mutants. Intuitively, good test suites are the ones killing most of the mutants.

In this thesis we analyze di�erent strategies to sele
t good sets of tests. We assume

1

that we have a formal representation of the SUT, that is, its spe
i�
ation, and that we are

provided with a set of mutants and a set of tests, usually huge, that we might apply to the

SUT. The mutants, maybe
onstru
ted from the spe
i�
ation, present the representative

faults during the development of the systems. This is usually
alled a fault model. Our

goal is to sele
t a subset of tests, up to a
ertain
omplexity, that kills as many mutants as

possible. We will measure the
omplexity of a test suite in terms of the number of inputs

in
luded in it. If T is the whole set of tests and n is the bound on the number of inputs,

then the obvious solution is to
ompute all the subsets of T with up to n inputs, apply them

to the set of mutants and
hoose the subset killing more mutants. This result will always

be the best subset, sin
e all possibilities are explored. Unfortunately, in this
ase we have

an exponential explosion that disallows us to use this approa
h for a general problem. A

se
ond option, based on previous work [2℄,
onsiders a greedy algorithm where we sele
t

the best tests individually, a

ording to the number of mutants that they kill, until we

rea
h the spe
i�ed limit of inputs. This te
hnique will generally provide good results, both

in
ost and in faults dete
ted, but it may not always yield the best result. For instan
e,

there
ould be a
ombination of individually worse elements that were able to
over more

faults. In order to solve this problem, and this is the main
ontribution of this work, we

have developed a geneti
 algorithm to �nd better solutions than the greedy algorithm. The

algorithm is versatile and allows users to apply di�erent variants. We have developed a tool

that fully implements all the algorithms presented in this work. Finally, we have performed

several experiments to
ompare the di�erent methods. We have analyzed the performan
e

both in time and in goodness of the di�erent variants of the geneti
 algorithm, and we have

ompared them with the greedy algorithm and the full sear
h.

The rest of this do
ument is stru
tured as follows. In Chapter 2 we introdu
e the

main
on
epts used in the thesis and set the ba
kground knowledge for the next
hapters.

2

In Chapter 3 we present the state-of-the-art in the �eld. In Chapter 4 we introdu
e the

di�erent methods that we propose to sele
t the best subsets of tests. In Chapter 5 we

des
ribe the tool that we have developed. In Chapter 6 we report on the experiments that

we performed. Finally, in Chapter 7 we present our
on
lusions and some lines for future

work.

3

Chapter 2

Preliminaries

In this
hapter we introdu
e the main
on
epts used in this work related to mutation testing

of Finite State Ma
hines and geneti
 algorithms.

2.1 Mutation Testing for Finite State Ma
hines

Mutation testing is a software testing te
hnique that
onsists in indu
ing faults into a

program by generating mutants, that is, faulty versions of the original program. The
hanges

performed to generate the mutants are de�ned by mutation operators. The mutants and the

original program are exe
uted against test suites of interest with the goal of determining

their e�
ien
y to distinguish the mutants from the original program. Given a test suite, if

a test
ase is able to distinguish a mutant from the original program, then we say that the

mutant is killed. Similarly, when the mutant is not dete
ted by any test
ase in the test suite,

the mutant is alive. If the mutation does not
hange the behavior of the original program,

the mutant is
alled equivalent and, therefore, there is no test
ase able to kill this mutant.

The e�
ien
y of the test suite for dete
ting the errors inje
ted in the original program is

5

measured by the mutation s
ore. The mutation s
ore is the ratio of killed mutants over the

non-equivalent ones. Figure 2.1 graphi
ally represents the behaviour of mutation testing.

Figure 2.1: Mutation Testing

Finite State Ma
hines are used in this proje
t to represent spe
i�
ations and mutants.

Although mutation testing is often used to
hange
ode in programs, in this work we apply

the mutation te
hnique to Finite State Ma
hines that represent the spe
i�
ations of systems.

The generated mutants will be modi�ed instan
es of them that will be used to determine

the e�
ien
y of the test
ases to di�erentiate them from the original spe
i�
ation.

De�nition 1. A Finite State Ma
hine, in the following FSM, is a tupleM = (S, I, O, Tr, sin)

where S is a �nite set of states, I is the set of input a
tions, O is the set of output a
tions,

Tr is the set of transitions and sin ∈ S is the initial state. A transition belonging to Tr is

a tuple (s, s′, i, o) where s, s′ ∈ S are the initial and �nal states of the transition, i ∈ I is

the input a
tion and o ∈ O is the output a
tion. We say that M is input-enabled if for ea
h

s ∈ S and input i ∈ I, there exist s′ ∈ S and o ∈ O su
h that (s, s′, i, o) ∈ Tr. We say that

M is deterministi
 if for ea
h s ∈ S and i ∈ I, there exists at most one transition (s, s′, i, o)

6

s0

s1 s2

i/o1

i/o2

i/o3

(a) FSM1

s0

s1 s2

i/o1

i/o1

i/o2

i/o3

(b) FSM2

s0

s1 s2

i1/o1 i2/o2

i1/o1

i2/o2
i1/o1

(
) FSM3

Figure 2.2: Three FSMs with di�erent properties

belonging to Tr.

In this work we will restri
t ourselves to input-enabled deterministi
 FSMs, that is, from

ea
h state of the ma
hine, it is possible to perform all the inputs and there will be only

one possible evolution. This restri
tion mimi
s testing of programs: programs are (usually)

deterministi
 and should rea
t to any possible input.

Example 1. Figure 2.2a presents an input-enabled deterministi
 FSM. There exists only

one transition outgoing from ea
h state and labelled by the only input a
tion i. Figure 2.2b

shows a non-deterministi
 behavior of the ma
hine in state s0. There exist two outgoing

transitions labelled by the same input a
tion. Finally, Figure 2.2
 depi
ts a non input-

enabled FSM. State s2 has no outgoing transition asso
iated with input i2. In this
ase, we

say that su
h state is not input-enabled and, as a
onsequen
e, the FSM is not input-enabled.

Next, we introdu
e the notions of mutant and test that are used in this work. Note that

mutants are still deterministi
 and input-enabled.

De�nition 2. LetM = (S, I, O, Tr, sin) be an FSM. We say that a FSMM ′ = (S, I, O, Tr′, sin)

is a mutant of M if Tr′ di�ers from Tr in only one transition. This mutation
an be pro-

du
ed either by
hanging the output of a transition, that is, repla
ing (s, s′, i, o) ∈ Tr by

(s, s′, i, o′) ∈ Tr′ with o 6= o′, or by
hanging the target state of a transition, that is, repla
-

ing (s, s′, i, o) ∈ Tr by (s, s′′, i, o) ∈ Tr′, with s′ 6= s′′.

7

s0

s1 s2

i/o1

i/o2

i/o3

(a) M

s0

s1 s2

i/o1
i/o2

i/o3

(b) M1

s0

s1 s2

i/o1

i/o4

i/o3

(
) M2

Figure 2.3: An FSM and two of its mutants

Example 2. Let us
onsider the FSM given in Figure 2.3a, being s0 the initial state. Two

possible mutants are shown in Figures 2.3b and 2.3
: the �rst one represents the
hange of

the �nal state of a transition while the se
ond one represents the modi�
ation of an output

a
tion.

De�nition 3. Let M = (S, I, O, Tr, sin) be an FSM. A test for M is a pair σ = (σin, σout)

where |σin| = |σout|, σin ∈ I∗ is a sequen
e of inputs and σout ∈ O∗
is the sequen
e of outputs

that M produ
es when applying σin.

Let t = (σin, σout) be a test for M . We say that a system M ′
passes t if the appli
ation

of σin produ
es σout; otherwise, we say that the system M ′
fails t.

