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1 Introduction

With the discovery of black hole entropy [2] and Hawking radiation [3], the black hole

physics provides a profound connection between thermodynamics and gravitation [4]. Al-

though black hole thermodynamics is often studied with asymptotically flat boundary con-

ditions, this is really not suitable for discussing equilibrium configurations. It is well-known

that, e.g., Schwarzschild, Reissner-Nordström, and Kerr black holes are locally thermody-

namically unstable.

An important question is, therefore, in which conditions there could exist thermo-

dynamically stable black holes in flat spacetime? At first sight, this is not possible. To

consistently put a black hole in thermal equilibrium with its Hawking radiation, we have

to consider an indefinitely large reservoir of energy, which in turn implies that there is

non-zero energy density out to infinity. One expects then a behaviour rather similar to a

cosmological model that contracts or expands. Indeed, for the Schwarzschild black hole the

heat capacity is negative and so a thermal fluctuation can break the equilibrium and that

leads to the evaporation of the black hole or its indefinite growth. One way to circumvent

this problem is to ‘put the black hole in a box’ [5].1 Due to the fact that the temperature

measured locally by a static observer is blue-shifted with respect to the usual tempera-

ture that is determined at asymptotically flat spatial infinity, the heat capacity becomes

positive in a specific range of the box radius. Interestingly, there is another way to ob-

tain thermodynamically stable asymptotically flat black holes without imposing artificial

boundary conditions similar to the ‘box’ ones proposed by York in [5]. That is, one has to

consider an obvious extension of the usual gravity models by considering scalar fields with

self-interaction [1, 8, 9]. One of the main reasons to include this new sector in the action

is coming from the fact that the scalar fields appear naturally as moduli in string theory.

The uniqueness theorem for the asymptotically flat, stationary black hole solutions of

the Einstein-Maxwell equations is, by now, established quite rigorously. There also are

several no-hair theorems in theories which couple scalar fields to gravity (see, e.g., [10] and

references therein). However, in theories with a potential for the scalar field with certain

properties [11, 12], there exist scalar-hairy black holes. For example, in asymptotically

AdS spacetimes, various exact regular scalar-hairy black holes were analyzed in [13–22].

Interestingly, when the scalar fields are non-minimally coupled to gauge fields as in the

models emerging from string theory, there exist a family of exact asymptotically flat hairy

black holes [23–25] — in the context of no-hair theorems, the gauge field provides an

effective potential for the scalar field and so the scalar field is not independent [26] (see,

also, [27] for a recent discussion on dilatonic versus scalarised hairy black holes), the scalar

charge is fixed by the other conserved charges.

In this paper we explore the thermodynamic and dynamic stability of a large class of

exact asymptotically flat charged hairy black holes in a gravity model with a dilaton and its

1Another well known example is the anti-de Sitter (AdS) spacetime. In contrast with its asymptotically

flat counterpart, asymptotically AdS spacetimes are not globally hyperbolic. The conformal asymptotic

boundary at infinity is timelike and, in this case, the suitable initial data must be supplemented with

appropriate boundary conditions [6]. Therefore, from a geometric standpoint, AdS spacetime behaves as a

box [7].
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potential [8]. We find a general criterion to obtain specific regions in parameter space where

these black holes are thermodynamically stable and, then, we also show explicitly that they

are dynamically stable under spherically symmetric perturbations. There is some previous

related work [1, 9] where a particular case was studied, though this case is obtained by

rescaling the metric to remove a divergent factor and so it is not a generic representative

of the general class of hairy black holes presented here.

It was shown in [28] that the dilaton potential of [8] emerges naturally in a consistent

truncation of four-dimensional N = 2 supergravity extended with vector multiplets and

deformed by a dyonic Fayet-Iliopoulos (FI) term. This potential is characterized by three

independent parameters: ν is a ‘hairy’ parameter that is related to the moduli metric of

the model, α is related to the FI term, and the cosmological constant Λ. Its mathematical

expression consists of two parts: one that is proportional with the cosmological constant

and the other one is proportional to the parameter α. In the limit Λ → 0, the hairy

solutions exist and they remain regular as in the AdS case.2

This model can be generalized by adding a gauge field to which the scalar field is

coupled that provides an extension of the stringy model considered in [25] by including the

dilaton potential. Some important properties of hairy black hole solutions in this extended

model, when ν → ∞, were presented in [9] and we would like to briefly describe them

here. Unlike the stringy solutions in [23–25], these new asymptotically flat solutions have

a well defined extremal limit. However, unlike the Reissner-Nordström black hole, but

similar to the solutions [23–25], they can be overcharged. Based on these features and a

careful analysis of the dilaton potential, it was observed in [9] that, in fact, these solutions

interpolate between Reissner-Nordström black hole and the stringy family of [23–25]. More

importantly, there is a sub-class of thermodynamically stable hairy black holes [1] that are

also dynamically stable. The dynamical robustness of these solutions was confirmed not

just perturbatively, but also by a fully non-linear numerical simulations with the Einstein-

Maxwell-dilaton system [9]. Since in this particular model the potential depends only on

one parameter, α, it is interesting to check how and if some of these properties are affected

when the hairy parameter ν is turned on.

The remainder of the paper is organized as follows: in section 2, we present a general

class of exact hairy black hole solutions and analyze their thermodynamic properties check-

ing that the first law of thermodynamics and quantum statistical relation are consistently

satisfied. In section 3, we obtain a general stability criterion based on the relative signs of

the relevant response functions and prove that the thermodynamic behaviour is universal

(for any value of ν). We continue, in section 4, with a detailed study of a representative

case with finite ν and compare the results with the case ν →∞ studied previously in [1].

In section 5, we investigate the dynamical stability of hairy black holes solutions under

spherically symmetric perturbations. We conclude in section 6 with a summary of our

results and an extended discussion of the response functions in the particular case ν = 3.

Finally, all the details regarding the regions of thermodynamic stability of the analysis in

section 3 are presented in an appendix.

2The existence of asymptotically flat hairy solutions in theories with a potential for the scalar field was

conjectured in [29], though the model is different (it can not be embedded in SUGRA) and the results are

provided only numerically.
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2 Hairy black holes and their thermodynamics

In this section, we present a general family of exact asymptotically flat hairy electrically

charged black hole solutions with a non-trivial scalar field potential [8]. We use the quasilo-

cal formalism of Brown and York [30] supplemented with counterterms [31–35] to study

their thermodynamics. We compute the quasilocal stress tensor [35], energy, on-shell Eu-

clidean action (and the corresponding thermodynamic potential) and show that the first

law of thermodynamics and quantum statistical relation are satisfied.

2.1 Exact asymptotically flat solutions

We will be studying the thermodynamic and dynamical stability in a theory where gravity

couples to a dilaton, as well as the Maxwell field (with a dilaton potential, but vanishing

cosmological constant),

I =
1

2κ

∫
M
d4x
√
−g
[
R− 1

4
eγφF 2 − 1

2
(∂φ)2 − V (φ)

]
(2.1)

where the fundamental constants are set to GN = c = 1 (κ = 8π). As usual, the compact

notation for the fields is F 2 ≡ FµνF
µν , (∂φ)2 ≡ gµν∂µφ∂νφ; the parameter γ controls the

strength of the coupling of the dilaton to the Maxwell field and, as we will see, it also

determines the shape of the potential.

The equations of motion are

Rµν −
1

2
gµνR = T φµν + TEMµν (2.2)

∂µ

(√
−geγφFµν

)
= 0 (2.3)

1√
−g

∂µ
(√
−ggµν∂νφ

)
=
dV (φ)

dφ
+

1

4
γeγφF 2 (2.4)

where the corresponding energy-momentum tensors are T φµν ≡ 1
2∂µφ∂νφ −

1
2gµν

[
1
2(∂φ)2 + V (φ)

]
and TEMµν ≡ 1

2e
γφ
(
FµαF

α
ν − 1

4gµνF
2
)
. The general family of ex-

act solution that we are going to consider was found in [8] for the following general self-

interacting potential

V (φ) =
2α

ν2

[
ν−1

ν+2
sinh

(√
ν+1

ν−1
φ

)
− ν+1

ν−2
sinh

(√
ν−1

ν+1
φ

)
+ 4

(
ν2−1

ν2−4

)
sinh

(
φ

ν2−1

)]
(2.5)

where α is a real constant parametrizing the strength of the potential and ν is related

to γ by

γ ≡
√
ν + 1

ν − 1
(2.6)

so that if ν ≤ −1 then 0 ≤ γ ≤ 1 and, if ν ≥ 1 then γ ≥ 1. The limit ν →∞ corresponds

to γ = 1 and was studied in great detail in [1, 9].
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The equations of motion are solved by

ds2 = Ω(x)

[
−f(x)dt2 +

η2dx2

f(x)
+
(
dθ2 + sin2 θdϕ2

)]
, (2.7)

Aµdx
µ = − q

νxν
dt, φ(x) =

√
ν2 − 1 ln(x) (2.8)

where the metric functions are

Ω(x) =
ν2xν−1

η2(xν − 1)2
, (2.9)

f(x) =
1

ν2

[
α

(
xν+2

ν + 2
− x2 +

x2−ν

2− ν
+

ν2

ν2 − 4

)
+ η2

(
1− q2

2νxν
xν − 1

ν − 1

)
(xν − 1)2x2−ν

]
(2.10)

With this special choice of the conformal factor Ω(x), the equation of motion for the

dilaton can be easily integrated leading to a simple result. The constants q and η are the

integral constants that define the conserved charges of the solutions. We notice that there

is no integration constant related to the scalar field.

