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A tomographic-like method based on the inverse Radon transform is used

to retrieve the irradiance map of a focused laser beam. The results obtained

from multiple knife edge measurements have been processed through a

Kriging technique. This technique allows to map both the beam irradiance

and the uncertainty associated with the measurement method. The results

are compared with those achieved in the fitting of two orthogonal knife-edge

profiles to a modeled beam. The application of the tomographic-like technique

does not require any beam model and produces a higher SNR than the

conventional method. As a consequence, the quality of the estimation of

the spatial response map of an antenna-coupled detector in the visible is

improved. c© 2007 Optical Society of America

OCIS codes: 040.0040,130.0250

1. Introduction

Antenna-coupled detectors have deserved increased attention because of their unique

characteristics for detecting and imaging in the infrared and millimeter bands [1, 2].

Down-scaled passive versions for the visible, named optical antennas [3–5], are being

a subject of intense research. Plasmonics, biodetection technologies and near field

optical microscopy are favored by the systematic study of these nanostructures [5,6].

Then, it is a pertinent question to ask about the ability of antenna-coupled detectors
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to detect light at visible wavelengths in the same fashion as IR antennas do. Some

previous analysis exhibit response for IR antennas working in the visible part of

the spectrum [7]. Nevertheless, an exhaustive examination of the detector behaviour

should pay attention to the antenna spatial response, as one of the main merit figures

of the device. As it has been pointed out in a previous work [8], the measurement of

the spatial response would be greatly improved if the uncertainty of the irradiance

map of the probe beam impinging on the detector were reduced as much as possible.

The aim of this paper is to describe a suitable measurement technique to map the

irradiance I(x, y) of the beam while decreasing the total uncertainty in the spatial

response estimation. The technique is based on a tomographic-like method [9]. On

the other hand, the measurement of I(x, y) can be strongly affected by noise, thus

decreasing the accuracy of the final result. In addition, it would be convenient to

assess the uncertainty of the experimental data. We suggest a powerful statistical

tool, known as Kriging [10], to deal with those aspects of the beam characterization.

The paper has been organized as follows. Section 2 explains the experimental set-up

we have made use of. Section 3 is devoted to the estimation of I(x, y) by means of the

Radon transform method. We also compare these results with those obtained from

the conventional Knife-edge technique [11] and estimate the uncertainty in retrieving

the beam through the Radon transform by a statistical technique known as kriging.

Section 4 describes the subsequent spatial response of an antenna-coupled detector
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and, finally, the major conclusions of this paper are summarized in section 5.

2. Experimental set-up

The experimental set-up is shown in Figure 1. A laser diode emits a monochro-

matic beam at λ = 658 nm. The current driving the laser is electronically modu-

lated following a square wave signal to work below and above its threshold current,

Ithreshold = 45 mA. As a result, the source current of the laser, I, can take the

following values: Ilow = 20 mA, and Ihigh = 60 mA. The laser is pigtailed to a

monomode optical fiber. The output of the fiber is collimated by an aspheric lens,

L1. The collimated beam is partially transmitted by a (30/70) pellicle beam splitter

at 45◦. 70% of the light crosses through the λ
2

and λ
4

wave plates that are used for

controlling the polarization state of the light. Finally, the radiation is focused by lens

L2 on the plane where the detector is placed. L2 is another aspheric lens working in

the visible (600 − 1050 nm) for an object at infinity, with an N.A = 0.5 and a focal

distance f ′ = 8 mm. The response of the antenna-coupled detector is polarization-

dependent. [7,11]. In this case, the beam is linearly polarized at ϕ = 68◦ taking as a

reference the orientation of the antenna arms. The polarization azimuth is selected to

align the ~E field along one of the signal–extraction bond pads. The photocurrent cre-

ated by the antenna is converted to a voltage and preamplified. Then, it is directed

to a lock-in amplifier synchronized with the modulation signal of the laser source.
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The whole detection process is managed by a computer that is also in charge of the

recording of the data.

The movement and positioning is controlled through the combination of a three-axis

piezoelectric stages and a XY stepper motor. Thus, we have two kind of movements

in the measurement process: a “coarse” movement, ruled by the XY stteper motor,

whose nominal repeteability is ±200 nm and a “fine” movement, in charge of the 3D

stage, whose nominal repeteability is ±5 nm.

