[1] M. Anderson. Population biology of infectious diseases: Part 1. Nature, 280:361-367, 1979. [2] Nam P. Bhatia and George P. Szeg¨. Dynamical systems: Stability theory and applications. Lecture o Notes in Mathematics, No. 35. Springer Verlag, Berlin, 1967. [3] D. Bichara, A. Iggidr, and G. Sallet. Global analysis of multi-strains sis, sir and msir epidemic models. Journal of Applied Mathematics and Computing, 44(1):273-292, 2014. [4] I.I. Bogoch, M.I. Creatore, M.S. Cetron, J.S. Brownstein, N. Pesik, J. Miniota, T. Tam, W. Hu, A. Nicolucci, S. Ahmed, J.W. Yoon, I. Berry, S.I. Hay, A. Anema, A.J. Tatem, D. MacFadden, M. Ger man, and K. Khan. Assessment of the potential for international dissemination of ebola virus via commercial air travel during the 2014 west african outbreak. The Lancet, 9962:29-35, 2016. [5] S. Boslaugh. Statistics in a Nutshell, 2nd Edition. O'Reilly Media, Incorporated, 2012. [6] F. Brauer and C. Castillo-Ch´vez. Mathematical Models in Population Biology and Epidemiology. Texts a in applied mathematics. Springer, 2001. [7] C.D.C. Ebola disease. Centers for Disease Control, 2014. [8] G. Chowell, F. Abdirizak, S. Lee, J. Lee, E. Jung, H. Nishiura, and C. Viboud. Transmission charac teristics of mers and sars in the healthcare setting: a comparative study. BMC Medicine, 13(1):1-12, 2015. [9] G. Chowell and H. Nishiura. Transmission dynamics and control of ebola virus disease (evd): a review. BMC Medecine, 12(196), 2014. [10] D.L. DeAngelis and L.J. Gross. Individual-based Models and Approaches in Ecology: Populations, Communities, and Ecosystems. Chapman & Hall, 1992. [11] O. Diekmann, H. Heesterbeek, and T. Britton. Mathematical Tools for Understanding Infectious Disease Dynamics:. Princeton Series in Theoretical and Computational Biology. Princeton University Press, 2012. [12] O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology, 28(4):365-382, 1990. [13] R.T.D. Emond, B. Evans, E.T.W. Bowen, and G. Lloyd. A case of ebola virus infection. Br Med J., 2:541-544, 1977. [14] D. Fisman, E. Khoo, and A. Tuite. Early epidemic dynamics of the west african 2014 ebola outbreak: Estimates derived with a simple two-parameter model. PLOS Currents Outbreaks, 1, 2014. [15] M.F.C. Gomes, A. Pastore y Piontti, L. Rossi, D. Chao, I. Longini, M.E. Halloran, and A. Vespignani. Assessing the international spreading risk associated with the 2014 west african ebola outbreak. PLOS Currents Outbreaks, 1, 2014. [16] J. A. P. Heesterbeek and K. Dietz. The concept of ro in epidemic theory. Statistica Neerlandica, 50(1):89-110, 1996. [17] N. Hernandez-Ceron, Z. Feng, and C. Castillo-Chavez. Discrete epidemic models with arbitrary stage distributions and applications to disease control. Bulletin of Mathematical Biology, 75(10):1716-1746, 2013. [18] H.W. Hethcote. The mathematics of infectious diseases. SIAM Review, 42(4):599-653, 2000. [19] B. Ivorra, B. Mart´ ınez-L´pez, J.M. Sńchez-Vizca´ o a ıno, and A.M. Ramos. Mathematical formulation and validation of the Be-FAST model for classical swine fever virus spread between and within farms. Annals of Operations Research, 219(1):25-47, 2014. [20] B. Ivorra, D. Ngom, and A. M. Ramos. Be-codis: A mathematical model to predict the risk of human diseases spread between countries—validation and application to the 2014-2015 ebola virus disease epidemic. Bulletin of Mathematical Biology, 77(9):1668-1704, 2015. [21] J. Legrand, R.F