The exact solution presented so far is characterized by having two different branches

of solutions, corresponding to the domains x ∈ [0, 1) and x ∈ (1,∞]. The former is usually

called the negative branch since the scalar field takes negative values, and the latter is called

the positive branch. They actually correspond to two distinct families of solutions because

the boundary condition at x = 1 for the scalar field are different (for more details see [8]).

In the remaining of the paper, we are going to present a detailed thermodynamic analysis

only for the positive branch for which the thermodynamically stable black holes exist.3

2.2 Quasilocal formalism and energy

According to the formalism of Brown and York [30], the conserved quantities are obtained

provided a hypersurface with an isometry generated by a Killing vector ξµ exists. All the

observers living on this hypersurface measure the same conserved quantities. Using this

specific foliation for the spacetime, the quasilocal stress tensor τab can be defined as

τab =
2√
−h

δI

δhab
(2.11)

where I = Ibulk+IGH+Ict is the total action consisting of the bulk part of the action, given

by (2.1), supplemented with the Gibbons-Hawking boundary term and the gravitational

counterterm that cancels the infrared divergences of the theory. For asymptotically flat

spacetimes in four dimensions, the gravitational counterterm is [31–33]

Ict = −1

κ

∫
∂M

d3x
√
−h
√

2R(3) (2.12)

3The negative branch contains only thermodynamically unstable black holes for any value of the pa-

rameter ν and that is why the thermodynamics of negative branch is not presented in what follows. This

observation is also consistent with our previous work [1], where it was found that the black holes of negative

branch, for the particular case of γ = 1, are thermodynamically unstable.
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whereR(3) = habR(3)
ab is the Ricci scalar on the boundary. We choose the foliation x = const

with the induced metric on each surface hab, whose trace is h. For the Killing vector

ξ = ∂/∂t, the conserved quantity is the total energy of the black hole (including the

hair) [30]:

E =

∮
s2∞

d2σ
√
σnaτatξ

t (2.13)

where s2
∞ is the spherical surface at infinity with t = const, given by ds2 = σabdx

adxb,

where na is the temporal unit normal vector. The concrete expression for the regularized

quasilocal stress tensor in this case was obtained in [35]:

τab =
1

κ

[
Kab − habK +

(
1

2
R(3)

)−1/2 (
R(3)
ab − habR

(3)
)

+ hab�Ψ−Ψ;ab

]
(2.14)

where Ψ =
√

2/R(3).4 By using the exact solution presented in the previous section, the

non-zero components of the quasilocal stress tensor are

τtt = −(Ωf)1/2

8πη

(
2ηf1/2 +

Ω′

Ω
f

)
, τθθ =

τφφ

sin2 θ
=

Ω1/2

8πηf1/2

(
1

2
f ′ + ηf1/2 +

Ω′

Ω
f

)
(2.15)

Since the normal unit to t = const can be written as na = (fΩ)1/2δta, the total (conserved)

energy is computed at the boundary x = 1

E =
1

2η
lim
x→1

(
2ηΩf1/2 + fΩ′

)
=

q2

4η(ν − 1)
− 1

6η3

(
α+ 3η2

)
(2.16)

It is straightforward to verify that, in this case, the conserved energy corresponds to

the Arnowitt-Deser-Misner (ADM) mass obtained by expanding the gtt component in the

canonical coordinates [41–44].5

2.3 First law of thermodynamics

Before computing the action on-shell, let us obtain the thermodynamic quantites for the

solution presented in section 2.1. As explained before, we shall focus only on the positive

branch, x > 1.

The Hawking temperature is

T =
η(xν+ − 1)

2πν

[(
xν+ − 1

)
4νxν−1

+

(
3q2

ν − 1
− 2α

η2
+ 2ν − 4

)
−
q2
(
xν+ − 1

)2
2ν2x2ν−1

+

− x+

]
(2.17)

where the horizon location is obtained from the horizon equation f(x+) = 0. The entropy

is, as usual in gravity theories without higher derivative terms in the action, S = A/4 =

4This method was extensively used for various black hole/ring solutions [34–40].
5Since the asymptotics should be preserved, when the dilaton potential is non-trivial the asymptotic

value of the scalar is fixed. However, when the dilaton can vary at the boundary, the total energy receives

a new contribution [45, 46] and it does not match the ADM mass.
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πΩ(x+), where A is the area of the event horizon and Ω(x) is given by (2.9). The electric

charge and its conjugate potential are

Q ≡
∮
s2∞

?F = − q

4η
, Φ ≡ At(x = 1)−At(x = x+) =

q

ν

(
x−ν+ − 1

)
(2.18)

where F = 1
2Fµνdx

µ ∧ dxν and ? is the Hodge dual. Finally, the mass equals the conserved

energy of the system, computed by the quasilocal formalism, M = E, where E is given

by the equation (2.16). It follows straightforwardly that they satisfy the first law of black

hole thermodynamics

dM = TdS + ΦdQ (2.19)

with no independent contribution from the scalar field, which is secondary hair.

2.4 Quantum statistical relation

By taking the trace of the Einstein’s equation (2.2) and replacing the Ricci scalar into the

bulk part of the action, and by adding it to the Gibbons-Hawking boundary term, one gets

that, on the Euclidean section, they add up to

IEbulk + IEGH = β (−ST − ΦQ)− β

η(x− 1)
− β

[
2(ν − 1)(3η2 + α)− 3η2q2

6η3 (ν − 1)

]
(2.20)

The gravitational counterterm contributes to the total action by

IEct = βM +
β

η(x− 1)
+ β

[
2(ν − 1)(3η2 + α)− 3η2q2

6η3 (ν − 1)

]
(2.21)

and so the divergent term (and, also, the finite contribution) are canceled out. The total

on-shell action satisfies the quantum statistical relation

IE = β(M − TS − ΦQ) ≡ βG (2.22)

where G = G(T,Φ) is the thermodynamic potential associated to the grand-canonical en-

semble, where Φ is fixed as the consequence of the boundary condition δAµ|∂M = 0.

In order to obtain the thermodynamic potential associated to the canonical ensemble,

for which this time Q is fixed as a consequence of the boundary condition δ(eγφ ? F )
∣∣
∂M =

0, one would have to add a new boundary term to the action, I → I + IA, so that the

action principle is well defined:

IA =
1

2κ

∫
∂M

d3x
√
−heγφnµFµνAν (2.23)

The (geometrical) boundary term (2.23) in the action corresponds, from a thermodynamic

point of view, to the Legendre transform from the grand-canonical ensemble to the canon-

ical ensemble. The new contribution is IEA = βQΦ and, therefore, the on-shell action for

the canonical ensemble is

I = β(M − TS) ≡ βF (2.24)

where F = F(T,Q) is the thermodynamic potential associated to the canonical ensemble.

– 7 –
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3 A general criterion for the local thermodynamic stability

In this section, we first review the conditions under which a black hole equilibrium con-

figuration is thermodynamically stable against small fluctuations in canonical and grand-

canonical ensemble. Then, we develop a consistent criterion to seek for stable configurations

that is based on a study of relative signs of the response functions in the parameter space

of the solutions. In section 3.2, we collect all the relevant definitions and make a summary

with the main steps we are going to follow for the general analysis that is presented in

appendix A.

More importantly, using analytic and numerical results, we prove in section 3.3 that

the qualitative features do not depend on ν when its value is finite. However, there are

drastic changes when comparing with the case ν = +∞ studied in [1], e.g. the existence

of critical points. We will discuss in great detail all these properties in section 4 for the

particular case ν = 3.

