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2Departamento de Fı́sica Teórica I, Universidad Complutense, Madrid E-28040, Spain
3Instituto de Fı́sica Fundamental, IFF-CSIC, Serrano 113-bis, Madrid E-28006, Spain

4Fundación ARAID, Paseo Marı́a Agustı́n 36, Zaragoza 50004, Spain
(Received 29 December 2012; revised manuscript received 1 April 2013; published 15 August 2013)

We present a scalable and tunable framework for the quantum simulation of critical dissipative models

based on a circuit QED cavity array interacting with driven superconducting qubits. We will show that the

strongly correlated many-body state of the cavities can be mapped into the state of propagating photons in

a transmission line. This allows not only for an efficient way of accessing the correlations in the many-

body system, but also provides a bright source of chiral entangled light where directionality and

entanglement are assisted by collective phenomena and breaking of reflection symmetry.
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The controlled generation of quantum states of light is
crucial for applications both in quantum information
processing [1] and precision measurements [2]. While
Gaussian entangled states of light can be generated through
nonlinear optical interactions [3], the field of supercon-
ducting quantum circuits and circuit QED provides us with
more efficient tools to explore such applications [4]. In this
respect, we recall the preparation of single-mode squeez-
ing [5], two-mode squeezing [6,7], broadband squeezed
light [8], single-mode nonclassical states of light [9],
and entanglement [10], as well as the extremely precise
tomography both in cavities [9] and in open transmission
lines [11].

Two distinctive features of circuit QED (CQED) are the
precise positioning of quantum emitters and their local
control through driving fields or, more recently, dissipation
[12]. These ingredients enable a paradigm shift in the
control of light-matter interaction. First, a controlled sepa-
ration between quantum emitters allows us to tailor collec-
tive effects like directionality and interference, with an
accuracy that can hardly be matched by atomic systems.
Second, these collective effects can now be embodied with
dissipative dynamics [13], introducing novel dissipative
quantummany-body phenomena [14–16], such as nonequi-
librium phase transitions and dissipative criticality classes.

In this Letter, we explore the generation of strongly
correlated states of microwave light using dissipative
phenomena in arrays of coupled cavities. We pursue the
generation of many-body entanglement by means of a
scalable framework of tunable squeezed dissipators.
Inspired by laser cooling, we introduce a simple design
based on driven qubits that allows the quantum simulation
of a wide variety of Liouvillians exhibiting criticality [16].
Most importantly, we demonstrate that the quantum state of
these cavities can be efficiently mapped to the state of
propagating photons. This not only gives access to the

correlation and entanglement of the many-body system
but, as the title of this Letter suggests, gives rise to a distinct
source of entangled light.
The device that we present is a quantum metamaterial

[17] that embeds a regular array of dissipative quantum
emitters, merging a variety of physical effects into a single
CQED device: (a) nonperturbative sideband transitions in
the qubit-cavity couplings, engineered by suitable qubit
drivings; (b) an incoherent qubit repumping mechanism
based on a combination of local reservoirs with the qubit
driving; (c) directional emission of light in the cavity array
supported both by a collective interference and the band
engineering in this metamaterial. Through a detailed theo-
retical study of this setup, we prove that our device has the
following properties. (i) It acts as a source of entangled
light, created by a dissipative process that arises from a
combination of precisely tuned drivings with fast qubit
decays. (ii) The degrees of entanglement and squeezing,
as well as the frequency of the entangled modes, can be
tuned by means of the periodic drivings. (iii) It implements
a chiral dissipative process with broken reflection symme-
try, induced by the phase pattern of the driving. In practice,
this effect allows us to control the direction and momentum
of the emitted entangled modes. (iv) The setup can be used
to study dissipative many-body collective effects, both
because of its nontrivial collective steady state, but also
because the system undergoes a dissipative quantum phase
transition for suitable parameters.
The setup.—Our dissipative source of chiral quantum

light is schematically drawn in Fig. 1(a). It consists of a 1D
arrangement of coupled cavity-qubit units where the qubit
gaps are periodically and uniformly driven, and where each
unit is coupled to an independent thermal bath to which
they can dissipate. We describe the coherent part of the
cavity-qubit (CQ) units using the Hamiltonian (throughout
this Letter @ ¼ 1)
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where �z
j labels a qubit state with frequency �, ayj repre-

sents the creation of a photon with frequency!r, and Xj ¼
ðaj þ ayj Þ. The Hamiltonian includes both cavity-qubit, g,

and intercavity coupling, J. For moderate couplings and no
resonant driving, the cavity-qubit and cavity-cavity inter-
actions can be modeled in the rotating wave approximation
(RWA), forming the so called Jaynes-Cummings lattice

