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ac-driven localization in a two-electron quantum dot molecule

C. E. Creffield and G. Platero
Instituto de Ciencia de Materiales (CSIC), Cantoblanco, E-28049 Madrid, Spain

~Received 21 November 2001; published 19 February 2002!

We investigate the dynamics of two interacting electrons confined to a pair of coupled quantum dots driven
by an external ac field. By numerically integrating the two-electron Schro¨dinger equation in time, we find that
for certain values of the strength and frequency of the ac field the electrons can become localized within just
one of the dots, in spite of the Coulomb repulsion. Reducing the system to an effective two-site model of
Hubbard type, and applying Floquet theory, leads to a detailed understanding of this effect. This demonstrates
the possibility of using appropriate ac fields to manipulate entangled states in mesoscopic devices on extremely
short time scales, which is an essential component of practical schemes for quantum information processing.
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A set of electrons held in a semiconductor quantum do
conceptually similar to a set of atomic electrons bound t
nucleus, and for this reason these structures are somet
termed ‘‘artificial atoms.’’1 To extend the atomic analogy fur
ther, we can consider joining quantum dots together to fo
‘‘artificial molecules.’’ The simplest example consists of tw
coupled dots containing a single electron. The dynam
properties of this system when driven by an ac field ha
been extensively studied,2 and the technique of Floque
analysis3 has proved to be particularly effective. The pione
ing work in Ref. 4 first noted the dramatic effects on t
tunneling rate arising from crossings and anticrossings of
Floquet quasienergies, and the termdynamical localization
was coined to describe the phenomenon in which the ac
appears to trap the electron within just one dot over lo
time scales. Subsequent analytical and numerical wo5,6

showed that for high frequencies this localization occ
when the ratio of the field strength to the frequency is a r
of the Bessel functionJ0.

Adding a second electron to the coupled-dot system in
duces considerable complications, as for realistic devices
Coulomb interaction between the electrons cannot be
glected, and a single-particle analysis is not applica
Achieving an understanding of the dynamics of this syst
is, however, extremely desirable, as the ability to rapi
control the localization of electrons using ac fields imme
ately suggests possible applications to quantum metro
and quantum information processing. In particular, mani
lating a pair of entangled electrons on short time scales i
great importance in the rapidly developing field of quantu
computation. Although numerical investigations have be
made of the rich behavior displayed by interacting elect
systems driven by an ac field,7 there is, at present, little un
derstanding of the observed effects beyond phenomeno
and numerical experimentation.

We address this problem here by applying the Floq
formalism to a system ofinteracting particles. We initially
consider a realistic model of two interacting electrons c
fined to a pair of coherently coupled quantum dots, and st
its response to ac fields by a numerical method in which
Coulomb interaction is treated exactly. We find the surpris
result that, even in the presence of strong interelectron re
sion, suitable ac fields can localize both electrons within
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same dot. We further show that this effect is also exhibi
by a simple two-site model, obtained as a reduced form
the quantum dot system. As in the case of the single-part
model, we find Floquet theory to be an extremely power
tool, and we succeed in generalizing the single-parti
solution2,5 to include interactions, from which we can easi
and accurately identify the parameters of the ac field
which localization occurs.

We study a quasi-one-dimensional structure, in which
linear dimensions of the quantum dots in the (x,y) plane are
much smaller than their length. The energies associated
transverse excitations are thus much higher than those
longitudinal motion, and can be neglected. The dots are s
rated by a potential barrier which regulates the degree
tunneling between the dots. Strongly coupling the dots
lows the electrons to form extended states~‘‘molecular orbit-
als’’! over the entire double-dot system, which can be exp
itly seen in transport experiments.8,9 Within the effective
mass approximation, the Hamiltonian for the system is giv
by

H52
\2

2m* S ]2

]z1
2

1
]2

]z2
2D 1V~z1!1V~z2!

