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Abstract. We study the stability and evolution of various elastic defects in a flat
graphene sheet and the electronic properties of the most stable configurations.
Two types of dislocations are found to be stable: ‘glide’ dislocations consisting of
heptagon–pentagon pairs, and ‘shuffle’ dislocations, an octagon with a dangling
bond. Unlike the most studied case of carbon nanotubes, Stone Wales defects
seem to be dynamically unstable in the planar graphene sheet. Similar defects
in which one of the pentagon–heptagon pairs is displaced vertically with respect
to the other one are found to be dynamically stable. Shuffle dislocations will
give rise to local magnetic moments that can provide an alternative route to
magnetism in graphene.
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1. Introduction

Graphene has become a very popular material since its recent synthesis [1, 2] and
characterization. Among the most interesting properties related to the possible technological
applications are its high electron mobility and minimal conductivity at zero bias [3]. Despite
the high mobility of most graphene samples, their mean free path of the order of microns [1]
implies the presence of defects. Very recent experiments performed on suspended graphene
[4, 5] indicate that, besides the influence of the substrate, there must be intrinsic defects in the
samples.

The structure of disorder is also crucial to explain the magnetism found in graphite
samples [6, 7]. It is now clear that the intrinsic ferromagnetism is linked to defects in the sample
altering the coordination of the carbon atoms (vacancies, edges or related defects) [8]. One of
the most stable defects found in this work, the shuffle dislocation, has an unpaired electron that
can contribute to the magnetic properties of the sample.

Local disorder in graphene has been studied intensely and we refer to the review article [9]
for a fairly complete list of references. A different type of disorder is provided by the observation
of ripples in suspended graphene [10, 11] and in graphene grown on a substrate [12, 13].

Inspired by the physics of nanotubes and fullerenes, curved graphene has been modeled
with curvature induced by topological defects [14]–[18]. In these works, it was shown that
conical singularities in the average flat graphene sheet induce characteristic charge anisotropies
that could be related to recent observations [19].

The elastic and mechanical properties of graphitic structures have been studied intensely in
the past, mostly in the context of understanding the formation of fullerenes and nanotubes. Very
little work has been done for the flat graphene sheet [20, 21] and topological defects have often
been excluded in these studies. In the fullerene literature, it was established that the formation
of topological defects (substitution of a hexagonal ring by other polygons) is the natural
way in which the graphitic net heals vacancies and other damage produced for instance by
irradiation [22]. Among those, disclinations (isolated pentagon or heptagon rings), dislocations
(pentagon–heptagon pairs) and Stone–Wales (SW) defects (special dislocation dipoles) were
found to have the least formation energy and activation barriers.

Dislocations and SW defects have been observed in carbon structures [23] and are known
to have a strong influence on the electronic properties of nanotubes. The possible role played by
nanotube curvature in stabilizing various defects is not yet clear. Glide and shuffle dislocations
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in irradiated graphitic structures have been described in [24]. Experimental observations of
dislocations have been reported very recently in graphene grown on Ir in [25].

The purposes of this work are to discuss the formation and stability of topological defects
(mainly dislocations) in a flat graphene sheet and to analyze the electronic properties of
the graphene samples in the presence of the most stable defects. This paper addresses two
aspects of physical reality—elasticity and electronics—that are often described using very
different language. We intend to reach a general audience and have included brief pedagogical
descriptions of the methods used in both disciplines.

This paper is organized as follows: section2 explains the method used to study the
formation and stability of defects and it describes their stable configurations. We find two types
of stable dislocations, one with a dangling bond. SW defects are found to be unstable in the
flat lattice whereas similar defects in which one of the pentagon–heptagon pairs is displaced
vertically with respect to the other one are found to be dynamically stable. Section3 gives a brief
description of the tight binding method and the physical information that can be extracted from
it. The electronic characteristics of the two dislocations are derived. In section4, we present the
conclusions and future work.