Example 3. Let us
onsider again M , M1 and M2 given in Figure 2.3. We have that

t1 = (i, o1), t2 = (ii, o1o2) and t3 = (iii, o1o2o3) are tests for M . M1 passes t1 and t2 and

fails t3 while M2 passes t1 and fails t2 and t3.

2.2 Geneti
 Algorithms

A Geneti
 Algorithm (GA) [11, 23℄ is a heuristi
 optimization te
hnique, whi
h is inspired in

a metaphor of the pro
esses of evolution in nature. GAs and other meta-heuristi
 algorithms

have been used in Software Testing [7, 14, 18, 20℄. Generally, a GA works with a group of

8

Figure 2.4: Geneti
 Algorithm �ow
hart

individuals or
hromosomes, ea
h representing a potential solution to the problem in hand.

In our
ase,
hromosomes will be subsets of tests. The pro
ess
an usually be divided into

�ve phases. An initial population is usually sele
ted at random. Then, a parent sele
tion

pro
ess is used to pi
k some individuals from the initial population. A new o�spring is

produ
ed using
rossover, keeping some of the
hara
teristi
s of their parents, and mutation,

whi
h introdu
es some new geneti
 material. Crossover ex
hanges information between two

or more individuals. The mutation pro
ess randomly modi�es individuals of the o�spring.

The quality of ea
h individual is measured by a �tness fun
tion, de�ned for the parti
ular

sear
h problem. The population is iteratively
ombined and mutated to generate su

essive

populations, known as generations. When the spe
i�ed termination
riterion is satis�ed,

the algorithm terminates. The idea behind GAs is that the
ombination of good elements

will generate good elements for a future generation. In this sense, being able to sele
t the

best elements of the
urrent generation and properly
ombining them will generally improve

the partial solution obtained at the next generation. Nevertheless, we might want to keep

information about individuals of previous generations whenever su
h individuals have a high

quality. In addition, it is important to refresh small parts of the population by introdu
ing

slight mutations, in order not to get stu
k in a lo
al minimum, after several evolutions. The

�ow
hart for a simple GA is presented in Figure 2.4. In addition, Algorithm 1 shows the

pseudo-
ode of the GA.

9

Generate an initial population;

Evaluate the population;

while termination
riterion not ful�lled do

Sele
t the individuals;

Perform the
rossover of the sele
ted individuals;

Perform mutations;

Repla
e the old generation by the new one;

Update the �tness value;

end

Algorithm 1: Pseudo-
ode of the geneti
 algorithm

10

Chapter 3

Related work

This
hapter is devoted to present the state of the art in the �eld. We fo
us on those works

most related to ours.

Wegener et al. [25℄
onsidered GAs to obtain the longest and shortest tests, in terms of

time, in a program of 1511 lines of
ode. They were able to improve the results of random

tests. Their tests were likely to �nd real-time failures when a
tions were performed either

faster than the short test, or slower than the long one.

This approa
h
onsiders the problem of generating a good test suite. Girgis [9℄ produ
es

a set of tests from the spe
i�
ation and a list of def-use paths to be
overed and uses di�erent

parameters for the GA. In a similar way, Jones et al. [19℄ used a library of GAs to obtain

tests able to identify faults in the areas where more mistakes
ould have been produ
ed.

Following the idea of generating tests using GAs, Berndt and Watkins [4℄ applied them

to long sequen
e testing. The goal is to observe failures
on
erning extended periods of

operation that are not adequately
aptured with traditional measures of
ode
overage.

These errors are related to
omponent
oordination, system resour
e
onsumption or
or-

11

ruption. The authors
ombined sear
h and random-like behaviors to generate many variants

of spe
i�
 test
ases.

Testing is a vast area that
onsiders more
omplex stru
tures than pro
edural program-

ming, su
h as obje
t-oriented software. This is the
ase of the work of Gupta and Rohil [12℄,

where the authors used GAs to generate test
ases for
lasses. The approa
h
onsidered a

tree representation of statements in test
ases in order to fa
ilitate the automati
 generation

and the evolution of the GA. In the same way, Wappler and Lammermann [24℄ fo
us on

generating white-box test
ases for obje
t-oriented software where the GAs
omplete some

stru
tures obtained from the higher
overage sequen
es extra
ted from the
ode.

Con
erning work more similar to ours, Shi et al. [22℄
ompared test suite redu
tion with

other sele
tion of tests te
hniques. In this
ase, they experimentally
ompared test suite

redu
tion with regression test sele
tion and proposed another
riterion. In the experiments,

they observed a bigger redu
tion of the number of tests with regression test sele
tion. Our

proposal fo
uses on testing FSMs instead of
ode. Shi et al. also realized that a loss of

fault-dete
tion was linked to the test suite redu
tion, sin
e part of the tests are no longer

onsidered. In our
ase, we also observed a loss when we
ompared the methods we propose

to solve our problem with the optimal solution for the same environment.

Gligori
 et al. [10℄
onsidered regression test sele
tion to fasten regression testing on

software. They developed a te
hnique
alled Ektazi and implemented it for Java and

JUnit. Their te
hnique keeps tra
k of the dynami
 dependen
ies of tests on di�erent �les of

the SUT. Then, only the involved tests have to be exe
uted instead of the whole test suite,

redu
ing the
ost of testing.

Domínguez-Jiménez et al. [8℄ also presented an evolutionary te
hnique to redu
e the

ost of testing. Their framework involved mutation testing, and a geneti
 algorithm was

the proposed methodology to sele
t strong mutants. Similarly, we use a GA to obtain a

12

good subset of tests. They fo
used on redu
ing the number of mutants while having a

representative set of faults. These authors were able to signi�
antly redu
e the number of

mutants without a loss of fault-dete
tion, produ
ing a faster exe
ution of the tests. Our

results, despite having a di�erent target, also exploit the power of GAs, getting a fast and

e�
ient solution.

We
on
lude that there has been resear
h
on
erning GAs to generate tests as well

as a wide study regarding mutation testing. Also, sele
tion testing te
hniques have been

developed to redu
e the
ost of testing. However, there has barely been su

essful work on

the
ombination of GAs and mutation testing, where we obtain a subset of tests from a test

suite too
ostly to be fully performed. This is where our work is targeted and the obje
tive

of our
ontribution.

13

Chapter 4

Our proposal for test
ases sele
tion

In this
hapter we present the proposed approa
hes to solve the problem of �nding good

sets of tests. All of them are based on how good a test
ase is, whi
h is given by the number

of mutants that it kills, and its length in terms of the number of inputs that it
ontains.

4.1 Global sear
h

The global sear
h approa
h looks through all the possible subsets of the initial set of tests

having less inputs than the given bound. This means that a full sear
h has to be performed

in order to obtain all the subsets of tests so that every possible solution is
onsidered,

in
luding trivially bad
hoi
es.

The fa
t that the worst potential solutions are
onsidered is due to the la
k of intelligen
e

of this algorithm. This approa
h always provides the best solution be
ause it explores all the

possible subsets. Therefore, it is useful be
ause it helps to
ompare this solution with the

ones produ
ed by other algorithms
omputing good enough solutions. The negative aspe
t

is that for non-trivial systems, it is impossible to apply it be
ause it su�ers of a exponential

15

explosion. In fa
t, we were only able to
ompute it for the smallest systems that we have

in our experiments.

4.2 Greedy algorithm

Our greedy algorithm is based on a matrix whi
h in
ludes information about tests and

mutants.

De�nition 4. Let M = (S, I, O, Tr, sin) be an FSM, T = {ti}
n
i=1

be a set of tests for M

and M = {Mj}
m

j=1
be a set of mutants of M . We de�ne the results table for T and M

as a matrix (aij)
n,m

i=1,j=1
, where aij is the length of the shortest pre�x of the test ti that kills

the mutant Mj. In the
ase that su
h mutant passes the test, this distan
e will be equal to

in�nity.

