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ac-driven localization in a two-electron quantum dot molecule
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We investigate the dynamics of two interacting electrons confined to a pair of coupled quantum dots driven
by an external ac field. By numerically integrating the two-electron Stihger equation in time, we find that
for certain values of the strength and frequency of the ac field the electrons can become localized within just
one of the dots, in spite of the Coulomb repulsion. Reducing the system to an effective two-site model of
Hubbard type, and applying Floquet theory, leads to a detailed understanding of this effect. This demonstrates
the possibility of using appropriate ac fields to manipulate entangled states in mesoscopic devices on extremely
short time scales, which is an essential component of practical schemes for quantum information processing.
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A set of electrons held in a semiconductor quantum dot isame dot. We further show that this effect is also exhibited
conceptually similar to a set of atomic electrons bound to &y a simple two-site model, obtained as a reduced form of
nucleus, and for this reason these structures are sometim# quantum dot system. As in the case of the single-particle
termed “artificial atoms. To extend the atomic analogy fur- Model, we find Floquet theory to be an extremely powerful

ther, we can consider joining quantum dots together to fornfo°!: and we succeed in generalizing the single-particle
“artificial molecules.” The simplest example consists of two solutior?® to include interactions, from which we can easily

coupled dots containing a single electron. The dynamicaf"m.j accurately identify the parameters of the ac field for
which localization occurs.

properties of this system when driven by an ac field have We study a quasi-one-dimensional structure, in which the
been extensively studi€dand the technique of Floquet linear dimensions of the quantum dots in they) ’plane are
gnalysi§ h_as proved t_o be particularly effect.ive. The pioneer-much smaller than their length. The energies associated with
ing work in Ref. 4 first noted the dramatic effects on theyqyerse excitations are thus much higher than those for
tunneling rate arising from crossings and anticrossings of thg,ngitydinal motion, and can be neglected. The dots are sepa-
Floquet quasienergies, and the tedynamical localization — rated by a potential barrier which regulates the degree of
was coined to describe the phenomenon in which the ac f'e%nneling between the dots. Strongly coupling the dots al-
appears to trap the electron within just one dot over longows the electrons to form extended stat&aolecular orbit-
time scales. Subsequent analytical and numerical Work als”) over the entire double-dot system, which can be explic-
showed that for high frequencies this localization occurstly seen in transport experimeritS. Within the effective
when the ratio of the field strength to the frequency is a rooinass approximation, the Hamiltonian for the system is given

of the Bessel functiod,. by

Adding a second electron to the coupled-dot system intro-

. . . - . hZ 0—,2 072

duces considerable complications, as for realistic devices the He — L) e Vi(z)+ iz
Coulomb interaction between the electrons cannot be ne- 2m* \ 922 9z2 . 2
glected, and a single-particle analysis is not applicable.
Achieving an understanding of the dynamics of this system e?
is, however, extremely desirable, as the ability to rapidly + Vel 2zal) —eE(t)(z1+ 29), 1)

control the localization of electrons using ac fields immedi- ) )
ately suggests possible applications to quantum metrology"€réz. andz; are the spatial coordinates of the two elec-
and quantum information processing. In particular, manipuf'ons,m* is the effective mass, andis the effective permi-
lating a pair of entangled electrons on short time scales is dfVity: GaAs material parameters are used, with*
great importance in the rapidly developing field of quantum=0-06M and ¢=10.9,. E(t) is the external ac field,
computation. Although numerical investigations have beerF(t)=E cos(t). To simplify the numerical treatment, the
made of the rich behavior displayed by interacting electrorystem was placed within an infinite square well of lenigth
systems driven by an ac fielathere is, at present, little un- 0 prevent the electronic wave .func;'uon fro_m Ieaklng out of
derstanding of the observed effects beyond phenomenologq)e dot structure. So that these infinite barriers did not unduly
and numerical experimentation. influence the properties of the quantum dots, thick buffer
We address this problem here by applying the FloqueZOnes were included between these b_arners and th_e walls of

formalism to a system oihteracting particles. We initially the quantum dots, so that the elect.ronlc wave functlon effec-
consider a realistic model of two interacting electrons conlively decays to zero before reaching the barriers. The con-
fined to a pair of coherently coupled quantum dots, and stud{ining potentialV(z) is plotted in Fig. 1. The Coulomb po-
its response to ac fields by a numerical method in which théential usedV¢(r), had the form
Coulomb interaction is treated exactly. We find the surprising
result that, even in the presence of strong interelectron repul- -

- . \ . L Ve(r) ;
sion, suitable ac fields can localize both electrons within the Jr2+\?