2. Periodized discrete elasticity and stability of defects

In continuum mechanics, dislocations are usually described by the equations of linear elasticity
with singular sources whose supports are the dislocation lines. To describe dislocations in
two dimensional (2D) graphene, we should have a more detailed theory which can be used
to regularize the corresponding point singularities. It is possible to useab initio theories as
regularizers but, provided dislocations are sparse and far from each other, there is a much
more economic and insightful alternative. We can discretize appropriately linear elasticity on
the hexagonal lattice and then periodize the resulting linear lattice model to allow dislocation
gliding. The resulting model equations for the displacement vector(u′(n, t), v′(n, t)) (written
in primitive coordinates) are [26] (see the appendix for a brief description of their derivation):

ρa2

2

∂2u′

∂t2
=

λ +µ

3
[(H − D)u′ + (2H + D)v′] + T [(λ + 3µ)u′

− 2(λ +µ)v′], (1)

ρa2

2

∂2v′

∂t2
=

λ +µ

3
[(H + 2D)u′ + (D − H)v′] + T [(λ + 3µ)v′

− 2(λ +µ)u′], (2)

wheren = (x, y) is a nodeA or B on one of the two sublattices in figure1, ρ is the mass density,
a is the lattice constant, andλ andµ are the Lamé coefficients which can be obtained from the
elastic constants of (isotropic) graphite in its basal plane,C11 = C12 + 2C66 = 1060 GPa,C12 =

λ = 180 GPa andC66 = µ = 440 GPa [27]. Note thatu′
= (u − v/

√
3)/a andv′

= 2v/(a
√

3)

are nondimensional because the components of the displacement vector in Cartesian coordinates
(u, v) have units of length. The difference operatorsT , D and H act on functions of the
coordinates(x, y) of the nodeA in figure1 according to the formulae:

T u′
= g(u′(n1) − u′(A)) + g(u′(n2) − u′(A)) + g(u′(n3) − u′(A)), (3)

Hu′
= g(u′(n6) − u′(A)) + g(u′(n7) − u′(A)), (4)

Du′
= g(u′(n4) − u′(A)) + g(u′(n9) − u′(A)), (5)
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Figure 1. Neighbors of a given atomA. Only the neighbors labeled 1, 2, 3, 4, 6,
7 and 9 are affected by the difference operatorsT , H andD used in our discrete
elasticity model.

whereg is a periodic function, with period one, and such thatg(x) ∼ x as x → 0. Note that
the operatorT involves finite differences with the three next neighbors ofA which belong
to sublattice 2, whereasH and D involve differences between atoms belonging to the same
sublattice along the primitive directionsa andb, respectively. See figure1. The same formulae
hold if (x, y) is an atomB in the other sublattice. Far from dislocation cores, the finite
differences are very small and close to the corresponding differentials. If we Taylor expand
these finite difference combinations about(x, y), insert the result in (1) and (2) and write the
displacement vector in Cartesian coordinates, we recover the equations of linear elasticity [26].
The role of the periodic functiong is to allow dislocation gliding [28]–[30]. When a defect
moves, a few atoms change some of their nearest neighbors. We use the periodized difference
operatorsT , D and H in (1) and (2) instead of solving discrete elasticity with an updating
algorithm that keeps track of neighbor change. The equations of periodized discrete elasticity
(1) and (2) regularize linear elasticity and allow for dislocation motion and for dislocation
nucleation [31].

How do we find the defects in graphene that correspond to different edge dislocations?
We first substitute(x, y) in the elastic field of a dislocation (such as the edge dislocation of
page 57 of [32]) by x = a (x′

0 + l + y′

0/2 +m/2) and y = a
√

3(y′

0 + m)/2. l andm are integer
numbers that allow the resulting displacement vector to be a vector function of lattice points,
which we denote byU(l , m). The primitive coordinatesx′

= x′

0 + l andy′
= y′

0 + m are centered
on an appropriate point(x′

0, y′

0) which is different from the origin to avoid the singularity in the
elastic field coinciding with a lattice point. We now solve an overdamped periodized discrete
elasticity model (in which second-order time derivatives are replaced by first-order ones) with
a boundary condition given byU and with an initial condition also given byU. After a certain
relaxation time, the solution of the model evolves to a stable stationary configuration which
depends on the location of the origin(x′

0, y′

0) and onU. This stable configuration is also a stable
configuration of the original equations of the model (with inertia).

By using the method just sketched, we have obtained that the same dislocation solution
of the equations of elasticity may have different cores, which is a familiar fact in crystals
with diamond structure and covalent bonds, such as silicon; see page 376 in [33]. The
stable configurations corresponding to one edge dislocation are pentagon–heptagon defects
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Figure 2. Structure of the glide (left) and shuffle (right) dislocations in the planar
graphene lattice.