3.1 Local thermodynamic stability conditions

Local thermodynamic stability follows from studying the heat capacity and electric per-

mittivity,

CQ ≡ T
(
∂S

∂T

)
Q

, εT ≡
(
∂Q

∂Φ

)
T

(3.1)

Concretely, these response functions should be positively defined [47]. By imposing that

the energy is a minimum at the thermodynamic equilibrium (or, equivalently, that the

entropy is a maximum), and by performing small fluctuations in T and Q around that

configuration, it follows that the local stability conditions are:(
∂2M

∂S2

)
Q

= TC−1
Q ≥ 0 → CQ ≥ 0 , (3.2)(

∂2M

∂Q2

)
S

= ε−1
S ≥ 0 → εS ≥ 0 , (3.3)

(
∂2M

∂Q2

)
S

(
∂2M

∂S2

)
Q

−

[(
∂

∂S

)
Q

(
∂M

∂Q

)
S

]2

= TC−1
Q

(
ε−1
S − TC

−1
Q α2

Q

)
≥ 0, (3.4)

where αQ := (∂Φ/∂T )Q. The last condition is associated to the physical situation when

both fluctuations are turned on simultaneously. We can use the well known thermodynamic

relations

CΦ = CQ + TεTα
2
Q, εS = εT −

Tα2
Φ

CΦ
, αΦ = −εTαQ, (3.5)

where αΦ := (∂Q/∂T )Φ, to show that the three conditions (3.2), (3.3), and (3.4) are

equivalent to

CQ ≥ 0, εT ≥ 0, CQεT
(
CQ + TεTα

2
Q

)−1 ≥ 0 (3.6)

Notice that, by using the relations (3.5), CQ ≥ 0 and εT ≥ 0 implies CΦ ≥ 0 and εS ≥ 0.

In order to understand the local thermodynamic stability conditions in a given en-

semble from a physical point of view, consider first an equilibrium configuration in the

– 8 –
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Name Definition Motivation

Φ0

(
∂T
∂S

)
Φ=Φ0

=
(
∂2T
∂S2

)
Φ=Φ0

= 0 Critical point — grand-canonical ensemble

Φ∗ Φ(x+ =∞) A common end point of all the isoterms

Q0

(
∂T
∂S

)
Q=Q0

=
(
∂2T
∂S2

)
Q=Q0

= 0 Critical point — canonical ensemble

Q∗ Q(x+ =∞) A common end point of all the isotherms

T0

(
∂Q
∂Φ

)
T=T0

=
(
∂2Q
∂Φ2

)
T=T0

= 0 Critical point — canonical ensemble

T∞

(
∂Φ
∂Q

)
T=T∞

=
(
∂2Φ
∂Q2

)
T=T∞

= 0 Critical point — grand-canonical ensemble

Table 1. Definition of the set of variables used to characterize distinct features in the plots of

equation of state for each ensemble.

canonical ensemble, where both the electric charge Q and Hawking temperature T are

kept fixed. The only quantities we can freely vary are the mass of the black hole and the

conjugate potential. Since the charge is fixed, the conjugate potential is a function of mass,

Φ = Φ(M), and so a variation of the conjugate potential comes as a consequence of varia-

tions of the mass, which, in turn, defines the sign of CQ. Thus, in the canonical ensemble,

the only requirement for local thermodynamic stability is CQ ≥ 0.6 In the grand-canonical

ensemble, there is more freedom since a variation of the entropy could come from variations

of the mass and the electric charge.

3.2 The general criterion

In this section, we introduce a criterion that can be used to analyze the local stability for

any finite value of the parameter ν. It consists of carrying out a careful graphical analysis

of the equation of state and the phase diagrams. In order to facilitate the analysis, it is

convenient to introduce a set of useful variables, which are presented in table 1. For the

sake of simplicity, we are going to work with the dimensionless version of the variables,

given by

η →
√
αη, M →

√
αM, T → T√

α
, S → αS, Q→

√
αQ (3.7)

so that α is not going to appear explicitly in the relevant physical expressions.

The general analysis to be performed for arbitrary values of ν in the potential consists

basically of the following two steps:

1) We analize the diagrams Q-Φ-T and S-T -Q or S-T -Φ (depending on the ensemble)

and identify the critical curves where the behaviour changes;

6This condition is widely used in the literature. However, we would like to point out a subtlety that

is not considered when studying black holes in a box. In this specific case, in principle, one can vary

independently the chemical potential by moving the walls of the box and so one could also consider the

permittivity as a response function.

– 9 –
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2) We translate the relevant points, curves, and regions from one diagram to another.

Since the slopes in those diagrams are directly related with the sign of the response

functions, we are able to determine in what regions they are simultaneously positive.

In order to facilitate the thermodynamic analysis, it is worth showing that the equation

of state for each finite value of the parameter ν behaves in a similar fashion, so that we

can draw general conclusions regarding the thermodynamic stability of a black hole by just

studying a particular case. We are going to show that the general behaviour of a black hole

configuration is independent of the parameter ν once we have (i) the asymptotic value for

each thermodynamic quantity and (ii) the existence or not of critical points.

3.3 Universal features for any finite value of ν

Since a detailed study to delimit the regions of stability is quite cumbersome, we leave the

application of the stability criterion, presented above, to the general case for appendix A.

In this section, instead, we focus on the universality of thermodynamic behaviour for any

finite value of the parameter ν. We use a combination of numerical and analytic methods

to find the critical points and curves that are relevant for the stability regions.

3.3.1 Grand-canonical ensemble, T and Φ fixed

Due to the stability conditions outlined in the previous section, we only have to study Q

vs Φ at fixed entropy and S vs T at fixed conjugate potential. By using the expressions

for the thermodynamic quantities, we can express the electric charge and the conjugate

potential as

Q =
1

4π

√
2S
(
xν+ − 1

)
(ν − 1)AS

(ν2 − 4) ν3
, Φ =

√
2 (ν − 1)

(
xν+ − 1

)
AS

πν3 (ν2 − 4)x1+ν
+

(3.8)

where

AS ≡
[
(ν − 2)xν+2

+ −
(
ν2 − 4

)
x2

+ − (ν + 2)x2−ν
+ + ν2

]
S + πν2x+

(
ν2 − 4

)
. (3.9)

Since the entropy is constant, one can check that there are no inflection points and Q is a

monotonically increasing function of Φ. This means that the only possible type of curves

in the Q vs Φ diagram for a fixed value of the entropy starts at the origin and have positive

definite slopes. We emphasize that this behaviour is independent of ν.

Let us now explore the general features of the S vs T diagram with fixed conjugate

potential. We have

S =
πν2xν−1

+

(
ν2 − 4

)
AΦ

2 (ν − 1)
(
xν+ − 1

)
EΦ

, T = ±
√

2
[
2 (ν − 1)

(
xν+ − 1

)
BΦ − Φ2CΦ

]
x1−ν

+

8π
√
AΦ (ν − 1)

(
xν+ − 1

)
(ν2 − 4)EΦ

(3.10)
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where the plus sing in front of the expression for the temperature is for 1 < ν < 2 and the

negative one for ν > 2. To write the equations (3.10) in a compact form, we have defined

AΦ ≡ 2
(
xν+ − 1

)
(ν − 1)x2−ν

+ − Φ2ν x2
+, (3.11)

BΦ ≡
(
ν x2

+ − 2x2
+ − ν − 2

)
xν+ + ν x2

+ + 2x2
+ − ν + 2, (3.12)

CΦ ≡
[
x2

+

(
ν2−3ν+2

)
− ν(ν+2)

]
x2ν

+ + 2
[
x2

+(ν + 2)− ν
]

(ν−1)xν+ + (ν+2)x2
+, (3.13)

EΦ ≡ (ν + 2)x2−ν
+ + (2− ν)xν+2

+ +
(
x2

+ − 1
)
ν2 − 4x2

+ (3.14)

We can check the sign of temperature in the limits x+ = 1 and x+ →∞ (corresponding to

the boundary and singularity, respectively)

lim
x+→1

T = 0 , lim
x+→∞

T =


−∞ if Φ > Φ∗

0 if Φ = Φ∗

+∞ if Φ < Φ∗

, (3.15)

where Φ∗ ≡
√

2. Notice that the limits for the temperature (and also for the entropy) are

independent of the value of ν.

There are then two different situations, when the value of the conjugate potential

exceeds or it is inferior to Φ∗. In the first case, Φ > Φ∗, we observe that by increasing

the horizon coordinate, x+, the temperature goes to −∞. However, one can check that

this can be done through a range of positive values, when there exists a maximum positive

value of the temperature, for certain values of Φ. That is, regular black hole solutions can

be obtained in the range Φ ∈ [
√

2, 2).