Here, the rows of the n×m matrix represent the tests, while the
olumns represent the

mutants. For instan
e, the value a24 indi
ates the length of the shortest pre�x of the test t2

that kills the mutant M4.

Essentially, the algorithm sorts the rows of the matrix by de
reasing order of the number

of mutants killed by ea
h of the tests. In the
ase that di�erent rows kill the same number

of mutants, they will be ordered in
reasingly by the number of inputs required to kill the

mutants. Then, we in
lude the �rst test to the test suite that we are
onstru
ting. After-

wards, we remove the row of the matrix
orresponding to this test
ase as well as all the

olumns
orresponding to the mutants that it kills. After redu
ing the matrix, we iterate

the pro
ess until either all the mutants are killed or the spe
i�ed bound on the number of

inputs is rea
hed.

Example 4. Let us
onsider Figure 4.1a. On
e the matrix is ordered, see Figure 4.1b, the

16

















5 ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞
∞ 9 ∞ 8 ∞ ∞
13 ∞ ∞ 6 1 ∞
4 7 5 ∞ 12 ∞
∞ ∞ ∞ ∞ ∞ 7

















(a) Original matrix

















4 7 5 ∞ 12 ∞
13 ∞ ∞ 6 1 ∞
∞ 9 ∞ 8 ∞ ∞
5 ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ 7
∞ ∞ ∞ ∞ ∞ ∞

















(b) Original ordered matrix













6 ∞
8 ∞
∞ ∞
∞ 7
∞ ∞













(
) Redu
ed matrix













6 ∞
∞ 7
8 ∞
∞ ∞
∞ ∞













(d) Redu
ed ordered matrix

Figure 4.1: Matrix simpli�
ation

�rst row
orresponds to the best test, whi
h is sele
ted to be in
luded in the test suite. This

test kills the mutants 1, 2, 3 and 5. Therefore, in the redu
ed matrix given in Figure 4.1
,

one test and four mutants have been removed, that is, the sele
ted test and the mutants that

this test kills. The resulting matrix needs to be reordered. We must take into a

ount that

rows with the same information do not represent the same test. Thus, none of them
an be

removed. As we
an see in the matrix obtained in Figure 4.1d, the next tests that will be

sele
ted for being in
luded in our test suite are the ones
orresponding to the �rst and the

se
ond rows of the matrix. The total length of the generated set of tests is 25 (the length

needed to kill all the mutants). This length results from the sum of the 12 inputs of the

�rst test in
luded in the test suite that must be applied to kill four mutants plus the 6 and 7

inputs
orresponding to the se
ond and the third test
ases, respe
tively, required to kill the

other two mutants.

This shows that two tests killing the same mutants might not be equally good, as one

dete
ting them sooner will require a smaller number of inputs and therefore it will save

17

resour
es.

A good property of this algorithm is that it works in low polynomial order over a spa
e,

the matrix, that redu
es its size after ea
h iteration. This is the less
ostly algorithm, in

terms of exe
ution time, out of the ones we propose in this work. Our greedy method shows

great results and will also help to bound the number of generations and the global
ost of

our next algorithm.

4.3 Geneti
 algorithm

GAs ex
el when we seek for a good approximation of the solution of problems whose optimal

solution needs an exponential approa
h to
ompute all the potential
andidates. This is the

ase of our problem and its solution, as dis
ussed in Chapter 4.1. Therefore, a GA is a

sensible approa
h to
ompete with our greedy algorithm, in parti
ular, be
ause our greedy

algorithm
omputes relatively good solutions in a short time.

In Chapter 2.2 we presented the general stru
ture of GAs. We now follow its layout to

delve into ea
h se
tion.

Our population is a list of individuals, that might be sorted by �tness depending on the

sele
ted methods. In our population, an individual only has one
hromosome that represents

a subset of the original test suite. Ea
h individual is implemented using an array, where the

order of the elements does not matter. The initial population will evolve to generate better

subsets. The evolution will
ontinue for a number of iterations spe
i�ed by the user. Next,

we introdu
e the di�erent elements that de�ne the GA that we propose for the sele
tion of

tests
ases.

Our approa
h uses di�erent parameters to
on�gure the main elements of the GA. Among

these parameters we have the maximum number of inputs we expe
t in the solution, the

18

sele
tion method of the population, the type and rate of the
rossover method and the rate

of the mutation te
hnique to be applied. However, all the variants of our GA use the same

�tness fun
tion that we introdu
e next.

The �tness fun
tion

The heuristi
s that we use to de�ne our �tness fun
tion enhan
es the individuals that

improve the e�
ien
y of the generated test suite. Basi
ally, it takes into a

ount how many

mutants are killed by the test
ases. Spe
i�
ally, the �tness is
al
ulated by adding the

minimum number of inputs required to kill ea
h mutant,
onsidering the subset of tests

in
luded in the
hromosome at a spe
i�
 moment. This value does punish the fa
t that

some mutants are not killed by any test in the
hromosome. If this is the
ase, a penalty

will be added to the �nal value on the basis of the number of alive mutants. Therefore, the

more mutants a subset kills, the lower the s
ore will be. This value will also be redu
ed

when the number of inputs required to kill a higher number of mutants de
reases. This

leads us to a minimization problem (a lower value of �tness denotes a better population).

De�nition 5. Let M be a FSM, T = {ti}
n
i=1

be a set of tests for M , S = {t′i}
n′

i=1
be a subset

of T , M = {Mi}
m
i=1

be a set of mutants of M , (aij)
n,m
i=1,j=1

be the results table for T and M,

and (bij)
n′,m
i=1,j=1

be the results table for S and M. We de�ne the �tness fun
tion of S for M

as:

f(S,M) =
m
∑

k=1

min (α(Mk, S), P)

where α(Mk, S) = min(bik : 1 ≤ i ≤ n′) and P = 5 ∗max[aij |1 ≤ i ≤ n, 1 ≤ j ≤ m] is the

penalty value.

The value 5 used in the penalty value was sele
ted experimentally to provide small

di�eren
es in solutions with many penalties, but su�
ient to be a relevant penalty.

19













3 ∞ ∞ 6 ∞ ∞
5 ∞ 7 15 16 ∞
∞ 4 ∞ ∞ 7 ∞
∞ ∞ 5 ∞ ∞ 8
∞ 9 ∞ ∞ ∞ 21













Figure 4.2: Example matrix

Example 5. Let us
onsider Figure 4.2. If we take an individual with tests t2 and t5,

its �tness would be 5 + 9 + 7 + 15 + 16 + 21 = 73, whi
h is the result that the greedy

algorithm would yield. Also, an individual
ontaining tests t1 and t4 would have a �tness of

3+105+5+6+105+8 = 232 where we �nd two penalties (105 = 5∗21). The best result would

be obtained by grouping tests t1, t3 and t4 yielding a �tness value of 3+4+5+6+7+8 = 33.

In addition, in this work we will use the s
ore of an individual in a population to

determine the probability of su
h individual to be
hosen in the sele
tion phase. Intuitively,

the s
ore is
omputed as a ratio between the �tness value of the individual and the sum of

the �tness values of all the individuals in the population. A
onstant is required to make

the lowest �tness have the highest s
ore.

De�nition 6. Let M be a FSM, T be a set of tests for M , M be a set of mutants of M

and P be a set of subsets of T . For all S ∈ P we de�ne the s
ore of S for P and M as:

s(S,P,M) =
K(P,M)− f(S,M)

∑

S′∈P

[K(P,M)− f(S ′,M)]

where K(P,M) = 1.05 ∗maxS′′∈P f(S ′′,M).

It is important to note that the �tness value is always positive. Therefore, the s
ore

is well de�ned, all its values will be between 0 and 1, and the sum of all the s
ores in a

20

population is trivially 1. Also, the value 1.05 used to
ompute the
onstant K(P,M) is

important so that the biggest element has a positive s
ore instead of 0.