(‘glide’ dislocations) if the singularity is placed between two atoms that form any non-vertical
side of a given hexagon. If the singularity is placed in any other location different from a lattice
point, the core of the singularity forms a ‘shuffle’ dislocation: an octagon having one atom with
a dangling bond, as shown in figure2.

If we use the elastic field of an edge dislocation dipole as initial and boundary conditions,
there are again different stable configurations depending on how we place the dislocation
cores. An edge dislocation dipole is formed by two edge dislocations with Burgers vectors
in opposite directions. LetE(x, y) be the displacement vector corresponding to the edge
dislocation. IfU = E(x − x0, y − y0 − l/2) − E(x − x0, y − y0) (l = a/

√
3 is the hexagon side

in terms of the lattice constanta), the stable stationary configuration is that of a vacancy.
If U = E(x − x0, y − y0 − l ) − E(x − x0, y − y0), a dynamically stable divacancy (formed by
one octagon and two adjacent pentagons) results. An initial configuration corresponding to a
SW defect,E(x − x0 − a, y − y0) − E(x − x0, y − y0), is dynamically unstable: at zero applied
stress, the two component edge dislocations glide toward each other and annihilate. If a shear
stress is applied in the glide direction of the two edge dislocations comprising the SW defect,
these defects either continue destroying themselves or, for large enough applied stress, are split
in their two component heptagon–pentagon defects that move in opposite directions [26].

Instead of a dislocation dipole, our initial configuration may be a dislocation loop, in which
two edge dislocations with opposite Burgers vectors are displaced vertically by one hexagon
side: E(x − x0 − a, y − y0) − E(x − x0, y − y0 − l ) (l = a/

√
3 is the length of the hexagon

side). In principle, the dislocation loop could evolve to an inverse SW defect (7-5-5-7). Instead,
this initial configuration evolves toward a single octagon. If we displace the edge dislocations
vertically byl/2,E(x − x0 − a, y − y0) − E(x − x0, y − y0 − l/2), the resulting dislocation loop
evolves toward a single heptagon defect [26].

3. Electronic properties

The electronic structure of the solids and most of their low energy properties are dictated by the
position of the Fermi surface, its shape and the amount of electrons available at energies close
to it. In the independent electron approximation, valid when the kinetic energy of the electrons
is much larger than their mutual interactions, electronics is well described by the band theory.
The latter gives two main outputs: geometry of the Fermi surface and density of states (DOS) at
the Fermi level [34].
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The tight-binding approximation assumes that the electrons in the crystal behave much like
an assembly of constituent atoms. It works by replacing the many-body Hamiltonian operator
by a matrix Hamiltonian. The solution to the time-independent single electron Schrödinger
equation is well approximated by a linear combination of atomic orbitals. These form a minimal
set of short range basis functionsφi —that we do not need to specify—and the full wavefunction
at sitei is given by

9i =

∑
i j

Ci j φ j .

The electron density at a lattice sitepq can be computed as

Ppq = 2
occ∑
k

∑
pq

CpkC
∗

qk.

The tight binding energy is given by

E =

∑
pq

Ppqhpq = 2
occ∑
k

∑
pq

CpkC
∗

qkhpq,

wherehpq is the element of the matrix Hamiltonian.
The advantage of the method is that matrix elements

hpq = 〈p|H |q〉 =

∫
drφ∗

p(r)Hφq(r),

Spq = 〈φp|φq〉 =

∫
drφ∗

p(r)φq(r),

are not explicitly calculated but approximated by phenomenological parameters that depend on
the geometry of the lattice and the nature of the orbitals. The full strength of the tight binding
approximation is related to the perfect-discrete-translational invariance of the periodic lattice.
The use of Bloch wavefunctions in Fourier space allows a full description of the dispersion
relation with the only input of the overlapping integrals that can be indirectly deduced from
experiments. Since we are going to treat lattice defects that break translational invariance we
will stay in real space and adopt the simplest possible approximation: site energies are set to zero
and overlapping integrals are nonzero only for nearest neighbor atoms. The hopping integral in
graphene is estimated to be of the order oft ∼ 2.7 eV. In summary, and in a very general sense,
the electronic structure within the tight binding approximation is obtained simply by defining a
lattice with links, and diagonalizing the Hamiltonian, a matrix with elementshi j equal tot , if
atom i is linked to j and zero otherwise. This is the calculation that we have performed. The
honeycomb lattice is generated by moving the unit cell made of two atoms along the two unit
vectors that generate the lattice as described in [34].