Grais, P.Y. Boelle, A.J. Valleron, and A. Flahault. Understanding the dynamics of ebola epidemics. Med. Hypotheses., 135(4):610-621, 2007. [22] P.E. Lekone and B.F. Finkenst¨dt. Statistical inference in a stochastic epidemic seir model with control a intervention: Ebola as a case study. Biometrics, 62(4):1170-1177, 2006. [23] B. Mart´ınez-L´pez, B. Ivorra, E. Fernńdez-Carriń, A.M. Perez, A. Medel-Herrero, F. Sńchez o a o a Vizca´ ıno, C. Gortźar, A.M. Ramos, and J.M. Sńchez-Vizca´ a a ıno. A multi-analysis approach for space time and economic evaluation of risks related with livestock diseases: The example of fmd in Peru. Preventive Veterinary Medicine, 114(1):47-63, 2014. [24] B. Mart´ınez-L´pez, B. Ivorra, D. Ngom, A.M. Ramos, and J.M. Sńchez-Vizca´ o a ıno. A novel spatial and stochastic model to evaluate the within and between farm transmission of classical swine fever virus. II. Validation of the model. Veterinary Microbiology, 155(1):21 - 32, 2012. [25] B. Mart´ınez-L´pez, B. Ivorra, A.M. Ramos, E. Fernńdez-Carriń, T. Alexandrov, and J. M. Sńchez o a o a Vizca´ ıno. Evaluation of the risk of classical swine fever spread from backyard pigs to other domestic pigs by using the spatial stochastic disease spread model Be-FAST: The example of Bulgaria. Veterinary Microbiology, 165(1-2):79 - 85, 2013. [26] B. Mart´ ınez-L´pez, B. Ivorra, A.M. Ramos, and J.M. Sńchez-Vizca´ o a ıno. A novel spatial and stochastic model to evaluate the withinand between-farm transmission of classical swine fever virus. I. General concepts and description of the model. Veterinary Microbiology, 147(3-4):300 - 309, 2011. [27] M.I. Meltzer, C.Y. Atkins, S. Santibanez, B. Knust, B.W. Petersen, E.D. Ervin, S.T. Nichol, I.K. Damon, and M.L. Washington. Estimating the future number of cases in the ebola epidemic - Liberia and Sierra Leone, 2014-2015. Centers for Disease Control. MMWR / Early Release, 63, 2014. [28] C. J. Peters and J. W. Peters. An introduction to ebola: The virus and the disease. Journal of Infectious Diseases, 179(Supplement 1):ix-xvi, 1999. [29] Z. Shuai and P. Van den Driessche. Global stability of infectious disease models using lyapunov functions. SIAM Journal on Applied Mathematics, 73(4):1513-1532, 2013. [30] H.R. Thieme. Mathematics in Population Biology. Mathematical Biology Series. Princeton University Press, 2003. [31] P. van den Driessche and James Watmough. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1-2):29-48, 2002. [32] P. van den Driessche and James Watmough. Further Notes on the Basic Reproduction Number, pages 159-178. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. [33] W.H.O. Fact sheet no 103: Ebola virus disease. World Health Organization, 2014. [34] W.H.O. New who safe and dignified burial protocol - key to reducing ebola transmission. World Health Organization, 2014. [35] W.H.O. 2015 - strategic response planwest africa ebola outbreak. World Health Organization, 2015. [36] W.H.O. Health worker ebola infections in guinea, liberia and sierra leone. World Health Organization, 2015. [37] W.H.O. Ebola publications: Case management, infection prevention and control. World Health Orga nization, 2016. [38] W.H.O. Global alert and response: Ebola virus disease. World Health Organization, 2016. [39] W.H.O. Response Team. Ebola virus disease in west africa - the first 9 months of the epidemic and forward projections. New England Journal of Medicine, 371:1481-1495, 2014.