The devices used here are Ni–NiO–Ni diodes coupled to integrated dipoles antennas

[7] (see the inset of Figure 1). The dipole antenna has a total length of 6.7 µm and

it was designed to get an optimum response at 10 µm. Its minimum feature size is

about 200 nm. More details about them can be found in ref. [7].

Two different measurements are required to find the device spatial response. Firstly,

it is essential to achieve a high quality estimation of the beam spot at the focalization

plane. Once the beam waist plane is located and the device properly positioned on it,

the second measurement is a two dimensional scan of the response of the device as a

function of the location on the transversal plane previously selected. This measure-

ment can be modeled as the convolution of the actual spatial response of the device

with the irradiance map of the beam. Therefore, the map of the spatial response can

be obtained as the deconvolution of the scan of the response of the device with the

map of irradiance of the illuminating beam. This method has been successfully applied
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to the spatial response characterization of a variety of antenna-coupled detectors and

different beam distribution. [7,11,12] As we mentioned above, the scan is performed

after placing the device at the point of maximum response, where the waist of the

beam is located. This is a delicate operation since the antenna dimensions and the

depth of focus of L2 are tight restrictions to the detector placement. The first step to

rightly place the device employs the illuminating source and a CCD camera (see Fig-

ure 1), which images the zone where the antenna is going to be placed. The antenna

is moved until the camera achieves a well-defined image of the antenna structure and

bondpads. This placement is can be considered a first order approximation to a more

precise positioning of the device. Then, the fine positioning is done by maximizing

the response of the detector. Once this process is finished, we assume that the beam

waist location coincides with the antenna.

3. Beam measurement

It has been shown that the weakest link in the measurement of the spatial response

of antenna-coupled detectors, no matter the wavelength of the source, is the beam

characterization [8]. Generally, the beam must be determined in a grid of n2 points,

where the scan is done. When the conventional knife-edge method is used, only 2n

points are measured. The variation of I(x, y) in the grid is found through a fitting of

the measured data - the profiles P0◦(x) and P90◦(y) at θ = 0◦ and θ = 90◦ - to a beam
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model [11]. As a result, the uncertainty in the spatial response is strongly affected

by the lack of information that this method entails. As this is the most significant

source of error in the whole process of measurement [8], it would be convenient to

get information of the beam not only at 0◦ and 90◦ but also at different angles,

thus covering as much as possible the region where the spot may change. The Radon

transform method provides a better knowledge of the beam irradiance map [9,13–15],

since the reconstruction of the latter takes advantage of the information kept in other

different profiles than P0◦(x) and P90◦(y). Consequently, we expect a far more higher

fidelity in the beam reconstruction when this procedure is used.

In the following, we will compare the results obtained from a tomographic-like

method that uses a large number of knife edge measurements, with the results ob-

tained from the application of the conventional two knife-edge method. Some details

of the set-up can be seen in the inset of Figure 2. The knife-edge is placed on the

plane showing the largest irradiance (beam waist plane). A large area photodetector

under the blade records the non-blocked signal. The amplitude of the latter depends

on the knife-edge position, u. The blade moves along the u axis with the aid of the

three-axis stage locked at the beam waist plane (around z = f ′). All the recorded

signals are shown in Figure 2. The variables {u, v} are related to {x, y} by means of

a rotation of angle θ.
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3.A. Measurement of the beam by using the Radon transform

The set of profiles taken at different angles - also called sinogram - is related to the

beam irradiance map through its direct Radon transform [9,14,15] and defined as

P (u, θ) =

∫ ∞

−∞

∫ ∞

−∞
I(x, y)δ(u− x cos θ − y sin θ)dxdy, (1)

where θ is the angle of rotation and u is a variable accounting for the knife-edge

location. Therefore, P (u, θ) can be considered as a line integral of the intensity map