A full analysis of the tight binding structure of graphene can be seen in the original
paper [35] and in the reference book [36]. Its main outcome is that the Fermi surface reduces to
two points and the DOS vanishes at the Fermi energy which, in turn, determines the semimetallic
character of the material. The DOS is very important to characterize the electronic and transport
properties of the samples. Disorder can open a gap or, more often, induce a finite DOS. Real
samples have localized states at (or around) zero energy which are induced close to edges,
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Figure 3. Total DOS. Left panel: clean graphene. Right panel: graphene ribbon
with zigzag edges.

vacancies, ad-atoms or other defects. These midgap states can form very narrow bands, where
the electronic interactions become important and may lead to electronic instabilities, particularly
ferromagnetism [37].

The DOS of an ideal graphene sheet is shown in the left panel of figure3. It vanishes
at the Fermi energy what determines the semi-metallic character of the material. Defects in
the lattice very often induce states at zero energy. An important class is that of edge states
induced by certain boundaries in finite lattices or real samples (graphene nanoribbons). Zigzag
(armchair) edges can be seen in the horizontal (vertical) borders in figure1. Zigzag edges
with uncoordinated atoms belonging to the same sublattice induce a number of zero energy
edge states proportional to the amount of unpaired lattice sites [38]. They are important in
potential applications. These energy states are localized at the edges as can be seen in the local
DOS (LDOS) of figure4. When studying electronic properties via numerical simulations, it is
important to disentangle the low-energy effects coming from the boundary from those which
are intrinsic to the defects under study. The DOS of a graphene nanoribbon with zigzag edges
is shown for comparison in the right panel of figure3.

3.1. Electronic structure of single dislocations

As discussed in section2, the ‘glide’ and ‘shuffle’ dislocations shown in figure2 are stable
in the graphene sheet. We have performed a tight binding calculation for these two types
of dislocations. Figure4 shows the configuration of the lattice for the dislocations depicted
in the inset where the atoms that constitute the defect are numbered. The extra rows of
atoms characteristic of these edge dislocations are shown in red. The area of the circles is
proportional to the squared wavefunction for one of the lowest energy eigenvalues. The extra
charge appearing at the shuffle dislocation is due to the dangling bond attached to it. Figure4
also shows the extra charge at the zigzag edges.

In figure5, we show the LDOS for the five sites around the defect numbered in the inset
of figure 4 and for an extra site located at a certain distance from the defect. The LDOS is
drastically distorted at the defects but rapidly recovers the normal shape away from the center of
the defect. The pentagon–heptagon pair (glide dislocation) breaks the electron–hole symmetry
of the lattice but the corresponding LDOS resembles that of the perfect lattice shown in figure3.
The LDOS at zero energy is not zero, but it has a minimum in all the cases. The sixth graph
shows the LDOS at an atom located six lattice units apart from the defect. This is the distance
at which the influence of the dislocation ceases to be noticeable.

The shuffle dislocation has a more pronounced effect on the LDOS. As can be seen in
figure 5, at zero energy there appear sharp peaks at the position of the dangling bond atom
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Figure 4. Left: lattice structure and charge density for a low energy eigenstate in
the presence of a glide dislocation shown in the inset. Right: same for the shuffle
dislocation.

Figure 5. Left: for the graphene sample with a glide dislocation depicted in
figure 4, LDOS at the numbered sites around the defect shown in the inset of
figure4. Right: same for the sample with a shuffle dislocation.

and at neighboring sites of the same sublattice whereas dips in the LDOS appear at the sites of
the opposite sublattice. The distortion in the LDOS decays faster with distance in the case of
a shuffle dislocation than in the case of a heptagon–pentagon pair. The right panel of figure5
shows that the DOS of the perfect lattice is already recovered at position 6 of the inset in figure4,
one lattice distance away from the defect. The mid gap state induced by the defect is strongly
peaked at the defect position, similarly to what happens with the zigzag edges states. This type
of dislocation does not break the electron–hole symmetry of the lattice.
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Figure 6. Left: lattice structure of a SW defect. Right: same for the dislocation
dipole described in the text.