1
e2

4pe
VC~ uz12z2u!2eE~ t !~z11z2!, ~1!

wherez1 andz2 are the spatial coordinates of the two ele
trons,m* is the effective mass, ande is the effective permi-
tivity. GaAs material parameters are used, withm*
50.067me and e510.9e0 . E(t) is the external ac field,
E(t)5E cos(vt). To simplify the numerical treatment, th
system was placed within an infinite square well of lengthL
to prevent the electronic wave function from leaking out
the dot structure. So that these infinite barriers did not und
influence the properties of the quantum dots, thick buf
zones were included between these barriers and the wal
the quantum dots, so that the electronic wave function eff
tively decays to zero before reaching the barriers. The c
fining potentialV(z) is plotted in Fig. 1. The Coulomb po
tential used,VC(r ), had the form

VC~r !5
1

Ar 21l2
, ~2!
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wherel is a measure of the transverse width of the struct
~taken to be 1 nm in this investigation!. This form for VC
reproduces the normal 1/r fall-off of the Coulomb potential,
but is nonsingular in the limitr→0.

To study the time evolution of the system, we used
eigenstates of the static HamiltonianH0 as a basis, since
expanding in these states is a well-controlled procedure,
also ensures that correlation effects arising from the C
lomb interaction are automatically encoded within each ba
function. We note that as Eq. 1 contains no spin-flip term
there is no mixing between the singlet and triplet subspa
In particular, if the initial state has a definite parity this sym
metry is retained throughout its time evolution, and con
quently only basis functions of the same symmetry need
be included in the expansion. To obtain the eigensystem
either the singlet or triplet subspaces, we employed the La
zos technique described in Ref. 10, which is particularly
ficient for systems in which the interaction is diagonal
real-space.

The initial state used was the ground state ofH0 ~a sin-
glet!. In the absence of the external electric field this wou
have a trivial time evolution, simply acquiring a phase. A
plying the field, however, causes the initial state to evo
into a superposition of eigenstates:uc(t)&5(cn(t)uEn&.
Substituting this expansion into the time-dependent Sch¨-
dinger equation yields a first-order differential equation
the expansion coefficientscn ,

i\
dcn

dt
5cn~ t !En2eE~ t ! (

m51

M

Fnmcm~ t !, ~3!

where En is the nth eigenvalue ofH0, and Fmn are the
overlap integrals of the dipole operator,Fmn5^Emu(z1

FIG. 1. Geometry of the double-dot system. The dotted l
plots the charge density of the ground-state wave function.
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1z2)uEn&. A fourth-order Runge-Kutta method was used
time evolve the expansion coefficients using Eq.~3!. The
number of basis states used in the expansion,M, required for
convergence depended on the strength of the electric fi
and values ofM550 were required for the strongest fie
considered.

A similar model was studied recently in Ref. 7 for a larg
system size ofL5100 nm. An important advantage of con
sidering a smaller system, however, is that finer structure
be resolved in the results due to the larger spacing betw
the energy levels. Following Ref. 7 we define a condition
probability function, which gives an extremely useful d
scription of the state of the system. The probability that o
particle is in the right dot while the other is in the left
given byPRL(t),

PRL~ t !52E
R
dz1E

L
dz2uc~z1 ,z2!u2, ~4!

where the notationR / L signifies that the integration is take
over the right/left quantum dot.PRL takes a value of 1 for
maximally delocalized states~when one electron is in the
right dot and the other is in the left!, and is zero for localized
states when both electrons occupy the same dot. The in
state plotted in Fig. 1 is highly delocalized, and has the va
PRL50.849. Our investigation consists of evolving this sta
through a time period of 18 ps while measuringPRL(t). We
term the minimum value ofPRL attained during this period
Pmin , and use this to quantify the degree to which the ac fi
brings about localization.