Example 6. Let us
onsider a population
onsisting of the three individuals from Example 5.

The �rst individual with �tness 73 has a s
ore of

243.6−73

392.8
= 0.434. The se
ond individual,

whi
h is the worst of the three, has a s
ore of

243.6−232

392.8
= 0.030. Finally, the best individual

has a s
ore of

243.6−33

392.8
= 0.536.

Initialization method

We have de
ided to apply an in
remental initialization for our algorithm. This approa
h

provides a variety of
hromosomes, ea
h of them with a di�erent number of tests and inputs,

whi
h means more diversity. Su
h initialization follows the idea of minimizing the number

of inputs to apply. As some
hromosomes may have too few inputs and others too many,

the exe
ution of the algorithm will mix them at some point and improve the �nal result.

Sele
tion methods

Taking into a

ount that some individuals might be better than others, the transition from

one generation to the next one has to ensure that the foremost representatives are sele
ted.

The idea is to reward the best ones with more appearan
es in the sele
tion and the worst

ones with even no appearan
es at all. We allow the user to
hoose the method to be applied

by the algorithm among alternative standard sele
tion models [11, 21℄:

• The tournament prin
iple is based on the
ompetition of several individuals for a

pla
e in the new population. The user must provide the number of parti
ipants on

the tournament n and the probability of winning for the favorite player p. Then, n

hromosomes are randomly sele
ted from the population, where the best individual

21

Figure 4.3: Tournament

of this group is
hosen for reprodu
tion with probability p. This pro
ess is repeated

until the new population rea
hes the spe
i�ed size. Usually, the
hromosome with the

highest s
ore will have more
han
es to be sele
ted, but some diversity is allowed by

enabling the underdog to be
hosen despite its �tness.

• The roulette wheel te
hnique is based on the a

umulated probability of
hoosing an

element in a position

1

or any of the previous ones. In our
ase, given a random number

between 0 and 1, the �rst individual in the population that saturates it by adding its

s
ore to a
ounter will be
hosen. This method allows to give more variability to the

population, sin
e the sele
tion does not depend on the size of the population.

1

The population is implemented as an array of individuals. As su
h, even if the individuals are unsorted,

we
an use the order of the array.

22

Figure 4.4: Roulette wheel

• The trun
ation method is very restri
tive, be
ause it repeatedly sele
ts the individuals

with best �tness of the population until the sample is
ompleted with the established

size. The positive part of this elitist method is the small likelihood to worsen, as

several individuals stay invariant from a generation to the next one.

• The sto
hasti
 universal sele
tion tries to provide
onsisten
y to the sampling, as it

evenly distributes the sele
tion of individuals with a single random measure. It has as

ounterpart that the way the elements of the population are ordered is likely to have

an in�uen
e on the obtained result.

• The remains sele
tion allows a
hromosome to be
hosen proportionally to its s
ore.

More formally,
onsidering an individual S of a population of k
hromosomes whose

23

Figure 4.5: Trun
ation

s
ore is p, S will be sele
ted p · k times. As the resulting value is likely to be a real

number, we round it down. Sin
e we want the new generation to have k individuals,

the remains method is not able to provide all of them. The remaining
hromosomes

to be sele
ted are
hosen with the roulette wheel method.

We
an see in Figures 4.3 to 4.7 the exe
ution of ea
h of the sele
tion methods for

the same initial parameters. In general, the �tness tends to improve over the generations.

However, the tournament method, see Figure 4.3, exhibits the best behaviour. The other

methods do not have su
h fast improvement, sin
e a lo
al minimum is found, as it is the

ase of the trun
ation method, Figure 4.5. In the
ase of the sto
hasti
 universal and the

remains methods, Figures 4.6 and 4.7, we �nd that the best �tness slowly improves in time.

24

Figure 4.6: Sto
hasti
 universal

Nevertheless, there is an important di�eren
e between them: the average �tness of the

remains method tends to improve whereas the average �tness of the sto
hasti
 universal

method takes higher values (they represent worse solutions). This e�e
t might o

ur due

to big values on the overall �tness, making it harder to measure the di�eren
es between

individuals that on
e
ombined with this sele
tion te
hnique indu
e a suboptimal evolution.

With the roulette wheel method, see Figure 4.4, we have a rather random behavior. All

three main graphi
s
onstantly vary within some bounds, although it seems to be a slight

improvement at the end. A longer experiment
ould show further results, but the same

number of iterations was
onsidered for all the methods to illustrate their di�eren
es.

Con
erning the �tness fun
tion, in Figures 4.3-4.7 we show the results of several experi-

25

Figure 4.7: Remains

ments indi
ating how �tness varies along generations. The results are as expe
ted. In short,

there is a relatively big varian
e
on
erning the worse individual of ea
h generation, that

is, the highest value of �tness. This varian
e is smaller for average �tness, and the value

notoriously improves after only 10 generations. The generational best graphi
 stabilizes,

although there are small variations. The absolute best qui
kly
onverges to a lo
al minimum

that is sometimes improved later on. These exe
utions only di�er in the sele
tion method,

with the goal of illustrating the slight
hanges among them.

26

Crossover methods

For the
rossover phase, whi
h
ombines the sele
ted individuals to produ
e a new genera-

tion, we have
onsidered two methods:

• The standard
rossover involves two
hromosomes. It
onsists in
hoosing a random

point on both individuals. Then, the tests to the right of that point are ex
hanged. If

su
h modi�
ation generates a set of tests with more inputs than the spe
i�ed bound,

then the last tests are dis
arded until the bound is rea
hed. Figure 4.8 shows the

appli
ation of this method.

Figure 4.8: Standard
rossover

• The
ontinuous
rossover also involves two
hromosomes. In this
ase, several points

are sele
ted and the tests at the
orresponding positions are ex
hanged. This approa
h

is oriented to generate more diversity in the following generations. In this
ase, we

need to pay attention to the total number of inputs of the new individuals. The

in
lusion of a test
ase
annot ex
eed the spe
i�ed bound. Figure 4.9 represents the

appli
ation of this method.

27

Figure 4.9: Continuous
rossover

Mutation methods

As the initial population might not be su�
iently well distributed, it is sensible to refresh

the population with some slight
hanges that
ould renew some stale state. In our
ase, we

have designed two di�erent te
hniques:

• Adding mutation is oriented to non-
omplete subsets. In these
ases, it is possible

to introdu
e an extra test to an individual without ex
eeding the bound of inputs.

Despite in
reasing the number of tests on the whole population, due to the appli
ation

of the
rossover methods, it is possible to generate an ex
hange of tests where some

of them have to be dis
arded. This method
omplements the possible loss of tests as

it rea
tivates stationary individuals. This approa
h is illustrated in Figure 4.10.

Figure 4.10: Adding mutation

28

• The repla
ing mutation method allows an individual to
hange one of its tests by

another one from the initial test suite. This te
hnique will in
lude some slight
hanges

to spe
i�
 individuals that might either in
rease or de
rease the relevan
e of a subset

of tests in the population. This is illustrated in Figure 4.11.

Figure 4.11: Repla
ing mutation

Repla
ement methods

Finally, the last step of the pro
ess
orresponds to the repla
ement of the population by the

new one. Again, we have two possibilities. On the one hand, the trivial option would be

to substitute the
urrent population by the new one, even if it
ould be worse. In this way,

less operations are performed at this stage and, as a result, the exe
ution will be faster. On

the other hand, we
ould repla
e a per
entage of the new generation by the best individuals

of the
urrent one. This approa
h will always allow the population to keep the best partial

solution until it is improved. As a
ounterpart, more
al
ulations have to be made and

the asso
iated
ost might de
elerate the exe
ution. In Figure 4.12 we see how this elitist

repla
ement behaves.

29

Figure 4.12: Elitist repla
ement

30

Chapter 5

The tool

In this
hapter we present the tool that we have developed to implement the algorithms

that we propose for sele
tion of test
ases. We fo
us on the Software Engineering aspe
ts of

the implementation and the design patterns that we have used.