In terms of the coordinate x that is related to the normal radial coordinate in flat

space by x ' 1+1/(ηr), we emphasize that there exists another value, x = xmax
+ , for which

the temperature vanishes. Therefore, for the black holes characterized by Φ ∈ [
√

2, 2),

the horizon coordinate ranges as 1 < x+ < xmax
+ < ∞, where T (xmax

+ ) = 0, so that

S ≥ Smin ≡ S(xmax
+ ). These results can be graphically understood and they are presented

in section 4 for the particular value ν = 3.

Let us consider now the case Φ < Φ∗. There exists a critical point, whose temperature

T∞ is defined in table 1. Indeed, this specific critical point can be numerically obtained

for a given value of ν and the result is presented in figure 1a. Interestingly, the critical

point is located on the critical line Φ0 = Φ0(ν) whose value is slightly lower than Φ∗ (see

figure 1b). The existence of T∞ for each value of ν implies that this critical behaviour is a

generic property of the black hole solution under consideration.

3.3.2 Canonical ensemble, T and Q fixed

In the canonical ensemble, the relevant diagrams are Q vs Φ at fixed T and S vs T with

fixed electric charge. The electric charge and its conjugate potential can be expressed in

terms of x+ and T in a parametric way, by

Q =
Φν
(
ν2 − 4

)
xν+1

4|CT |
, Φ =

√
8πT (CT +BT )

(
xν+ − 1

)
(ν2 − 4) (ν − 1)

|CT |
, (3.16)
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(a) Critical temperatures T0 and T∞ as functions

of ν

(b) Critical conjugate potentials (c) Critical electric charges

Figure 1. Each number that appears on the plots indicates the maximum number of times

that εT , CQ, and CΦ change their signs, respectively. This is used in the analysis performed in

appendix A. The plots show: (a) critical temperatures T0 = T0(ν) and T∞ = T∞(ν). Note that

T0 > T∞, with the equality holding in the limit ν = 1 and ν → ∞; (b) critical electric charges

Q0 = Q0(ν) and Q∗ = Q∗(ν). Note that, in general, Q0 < Q∗; (c) critical conjugate potentials

Φ0 = Φ0(ν) and Φ∗(=
√

2). Note that, in general, Φ0 < Φ∗.

where we have defined

AT ≡
[
4π2ν2

(
ν2 − 4

)
T 2 + x2

+(ν − 1)(ν − 2)− ν(ν + 1)
]
x2ν

+ + (ν + 2)x2
++ (3.17)

2
[(
x2

+ − 1
)
ν + 2x2

+

]
(ν − 1)xν+,

BT ≡ (x2
+ − xν+)(ν + 2) + (xν+2

+ − 1)(ν − 2), (3.18)

CT ≡ 2πνxν+
(
ν2 − 4

)
T ∓

√
(ν2 − 4)AT (x+, T ). (3.19)
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The ∓ signs in the equations (3.16) correspond to the interval 1 < ν < 2 (the upper sign)

and ν > 2 (the lower sign), respectively. For the isotherm T = 0, we have the following

limits,

lim
x+→∞

Φ(T = 0) ≡ Φ∗ =
√

2, lim
x+→1+

Φ(T = 0) = 2, (3.20)

lim
x+→∞

Q(T = 0) ≡ Q∗ =
ν
√

2
√
ν + 2

4
√
ν − 1

, lim
x+→1+

Q(T = 0) =∞ (3.21)

from where we note that the isotherm T = 0 has one ending point at (Q∗,Φ∗). We

emphasize that, in fact, the point (Q∗,Φ∗) does not depend of the temperature, but it is

more convenient to compute these values taking first the limit T = 0. Unlike the extremal

RN black hole for which the conjugate potential is constant, in the extremal limit of the

hairy black hole, even if there is a constrain between the mass and charge, the conjugate

potential is not fixed and it still depends of one independent conserved charge. Therefore,

the point (Q∗,Φ∗) exists for any T ≥ 0 and the main observation is that it is the endpoint

of all isotherms (the other endpoint, for T > 0, is, as expected, (Q,Φ) = (0, 0)). The limit

ν → +∞ can not be taken directly in the expression of Q∗, but it was shown in [1] that a

similar endpoint of all isotherms exists and its values are (Q∗,Φ∗) = (0,
√

2). Despite the

dependence of Q∗ on the value of ν, its existence is a general feature independent of ν.

Interestingly, it can be shown that for any finite value of ν, the equation of state,

Φ = Φ(Q,T ), contains two critical isotherms, each one coming with its own critical point.

With the notations from in table 1, the first one corresponds to T0 and the second one

to T∞. Both of them are depicted, as a function of ν, in figure 1a and we point out that

T0 > T∞.

Let us now investigate the general features of the S vs T diagram at fixed Q. We have

S =
16π ν2Q2

(
ν2 − 4

) (
xν+ − 1

)
BQ

, T = ±
16
(
xν+ − 1

)
Q2AQ − x1+ν

+ BQ

16ν π Q
√
x3ν+1

+ (ν2 − 4)
(
xν+ − 1

)
BQ

(3.22)

where we have defined

AQ ≡
[
(ν − 2)x2ν+2

+ − 2νxν+
]

(ν − 1) +
[
2 (ν − 1)xν+2

+ + x2
+ − νx2ν

+

]
(ν + 2) , (3.23)

BQ ≡ νx+

(
xν+ − 1

)2
(ν − 1)

(
ν2 − 4

)
∓
√
x−ν+ ν (ν − 1) (ν2 − 4)

(
xν+ − 1

)3
EQ, (3.24)

EQ ≡ 32
[
(ν − 2)x2ν+2

+ −
(
ν2 − 4

)
xν+2

+ + ν2xν+ − (ν + 2)x2
+

]
Q2+ (3.25)

xν+2
+ ν (ν − 1)

(
ν2 − 4

) (
xν+ − 1

)
The minus sign in the equations above corresponds to the interval 1 < ν < 2 and the plus

sign is used for ν > 2. The limits of interest are now

lim
x+→1+

T = 0, lim
x+→∞

T =


−∞ if Q > Q∗

0 if Q = Q∗

+∞ if Q < Q∗

. (3.26)

– 13 –



J
H
E
P
0
2
(
2
0
2
1
)
2
3
3

Notice that these limits are similar with the ones for Φ fixed (3.15), but now in canonical

ensemble at fixed charge, therefore a similar analysis can be done. One important difference

is that there exist regular black holes for any Q > Q∗. However, when Q < Q∗ there exists

a critical point that can be numerically obtained for a given value of ν. Such a point is

located on the critical line Q = Q0(ν) and it occurs at the temperature T = T0(ν). The

quantities Q∗, Q0, and T0 are plotted as functions of ν in figure 1a and figure 1c and, as

long as ν is finite, T0 > T∞, Q0 < Q∗, and Φ0 < Φ∗.

We would like to emphasize that the critical behaviour is a feature of these solutions for

any finite value of ν. In the ν =∞ limit, there is no critical behaviour [1]. Since the critical

quantities exist for any value of ν, in the next section we will analyze the local stability of

the particular solution ν = 3. Nevertheless, the general study of stability regions made for

a generic ν can be found in appendix A.

4 Comparison between hairy solutions with ν = 3 and ν = ∞

In this section, we perform a detailed analysis of the local stability for a specific solution

corresponding to the value ν = 3 in the equations (2.5)–(2.10). We concretely identify the

new features pointed out in the previous section and compare these results with the ones

obtained previously in [1] for the particular limit ν →∞. Interestingly, when ν has finite

values, there exist critical points in both, canonical and grand-canonical, ensembles and,

also, there exists a new branch of stable black holes.