(JCL), with
P

jgð�þ
j aj þ H:c:Þ þP

hijiJðayi aj þ H:c:Þ.
Analogously to the Bose-Hubbard model, it supports an
insulator-superfluid quantum phase transition [18–23],
which originates from the competition between the repul-
sive nonlinearity induced by the two-level system and the
hopping term J. A promising field to implement such
many-body systems is CQED, as already, chips with doz-
ens of coupled identical resonators have been reported
[24,25].

In contrast with ordinary JCLs, for us the qubits do not
act as a source of nonlinearity, but rather mediate an
engineered dissipation. Furthermore, our model strongly
relies on the use and control of external qubit drivings. All
together, the dynamics is given by a Linblad-type master
equation [26] that reads

dt% ¼ �i½HCQ þHdrive; %�
þ �

X
j

�
��

j %�
þ
j � 1

2
f�þ

j �
�
j ; %g

�
: (2)

Throughout this Letter, we neglect radiative losses, which
can be straightforwardly included in our formalism and do

not modify qualitatively the discussion below. The first
important ingredient in this model is a uniform two-tone
driving of all qubit gaps

Hdrive ¼
X

n¼1;2

X
j

�n cosð�ntþ�n;jÞ�z
j; (3)

with tunable phases, �1;2j. As we will see, this driving

plays a major role in the collective effects. The second
important ingredient is the cavity and qubit dissipations, �
and �. In this Letter, we work in the limit of strong qubit
decay, � � g, in which the quantum emitter customizes
the effective environment of the photons.
Dissipation engineering.—Dissipation is normally

regarded as the worst enemy for preserving quantum
coherence in general and entanglement in particular.
However, an appropriately engineered dissipation is a
very efficient and robust way to drive a system to the
desired quantum state. This powerful idea has been con-
sidered not only on single-particle models such as laser
cooling [27,28] and cat state generation [29,30], but also
more recently in the engineering of strongly correlated
phases [31] and entanglement [32–35].
The principle underlying all these examples is a tailored

system-bath interaction, which allows us to engineer the
dissipatorL in the master equation governing the irrevers-
ible dynamics, @t� ¼ L�. These dissipators drive the
system of interest to its stationary state, L%� ¼ 0. In
most relevant cases, Davies’ theory assures convergence
to %� for any initial condition [36], thus, avoiding the need
to initialize quantum states. All this together makes
dissipation engineering a promising new paradigm for
quantum information processing [14,15,37].
Our source of entangled light is also based on engi-

neered dissipation. In absence of driving, the setup from
Fig. 1 thermalizes via Eq. (2) to a photon vacuum.
However, as soon as we modulate the qubit energy levels,
the effective dissipation changes its asymptotic state, ��, to
a product of two-mode entangled states. To make our
arguments clear, we will first sketch the main ideas using
a single qubit-cavity system and then introduce the photon
hopping, J, leaving all details for the Supplemental
Material [38].
Following Refs. [27,28,39], we prove in three steps

that a bad qubit can cool a cavity to a squeezed vacuum.
First, we adopt an interaction picture with respect to the
qubit, resonator and driving, ~HCQ1 ¼ gðae�i!rt þ H:c:Þ�
ð�þeifðtÞ þ H:c:Þ, where fðtÞ ¼ �tþP

�¼1;2ð��=��Þ�
sinð��tþ��Þ includes the periodic driving (3). Next,
under the assumption of weak driving, we use the Jacobi-
Anger expansion [40], retaining terms up to order
(��=��). The result in the RWA is

~HCQ1 ¼ �gðby��e�i�t þ H:c:Þ; (4)

for driving frequencies �1;2 ¼ �þ ��!r. Note that the

qubit is now coupled to the squeezed resonator modes

(b)

(a)

(c)

FIG. 1 (color online). (a) Setup of the system studied. Each
superconducting resonator is coupled to a qubit. The resonators
are coupled to each other, e.g., capacitively. We have also drawn
arrows representing the classical driving and the losses.
(b) Sketch for the quantum light source. The coupled cavity
can be embedded inside an open transmission line. The entan-
glement generated in the array is mapped onto the line. (c) Detail
for the resonator line coupling. We suggest a pointlike coupling
and a possible circuit design (see text).
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b ¼ aþ �eiqay; � ¼ g2
g1