@

0163-1829/2002/68.1)/1133044)/$20.00 65 113304-1 ©2002 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B 65 113304

— T +2,)|E,)- A fourth-order Runge-Kutta method was used to
S Y VAN . . . .
D AN FAE time evolve the expansion coefficients using E8). The
e 220 i 5 / % . . . .
g ,_‘ number of basis states used in the expandiyrrequired for
0 e convergence depended on the strength of the electric field,
0 10 20 30 40 and values ofM =50 were required for the strongest field
z (nm) considered.
FIG. 1. Geometry of the double-dot system. The dotted line A Similar model was studied recently in Ref. 7 for a larger
plots the charge density of the ground-state wave function. system size of. =100 nm. An important advantage of con-

sidering a smaller system, however, is that finer structure can
where\ is a measure of the transverse width of the structurde resolved in the results due to the larger spacing between
(taken to be 1 nm in this investigatipriThis form for V¢ the energy levels. Following Ref. 7 we define a conditional
reproduces the normalrifall-off of the Coulomb potential, Probability function, which gives an extremely useful de-
but is nonsingular in the limit—0. scription of the state of the system. The probability that one
To study the time evolution of the system, we used theParticle is in the right dot while the other is in the left is
eigenstates of the static Hamiltonidh, as a basis, since diven by PR(t),
expanding in these states is a well-controlled procedure, and
also ensures that correlation effects arising from the Cou- RL sy 2
lomb interaction are automatically encoded within each basis P = szdzldeZﬂ (21,2,)|%, 4
function. We note that as Eq. 1 contains no spin-flip terms,
there is no mixing between the singlet and triplet subspacesvhere the notatioiR/ L signifies that the integration is taken
In particular, if the initial state has a definite parity this sym-over the right/left quantum doPR' takes a value of 1 for
metry is retained throughout its time evolution, and consemaximally delocalized stateGvhen one electron is in the
quently only basis functions of the same symmetry need teoight dot and the other is in the lgftand is zero for localized
be included in the expansion. To obtain the eigensystem doftates when both electrons occupy the same dot. The initial
either the singlet or triplet subspaces, we employed the Lancstate plotted in Fig. 1 is highly delocalized, and has the value
zos technique described in Ref. 10, which is particularly ef-PR-=0.849. Our investigation consists of evolving this state
ficient for systems in which the interaction is diagonal inthrough a time period of 18 ps while measuriR§(t). We
real-space. term the minimum value oPR" attained during this period
The initial state used was the ground stateHgf (a sin-  P,;,, and use this to quantify the degree to which the ac field
glet). In the absence of the external electric field this wouldbrings about localization.
have a trivial time evolution, simply acquiring a phase. Ap-  In Fig. 2(a) we present a contour plot &, as a function
plying the field, however, causes the initial state to evolveof the parameters of the ac field. Dark areas correspond to
into a superposition of eigenstatepy(t))==cn(t)|E,). low values of P,,, indicating a high probability that both
Substituting this expansion into the time-dependent Schroelectrons are occupying the same dot. Surprisingly this can
dinger equation yields a first-order differential equation foroccur even at weak-field strengths, despite the presence of
the expansion coefficients,, the Coulomb interaction. We note that the dark areas form
horizontal bands, indicating that, for various “resonant” val-
. dc, ues ofw, localization can be produced over a wide range of
'ﬁﬁzcn(t)En_EE(t)anl FamCm(t), (3 fields. The spacing of the bands decreases wittand for
values ofiw<<2.8 meV the structure is too fine to resolve.
where E,, is the nth eigenvalue ofH,, and F, are the Between these bands strong localization is not produced.
overlap integrals of the dipole operatoE,,=(E.|/(zy  These results are qualitatively similar to those of Ref. 7, but
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FIG. 2. P, as a function of