4.1 Hairy black hole solution with ν = 3

The self-interaction of the scalar field in this case is governed by the following potential:

V (φ) =
4α

45

[
sinh

(√
2φ
)
− 2 sinh

(
φ√
2

)
+ 16 sinh

(
φ

8

)]
(4.1)

The metric functions are

Ω(x) =
9x2

η2(x3 − 1)2
, f(x) =

α
(
x6 − 5x3 + 9x− 5

)
45x

+
η2(x3 − 1)2

9x

[
1− q2(x3 − 1)

12x3

]
(4.2)

We can expand the component of the metric in canonical coordinates by solving Ω(x) ≈ r2

in the asymptotic region, where r is the radial coordinate. That is

x =
21/3

[
(ηr)3/2 +

√
(ηr)3 − 4

]2/3
+ 2

22/3√ηr
[
(ηr)3/2 +

√
(ηr)3 − 4

]1/3
= 1 +

1

ηr
− 1

3(ηr)3
+

1

3(ηr)4
+O(r−6) (4.3)

chosen consistently with the existence domain of the positive branch, x > 1 for r > 0.7

Without the loss of generality, we work with positive values for the parameter η. The

boundary of spacetime located at x = 1 corresponds to r → ∞. In flat spacetime, in

7We emphasize that the general solution has also a ‘negative branch’ with the domain 0 ≤ x < 1 that

we do not consider in this work.
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general, the scalar field has the fall-off φ = φ∞+ Σ
r +O(r−2). However, due to the presence

of the potential V (φ), the asymptotic value of the scalar field is fixed to φ∞ = 0. Therefore,

the scalar field, φ(x) = 2
√

2 ln(x), has the following asymptotic form

φ(r) =
2
√

2

ηr
−
√

2

η2r2
+O(r−3) (4.4)

The fisrt term in the expansion (4.4) provides the scalar charge [48] Σ that, in fact, is not

an independent parameter of the solution,8 but is determined by the conserved charges,

namely, M and Q, by the relation

M =
4
√

2Q2

Σ
−
√

2Σ(αΣ2 + 24)

192
(4.5)

This is consistent with what we have claimed before, namely that the scalar field is ‘sec-

ondary hair’ and its degrees of freedom live outside the horizon.

4.2 Equation of state and critical points

Since we have rescaled all the relevant dimensionful quantities according to (3.7), in what

follows the thermodynamic variables are going to appear dimensionless. The study of the

equation of state Φ = Φ(Q,T ) is important for determining local stability. Since it is

not possible to explicitly solve for x+ from the equations (3.16), we perform a graphical

analysis of the equations in parametric form. The equation of state for ν = 3 is plotted in

figure 2 where it can be observed that all the isotherm curves end on the line Φ∗ =
√

2,

Q∗ = 3
√

5/4 ≈ 1.6771, consistently with the corresponding limits in (3.20) and (3.21). One

important difference between the thermodynamic behaviour of hairy black hole solutions

with finite ν and ν = ∞ is that, for the solution ν = ∞, the charge is Q∗ = 0 while

its conjugate potential is still Φ∗ =
√

2.9 The plot in the right-hand side of figure 2

shows in more detail the fold with two critical isotherms. These two critical isotherms are

determined by the equations presented in table 1. For ν = 3, the critical temperatures are

T0 ≈ 0.02675 and T∞ ≈ 0.01803.

By selecting an arbitrary isotherm, we can distinguish various branches where the

response function εT changes its sign. If T > T0, for instance, εT becomes positive definite,

but, as we will see next, the heat capacity CQ becomes negative definite and hence there

are no thermodynamically stable black holes. The most interesting case occurs for ‘low’

temperature regimes, T < T0 and, more restrictively, T < T∞.

In figure 3, we consider various isotherm curves and, in the right hand side panel, we

identify the two critical isotherms mentioned in the previous section for a general ν. The

critical points are located at (Φ(Q0, T0), Q0) and at (Φ0, Q(Φ0, T∞)), respectively. Let us

consider an isotherm 0 < T < T∞ (for instance, T = 0.005 from the first panel in figure 3).

By starting from the configuration at Q = 0 and Φ = 0, that is, from the limit x =∞, we

8For discussions on the scalar charges and their role on the first law of thermodynamics, see [45, 49, 50].
9Notice that Q∗ = 0 for the limit ν = ∞ does not follows from (3.21). The solution ν = ∞ is actually

obtained by doing a special rescaling, see [8]. Also, since we use a different convention for the action, there

is an 1/
√

2 extra factor for the conjugate potential in [8].
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Figure 2. Left and right panels represent the equation of state (3D) for ν = 3 from different

angles and using a different zoom. In the panel at the left hand side, we can observe the line given

by the intersection of Φ = Φ∗ and Q = Q∗ where the isotherms stop. In the panel at the right hand

side, we see ‘from below’ the region where the surface develops a particular fold (near Q∗ and Φ∗)

that is not present in the ν = ∞ solution. This region contains two novel critical isotherms, T∞
and T0.

Figure 3. Left and right panels represent the equation of state (2D) for ν = 3. In the panel at the

right hand side, three important isotherms have been chosen: T = 0 and the two critical isotherms

T∞ and T0 (see the second plot in figure 2).

notice that εT > 0 until Q reaches its maximum value for which εT = 0. Along this first

branch, as we will see next, the heat capacity CQ is negative. At this point both εT and

CQ change their signs. By continuing moving along this isotherm, εT < 0 until Φ reaches

its maximum value, where εT diverges. Finally, the third branch has mostly εT > 0 and it

is where stable black holes are located, since CQ > 0.
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Figure 4. Phase diagram S vs T at fixed Φ. The panel at the left hand side corresponds to the

model ν = 3. The panel at the right hand side corresponds to the special limit ν =∞. The critical

behaviour exists only for finite ν. Thermally stable configurations (CΦ > 0) appear when T < T∞.

It is also important to emphasize that the isotherm T = 0 has an horizontal asymptote

at Φ = 2 above which there exist only naked singularities, an observation made in the

general context in section 3.3.1.

4.3 Thermodynamic stability in grand-canonical ensemble

The criterion for the local thermodynamic stability is that heat capacity CΦ and electric

permittivity εS are simultaneously positive. However, we have determined by general

arguments, in section 3.3.1, that εS > 0. This situation is basically the same as the

Reissner-Nordström black hole and the special solution for ν =∞. Thus, local stability in

the grand-canonical ensemble is guaranteed only by the positivity of the heat capacity CΦ.

The plot S vs T at fixed values of Φ is presented in figure 4. The panel at the left hand

side corresponds to the solution ν = 3 and the one at the right hand side to the special

limit ν =∞. One of the main difference is that, for finite ν, the system exhibits a critical

behaviour that is not present in the ν =∞ case. Interestingly, the novel intermediate-size

black hole phase taking place within the interval Φ0 < Φ < Φ∗ has a positive heat capacity.

Since the only non-trivial requirement for local stability in this ensemble comes from

the positivity of the heat capacity CΦ, we can surely say that the branch of stable black

holes is the one that necessarily satisfies the inequalities Φ0 < Φ and T < T∞. Within the

interval Φ0 < Φ < Φ∗, the stable black holes are the intermediate-size black holes. We can

use the equation of state to fully identify these black holes. From figure 5, we observe that

if Φ > Φ∗, x+ reaches a maximum value (and so Smin), as discussed in the previous section

for general ν. From figure 4, we observe that in this case we have two branches, the small

and big black holes. These two branches, in figure 5, correspond to black holes with small

and big electric charge, respectively.

A more detailed description of the critical behaviour of these solutions is going to be

presented in [51].
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Figure 5. Stable black holes can be fully identified from the diagrams S vs T and Q vs Φ. The

intersections between a fixed-Φ line and an isotherm T < T∞ give rise to three configurations, if

Φ0 < Φ < Φ∗, or two configurations, if Φ∗ < Φ < 2. In the first case, the configuration with

small/intermediate/large value of Q is also the one with the lowest/intermediate/large value of S.

Similarly, in the second case, the configuration with the small/large value of Q corresponds to the

one with the small/large value of S (see the first plot in figure 4).

Figure 6. Phase diagram S vs T at fixed Q. The panel at the left hand side corresponds to the

model ν = 3. The panel at the right hand side, to the special limit ν =∞. The critical behaviour

exists only for finite ν.

4.4 Thermodynamic stability at Q fixed

In figure 6, we present a comparison between S vs T diagram at fixed Q for the solution

ν = 3 and for the special solution ν =∞. The main observation is that, unlike ν =∞ case,

in this ensemble there also exist critical points. Since T0 >T∞, not all the configuration

with CQ>0 are thermodynamically stable. Concretely, there exist configurations satisfying

T∞ < T < T0 that have CQ > 0, but εT < 0. To identify them, consider an isocharge line

Q0 < Q < Q∗ and the configurations within the interval T∞ < T < T0. As we observe

from figure 6, the intermediate-size branch are stable, but, from figure 7, we notice that

the intermediate branch has a negative εT . However, when T <T∞ there is a region with

stable black holes. Interestingly, the intermediate-size branch with CQ>0 in figure 6 can

be in stable equilibrium as long as 0 < T < T∞ that is consistent with the analysis in

section 3.3.2.
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Figure 7. For the interval T∞ < T < T0, the intermediate-size branch is characterized by CQ > 0

but it has εT < 0. The analysis in the canonical ensemble confirms that stable black holes appear

only for T < T∞.