I(x, y) along the straight line u = x cos θ + y sin θ. We intend to recover I(x, y)

through a new set of profiles, Q(u′, θ). They represent the amount of accumulated

power measured by the photodetector at different angles and, as Quabis et al. [9]

have pointed out,

Q(u′, θ) =

∫ ∞

u′
P (u, θ)du, (2)

so

P (u′, θ) = −∂Q(u′, θ)

∂u′ . (3)

Therefore, the Radon transform of the beam at focus is proportional to the partial

derivative of Q(u′, θ). The inverse Radon transform can be computed [13] using the

following equation

I(x, y) = R−1(P (u, θ)) =

∫ π

0

∫ ∞

−∞
dρdθ|ρ|[

∫ ∞

∞
P (u, θ)e−iρudu]eiρ(x cos θ+y sin θ), , (4)

based on the so-called Fourier-slice theorem [13]. When implemented in a computer,

it is known as the “Filtered back-projection algorithm” [9,13].
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In order to perform the Radon transform, we have measured 18 accumulated profiles

every ∆θ = 10◦± 2◦. A successful inversion of P (u, θ) requires normalizing, centering

and interpolating the whole set of measured profiles in the variable u′. Figure 2 shows

Q(u′, θ) after completing these tasks. The next step is to compute the derivative of

Q(u′, θ). At this stage, the kriging filter, that will be explained in subsection 3.C,

is applied to the output of ∂u′Q(u′, θ) |u. Not only an average sinogram, P̂ (u, θ),

is obtained, but also an estimation of the error in the former, ∆P̂ (u, θ). Both are

computed numerically when solving the kriging equations. Each slice of P̂ (u, θ) at

θ = θ0 represents an integrated profile in such direction. All the slices are used in

order to retrieve the irradiance map accurately. The sinogram is plotted in figure 3.

Figure 4 shows the retrieved map of the beam after inverting P̂ (u, θ). Despite the

fact of being close to a Gaussian beam, there are clear deviations from this ideal

behaviour.

If we took fewer number of profiles, the angular sampling would be worse and the

reconstruction of the irradiance map would not be as faithful as it would be with an

increased number of profiles. As a matter of fact, by choosing 18 profiles we look for a

balance between measurement time and accuracy in the retrieving process. However,

an optimum number of profiles should exist. Taking less or more profiles than this

optimum number should produce undersampled or oversampled maps. Unfortunately,

this optimum number is beam-dependent and it can only be known “a posteriori”.
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After analyzing the results from our 18 profiles we could conclude that the beam

shape retrieved by the inverse Radon transformation begins to be stable after taking,

at least, 9 profiles.

The Radon transform method is helpful not only for its high SNR figure, as it will

be demonstrated in the next section, but also because of its ability to reconstruct

I(x, y) as close to the real beam as the measurement conditions allow.

In spite of the aforementioned advantages, the inversion of P̂ (u, θ) is still not fully

reliable. The zero frequency component of the spatial spectrum of I(x, y) is lost in

the inversion process [13]. Fortunately, this fact is not as troublesome as it could

seem. The zero frequency component is equal to the total power falling onto the

detector, W =
∫ ∞
−∞

∫ ∞
−∞ I(x, y)dxdy, which can be easily measured, not to mention

that a normalized beam is enough to compute the normalized spatial response of the

detector.

3.B. Measurement of the beam by using two orthogonal knife-edge

For the sake of comparison with the method previously used to obtain the map of

irradiance, we have used the knife-edge data to fit selected orthogonal pairs of knife-

edge measurements with those derived from an appropriate model of the beam. This

model contains diffractive effects and the most probable aberrations of the experi-

mental set-up [11]. The irradiance map is expressed analitically as the convolution
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of a Gaussian beam with the Airy comatic spot, because we expect to find a resid-

ual coma contribution due to possible misalignements in the optical elements of the

experimental arrangement [8,11,16,17].

E(x, y) = e
−(x2+y2

ω0
) ∗

{
2J1(ν)

ν
−

(
cos φ

2J4(ν)

ν

)
α

− 1

2ν

(J1(ν)

4
− J3(ν)

20
+

J5(ν)

4
− 9J7(ν)

20
− cos 2φ(

2J3(ν)

5
+

3J7(ν)

5
)
)
α2

}
.