the strengthE and energyiw of
the ac field(a) for an interacting
quantum dot systenfiw in units
of meV) and (b) for a Hubbard
model with U=8 (both axes in

units of t).
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sence of the ac field the eigenvalues of the singlet
Hamiltonian can be found analytically, and for largethey
consist of two almost degenerate excited states, separated
from the ground state by the Hubbard gdp This mimics

the eigenvalue structure of the lowest multiplet of states of

‘ , ‘ : ‘ the full double-dot system. We time evolve the system fol-
1r 1T 1 lowing the same procedure as before, using the ground state
as the initial state. As the singlet Hamiltonian is only three
dimensional, however, the computations can correspondingly

o 05| 17 | be done more rapidly. In Fig.(B) we show the results for
. LJ Pmin Obtained by settingy =8, which clearly shows that this
0 ‘ st : ‘ simplified model strikingly reproduces the behavior of the
0 2 40 46.9 47.4 47.9 48.4 48.9

° E E full system of Eq.(1).
As the driving field[Eq. (6)] is a periodic function of
FIG. 3. (a) Quasienergy spectrum for the two-site modeltbr  time, we can make use of Floquet analysis to describe the
=8 andw=2: circles exact results; lines, perturbation thedy.  time evolution of the system in terms of its Floquet states
Magnified view of exact results for a single anticrossing. The cor-gnd quasienergiésHamiltonian (5) is invariant under the
responding plots oP;, appear beneath. combined parity operationr— —x, t—t+T/2, and so the
Floquet states can also be classified into these parity classes.
show finer detail, allowing us to observe additionally thatClose approaches of the Floquet quasienergies as the system
these bands are punctuated by narrow zones in which thearameters are varied produce large modifications of the tun-
field does not create localization. Their form can be seemeling rate, and hence of the system’s dynamics. Quasiener-
more clearly in the cross section Bf,;, given in Fig. 3a),  gies of different parity classes may cross, but if they are of
which reveals them to be narrow peaks. These peaks atbe same class they form an anticrossing. Numerically the
approximately equally spaced along each resonance, trfgiasienergies can be conveniently obtained by diagonalizing
spacing increasing with. the time evolution operator for one period of the driving
We emphasize that these results are radically differentield, U(t+T,t). This is particularly suited to the numerical
from those obtained for noninteracting particles. In this cas@pPproach we have used, dgt+T.,t) is simply the operator
an analogous plot of delocalization shows a fanlikeobtained by time evolving the identity matrig over one
structure®! in which localization occurs along lines given Period of the driving field. _ _
by w=E/x;, wherex; is thejth root of the Bessel function ~ In Fig. 3@ we present the Floquet quasienergies as a
Jo(X). As a test of our method, we repeated our investigatiorfunction of the field strength fo=2, one of the resonant
for a quantum-dot system in which the interelectron Coufrequencies visible in Fig.(®). Below the spectrum we also
lomb repulsion was set to zero, and found that the fan strud?lot the behavior oP ;. We see that the system possesses
ture was indeed reproduced. two distinct regimes of behavior. For weak fields, as studied
To account for these resu|ts |t iS thus necessary to gdjq Ref. 12, the Floquet SpeCtrum consists of one isolated state
beyond the noninteracting case. We consider a highly simplitwhich evolves from the ground statend two states which
fied model in which each quantum dot is replaced by a singlénake a set of exact crossings. In this regifig, decays
site. Electrons can tunnel between the sites, and importantlglowly to zero, showing little structure. As the field strength

we include interactions by means of a Hubbarderm: exceeddJ, however, this abruptly changes to an interesting,
previously unseen, behavior in whiéh,,;, remains close to
5 2 zero except at a series of narrow peaks, corresponding to the
H= —tz (CLTCZU-!— H.C.)+21 [Unj;n; +Ei(t)n;]. close approaches of two of the quasienergies. A detailed ex-
(oa 1=

amination of these approacHe=e Fig. &)] reveals them to

(5) be anticrossingsbetween Floquet states which evolve from
the ground state and the higher excited state, and have the
same parity. The remaining state, of opposite parity, makes
small oscillations around zero, but its exact crossings with
the other two states do not correlate with any structure in
Pmin-