5.1 GUI and MVC

Our tool was
reated following design patterns, su
h as Model-View-Controller (MVC), to

make easier the intera
tion of the user and the tool. Figure 5.1 shows the MVC pattern

omponents. The model represents the algorithms that we have proposed and the FSMs.

Usually, the user intera
ts with the
ontroller in order to perform
hanges in the model.

Finally, the view represents the visual environment that the user needs to intera
t properly.

The results and the relevant information are shown at the view.

In �gure 5.2 we show the GUI representing the view of the pattern. The
ontrol tools

appear on the left hand side of the view, where the values asso
iated to the main parameters

used in our algorithms
an be established. Next, we introdu
e them.

31

Figure 5.1: MVC pattern

Figure 5.2: GUI of our tool

32

• Size of population indi
ates the number of individuals
orresponding to ea
h genera-

tion. This value will
ondition the evolution of the GAs. For example, a small number

of individuals would not allow enough diversity in the breed. On the opposite side, a

big number would signi�
antly slow the pro
ess.

• Iterations
orresponds to the upper bound on the number of generations that will be

produ
ed. This �eld provides the termination
riterion for the algorithm.

• The input bound parameter a
ts as the budget or time
onstraint. It restri
ts the

total number of inputs that the user wants to be applied during the testing pro
ess.

Thereby, the amount of tests of ea
h
hromosome is related to the value of this �eld.

Currently, the type of initialization of the
hromosomes is only informative be
ause the

user
annot sele
t it. Nevertheless, future extensions of the program for other formalisms

or di�erent hypothesis (like non-determinism)
ould give rise to the appli
ation of other ini-

tialization methods and the users will have the possibility of sele
ting the most appropriate.

The sele
tion method will determine the way the individuals of a generation will be

sele
ted to be mingled and evolve towards its o�spring. As we indi
ated in Chapter 4.3, �ve

di�erent methods
an be applied. Some of them, like trun
ation and tournament, require

the user to provide values for some spe
i�
 parameters, although a value is assigned to them

by default. Those �elds are only visible when the asso
iated sele
tion method has been

hosen.

• Trun
ation ratio represents the proportion of the population that will be sele
ted. In

order to
omplete the full generation, these individuals will be sele
ted as many times

as required. The sele
ted individuals have the best �tness of the population. This

parameter is very sensitive to variations. For instan
e, a small value would
ause a fast

33

onvergen
e towards a value that does not have to be
lose to the best solution. Also,

a slightly bigger value would tend to ignore the �tness fun
tion. It would be ignored

in the sense that a big diversity of the population would be sele
ted and, therefore,

the distribution of the
hosen individuals would be uniform. The
onsequen
e of this

is that bad solutions of the problem would have the same weight as good solutions and

the evolution of the algorithm would
ome to a halt. This parameter is only required

for the trun
ation method.

• Number of tournament parti
ipants re�e
ts how many
andidates take part in the

tournament. For example, having a single
andidate would be equivalent to have a fully

randomized sele
tion, as the appli
ant would immediately win. As those parti
ipants

are sele
ted at random, a small number of
andidates should be sele
ted to hasten the

pro
ess. This parameter is only required for the tournament method.

• The favorite parti
ipant ratio indi
ates the
han
es that the parti
ipant with the best

�tness has to be sele
ted. In that way,
hromosomes with a low s
ore
ould win a pla
e

in the tournament towards the next generation. This ratio adds some diversity while

still allows the individuals with high s
ores to have a leading role in the evolution of the

GA. If more than two parti
ipants
ompete for a pla
e, then they are sorted by �tness;

their odds are
omputed by taking into a

ount the ratio assigned to this parameter.

For example, for 3 players and assuming an 80% ratio for the favorite parti
ipant,

the odds would be 0.8 for the individual with best �tness, 0.16 (= 0.8 ∗ (1 − 0.8))

for the individual with the se
ond best �tness, and 0.04 (= 1 − 0.8 − 0.16) for the

individual with the worst �tness (among the nominees). This �eld is only required for

the tournament method.

Additionally, the user must sele
t the
rossover method to be used during the exe
ution

34

of the GA. Sin
e the number of possible
hanges that may be produ
ed, depending on the

method, is signi�
antly di�erent, the
rossover method drasti
ally varies the value of the

next parameter.

The
rossover ratio highly depends on the type of
rossover sele
ted. As we said previ-

ously, one method has a higher spe
trum of
hanges than the other. This value represents

the per
entage of
hanges to be performed. In this sense, this number should vary in a

higher or smaller s
ale in order to keep a sensible stru
ture between generations. Usually,

the
ontinuous
rossover does not need a high value to perform as many
hanges as the

standard
rossover does.

The mutation method for the spe
i�
 algorithm that we may want to run must also be

sele
ted. The mutation methods have a similar amount of possible
hanges
on
erning an

individual. As su
h, the value of the next parameter is not related to the a
tual
hoi
e of

the method, but to the diversity during the exe
ution of the GA.

The mutation ratio simply de
ides how many mutations will be performed on a
hromo-

some. We advise not to use a big ratio, as too many
hanges
ould be produ
ed. Performing

too many mutations
ould drasti
ally disturb the natural evolution of the GA.

Finally, the user has to
hoose how to repla
e the
urrent generation by the new one.

The user
an sele
t either to repla
e the population or to keep the best individuals from

the previous generation. In the
ase that the elitist repla
ement is sele
ted, the elitist ratio

must be provided. We also re
ommend keeping this value low. Otherwise, the evolution

ould be really slow, wasting an unne
essary amount of resour
es.

We
an run the
on�gured algorithm in di�erent ways. The global sear
h mode looks

for the perfe
t solution over all the possible
ombinations. We highly re
ommend using

this option only in the
ase that the user is dealing with small problems, be
ause in other

ase the pro
ess will not terminate. The se
ond exe
ution mode
orresponds to the greedy

35

Figure 5.3: GUI with best �tness and tests

algorithm and the last one will apply a geneti
 algorithm that will be
on�gured with the

values provided by the user for the di�erent parameters. The tool also provides an option,

generate data, to generate mutants and tests from a spe
i�
ation. It will generate all the

mutants from a spe
i�
ation, and a random set of tests to be used during the exe
ution of

the algorithms.

On the right hand side of the GUI, the graphi
s
orresponding to the information related

to the exe
ution of the GA is displayed. Due to the fa
t that the greedy algorithm and the

full sear
h are deterministi
, no graphi
s will appear in this area of the GUI. Nevertheless,

in all the
ases, the �tness of the global best individual is shown below the graphi
s area.

In Figure 5.3 we see the �tness of the best individual and the tests that were used during

the exe
ution. In Figure 5.4 we see the results of the exe
ution of a variant of our GA.

Therefore, both the value of the best subset of tests found and the graphi
 of the evolution

36

Figure 5.4: GUI with graphi
s

of ea
h generation appear in the GUI.

5.2 Other patterns

Con
erning the
ontroller, we follow the Singleton pattern shown in Figure 5.5a. We use this

pattern be
ause we only need one obje
t to manipulate the data from the view towards the

model. The
ontroller is in
harge of running the algorithms, as well as of interpreting the

inputs provided by the parameters in the view. The exe
ution of any of our algorithms will

modify the values of the model. Those
hanges will be re�e
ted in the right hand side of the

view. In the
ontroller
lass we
an �nd the
riti
al implementation of the methods des
ribed

in Chapter 4, although some additional
lasses help to provide the right elements. These

lasses
orrespond to fa
tory
lasses that generate the appropriate initialization, sele
tion,

rossover, mutation and repla
ement methods. If the user de
ides to
hoose them at the

37

(a) Singleton pattern (b) Fa
tory pattern

Figure 5.5: Design patterns

GUI, then the
hosen
lass is dynami
ally de
ided. These
lasses follow the Fa
tory pattern

represented in Figure 5.5b. They provide an a
tual instan
e of a
lass that implements

a
ommon interfa
e. This helps to sele
t a method in a dynami
 exe
ution with a good

stru
ture.