3.2. Defects of SW type

One of the best studied defects in the carbon nanotube literature is the SW defect [39]. It consists
of two pentagon–heptagon pairs that can be obtained by a 90◦ rotation of a lattice bond. The
resulting structure is shown in the left-hand side of figure6. These defects play a very important
role in the surface reconstruction of irradiated nanotubes [40] and affect their mechanical
properties. From the standpoint of elasticity, they can be seen as two identical edge dislocations
that have opposite Burgers vectors and share the same glide line. They appear to be dynamically
unstable: their component edge dislocations glide towards each other and annihilate, leaving the
undistorted lattice as the final configuration [26]. Our results have been obtained by numerically
solving the equations of the model with an initial condition corresponding to a SW defect. Since
this initial condition evolves towards the undistorted lattice, we may conclude that either the SW
defect is dynamically unstable or that it is stable with such a small basin of attraction that, unless
the initial condition happens to be inside this basin, any numerical errors move the system away
from it.

A type of defect whose final configuration is very similar—two heptagon–pentagon pairs—
is shown in the right panel of figure6. It is a dislocation dipole whose two edge dislocations with
opposite Burgers vectors are displaced vertically by one lattice unit. By solving the periodized
discrete elasticity model of section2, we can show that this configuration is dynamically stable.
The electronic structure of these two defects is depicted in figures7 and8. These dipole defects
induce a stronger local distortion of the charge density than single dislocations. While the real
SW defect does not alter the structure of the lattice edges, the other dislocation dipole has
two extra atoms as compared to the perfect lattice, and therefore it alters the structure of its
edges. This is clearly visible in figure6. The presence of these defects can affect the electronic
properties of real samples.

4. Conclusions and discussion

We have used a regularization of continuum elasticity on the honeycomb lattice to explore the
stability and evolution of topological defects. Two types of dislocations are stable: pentagon–
heptagon pairs (‘glide’ dislocations) and ‘shuffle’ dislocations: an octagon having one atom
with a dangling bond. They are shown in figure2.
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Figure 7. Left: lattice structure and charge density for the fourth positive-energy
eigenstate in the presence of a SW defect. Right: same for the dislocation dipole
described in the text.

Figure 8. From left to right: LDOS of a real SW defect at the site shared by
the two adjacent pentagons and at its nearest neighbor. LDOS of the dislocation
dipole discussed in the text at the site shared by the two heptagons and at its
nearest neighbor.

Both defects induce distortions in the LDOS at low energies that decay rapidly with the
distance to the defect. The presence of a dangling bond in the shuffle dislocations drastically
enhances these effects but, as in the case of zigzag states, the low energy states are very
localized. Dislocations in metals have been proposed to give rise to electron localization in
3D systems [41, 42] although the tendency to localization seems to be much weaker in 2D
crystals [43]. The nature of the lowest energy states found in this work indicates that dislocations
will not localize states at zero energy in the honeycomb lattice in agreement with [43], but we
will perform a more systematic analysis of this issue in the future.

The main physical effect of the shuffle dislocations will be related to the nucleation of
magnetic moments at the dangling bonds. Work in this direction is in progress.

Regarding configurations of edge dislocation dipoles in discrete elasticity, vacancies and
di-vacancies are stable but SW defects are very likely to be dynamically unstable. This situation
is to be confronted with what happens in the carbon nanotubes where SW defects are stable.
This points to the idea that curvature and geometry play a role in their stabilization. We are also
working in this direction.

A defect similar to the SW consists of a dislocation dipole whose component dislocations
are displaced one lattice unit. This defect is dynamically stable and can give rise to a large
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local distortion of the electronic density. The defects discussed in this work are very likely to
be present in real samples of both graphene and nanoribbons. They will affect the transport
properties of the samples and they will also alter the configuration of the sample edges. This
must be taken into consideration in the cases when perfect tailoring of the edges is important.
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Appendix. Derivation of the discrete model equations [ 26]

The Navier equations of linear isotropic elasticity for a 2D hexagonal lattice are [26]:

ρ
∂2u

∂t2
= C11

∂2u

∂x2
+ C66

∂2u

∂y2
+ (C66 + C12)

∂2v

∂x∂y
, (A.1)

ρ
∂2v

∂t2
= C66

∂2v

∂x2
+ C11

∂2v

∂y2
+ (C66 + C12)

∂2u

∂x∂y
, (A.2)

where (u, v) is the displacement vector,ρ is the mass density andC66 = µ, C12 = λ and
C11 = λ + 2µ are the elastic constants in the basal plane of graphite.λ and µ are the Lamé
coefficients of isotropic elasticity.