To interpret this behavior we seek analytical expressions
for the quasienergies. We choose to use a perturbational

Heret is the hopping parameter. In this analysis wefsetl,
and measure all energies in unitstofE;(t) is the external
electric potential applied to site Clearly only the potential
differenceE;,—E, is of importance, so we may choose the
convenient parametrization

E E . :
E (t)= §Coswt’ E,(t)=— E(;()Swt_ (6) approacrﬁ starting from the Floquet equation
J
A numerical investigation of such a model was recently (H—iﬁ)wi(t)):ql(ﬁj(t)}. (7)

made in Ref. 12 for the case of very weak fields. The Hilbert

space of Hamiltonian(5) is six dimensional, comprising HereH is the full Hamiltonian[Eq. (5)], ¢; are the Floquet
three singlet states and a triplet. As with the double-dot sysguasienergies, an@;(t)) are the Floquet states. Our proce-
tem, the singlet and triplet subspaces are completely decowture is first to find the eigenstates of the operdtbk;
pled, allowing us to study just the singlet space. In the ab—i(d/4dt)], whereH, is the second term in Eq5) contain-
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ing all the interaction terms, and then treat the tunnelingguently found to bes;=0 ande. = +2J,(E/w). This solu-
componeniH, as a perturbation. An important advantage oftion clearly reduces to the well-known solution for noninter-
this approach is that the Floquet states are stationary states @fting particles wherd =0. Figure 3a) demonstrates the
Eq. (7). Consequently, by working in an extended Hilbert excellent agreement between this regulth n=4) and the
space ofT-periodic functions;’ the corrections can be evalu- exact quasienergies for strong and moderate fields, which
ated easily by standard Rayleigh-Safirger perturbation  4jjows the position of the peaks Py, to be found by lo-
theory, without requiring more complicated time-dependent.ating the roots o8, . Similar excellent agreement occurs at
methods. ) ) ) the other resonances. For weak fields, however, the interac-
. In a real-spac_e representation the interaction terms aj on terms do not dominate the tunneling terms and the per-
d|agonql, and so it can be_readlly shovyn that an orthonorma} rbation theory breaks down, corresponding to the weak-
set of eigenvectors dfH, —i(d/dt)] is given by field regime in whichP,,, decays smoothly to zero. Away
leo(t))=(exdieot],0,0), from the resonances the first-order correction identically van-
ishes, resulting in the lack of structure seen between the reso-
nant bands in Fig. ®), and it is necessary to go to higher
,0), ®) orders in perturbation theory to obtain the quasienergy be-
havior.
In summary, we have investigated the dynamics of an
)- interacting two-electron system driven by an ac field. We
find that despite the Coulomb interaction a suitable ac field
Imposing T-periodic boundary conditions reveals the corre-can nonetheless produce localized states. This localization
sponding eigenvalueSnodulo ») to be =0 ande.=U.  occurs over a range of field strengths at frequencies for
These eigenvalues represent the zeroth-order approximatiqghich an integer number of quanta, is equal to the inter-
to the Floquet quasienergies, and for frequencies such thaktion energy. At high fields we find a regime of behavior in
U=nw all three eigenvalues are degenerate. This degenwhich this localization vanishes at the rootslgtE/ ), and
eracy is lifted by the perturbatioH, and to first order the we explain this using perturbation theory. These results are
quasienergies are obtained by diagonalizing the perturbingf general applicability to ac-driven systems of interacting
operatorP;; =((€|H¢ €j)), where((---)) denotes the inner electrons, and hold out the exciting prospect of controlling
product in the extended Hilbert spatBy using the identity and manipulating correlated quantum states on picosecond
time scales by means of applying ac fields.

E
|€+(t)>=(0,eX[{ —i(U—€e)t+i ZSinwt

|e_(t))=(0,0,ex;%—i(u —e_)t—i Esinwt

exg —iBsinwt]= Z In(Blexd —imwt]  (9) C.E.C. thanks Sigmund Kohler for numerous stimulating
me discussions. This research was supported by the EU via Con-
to rewrite the form of e..(t)), the matrix elements d® can  tract No. FMRX-CT98-0180, and by the DGESpain
be obtained straightforwardly, and its eigenvalues subsehrough Grant No. PB96-0875.
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