5.3 Class diagram

We will now present a
lass diagram
orresponding to the implementation of the tool.

The implementation and some examples are freely available under a GPL-3.0 li
ense at

https://github.
om/miguelbpsg/IWANN19.

In Figure 5.6 we see that the
omplexity of our tool developed for
es us to present

a simpli�ed version of the
lasses involved in it. As mentioned before, the high number

of attributes and methods would
ompli
ate the diagram. We also avoided showing the

multipli
ities of the relationships.

First, we
an
learly observe the MVC pattern stru
tured in the pa
kages. The view does

not need any additional
lasses to perform its tasks, so it does not need its own pa
kage. The

38

https://github.com/miguelbpsg/IWANN19

Figure 5.6: Class diagram

39

ontroller needs all the fa
tories to adequately
hoose the methods dynami
ally sele
ted at

the view. Finally, the model sta
ks most of the
lasses and the distribution of the program.

In the model, several
lasses are grouped by the methods des
ribed in Se
tion 4.3. They are

extended into ea
h
on
rete representation and a representation for FSMs, with nodes and

transitions,
an be found. We also �nd the
ore of our model: the
hromosome. The FSM

lass is the perfe
t
omplement to the FSMTest
lass. The former is able to generate all the

relevant information that will be used during the exe
ution of the algorithm. We refer to

the generation of a set of tests as well as a ratio of mutants, or even all the possible mutants

from a spe
i�
ation, having as a result a
omplete tool to ful�ll our work. The FSMTest

will be applied to mutants to generate a matrix as the one introdu
ed in De�nition 4.

40

Chapter 6

Experiments

In this
hapter we report on the experiments that we have performed and the obtained

results. We dis
uss the results of applying the di�erent algorithms that we have proposed.

We have
onsidered di�erent bounds on the number of inputs that the solution
an have. We

have also analyzed the time that the di�erent approa
hes need to
ompute their solutions.

6.1 Des
ription of the experiments

Our experiments
onsisted in the exe
ution of the three des
ribed algorithms over the same

spe
i�
ation, mutants, initial set of tests and maximum number of allowed inputs. We

performed the experiments for several
ombinations of them. Afterwards, we
ompared the

results both in time needed to
ompute the solution and in the goodness of the solution.

Note that the initial set of tests should not be
onfused with the set of tests produ
ed in

the initialization of the GA. The former is provided as a pre
ondition of the problem. This

is the set of tests that we should aim to apply but if our resour
es do not allow us to try

all of them, then we should apply a good subset of them. Computing this �nal subset is the

41

goal of our approa
hes. The latter is obtained during the �rst step of the exe
ution of our

GA.

It is
lear that the smaller the FSM is, the lesser number of mutants will be generated.

We have
onsidered a spe
i�
ation with 10 states, 3 inputs and 5 outputs. We have obtained

around 300 mutants after applying the mutation operators
onsidered in our framework. We

also
onsidered 3 possible bounds on the number of inputs and 2 initial sets of tests, result-

ing in 6 representative
ases. Next, we give the details of ea
h of them.

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

Max. Inputs 30 80 150 30 80 150
Tests 99 99 99 957 957 957

Table 6.1: Summary of the experiments

1. The �rst experiment
onsisted in allowing a maximum of 30 inputs in the solution and

starting with a set of 99 tests. All algorithms yield a very good (if not the best) solution

on a reasonable amount of time as there are few possible results. This experiment is

a good baseline to show that all the algorithms provide good solutions.

2. Next, we in
reased the bound on the number of inputs, from 30 to 80, maintaining the

initial set of tests. This experiment should show us the evolution of the algorithms

depending on the number of inputs.

3. To
on
lude the experiments with a set of 99 initial test
ases, we in
reased the bound

on the number of inputs up to 150 inputs.

4. The next variation
onsidered the smallest bound on the number of inputs, that is, 30

inputs, and a bigger set of tests. We
onsider a set of 957 tests.

42

5. The next experiment dealt with the intermediate bound, that is, 80, and the biggest

set of tests.

6. Finally, the last experiment
onsidered the biggest bound on the number of inputs

and the biggest set of tests, that is, 150 inputs and 957 tests.

These experiments were performed with all the possible
on�gurations of our GA. We

also applied the full sear
h and the greedy algorithm. We had two goals. First, we wanted

to
ompare the di�erent versions of the GA. Se
ond, we wanted to
ompare the exe
ution

of the other two algorithms with the GA. We
onsidered the default
on�guration, that

is, tournament sele
tion over 3 parti
ipants with a ratio of 80%,
ontinuous
rossover with

a probability of 0.6, an extra test mutation option with a 0.02
oe�
ient and a dire
t

repla
ement. The experiments were
arried out on an Intel i5-8250U, with a frequen
y of

3.4 GHz and 8GB of RAM.

It is worth to mention that most of the
on�gurations of our GAs gave very similar results.

It should be also noted that the di�eren
e among them only
orresponds to the sele
ted

methods (sele
tion, mutation,
rossover and repla
ement). The value of the parameters

required for the di�erent
on�gurations (mutation ratio,
rossover ratio, et
.) were not

hanged.

We also tested the bounds and initial sets of tests that the full sear
h was able to

ompute. We were not able to ex
eed a bound of 60 inputs over an initial set of 99 tests,

taking over a week to
ompute the solution.

43

6.2 Evaluation

As expe
ted, as soon as the systems were sizable and we had a nontrivial initial set of tests,

the generation of all the possible subsets was unfeasible due to the
ombinatorial explosion

on the number of subsets. For example, if we had 40 initial tests with an average of 10 inputs

and we
ould
hoose tests up to 150 inputs, we would have more than 40 billion possible

subsets. Nevertheless, whenever we
onsider small bounds, it is possible to
ompute an

optimal solution, guaranteeing that we obtain the best subset of tests to be applied to the

SUT.

In terms of relative
ost, we observed that the greedy algorithm was always the fastest as

we
an see in Table 6.2. The time needed to
ompute the solution mainly depended on the

size of the given set of tests but it also had a small dependen
e on the maximum number of

allowed inputs. This dependen
e arises from determining how many times the matrix has

to be sorted. Considering its e�
ien
y, our GA was able to provide very good results. In

the only experiment where we were able to
ompute all the
ombinations, the result was

almost equivalent to the optimal one, as Table 6.3 shows. These values are 11.761 of �tness

for full sear
h

1

versus 11.887 of �tness on the GA. However, the solution was
omputed in

less time, showing eviden
e of the usefulness of the approximate te
hnique.

Fo
using on Tables 6.2 and 6.3, we have that a higher bound on the number of inputs

always in
reases the exe
ution time. In
ontrast, the �tness of the obtained solution is

improved. Also,
omparing all the experiments, we observe that a bigger initial set of tests

indu
es a higher exe
ution time, but better results are obtained for the same bound of

inputs.

These experiments show that the GA
an adequately
ompete, depending on the re-

1

The �tness for full sear
h and greedy algorithm is how we
al
ulate the aggregate value of the solution.

In this way, all three methods have the same evaluation fun
tion and are easy to
ompare.

44

sour
es, and
omplement the results of the greedy algorithm. It is true that the GA requires

some more time to be evaluated, but
onsidering the obtained results we �nd it worth to

use this extra
omputing power.