We want to regularize the Navier equations in a hexagonal lattice so that the solutions of
the resulting discrete model are not singular at the core of a dislocation and that dislocation
glide motion is allowed along primitive directions. To do so, we shall discretize conveniently
the Navier equations and then put back the translation symmetry of the lattice by introducing
appropriate periodic functions.

To discretize the Navier equations, we denote by(x, y) the coordinates of the atomA
in figure1. Besides the nearest neighbors with coordinatesn1 = (x − a/2, y − a/(2

√
3)), n2 =

(x + a/2, y − a/(2
√

3)) andn3 = (x, y + a/2), there are four atoms separated fromA by the
primitive vectors(±a, 0), ±(a/2, a

√
3/2), namelyn6 = (x − a, y), n7 = (x + a, y), n4 = (x −

a/2, y − a
√

3/2) and n9 = (x + a/2, y + a
√

3/2). With the finite differences betweenA, its
three nearest neighbors and its four next nearest neighbors along primitive directions, we may
form the following combinations

Tl u = [u(n1) − u(A)] + [u(n2) − u(A)] + [u(n3) − u(A)], (A.3)

Hl u = [u(n6) − u(A)] + [u(n7) − u(A)], (A.4)

Dl u = [u(n4) − u(A)] + [u(n9) − u(A)]. (A.5)

Taylor expansions of these finite difference combinations about(x, y) yield

Tl u ∼

(
∂2u

∂x2
+

∂2u

∂y2

)
a2

4
,
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Hl u ∼
∂2u

∂x2
a2,

Dl u ∼

(
1

4

∂2u

∂x2
+

√
3

4

∂2u

∂x∂y
+

3

4

∂2u

∂y2

)
a2,

as a → 0. In equations (A.1) and (A.2), we now substituteHlu/a2, (4Tl − Hl)u/a2 and
2(Dl − 3Tl + Hl/2)u/(

√
3a2) for ∂2u/∂x2, ∂2u/∂y2 and ∂2u/∂x∂y, respectively, with similar

substitutions for the derivatives ofv. In terms of the Lamé coefficients, the following equations
are then obtained:

ρa2∂2u

∂t2
= 4µ Tlu + (λ +µ) Hlu +

2(µ +λ)
√

3

(
Dl − 3Tl +

1

2
Hl

)
v, (A.6)

ρa2∂2v

∂t2
= 4µ Tlv + (λ +µ) (4Tl − Hl)v +

2(µ +λ)
√

3

(
Dl − 3Tl +

1

2
Hl

)
u, (A.7)

at every point of the lattice. By construction, these equations become the Navier equations (A.1)
and (A.2) in the limit asa → 0. They can be written in primitive coordinates as (1) and (2)
(with operatorsTl, Hl andDl instead ofT , H andD, respectively) by using the transformation
u′

= (u − v/
√

3)/a andv′
= 2v/(a

√
3) . The resulting model is linear and does not allow for

the changes of neighbors involved in defect motion. An obvious way to achieve this is to update
the neighbors as a defect moves. Models such as (1)–(2) (with operatorsTl, Hl and Dl) would
have the same appearance, but the neighborsni would keep their relative positions only at the
start. At each time step, we could keep track of the position of the different atoms and update
the coordinates of theni . Updating neighbors is convenient but it has a high computational
cost and analytical studies of the resulting models are not easy. In simple geometries, we can
avoid updating by introducing a periodic function of differences in the primitive directions that
automatically describes link breakup and union associated with defect motion. Besides reducing
computational cost, the resulting periodized discrete elasticity models allow analytical studies
of defect deppining [28]–[30], motion and nucleation [31].

To restore crystal periodicity, we replace the linear operatorsTl, Hl andDl of (A.3), (A.4)
and (A.5) in equations (A.6) and (A.7) by their periodic versions (3), (4) and (5), thereby
obtaining equations (1) and (2) in primitive coordinates. About four atomic spacings away
from the core of a dislocation, the solution of the discrete model is very close to the known
solution of linear elasticity, so that a lattice with 8× 8 lattice spacings is sufficient to numerically
calculate dislocation cores. Figures2 and6 have been calculated using a lattice with 18× 18
lattice spacings (362 = 1296 atoms).

Selected results of [26] are described in section2.
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