. (5)

Here, ∗ means convolution; ω0 is the beam waist at focus; α is the amount of coma

in wavelength units;φ is the orientation of the comatic spot; ν = 2πa
√

x2 + y2/λf ′,

where a = 4 mm is the radius of the aperture, λ is the wavelength and f ′ is the focal

distance of the focusing lens; Jk are the Bessel functions of k order and, finally, ω0,

α and φ are the fitting parameters. This model has been fitted with the 9 orthogonal

pairs of knife-edge measurement that can be extracted from the 18 knife-edge curves

used in the tomographic method. In our case, we get as optimum values ω0 = 4.6±0.3

µm, φ = 50◦ ± 10◦ and α = 0.7 ± 0.3 . The uncertainties have been estimated from

the 9 couples of orthogonal profiles (after applying the kriging filter to ∂u′Q(u′, θ)),

except for φ, whose error is the resolution of the rotator.

The map of the beam and its error is shown in Fig. 5. There is a noticeable difference

between the beam shape retrieved by the 2 knife-edges and fitting method, and the

beam shape recovered by means of the Radon transform method. The use of two

orthogonal profiles and a beam model does not take into account the fine angular
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variations of the irradiance map in the beam tails. Therefore, the Radon transform is

better suited to retrieve the irradiance map than the two-profile knife-edge method.

3.C. Kriging filtering and error estimation

The inversion of P (u, θ) involves a serious problem, i.e, the derivative operator

∂u′
F−→ ik′ (F is the Fourier transform) plays the role of a high-pass filter. In fact,

it enhances the importance of the high-frequency components held in Q(u′, θ) whose

effect is noticeable in P (u, θ). Unfortunately, these high-frequency components are

typically associated with noise and, in consequence, they reduce the fidelity in the

beam reconstruction. Some ideas have been applied to filter those undesirable compo-

nents out from P (u, θ). For instance, a remarkably effective technique is the Savitzky-

Golay algorithm [9,14,15]. Nonetheless, as far as we know no estimation of the error

in inverting P (u, θ) is done. In this article, we suggest the use of the Kriging methodd

to solve these difficulties by relying on a statistical-based filtering approach. [10].

Kriging is a family of linear algorithms to estimate both spatial-dependent magni-

tudes and their variance. The fitting is optimum in the least-square sense, when only

a noisy, limited number of data are available [10]. Kriging has been succesfully applied

in optics for the analysis of diffraction minima in far field diffractometry and in image

processing [18–21]. Kriging methods take advantage of the spatial correlations of the

signal under study. Moreover, the Kriging equations can be given as a convolution
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product if the magnitude is regularly sampled, making easier both the filtering post-

processing and the estimation of the variance of the magnitude thus analyzed [20,21].

An illustrative example can be seen in Figure 6, where the effect of a Golay filter of

order 5 and 45 points [14] is compared with the effect of the Kriging filter on the

same profile obtained at θ = 70◦ (this profile has been arbitrarily chosen).

Paying attention to the sinogram error represented in Fig. 3, we may conclude that

it is practically independent from θ. This means that all the slices in ∆P̂ (u, θ) are

equivalent, and all the information contained in the sinogram error can be comprised

in any of its slices. On the other hand, the farther the point (u, θ0) is from the center

of a profile at a given angle θ0, the higher the error is at this point. As a consequence,

the quality of the measurements in the beam tails is worse than those measurements

made in the center of the spot

The knowledge of ∆P̂ (u, θ) paves the way to define two error curves for each knife-

edge profile,

P±
error = P̂ ± ∆P̂ . (6)

An advantage of applying a kriging filter to the derivative of Q(u′, θ) is its capability

to estimate the error, ∆I(x, y), of the irradiance map. This error is defined in terms

of the error obtained for the sinogram. Firstly, new error curves for I(x, y) can be
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defined as,

I±
error = R−1(P±

error). (7)

Consequently, the error ∆I is

∆I = R−1(∆P̂ ) =
I+
error − I−

error

2
. (8)

Finally, a straightforward computation of the Signal-to-Noise Ratio (SNR) follows

from this equation

SNR =
I(x, y)

∆I(x, y)
. (9)

Figure 4 shows the results for SNR. As we predicted before, the closer the point

(x, y) is to the center of the beam, the lower the fluctuations are over the average

value of I(x, y). The maximum SNR is SNRmax = 29.36. When the beam is retrieved

using the Golay filter, the smooth variations of the spot are lost as Fig. 7 reveals.