Time Time Time Time Time Time

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

Geneti
 91 190 220 208 296 462
Greedy 22 23 26 147 178 263

Full sear
h 1.355 − − − − −

Table 6.2: Time results (in millise
onds)

Fitness Fitness Fitness Fitness Fitness Fitness

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

Geneti
 11.887 5.866 2.877 12.225 3.212 1.988
Greedy 16.166 7.687 5.415 22.746 13.543 7.429

Full sear
h 11.716 − − − − −

Table 6.3: Fitness results (higher values denote worse results)

Fitness Fitness Fitness Fitness Fitness Fitness

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

S,A,D 11.887 4.966 2.311 12.059 3.795 1.926
S,A,E 11.887 5.575 2.094 11.141 4.520 1.748
S,R,D 11.887 4.508 2.435 12.511 4.502 1.896
S,R,E 11.683 4.737 2.649 12.012 4.567 1.957
C,A,D 12.042 3.863 2.116 11.376 2.919 1.729
C,A,E 11.683 3.745 2.034 10.376 2.763 1.675
C,R,D 11.863 3.968 2.063 12.118 3.676 1.764
C,R,E 11.887 3.978 2.137 11.172 2.625 1.683

Table 6.4: Fitness results for Tournament

Tables 6.4-6.8 show us that the best results for ea
h experiment are distributed on the

di�erent
on�gurations of the GAs, but some important
on
lusions
an be extra
ted for

45

Fitness Fitness Fitness Fitness Fitness Fitness

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

S,A,D 13.209 6.992 2.840 13.196 5.339 3.253
S,A,E 11.847 5.864 2.778 11.227 4.687 2.361
S,R,D 14.483 7.246 3.272 13.449 6.446 3.654
S,R,E 11.683 4.966 2.476 11.291 5.274 2.241
C,A,D 13.255 6.626 2.548 12.675 6.564 3.319
C,A,E 12.059 5.339 2.446 11.672 4.758 2.410
C,R,D 13.944 6.540 3.779 13.298 6.727 3.451
C,R,E 12.059 4.720 2.610 12.663 3.852 1.943

Table 6.5: Fitness results for Roulette wheel

Fitness Fitness Fitness Fitness Fitness Fitness

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

S,A,D 11.863 5.659 2.419 11.731 4.397 2.212
S,A,E 11.887 4.121 2.283 10.619 3.732 2.045
S,R,D 12.412 5.113 2.437 11.367 4.257 1.826
S,R,E 11.683 4.808 2.200 10.806 4.304 2.025
C,A,D 11.863 3.745 2.280 11.245 3.596 1.769
C,A,E 11.683 3.765 2.196 10.860 2.903 1.799
C,R,D 11.887 4.384 2.274 10.992 3.888 1.857
C,R,E 11.683 4.121 2.065 11.434 3.187 1.626

Table 6.6: Fitness results for Remains

Fitness Fitness Fitness Fitness Fitness Fitness

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

S,A,D 12.465 4.171 2.417 13.055 5.383 2.576
S,A,E 12.059 5.159 2.420 12.753 5.323 2.030
S,R,D 11.887 6.425 2.170 13.634 5.742 2.655
S,R,E 13.369 5.201 2.587 12.498 5.383 2.301
C,A,D 12.465 4.117 2.158 12.664 3.587 1.896
C,A,E 12.200 4.172 2.111 11.345 2.972 1.869
C,R,D 12.223 3.625 2.211 12.503 4.169 1.808
C,R,E 11.887 4.160 2.183 11.667 3.476 1.729

Table 6.7: Fitness results for Trun
ation

46

Fitness Fitness Fitness Fitness Fitness Fitness

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

S,A,D 12.465 6.366 3.317 12.302 6.510 3.206
S,A,E 12.116 4.822 2.639 11.505 5.327 2.509
S,R,D 13.955 6.717 3.414 13.501 5.049 3.150
S,R,E 12.059 5.937 2.956 11.858 5.011 2.713
C,A,D 12.465 6.545 2.709 12.994 6.023 2.965
C,A,E 11.847 4.996 2.248 11.035 3.669 1.957
C,R,D 12.483 6.612 3.412 13.532 6.444 3.318
C,R,E 11.847 4.447 2.271 12.185 3.788 2.020

Table 6.8: Fitness results for Sto
hasti
 universal

the SUT and the tests applied. The best �tness found for ea
h experiment is highlighted in

blue and boldfa
e in ea
h of the
orresponding tables. We
an observe that the tournament

sele
tion with elitist repla
ement had the most appearan
es among all the
on�gurations,

showing more adequa
y to this
on
rete system.

Nevertheless, su
h sele
tion method was not overwhelmingly dominant over the oth-

ers. In that sense, we
onsider that all the algorithms proposed had some good features.

The roulette wheel, remains, tournament and trun
ation methods got at least one minimal

solution for a di�erent experiment, on di�erent
on�gurations of
rossover, mutation and

repla
ement. Con
erning sto
hasti
 universal, despite not providing any ex
ellent solution,

the values obtained are not distant enough to be
onsidered a useless method.

In terms of the time needed to exe
ute the di�erent GAs that appear in Tables 6.9-6.13,

the main observation is the big in
rease of time required when an elitist repla
ement is

onsidered. In addition, we
an also observe that the trun
ation sele
tion had a bigger
ost

in terms of time in every experiment. All the delays are due to the need of sorting several

times the population
onsidering the order indu
ed by the �tness fun
tion.

47

Time Time Time Time Time Time

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

S,A,D 70 101 171 171 222 270
S,A,E 406 669 984 476 745 1055
S,R,D 71 101 172 172 202 254
S,R,E 415 586 921 515 791 910
C,A,D 81 102 192 173 215 297
C,A,E 202 316 516 311 403 700
C,R,D 81 121 192 174 222 293
C,R,E 233 303 518 344 436 669

Table 6.9: Time results for Tournament

Time Time Time Time Time Time

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

S,A,D 73 81 111 164 192 215
S,A,E 152 262 414 263 395 556
S,R,D 68 73 99 160 174 213
S,R,E 162 233 374 281 337 485
C,A,D 70 103 152 174 202 245
C,A,E 162 246 458 253 355 556
C,R,D 79 92 121 172 194 223
C,R,E 171 231 417 243 341 566

Table 6.10: Time results for Roulette wheel

48

Time Time Time Time Time Time

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

S,A,D 81 101 164 181 212 281
S,A,E 235 333 536 435 444 667
S,R,D 70 109 164 172 204 263
S,R,E 291 333 558 372 526 677
C,A,D 73 111 185 171 220 293
C,A,E 222 283 523 293 414 645
C,R,D 70 111 182 172 203 292
C,R,E 201 283 508 333 405 669

Table 6.11: Time results for Remains

Time Time Time Time Time Time

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

S,A,D 366 730 1137 503 820 1343
S,A,E 1559 3405 6170 1711 3630 6448
S,R,D 387 758 1206 465 870 1367
S,R,E 1480 3497 6158 1649 3659 6343
C,A,D 193 343 507 301 425 618
C,A,E 1063 2381 4378 1164 2591 4605
C,R,D 195 334 536 324 426 670
C,R,E 1196 2383 4389 1266 2653 4508

Table 6.12: Time results for Trun
ation

Time Time Time Time Time Time

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

S,A,D 70 91 131 171 192 233
S,A,E 162 215 325 261 326 446
S,R,D 71 81 121 170 184 232
S,R,E 151 192 291 251 293 396
C,A,D 80 103 162 181 211 262
C,A,E 161 212 385 233 314 485
C,R,D 71 93 143 172 192 242
C,R,E 160 192 342 234 484 447

Table 6.13: Time results for Sto
hasti
 universal

49

Chapter 7

Con
lusions and future work

In this thesis, based on re
ent
onferen
e paper [3℄, we present di�erent solutions to the

problem of obtaining good sets of tests out of big test suites. Ideally, if a tester is provided

with a set of tests, then the tester should apply all of them to the SUT. However, the time

and resour
es devoted to testing are usually limited and the tester
an apply only a subset

of these tests. If we are working within a framework where the tester applies inputs and

re
eive outputs, then this bound is given by the number of inputs that the tester
an apply.