; q ¼ �1 ��2: (5)

Here and following, we consider, for simplicity, unnormal-
ized squeezed modes: ½b; by� � 1. The squeezing and the
effective coupling strength, �g ¼ g� g1e

�i�1 , are deter-
mined by the external driving, g1 ¼ J1ð2�1=�1Þ�
J0ð2�2=�2Þ, and g2 ¼ J0ð2�1=�1ÞJ1ð2�2=�2Þ, through
Bessel functions. The final step consists in an adiabatic
elimination following the hierarchy of time scales � �
� � !r, g,�. The first inequality validates Eq. (2) since it
allows us to treat the qubit dissipation in a weak-coupling
or Lindblad-type master equation. The second inequality
justifies not only the RWA in the previous steps, but it also
indicates that the qubit relaxation, �, is faster than its
interaction with the cavity, and thus, it may be adiabati-
cally eliminated. The result of these manipulations is a
master equation, dt% ¼ ð2 �g2=�Þð2b%by � fbyb; %gÞ, that
cools the resonator to the vacuum of the squeezed mode, b.

What happens when the on-site squeezing of each reso-
nator competes with a coupling between resonators? Since
the dynamics of both processes happens on a different
operator basis, one would expect a competition between
these phenomena and even some phase transition. For
answering this problem, we now move on to the coupled
Hamiltonian (1). In the simplest case of translational in-
variance and periodic boundary conditions, we can intro-

duce momentum space modes ak ¼ N�1=2
P

je
�ikjaj

(k 2 2	=N � Z), and show that the problem is similar to
the single resonator case. More precisely, following the
same definitions and approximations as before, we obtain
the effective master equation in the appropriate interaction
picture (see Supplemental Material [38]),

dt%¼
X
k

�i!k½ayk ak;%�þ
2 �g2

�
ð2bk%byk �fbyk bk;%gÞ: (6)

The chain of qubits is now cooling the resonators to

the vacuum of two-mode-squeezed operators bk ¼ ak þ
�ay�kþq with dispersion relation (J � !r) !k ¼
�þ 2J cosðkÞ. Let us remark how the external driving
fully determines the properties of the asymptotic state. In
particular, while the phase of the driving, q ¼ �1 ��2,
selects the pairing between modes in bk, we will show that
the choice of frequencies, � ¼ ð�1 þ�2 � 2�Þ=2, cus-
tomizes the band structure and the amount of entangle-
ment. These are the main practical results in this Letter.

Entanglement in the stationary solution.—After the
adiabatic elimination, the effective master equation (6)
can be written as a direct sum of quadratic dissipators
acting on the Fock spaces of the operators (bk, b�kþq).

Consequently, the asymptotic state of the master equation
will be a product of Gaussian states in each of these Hilbert
spaces, %� ¼ ���

k;�kþq. Each of the final density matrices

��
k;�kþq will be fully characterized by the first and second

moments of the operators RðkÞ ¼ fQk; Pk; Q�kþq; P�kþqg,

with Qk ¼ 1=
ffiffiffi
2

p ðayk þ akÞ and Pk ¼ �i=
ffiffiffi
2

p ðayk � akÞ.
In particular, the first moments are all zero, while the
second moments are conveniently grouped in the two-
mode covariance matrix


̂k ¼ 1

2
hRðkÞ

l RðkÞ
m þ RðkÞ

m RðkÞ
l i ¼ � �k

�k �

 !
: (7)

This features a diagonal matrix � ¼ ð1þ �2Þ=2ð1�
�2ÞI2, and two nonzero off-diagonal blocks

�k ¼ �

E2
k;�kþq þ ð1� �2Þ2

�2 � 1 Ek;�kþq

Ek�kþq �2 � 1

 !
: (8)

Note that the most relevant parameter is

Ek;�kþq ¼ �ð!k þ!�kþqÞ=4g21
¼ �½�þ 2J cosðq=2Þ cosðk� q=2Þ�=2g21; (9)

because it determines the degree of entanglement between
the pairs of modes, (k, �kþ q). We quantify this through
the logarithmic negativity (see the Supplemental Material
[38]), which is

EN ¼ �log2

�
1þ �2

1� �2
� 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
k;�kþq þ ð1� �2Þ2

q �
; (10)

whenever Ek;�kþq < ð1� �2Þ3=2=� and zero elsewhere.