Figure 8. Intermediate-size stable black hole branches highlighted with the red dotted line, both

in the grand canonical ensemble (the left hand side plot) and in the canonical one (the right hand

side plot). These stable black holes, unlike the ones for Φ > Φ∗ and Q > Q∗ (in their respective

ensembles), do not reach T = 0 and they are characterized by only one horizon.

We are going to comment more about the new features of the hairy black hole solutions

with finite ν in the ‘Discussion’ section.

4.5 Extremality condition and the existence of a new branch

Besides the existence of critical points, another interesting new feature of the hairy black

holes in theories with finite ν is the appearance of a new branch of stable solutions. For

concreteness, we identify this new branch in figure 8 noticing that there does not exist an

extremal limit (T → 0) for these black holes.

To understand what is the origin of this new branch, we have to investigate the extremal

limit. The extremality conditions, namely f(x+) = 0 and f ′(x+) = 0, can be used to get

the parameters η and q as functions of x+, and then, using the equations (2.16) and (2.18),
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Figure 9. For black holes with M < M∗ the extremality limit does not exist.

to express M = M(x+) and Q = Q(x+) as

M(x+) =
5

3

8x5
+ + 32x4

+ + 35x3
+ + 28x2

+ + 22x+ + 10

(x+ − 1)2 (2x2
+ + 8x+ + 5

) (
10x2

+ + 40x+ + 25
) 1

2

(4.6)

Q(x+) =
15

2

(
2x4

+ + 10x3
+ + 15x2

+ + 13x+ + 5
) 1

2
(
x2

+ + 3x+ + 1
) 1

2 x2
+

(x+ − 1)2 (2x2
+ + 8x+ + 5

) (
10x2

+ + 40x+ + 25
) 1

2

(4.7)

Despite the fact that these expressions are algebraically complicated and it is not possible

to isolate x+ in order to obtain a simple equation for M = M(Q), the plot in figure 9

is sufficient to draw some important conclusions. The relevant observation is that the

extremality limit exists for black holes with masses (and charges) in a specific range. Con-

cretely, we notice that M and Q are both monotonic functions of x+ and while very large

black holes (x+ → 1) are characterized by M →∞ and Q→∞, the small ones (x+ →∞)

have finite minimum values M →M∗ and Q→ Q∗, where

M∗ =
2
√

10

3
, Q∗ =

3
√

5

4
(4.8)

As a consistent check, we emphasize that Q∗ can be obtained directly from the equa-

tion (3.21) when ν = 3 and the extremality conditions are fixing also the mass.

Therefore, there exist regular hairy black holes with masses smaller than the one

in (4.8), which do not have an extremal limit, but which are thermodynamically stable.

5 Linear spherically symmetric perturbations

In this section we are going to study the stability of the hairy black holes studied in the

previous sections under linear spherically symmetric perturbations. The analysis follows

the steps developed previously for scalarized Reissner-Nordström black holes [52–54] (see

also [9, 55–62]), and that it has also been used for black holes in alternative theories of

gravity with scalar fields (see for example [63–69]).
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Up to first order in the perturbation parameter ε, the metric (2.7) becomes

ds2 =Ω(x)
[
1+εe−iωtFz(x)

]{
−f(x)

[
1+εe−iωtFt(x)

]
dt2+

η2
[
1+εe−iωtFr(x)

]
dx2

f(x) [1+εe−iωtFt(x)]
+dΣ2

}
(5.1)

where dΣ2 ≡ dθ2 + sin2 θdϕ2. Also, at first order, the perturbed electromagnetic field and

scalar field are

At(x, t) = a(x)
[
1 + εe−iωtFa(x)

]
, Φ(x, t) = φ(x)

[
1 + εe−iωtFφ(x)

]
(5.2)

where a(x) = − q
νxν and φ(x) =

√
ν2 − 1 ln(x) are given by (2.8). The functions Fz, Ft, Fr,

Fa, and Fφ are the perturbation functions all associated to a Fourier mode with frequency

ω. By choosing the gauge Fz = 0, it can be shown that the equations of motion reduce to

a single master equation of Schrödinger type

d2Z

dR2
=
(
−ω2 + U

)
Z (5.3)

where Z ≡ φ
√

ΩFφ. The new coordinate R is related to the x-coordinate by the transfor-

mation dR = η dx
f(x) and the effective potential U = U(x) is

U(x)=

[
2φ′(V γ+V1)Ω2

Ω′
−
(
φ′2f ′

Ω′η2
+

4γφ′

Ω′
−V2+V γ2

)
Ω+

2γφ′f ′

η2
− Ω′f ′(2γ2−1)

2Ωη2
+ 2γ2

]
f

+

[
Ω2φ′4

2η2Ω′2
− γφ′3Ω

Ω′η2
+

(
2γ2 − 7

)
φ′2

4η2
+

3γ Ω′φ′

Ωη2
−

Ω′2
(
3γ2 − 1

)
2Ω2η2

]
f2 (5.4)

where V1 = dV
dφ and V2 = d2V

dφ2
.

The stability of the solution is given by the positivity of the effective potential U(x)

between the event horizon and the boundary of spacetime (see for instance [70–72]). Since

the domain for positive branch is 1 < x < x+ < ∞, it is more useful to plot U vs x−1,

where x−1
+ < x−1 < 1.

Near the boundary, the effective potential can be expanded as

U(x) =

[
32Q2η4

ν − 1
+ α− η2

]
(x− 1)3 +O

[
(x− 1)4

]
(5.5)

and so the effective potential asymptotically vanishes. From the equation (5.4), we also

observe that the effective potential vanishes at the event horizon.

A few typical profiles of the potential, as a function of 1/x, are presented in figure 10.

The metric function −gtt is represented by the dashed black line and the effective potential

U(x) by the solid blue line. In each panel we have plotted these functions for three distinct

solutions in the theory with ν = 3 and α = 1. Notice that in this model, Q∗ = 1.67705,

and we have considered Q = 2. According to the previous analysis, when T < 0.018,

these configurations contain thermodynamically stable black holes (when Φ > Φ0.). In

figure 10a, we present the extremal case with T = 0. The solution extends from the black

hole horizon at x = x+, where both the gtt function and the effective potential vanish, up
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(a) x+ ≈ 4.7358 (b) x+ ≈ 2.9960 (c) x+ ≈ 1.7531

Figure 10. Effective potential U(x) vs x−1 for the theory α = 1 and ν = 3. The electric charge of

the black hole is Q = 2. The graphics show the region between the event horizon x = x+ and the

boundary x = 1, where −gtt > 0. (a) Extremal black hole T = 0. (b) T = 0.012. (c) T = 0.016.

(a) x+ ≈ 4.7663 (b) x+ ≈ 3.4227 (c) x+ ≈ 2.1723

Figure 11. Effective potential U(x) vs x−1 for the theory α = 20 and ν = 4. The electric charge

of the black hole is Q = 1/2. The graphics show the region between the event horizon x = x+ and

the boundary x = 1, where −gtt > 0. (a) Extremal black hole T = 0. (b) T = 0.03. (c) T = 0.06.

to the asymptotic boundary at x = 1, where −gtt = 1 and the potential vanishes again. In

particular, we can see that the potential is always positive outside the horizon, meaning

the solution is stable under radial perturbations. The two other solutions in figure 10b and

c are non-extremal black holes with T = 0.012 and T = 0.016, respectively. Qualitatively,

the results are similar to the extremal case and so these solutions are also stable under

spherical perturbations.

Interestingly, the positivity of the effective potential seems to be generic. In figure 11,

we present similar plots for a few solutions in a different theory with parameters ν = 4 and

α = 20, where Q∗ = 0.44721. We consider Q = 1/2 and so they are also thermodynamically

stable. Each panel shows again three solutions with different values of the horizon temper-
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ature and, again, the effective potential is always positive definite. Scanning the space of

solutions in various theories, it is always found that the positivity of the effective potential

U(x) is satisfied. This means that ω2 is positive and so the hairy black hole solutions,

which are thermodynamically stable, are also stable against spherical perturbations.

6 Discussion

In this paper, we made a detailed examination of the thermodynamic stability of a general

class of hairy charged black holes in flat spacetime. To obtain the results in a compact form

for any value of the parameter ν in the dilaton potential, we have used a general criterion

to check the relative signs of the relevant response functions (in both the grand-canonical

and canonical ensemble) within well delimited regions of the corresponding phase space.

Interestingly, we have found that there always exists a sub-class of stable black holes for

which the heat capacity and permittivity are positive definite close to the extremality.

Similar results were obtained previously in [1] for a particular case, ν → ∞.10 However,

the phase structure is much richer when ν takes finite values.