This is an important problem in testing and in addition to provide a sound theoreti
al

framework, it is a must to develop tools supporting the frameworks. We have developed a

tool implementing all the algorithms presented in this work. Our tool is able to, given an

initial set of tests and the maximum number of inputs that we
an really apply,
ompute a

subset of the initial test suite with any of the proposed algorithms. It
an be done with the

di�erent variants of the GA and the greedy algorithm dis
ussed in this work. In addition,

the tool supports the pro
ess of generating mutants from a spe
i�
ation of the SUT.

The results show that our GA usually �nds an ex
ellent solution. In general, the GA

beats the greedy algorithm, needing a slightly higher amount of time to
ompute the result.

51

For smaller experiments, where full sear
h
ould be e�e
tively
omputed, the di�eren
es

between the best solution and the one obtained applying the GA were very small: the

�tness of the full sear
h approa
h was around 1, 5% better but it needed 14 times longer to

ompute it. Therefore, we
an be satis�ed with the results
onsidering the
omplexity of

the problem.

As future work, we plan to extend the framework to deal with other FSM-like for-

malisms. A �rst line of work is to
onsider probabilisti
 FSMs, where nondeterminism is

probabilisti
ally quanti�ed. We will take as initial step previous work on mutation testing

of probabilisti
 FSMs [15℄
omplemented with re
ent work on
onforman
e relations for

probabilisti
 systems [17℄. An orthogonal line or work that we would like to pursue is to

adapt our framework to test in the distributed ar
hite
ture [16℄, where several users intera
t

over the same data but
annot observe what the others are doing. We plan to perform

experiments on real-world frameworks where bigger systems will be evaluated, presumably

larifying the metri
s. Finally, we would like to improve the usability and report features

of our GUI so that the whole intera
tion with the algorithms and its extensions
ould be

followed and su
h that more
omplex graphs
ould be shown and
ompared.

52

Bibliography

[1℄ P. Ammann and J. O�utt. Introdu
tion to Software Testing. Cambridge University

Press, 2nd edition, 2017.

[2℄ C. Andrés, M. G. Merayo, and M. Núñez. Formal passive testing of timed systems:

Theory and tools. Software Testing, Veri�
ation and Reliability, 22(6):365�405, 2012.

[3℄ M. Benito-Parejo, I. Medina-Bulo, M. G. Merayo, and M. Núñez. Using geneti
 algo-

rithms to generate test suites for FSMs. In 15th Int. Work-Conf. on Arti�
ial Neural

Networks, IWANN'19, LNCS 11506, pages 741�752. Springer, 2019.

[4℄ D. J. Berndt and A. Watkins. High volume software testing using geneti
 algorithms.

In 38th Annual Hawaii Int. Conf. on System S
ien
es, HICSS'05, page 318b. IEEE

Computer So
iety, 2005.

[5℄ R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data sele
tion: Help for

the pra
ti
ing programmer. IEEE Computer, 11(4):34�41, 1978.

[6℄ R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Program mutation: A new approa
h

to program testing. In Infote
h State of the Art Report on Software Testing, pages

107�126, 1979.

[7℄ K. Derderian, M. G. Merayo, R. M. Hierons, and M. Núñez. A
ase study on the use

of geneti
 algorithms to generate test
ases for temporal systems. In 11th Int. Conf. on

Arti�
ial Neural Networks, IWANN'11, LNCS 6692, pages 396�403. Springer, 2011.

53

[8℄ J. J. Domínguez-Jiménez, A. Estero-Botaro, A. Gar
ía-Domínguez, and I. Medina-Bulo.

Evolutionary mutation testing. Information and Software Te
hnology, 53(10):1108�

1123, 2011.

[9℄ M. R. Girgis. Automati
 test data generation for data �ow testing using a geneti

algorithm. Journal of Universal Computer S
ien
e, 11(6):898�915, 2005.

[10℄ M. Gligori
, L. Eloussi, and D. Marinov. Pra
ti
al regression test sele
tion with dynami

�le dependen
ies. In 24th Int. Symposium on Software Testing and Analysis, ISSTA'15,

pages 211�222. ACM Press, 2015.

[11℄ D.E. Goldberg. Geneti
 Algorithms in Sear
h, Optimisation and Ma
hine Learning.

Addison-Wesley, 1989.

[12℄ N. K. Gupta and M. K. Rohil. Using geneti
 algorithm for unit testing of obje
t

oriented software. In 1st Int. Conf. on Emerging Trends in Engineering and Te
hnology,

ICETET'08, pages 308�313. IEEE Computer So
iety, 2008.

[13℄ R. G. Hamlet. Testing programs with the aid of a
ompiler. IEEE Transa
tions on

Software Engineering, 3:279�290, 1977.

[14℄ M. Harman and P. M
Minn. A theoreti
al and empiri
al study of sear
h-based test-

ing: Lo
al, global, and hybrid sear
h. IEEE Transa
tions on Software Engineering,

36(2):226�247, 2010.

[15℄ R. M. Hierons and M. G. Merayo. Mutation testing from probabilisti
 and sto
hasti

�nite state ma
hines. Journal of Systems and Software, 82(11):1804�1818, 2009.

[16℄ R. M. Hierons, M. G. Merayo, and M. Núñez. Bounded reordering in the distributed

test ar
hite
ture. IEEE Transa
tions on Reliability, 67(2):522�537, 2018.

54

[17℄ R. M. Hierons and M. Núñez. Implementation relations and probabilisti
 s
hedulers in

the distributed test ar
hite
ture. Journal of Systems and Software, 132:319�335, 2017.

[18℄ B. F. Jones, D. E. Eyres, and H.-H. Sthamer. A strategy for using geneti
 algorithms to

automate bran
h and fault-based testing. The Computer Journal, 41(2):98�107, 1998.

[19℄ B. F. Jones, H.-H. Sthamer, and D. E. Eyres. Automati
 stru
tural testing using geneti

algorithms. Software Engineering Journal, 11:299�306, 1996.

[20℄ C. C. Mi
hael, G. M
Graw, and M. A. S
hatz. Generating software test data by

evolution. IEEE Transa
tions on Software Engineering, 27(12):1085�1110, 2001.

[21℄ Z. Mi
halewi
z. Geneti
 Algorithms + Data Stru
tures = Evolution Programs. Springer,

3rd, revised and extended edition, 1996.

[22℄ A. Shi, T. Yung, A. Gyori, and D. Marinov. Comparing and
ombining test-suite

redu
tion and regression test sele
tion. In 10th Joint Meeting of the European Software

Engineering Conferen
e and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering, ESEC/FSE'15, pages 237�247. ACM Press, 2015.

[23℄ M. Srinivas and L. M. Patnaik. Geneti
 algorithms: A survey. IEEE Computer, 27:17�

27, 1994.

[24℄ S. Wappler and F. Lammermann. Using evolutionary algorithms for the unit testing

of obje
t-oriented software. In 7th Geneti
 and Evolutionary Computation Conferen
e,

GECCO'05, pages 1053�1060. ACM Press, 2005.

[25℄ J. Wegener, H. Sthamer, B. F. Jones, and D. E. Eyres. Testing real-time systems using

geneti
 algorithms. Software Quality Journal, 6(2):127�135, 1997.

55

	Portada
	Autorización
	Resumen
	Abstract
	Index
	Acknowledgements
	Acknowledgements
	Dedication
	Dedication
	Introduction
	Preliminaries
	Mutation Testing for Finite State Machines
	Genetic Algorithms

	Related work
	Our proposal for test cases selection
	Global search
	Greedy algorithm
	Genetic algorithm

	The tool
	GUI and MVC
	Other patterns
	Class diagram

	Experiments
	Description of the experiments
	Evaluation

	Conclusions and future work
	Bibliography