Figure 5 shows the beam and its SNR estimated through the method based on a

beam model, proving that the SNR is worse than the Radon transform SNR (the

maximum value is, in this case, SNRmax = 10.15). Furthermore, the shape of the

former differs from the shape of the beam reconstructed through the Radon trans-

form method. The approach presented in this work is expected to provide a closer

estimation of the real beam than those based on a fitting procedure, because of the

larger amount of information that it can process. Therefore, the representation of the

beam spot is dramatically improved when the Radon transform method with and
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adecuate noise filtering is adopted.

To sum up: the Radon transform method provides a more accurate estimation of

the beam irradiance map than the fitting procedure, on the grounds that it considers

the variation of the integrated profiles in the whole angular range θ = [0, 2π). The

application of the kriging method has made possible to reduce noise and also to include

a map of the uncertainty of the beam irradiance distribution. On the other hand, no

more modeling and further assumptions about the presence of a given aberration are

needed.

4. Deconvolution of the antenna response

The irradiance map is needed when recovering the spatial response of the device, and,

as it will be demonstrated, its influence in the latter can be crucially important. The

response of an antenna-coupled detector under the probe beam is [11]:

S(x, y) =

∫ ∞

−∞

∫ ∞

−∞
I(x′, y′)R(x − x′, y − y′)dx′dy′, (10)

where R(x, y) is the spatial response of the device and S(x, y) represents the scan

map. R(x, y) can be reconstructed from the knowledge of I(x, y) and S(x, y) if a

deconvolution algorithm is applied on (10). We have choosen the Richardson-Lucy

algorithm, which has been successfully employed in deconvolving the spatial response

of antenna-coupled detectors [8,11] both in the infrared and in the visible. S(x, y) is

measured on a grid with ∆x = ∆y = 0.150 µm, taking a window of 15 × 15 µm2.
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Then, the spatial response is retrieved from an iterative process of deconvolution -

I(x, y) must be determined beforehand -.

Figure 8 displays the spatial maps computed with the two methods: the tomo-

graphic method and the conventional orthogonal knife-edge pair. Both share some

common features, like the maximum central peak at the position of the antenna or

the two lateral, minor peaks linked to the metallic connectors of the structure [7].

However, there are noticeable differences between them. For instance, the distance

between the maximum peak and the lateral lobes are not the same for each map.

Furthermore, the centroid of the map computed from the beam model seems to be

displaced from the position of the centroid of the map computed from the Radon

transform method. This is due to the model that it has been adopted to fit the data.

Such a fact sheds light on the way the Radon transform improves the measurement

of the spatial response of the detector. If we had selected another model, the spatial

map would have not be the same. In other words, our lack of knowledge about the

beam makes more difficult to get a reliable measurement of the spatial map, because

we need to guess the analytical form of the beam prior to any fitting. This problem

would be circumvented if the method could handle moreinformation about the beam,

as the Radon transform method actually does.
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5. Conclusions

In this paper we have demonstrated how a tomographic-like technique can be applied

to the improvement in the characterization of the spatial response of an antenna-

coupled detector. Due to the experimental conditions involved in this contribution,

the probe beam is expected to be weakly aberrated and weakly diffracted. The almost-

Gaussian beam profile has been properly retrieved by the proposed method. This

improvement is possible because the beam SNR is larger than the one obtained from

the use of two orthogonal knife-edge profiles and its fitting to a model. For the same

beam and measurement data, the SNR of the beam irradiance jumps from 10.15 to

29.36 when moving to the method proposed in this paper. As far as it has been

proved [8] that the main source of uncertainty of the spatial response map is coming

from the beam irradiance estimation, we may infer that the spatial response is of

better quality.