In this case, there exists a new sub-class of thermodynamically stable configurations

characterized by only one horizon (see section 4.5).Another new feature is the appearance

of critical points in both ensembles.11 In grand-canonical ensemble, the stable configura-

tions exist only when the chemical potential exceeds a critical value Φ0. In the canonical

ensemble, though, the region of stability is constrained to temperatures lower than a crit-

ical temperature T0. Graphically, the stable configurations are those located between the

local minimum and the maximum of the isotherm curves in figure 19a. If Q exceeds Q̃,

then εT becomes negative even if CQ > 0 and so the thermodynamic stability is lost. One

concrete example of this is shown in figure 12, where the black holes become unstable when

the electric charge, Q2, exceeds Q̃.

In addition to the thermodynamical stability, we have checked stability against spher-

ically symmetric perturbations. For this, we have followed the standard procedure used

before for other families of hairy charged black holes [9, 52–54]. After perturbing the

metric, the electromagnetic field and the scalar field, we parameterize the spherical pertur-

bations in terms of a master equation, a generalized tortoise coordinate, and an effective

potential (5.4). The analysis of this effective potential reveals that the thermodynamically

stable solutions are also stable under radial perturbations: all solutions analyzed (extremal

and non-extremal) possess a regular and positive definite potential. Hence the spherical

perturbations of these black holes are always damped exponentially with time. Let us also

comment that, since the black holes that we have considered in this work are spherically

symmetric, it is typically expected that perturbations on higher multipolar numbers will

also be free of instabilities (see for instance examples of this in [9, 52, 54, 63, 64]), and it

is reasonable to expect these configurations to be fully dynamically stable.

10This case is very special because the limit can not be taken directly in the general ansatz for the

solution.
11The scalar fields in AdS also change the black hole behaviour in grand-canonical ensemble by generating

swallowtail sections [73], a feature that is not present for Reissner-Nordström-AdS black hole [74].
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Figure 12. Right hand side: Q2 > Q̃, where the configuration at a Φ > Φ0 becomes unstable

(εT < 0). Left hand side: the same image is zoomed in.

(a) Φ < Φ0 (b) Φ0 < Φ < Φ∗ (c) Φ∗ < Φ

(d) T < T∞ (e) T∞ < T

Figure 13. Response functions εS y CΦ vs the inverse of the horizon coordinate x+ (which

accordingly is ranging the positive branch) for different values of the conjugate potential, as in (a),

(b) and (c), and for temperature below and above the critical temperature T∞, as in (d) and (e).

For completeness, let us finally consider the particular case of ν = 3 and present,

in figure 13 and figure 14, the plots of the response functions in a given ensemble with
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(a) T < T∞ (b) T∞ < T < T0 (c) T0 < T

(d) Q < Q0 (e) Q0 < Q

Figure 14. Response functions εT y CQ vs the inverse of the horizon coordinate x+ for different

values of the temperature, as in (a), (b) and (c), and for electric charge below and above the critical

charge Q0, as in (d) and (e).

respect to the location of the event horizon. We would like to directly check the existence

of stability regions and to compare with the results obtained by the general criterion

presented in section 3 and developed in appendix A.

Let us begin with the grand-canonical ensemble, where Φ is fixed. In this case, we

observe that the thermodynamic stable black holes are found within two different intervals

for the conjugate potential: Φ0 < Φ < Φ∗ (see figure 13b) and Φ∗ < Φ (see figure 13c). The

former corresponds to intermediate-size black holes between the two values of x+ where CΦ

is discontinuous. This region can also be identified in figure 15c where the slopes in S vs T

are positive definite. This interesting new phase, which is not present in the case ν → ∞
studied previously in [1], contains configurations similar to Schwarzschild black hole in the

sense that they have only a horizon. The region of stable black holes with Φ∗ < Φ can also

be identified in figure 15c and, clearly, in this case there is a well defined extremal limit.

As argued at the end of section 4, stable black holes are found for T < T∞, as shown in

figure 13d for a particular temperature in the interval 0 < T < T∞. Therefore, if T∞ < T ,

there do not exist stable configurations, as shown in figure 13e.

A similar analysis can be done for the canonical ensemble when Q is fixed. First, we

observe again that the stable black holes appear for T < T∞, as shown in figure 14a. This
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is consistent with figure 19b for the isotherm TA < T∞. However, for this isotherm, there

exist two branches with CQ > 0: one for Q0 < Q < Q∗ with solutions with one horizon

and the other one for Q∗ < Q with stable black holes that have a well defined extremal

limit T = 0. This can also be observed in figure 14e, where Q0 < Q. We remark that if

Q < Q0, there are no stable black holes.

To conclude, let us emphasize that not just the AdS arena stabilizes the thermody-

namics of black holes, but also the existence of a dilaton potential in flat spacetime can

have the same effect. As a first step, we have shown that the charged hairy black holes in

flat space, besides being thermodynamically and perturbatively dynamically stable, have a

rich phase structure including critical points as in AdS spacetime [74, 75]. We emphasize

that the embedding in supergravity can be done only when the truncation contains two

gauge fields [76] and so our results are valid in the limit when the strength of one gauge

field is much weaker than the other one.
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A Thermodynamic stability analysis for arbitrary ν

In this section, we present a detailed analysis of local thermodynamic stability for an arbi-

trary value of ν by following the general criterion proposed in section 3.2. The main result

is that there exists a sub-class of asymptotically flat hairy black holes that are thermody-

namically stable in both ensembles and for every finite value of the hairy parameter ν.

In what follows we will be referring to the behaviour of the thermodynamical quantities

already shown in section 3.3.

A.1 Grand-canonical ensemble, Φ fixed

The relevant quantities required to study the thermodynamic stability are the electric per-

mittivity at constant entropy, εS = (∂Φ/∂Q)S , and the heat capacity at constant conjugate

potential, CΦ = T (∂S/∂T )Φ. We are going to read off the signs of these response functions

by studying general properties of the corresponding phase diagrams.
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(a) (b) (c) ΦA < Φ0 < ΦB < Φ∗ < ΦC

Figure 15. (a) Sketch of Q vs Φ at fixed entropy. (b) Relevant curves in the S vs T diagram.

(c) Sketch of S vs T for some relevant values of the conjugate potential.

A.1.1 Q vs Φ, S fixed diagram

The general parametric equations of the thermodynamical quantities of interest are found

in equation (3.8). As it has already been mentioned it above, the asymptotic limits are

straightforward to compute and the result is that in the behaviour of the curves in the

Q vs Φ diagram with fixed entropy must be such that they must start at the origin and

then diverge as one of the to quantities diverges. This does not tell us anything about the

behaviour for finite values of Q or Φ. However, one can show that there are no points for

which one or both of the following equations are satisfied(
∂Φ

∂Q

)
S

= 0,

(
∂2Φ

∂Q2

)
S

= 0 (A.1)

which allows us to conclude that εS is a positive definite quantity for all equilibrium con-

figurations. A sketch for Q vs Φ at constant S, which holds for any value of ν > 1, is

presented in figure 15a.

A.1.2 S vs T , Φ fixed diagram

The relevant expressions in this case are the ones in equation (3.10). To facilitate the

analysis we recall that the study of the limits x+ = 1 and x+ → ∞ on the expressions of

entropy and temperature above yields the following results:

lim
x+→+∞

S = 0, lim
x+→+∞

T → {−∞, 0,+∞},

lim
x+→1+

S → +∞, lim
x+→1+

T = 0

We emphasize that the physical analysis of these results is made only for positive values

of the temperature. However, the existence of a divergent negative temperature indicates

that there also exists a configuration with zero temperature, which corresponds to an
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extremal black hole. In particular, the limx+→+∞ T = −∞ is consistent only when Φ > Φ∗.

Therefore, it means that there must exist extremal black holes with non-zero entropy in

this interval, as can be explicitly checked in figure 15c. Indeed, the curve characterized by

ΦC > Φ∗ reaches the extremality at finite entropy.

The above result, together with the existence of a critical point (see figure 1a) allow us

to sketch the general behaviour of the system in this case as shown in figure 15b and 15c.

A.1.3 Thermodynamic stability

Armed with the information obtained in the previous analysis, it is useful to consider three

regions (noted A, B, and C, respectively) where the heat capacity CΦ changes its sign in

a particular way. Those regions are identified by some specific values of Φ, as shown in

figure 15a. Since εS > 0, the thermodynamic stability for black holes in grand-canonical

ensemble is basically guaranteed provided CΦ > 0.

Region A with Φ < Φ0: in this region, CΦ < 0, as can be seen from figure 15b, implying

that there are no thermodynamically stable equilibrium configurations.