Figure 2 shows a contour plot of EN in terms of both
Ek;�kþq and �, together with some sections for fixed E. Let
us remark how entanglement significantly grows when
Ek;�kþq approaches 0 and when � approaches 1. A qualita-

tive explanation follows from themaster equation (6): when
Ek;�kþq approaches zero, it means that !k þ!�kþq ¼ 0.

Consequently, the terms that generate entanglement,

ayk �a
y
�kþq � fayk ay�kþq; %g and 2ak%a�kþq�faka�kþq;%g,

do not oscillate and are not suppressed. Moreover, since the

FIG. 2 (color online). (a) Logarithmic negativity EN from
Eq. (10). (b) Cuts of (a) at the values of E ¼ 0, 0.2, and 0.4
(lower), as arrow-marked in (a). For values of E above 0.5, EN

becomes negligible.
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strength of those terms grows as�2 andwe know that� 	 1
by definition, the optimal amount of entanglement is found
when � approaches 1. We focus on the case � 	 1, which
corresponds to cooling to a squeezed vacuum, since the case
�> 1 does not have a well defined steady state, thus,
signaling an instability in the system.

We finish by an estimation of the amount of entangled
mode pairs in momentum space. Figure 2 shows that what
really limits the entanglement is Ek;�kþq. The bigger the

entanglement, the closer Ek;�kþq must be to 0. It turns out

that Ek;�kþq ¼ 0 iff 2J=�> 1 [cf. below Eq. (8)].

Criticality and phase transitions.—We have found that
entanglement diverges in the limit � ! 1 when Ek;�kþq ¼
0. In this limit, it is easy to show that �� becomes a product
of two-mode Einstein-Podolsky-Rosen state [41], with a
diverging correlation length. This is an example of a
critical point which is entirely driven by dissipation [16].

However, criticality in dissipative systems is character-
ized by the vanishing of the L eigenvalue with the largest
real part (closest to zero), Reð�1Þ ! 0 [42]. A practical
consequence is that the relaxation time becomes infinite,
T1 
 ½Reð�1Þ��1 ! 1, close to the transition point. In our
case, T1 
 ð1� �Þ�1. Consequently, the rise in the time
needed to reach the stationary entangled state needs to be
considered in any practical application. In other words,
there is a trade-off between the maximum entanglement
achieved and the time to get it, as exemplified by the
numerical simulations in Fig. 3.

Quantum light emission.—So far, we have considered
the two-mode entanglement in the coupled cavity system.
The question now is how to extract this entanglement.
In doing so, we study the architecture depicted in
Fig. 1(b). For simplicity, we assumed that each resonator
is locally coupled to the transmission line; see Fig. 1(c).
In general, the coupling will be both through mutual
inductance and capacitance. In the weak coupling limit,
we end up with the usual RWA-type interaction [43,44]:

H¼ i
P

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N=4	2v

p R
d!½byð!Þak�H:c:�, where
 stands

for the line-resonator coupling strength. For details, see the

Supplemental Material [38]. Now, using the input-output
formalism, the fields in the transmission line before and
after interacting with the array can be related through [38,44]

bink ðtÞ ¼ boutk ðtÞ � 1

d

ffiffiffiffiffiffiffi

v

N

r
e�iðkv=dÞtak; (11)

where bink ðtÞ ¼ 1=2	
Rðkþ�Þv=d
ðk��Þv=d d!e�i!tb0ð!Þ, � ¼ 	=N,

d are the resonator lengths, and v ¼ 1=
ffiffiffiffiffiffiffiffiffi
l0c0

p
the trans-

mission line velocity (l0, c0 are the inductance and capaci-
tance per unit of length in the transmission line). This is the
final result of the Letter. By considering the extended
coupling, the resonator field modes are mapped onto the
line with a resolution in frequency
1=N (N is the number
of oscillators). Therefore, the system presented here works
as a source of chiral quantum light.
Conclusions.—In this Letter, we have introduced a