In Fig. 2~a! we present a contour plot ofPmin as a function
of the parameters of the ac field. Dark areas correspon
low values ofPmin , indicating a high probability that both
electrons are occupying the same dot. Surprisingly this
occur even at weak-field strengths, despite the presenc
the Coulomb interaction. We note that the dark areas fo
horizontal bands, indicating that, for various ‘‘resonant’’ va
ues ofv, localization can be produced over a wide range
fields. The spacing of the bands decreases withv, and for
values of\v,2.8 meV the structure is too fine to resolv
Between these bands strong localization is not produc
These results are qualitatively similar to those of Ref. 7,

e

FIG. 2. Pmin as a function of
the strengthE and energy\v of
the ac field~a! for an interacting
quantum dot system~\v in units
of meV! and ~b! for a Hubbard
model with U58 ~both axes in

units of t̃ ).
4-2
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BRIEF REPORTS PHYSICAL REVIEW B 65 113304
show finer detail, allowing us to observe additionally th
these bands are punctuated by narrow zones in which
field does not create localization. Their form can be se
more clearly in the cross section ofPmin given in Fig. 3~a!,
which reveals them to be narrow peaks. These peaks
approximately equally spaced along each resonance,
spacing increasing withv.

We emphasize that these results are radically differ
from those obtained for noninteracting particles. In this c
an analogous plot of delocalization shows a fanl
structure,6,11 in which localization occurs along lines give
by v5E/xj , wherexj is the j th root of the Bessel function
J0(x). As a test of our method, we repeated our investigat
for a quantum-dot system in which the interelectron Co
lomb repulsion was set to zero, and found that the fan st
ture was indeed reproduced.

To account for these results it is thus necessary to
beyond the noninteracting case. We consider a highly sim
fied model in which each quantum dot is replaced by a sin
site. Electrons can tunnel between the sites, and importa
we include interactions by means of a HubbardU term:

H52 t̃(
s

~c1s
† c2s1H.c.!1(

i 51

2

@Uni↑ni↓1Ei~ t !ni #.

~5!

Here t̃ is the hopping parameter. In this analysis we set\51,
and measure all energies in units oft̃ . Ei(t) is the external
electric potential applied to sitei. Clearly only the potential
differenceE12E2 is of importance, so we may choose th
convenient parametrization

E1~ t !5
E

2
cosvt, E2~ t !52

E

2
cosvt. ~6!

A numerical investigation of such a model was recen
made in Ref. 12 for the case of very weak fields. The Hilb
space of Hamiltonian~5! is six dimensional, comprising
three singlet states and a triplet. As with the double-dot s
tem, the singlet and triplet subspaces are completely de
pled, allowing us to study just the singlet space. In the

FIG. 3. ~a! Quasienergy spectrum for the two-site model forU
58 andv52: circles exact results; lines, perturbation theory.~b!
Magnified view of exact results for a single anticrossing. The c
responding plots ofPmin appear beneath.
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sence of the ac field the eigenvalues of the sing
Hamiltonian can be found analytically, and for largeU they
consist of two almost degenerate excited states, separ
from the ground state by the Hubbard gapU. This mimics
the eigenvalue structure of the lowest multiplet of states
the full double-dot system. We time evolve the system f
lowing the same procedure as before, using the ground s
as the initial state. As the singlet Hamiltonian is only thr
dimensional, however, the computations can correspondin
be done more rapidly. In Fig. 2~b! we show the results for
Pmin obtained by settingU58, which clearly shows that this
simplified model strikingly reproduces the behavior of t
full system of Eq.~1!.

As the driving field @Eq. ~6!# is a periodic function of
time, we can make use of Floquet analysis to describe
time evolution of the system in terms of its Floquet sta
and quasienergies.3 Hamiltonian ~5! is invariant under the
combined parity operationx→2x, t→t1T/2, and so the
Floquet states can also be classified into these parity clas
Close approaches of the Floquet quasienergies as the sy
parameters are varied produce large modifications of the
neling rate, and hence of the system’s dynamics. Quasie
gies of different parity classes may cross, but if they are
the same class they form an anticrossing. Numerically
quasienergies can be conveniently obtained by diagonali
the time evolution operator for one period of the drivin
field, U(t1T,t). This is particularly suited to the numerica
approach we have used, asU(t1T,t) is simply the operator
obtained by time evolving the identity matrixI 3 over one
period of the driving field.