One of the key elements of the method is the use of Kriging techniques for the

processing of the experimental data. In our case, the kriging technique filters the high

frequency components out of the derivative of the knife-edge data to obtain the sino-

gram. This is critical for the inverse Radon transform to produce a smooth irradiance

map. On the other hand, kriging provides by itself the uncertainties associated to

the processed data. These uncertainties are finally represented as a map allowing a
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graphical representation of the SNR of the irradiance distribution. The SNR is much

better at the maximum of the beam irradiance and decreases towards the tail of the

beam distribution.

We conclude that the proposed method for estimating the beam irradiance map

is better than the one previously reported because it does not need any kind of

modeling. On the other hand, the number of available data points is greater than the

conventional method using two orthogonal knife-edges. This fact, along with the use

of the kriging method, makes the spatial map measurement more reliable and more

accurate.
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12. F. J. González, G. Boreman, ”Comparison of dipole, bowtie, spiral and log-

periodic IR antennas”, Inf. Phys. & Technol. 46, 418-428, (2005)

13. P.Toft, “The Radon transform – Theory and implementation”, Ph.D Thesis, De-

partment of Mathematical Modelling, Technical University of Denmark, (1996),

http://petertoft.dk/PhD

14. R. Dorn, S. Quabis and G. Leuchs “The focus of light – linear polarization breaks

the rotational symmetry of the focal spot”, J. Mod. Opt. 50, 1917–1926 (2003)

15. R. Dorn, S. Quabis and G. Leuchs, “Sharper Focus for a Radially Polarized Light

Beam”, Phys. Rev. Lett. 91, 233901-1–233901-4, (2003).

16. O.Mendoza-Yero,J.Alda “Irradiance map of an apertured Gaussian beam affected

20



by coma”, Opt. Commun. 271, 517-523, (2007).

17. M. Born and E. Wolf, Principles of Optics, (Pergamon Press, Oxford, 1989).

18. E. Bernabeu, I. Serroukh, L.M. Sanchez-Brea “A geometrical model for wire opti-

cal diffraction selected by experimental statistical analysis” Opt. Eng., 38, 1319-

1325 (1999)

19. W.Y.V. Leung, P.J. Bones, R.G. Lane,“Statistical interpolation of sampled im-

age” Opt. Eng., 40,547-553 (2001)

20. L.M. Sanchez-Brea and E. Bernabeu,“Determination of the optimum sampling

frequency of noisy images by spatial statistic”, Appl. Opt. 44, 3276-3283 (2005)

21. L.M.Sanchez-Brea, E. Bernabeu “Uncertainty estimation by convolution using

spatial statistics”, IEEE Trans. Image Process. 15, 3131-3137, (2006).

7. Figures and captions

1. Fig.1 Experimental set-up

2. Fig.2 Profiles Q(u′, θ). The spatial step is ∆x = 35.3 nm. 18 profiles have been

measured from 0◦ to 170◦ each ∆θ = 10◦ ± 2◦. The inset contains a diagram of

the measurement of Q(u′, θ)

3. Fig.3 Sinogram P̂ (u, θ) and sinogram error ∆P̂ (u, θ). The sinogram error is

practically independent from θ, meaning that all the information about the
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error in the measurement of P̂ (u, θ) is contained in any of the slices of ∆P̂ (u, θ).

However, a complete reconstruction of the beam needs all the slices.

4. Fig.4 Beam irradiance map in arbitrary units employing the Radon transform

and its SNR

5. Fig.5 Beam irradiance map in arbitray units employing the fitting method and

its SNR

6. Fig.6 Kriging vs Golay filtering approaches. The figure shows the derivative of

Q(u′, θ = 70◦) and the Golay filter and the Kriging filter estimations on it. In

the inset, it has been added the Kriging error curves.

7. Fig.7 Beam irradiance map in abitrary units after applying the Golay filter.

Please note that the negative values of the irradiance map are unphysical. They

are artifacts inherently linked to the noise induced by the derivative of Q(u′, θ)

in the beam tails, where the irradiance is close to zero

8. Fig.8 Top: A, the spatial response computed with the Radon transform method.

Bottom: B, the spatial response get from the fitting to a beam model
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Fig. 3.
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Fig. 4.
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Fig. 5.
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Fig. 6.
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Fig. 7.
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Fig. 8.
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