model presenting criticality driven by dissipation. The
model is based in the driven JCL. Our proposal uses simple
elements, such as qubits with a tunable gap [45,46],
coupled resonators arrays [24,25], and external drivings,
which are standard in state-of-the-art CQED experiments.
We argue that it could be implemented thusly and tested
using recent advances in the field of microwave state
tomography [11,47,48]. Some numbers for the qubit and
resonator parameters already reported in the literature that
could be used to test our results may be: �=!r ¼ 10,
g=!r ffi 10�2, �=!r ffi 1, �=!r ffi 10�2, and J=� ffi 1
[38]. Furthermore, as detailed in the Supplemental
Material [38], we have tested the feasibility of our proposal
by (i) testing the approximations done to obtain the effec-
tive master equation (6) and (ii) checking the robustness of
the state against the spread in the experimental parameters.
We have done numerical investigations and, within a 10%
error in the qubit gap, the amount of entanglement matches
that obtained without errors in Eq. (10).
The potential interest of our work goes beyond the field

of many body physics driven by dissipation. With the
discussed feasibility and robustness, the state generated
has a practical application. We have described how to use
this nontrivial stationary state as a bright source of
entangled light. This source features interesting properties:
it is directional, with entangled modes that can be spatially
separated; it is broadband, entangling different modes and
frequencies, and the only parameters that need to be tuned
are the intensity and the frequency of the external driving.
Our ideas may also be useful in a variety of schemes
recently introduced in the broader field of many-body
quantum optical systems; see Ref. [49] (atomic ensem-
bles), Ref. [50] (trapped ions), and Ref. [51] (quantum
dots coupled to plasmonic cavities).
We acknowledge support from the SpanishDGICYTunder

Projects No. FIS2009-10061 and No. FIS2011-25167, by the
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FIG. 3 (color online). Time evolution of the logarithmic
negativity EN for Ek;�kþq ¼ 0 and different values �.

PRL 111, 073602 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

16 AUGUST 2013

073602-4



[1] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77,
513 (2005).

[2] C.M. Caves, K. S. Thorne, R.W. P. Drever, V. D.
Sandberg, and M. Zimmermann, Rev. Mod. Phys. 52,
341 (1980).

[3] D. F. Walls and G. J. Milburn, Quantum Optics (Springer,
New York, 1994).

[4] A. Zagoskin, E. Ilichev, M. McCutcheon, J. Young, and
F. Nori, Phys. Rev. Lett. 101, 253602 (2008).

[5] M.A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R.
Vale, and K.W. Lehnert, Nat. Phys. 4, 929 (2008).

[6] C. Eichler, D. Bozyigit, C. Lang, M. Baur, L. Steffen,
J.M. Fink, S. Filipp, and A. Wallraff, Phys. Rev. Lett. 107,
113601 (2011).

[7] N. Bergeal, F. Schackert, L. Frunzio, and M.H. Devoret,
Phys. Rev. Lett. 108, 123902 (2012).

[8] C.M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen,
J. R. Johansson, T. Duty, F. Nori, and P. Delsing, Nature
(London) 479, 376 (2011).

[9] M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E.
Lucero, M. Neeley, A. D. O’Connell, D. Sank, J. Wenner,
J.M. Martinis, and A.N. Cleland, Nature (London) 459,
546 (2009).

[10] E. Flurin, N. Roch, F. Mallet, M. Devoret, and B. Huard,
Phys. Rev. Lett. 109, 183901 (2012).

[11] C. Eichler, D. Bozyigit, C. Lang, L. Steffen, J. Fink, and
A. Wallraff, Phys. Rev. Lett. 106, 220503 (2011).

[12] K.W. Murch, U. Vool, D. Zhou, S. J. Weber, S.M. Girvin,
and I. Siddiqi, Phys. Rev. Lett. 109, 183602 (2012).

[13] D. Marcos, A. Tomadin, S. Diehl, and P. Rabl, New J.
Phys. 14, 055005 (2012).

[14] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler,
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[15] B. Kraus, H. Büchler, S. Diehl, A. Kantian, A. Micheli,
and P. Zoller, Phys. Rev. A 78, 042307 (2008).

[16] J. Eisert and T. Prosen, arXiv:1012.5013.
[17] A. Rakhmanov, A. Zagoskin, S. Savelev, and F. Nori,

Phys. Rev. B 77, 144507 (2008).
[18] M. J. Hartmann, F. G. S. L. Brandão, and M.B. Plenio,

Nat. Phys. 2, 849 (2006).
[19] A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L.

Hollenberg, Nat. Phys. 2, 856 (2006).
[20] D. Angelakis, M. Santos, and S. Bose, Phys. Rev. A 76,

031805 (2007).
[21] J. Koch and K. Le Hur, Phys. Rev. A 80 (2009)
[22] M. Leib and M. J. Hartmann, New J. Phys. 12, 093031

(2010).
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