Regions B with Φ0 < Φ < Φ∗ and region C with Φ∗ < Φ: since CΦ changes its sign at least

one time, there must exist at least one region where CΦ > 0. Accordingly, we conclude

that thermodynamically stable hairy black holes can be found in the range 2 > Φ ≥ Φ0.

A.2 Canonical ensemble, Q fixed

The relevant quantities are the electric permittivity at constant temperature, εT ≡
(∂Φ/∂Q)T , and the heat capacity, CQ ≡ T (∂S/∂T )Q. As before, we are going to use

the corresponding diagrams to read off the sign of the slopes and, accordingly, split the

parameter space into different regions.

A.2.1 Φ vs Q, T fixed

By using the equations (3.16), we recall their relevant limits which are

Φ∗ := lim
x+→+∞

Φ|T=0 =
√

2, Q∗ := lim
x+→+∞

Q|T=0 =
ν
√

2
√
ν + 2

4
√
ν − 1

,

lim
x+→1+

Φ|T=0 = 2, lim
x+→1+

Q|T=0 → +∞.

For non-extremal black holes T 6= 0, the limit x+ → +∞ gives the same result, which

means that the point (Q∗,Φ∗) is an end point for all the isotherms, while the limit x+ → 1

yields (Q,Φ) → (0, 0), as shown also in figure 16a. The critical temperatures T0 and T∞,

defined in table 1, allow us to split the phase space into relevant regions which will be used

to compare the relative signs of the electric permittivity εT and heat capacity CQ. It is

also worth re-emphasizing that T∞ and T0 depend on ν, as can be seen in figure 1a.
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(a) 0 = Textremal < T0 < T∞ (b) Zoom-in of (a) (c) QA < Q0 < QB < Q∗ < QC

Figure 16. (a) Sketch of the relevant isotherms Φ vs Q. (b) Zoom near one end point for the

isotherms. (c) Sketch of S vs T for some relevant values of the charge.

A.2.2 S vs T , Q fixed

In comparison with the case with fixed Φ, the equations (3.22) for fixed charge produce

exactly the same limits as before, just with a different critical temperature T0. So the

behaviour should be exactly the same. A sketch is depicted in figure 16c with the relevant

quantities that belong to this case. With respect to the stability, while it is clear that

CQ < 0 for all Q < Q0, the case Q > Q0 must be carefully analyzed.

A.2.3 Thermodynamic stability

To begin the analysis of thermodynamic stability, first note that T0 and Q0 define a critical

point (their definitions are provided in table 1). This can be checked by inserting T0 into the

equation for Q in equation (3.16). This observation makes possible to identify in a practical

and direct manner the regions where the response functions are positively defined, as it is

shown in figure 1a and figure 1b. Before presenting the details of the analysis, we would

like to emphasize that by comparing the number of times each response function changes

its sign in a specific region, we can extract important information with the help of figure 1;

indeed, we can conclude immediately that the relevant intervals for the thermodynamic

stability are T < T∞ and Q > Q0. However, we have to make sure that all regions with

unstable configurations are excluded and now we investigate this issue case by case (see

figure 17).

Regions IA, IB, IC: these regions are characterized by Q < Q0. The electric permittivity

is positive, but the heat capacity is negative and so all the configurations are thermody-

namically unstable.

Regions IIA, IIC: within these two regions, characterized by Q0 < Q < Q∗ and T > T0

(for IIA) and T < T∞ (for IIC), we observe that εT > 0 but CQ < 0, therefore, there are

no thermodynamically stable black holes.
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(a) The phase space S vs T separated into the relevant regions

(b) The phase space S vs T separated into the relevant regions

Figure 17. The phase spaces: (a) Φ vs Q and (b) S vs T .

Region IIB: in this region, characterized by Q0 < Q < Q∗ and T∞ < T < T0, the response

functions change two times their signs. Despite that, it is not straightforward to determine

whether both are positive for a given configuration, as required for thermodynamic stability.

We should discuss further this case below.

Region IIIA: inside this region, CQ changes one time its sign, while εT changes its sign

at least one time. Again, this is not sufficient to prove that both of them are positive for

a given configuration and we investigate this case below.

Region IIIB: since both response functions change their signs only one time, one can not

conclude about the stability. We shall comment on this case below.
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Figure 18. Φ vs Q at fixed T . The relevant isotherms are T0 and T∞. An arbitrary isotherm

0 < TA < T∞ is traced. Two arbitrary isocharges, Q1 < Q∗ and Q∗ < Q2, and their intersections

with TA was marked. The line Q = Q1 intersects three times TA (the two intersections at the

top cannot be distinguished at this scale. See figure 19a for a zoomed image). The line Q = Q2

intersects two times TA.

Region IIIC: inside this region, εT can change its sign at least one time, while the sign of

CQ changes only one time. That is not sufficient to prove that both of them are positive

for a given configuration. We shall comment on this case right below.

So far, we can definitely conclude that the regions IA, IB, IC, IIA and IIC do not

contain locally stable configurations. Now, to complete the analysis, it will be useful to

consider the following thermodynamic relation:

CΦ = CQ + εTα
2
QT (A.2)

r where αQ ≡ (∂Φ/∂T )Q. From the results presented in section A.1 for the grand-canonical

ensemble, we know that CΦ < 0 as long as Φ < Φ0, which implies that either CQ < 0 or

εT < 0. For Φ0 < Φ, there is a sub-region within IIB where one of the three configurations

at a given T∞ < T < T0 has CΦ > 0 (see figure 17b), but it has also εT < 0 as inferred

after drawing the corresponding isotherm in figure 17a. Therefore, the regions IIB and

IIIB contain no thermodynamically stable configurations. This is better appreciated in

figure 18, where the line Φ = Φ0 was explicitly marked.

In what follows, we are going to consider only the cases Φ > Φ0, corresponding to the

remaining regions to be analized: IIIA and IIIC. The equation (A.2) does not provide

enough information to conclude about the stability in the case Φ > Φ0. The reason is that

CΦ is not always positive inside this interval. In fact, inside both regions IIIA and IIIC,

– 31 –



J
H
E
P
0
2
(
2
0
2
1
)
2
3
3

(a) Zoom to the stability region (see figure 18) (b) Q0 < Q1 < Q∗ < Q2

Figure 19. (a) A closer look into the region of stability. The intersections between Q1, Q2 and

TA are represented with different symbols and, in (b), it is shown the some intersection points by

the same symbols. (b) S vs T at fixed Q; it is shown the intersection between TA with Q1 and Q2.

the heat capacity can have negative or positive values (see figures 18 and 19b, where two

curves at constant charges, Q1 and Q2, are plotted). Then, in order to determine whether

these regions contain thermodynamic stable configurations, let us consider the isotherm

TA < T∞ depicted in figure 18 and magnified in figure 19a. If Q < Q∗, the isotherm

TA represents the region IIIA and, if Q > Q∗, represents region IIIC, as follows from

figure 17a.12 That is why we have considered two isocharge lines, Q1 and Q2, so that

Q0 < Q1 < Q∗ and Q∗ < Q2. The isotherm TA intersects three times the isocharge line Q1

and two times the isocharge line corresponding to Q2.

Let us focus first on the three intersection points between the curves characterized by

Q1 and TA. We have used three different symbol for each intersection: a filled diamond

(with the highest value of Φ in Φ vs Q and the lowest value of S in S vs T ), a filled

squared (with an intermediate value of Φ and an intermediate value of S, respectively),

and a filled circle (with lowest Φ and highest S, respectively). From figure 19, it follows

that, indeed, the branch represented by the filled squared (located within IIIA) contains

configurations with both εT > 0 and CQ > 0. These thermodynamically stable black

holes, however, do not have an extremal limit, because the region Q < Q∗ does not contain

extremal black holes.

Let us now consider TA and an isocharge line Q2 > Q∗. From the plot S vs T it

is clear that there are two branches of configurations and that one of them has CQ > 0.

Interestingly, in the plot Φ vs Q, Q2 intersects TA for two configurations. If Q2 is close

enough to Q∗, then the two intersections correspond to branches where εT > 0. Therefore,

inside this region, contained within IIIC, there are also thermodynamically stable black

holes which, in addition, have a well defined extremal limit.

12The region IIIA is a tiny region which is better appreciated in figure 19a.
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Since the charge Q1 is arbitrary and the temperature TA is just limited by the condition

TA < T∞, we can certainly conclude that the most general region of stability in the plot

of Φ − Q at constant T is found between the local minimum and maximum of every

isotherm such that T < T∞ (see figure 19a), namely, inside a subset of both the region

IIIA and IIIC.
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