In Fig. 3~a! we present the Floquet quasienergies a
function of the field strength forv52, one of the resonan
frequencies visible in Fig. 2~b!. Below the spectrum we also
plot the behavior ofPmin . We see that the system possess
two distinct regimes of behavior. For weak fields, as stud
in Ref. 12, the Floquet spectrum consists of one isolated s
~which evolves from the ground state! and two states which
make a set of exact crossings. In this regimePmin decays
slowly to zero, showing little structure. As the field streng
exceedsU, however, this abruptly changes to an interestin
previously unseen, behavior in whichPmin remains close to
zero except at a series of narrow peaks, corresponding to
close approaches of two of the quasienergies. A detailed
amination of these approaches@see Fig. 3~b!# reveals them to
be anticrossingsbetween Floquet states which evolve fro
the ground state and the higher excited state, and have
same parity. The remaining state, of opposite parity, ma
small oscillations around zero, but its exact crossings w
the other two states do not correlate with any structure
Pmin .

To interpret this behavior we seek analytical expressi
for the quasienergies. We choose to use a perturbati
approach,5 starting from the Floquet equation

S H2 i
]

]t D uf j~ t !&5e j uf j~ t !&. ~7!

HereH is the full Hamiltonian@Eq. ~5!#, e j are the Floquet
quasienergies, anduf j (t)& are the Floquet states. Our proc
dure is first to find the eigenstates of the operator@HI
2 i (]/]t)#, whereHI is the second term in Eq.~5! contain-

-
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BRIEF REPORTS PHYSICAL REVIEW B 65 113304
ing all the interaction terms, and then treat the tunnel
componentHt as a perturbation. An important advantage
this approach is that the Floquet states are stationary stat
Eq. ~7!. Consequently, by working in an extended Hilbe
space ofT-periodic functions,13 the corrections can be evalu
ated easily by standard Rayleigh-Schro¨dinger perturbation
theory, without requiring more complicated time-depend
methods.

In a real-space representation the interaction terms
diagonal, and so it can be readily shown that an orthonor
set of eigenvectors of@HI2 i (]/]t)# is given by

ue0~ t !&5~exp@ i e0t#,0,0!,

ue1~ t !&5S 0,expF2 i ~U2e1!t1 i
E

v
sinvt G ,0D , ~8!

ue2~ t !&5S 0,0,expF2 i ~U2e2!t2 i
E

v
sinvt G D .

ImposingT-periodic boundary conditions reveals the cor
sponding eigenvalues~modulo v! to be e050 ande65U.
These eigenvalues represent the zeroth-order approxim
to the Floquet quasienergies, and for frequencies such
U5nv all three eigenvalues are degenerate. This deg
eracy is lifted by the perturbationHt , and to first order the
quasienergies are obtained by diagonalizing the perturb
operatorPi j 5^^e i uHtue j&&, where ^^•••&& denotes the inne
product in the extended Hilbert space.5 By using the identity

exp@2 ib sinvt#5 (
m52`

`

Jm~b!exp@2 imvt# ~9!

to rewrite the form ofue6(t)&, the matrix elements ofP can
be obtained straightforwardly, and its eigenvalues sub
th
vi
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quently found to bee050 ande6562Jn(E/v). This solu-
tion clearly reduces to the well-known solution for noninte
acting particles whenU50. Figure 3~a! demonstrates the
excellent agreement between this result~with n54) and the
exact quasienergies for strong and moderate fields, wh
allows the position of the peaks inPmin to be found by lo-
cating the roots ofJn . Similar excellent agreement occurs
the other resonances. For weak fields, however, the inte
tion terms do not dominate the tunneling terms and the p
turbation theory breaks down, corresponding to the we
field regime in whichPmin decays smoothly to zero. Awa
from the resonances the first-order correction identically v
ishes, resulting in the lack of structure seen between the r
nant bands in Fig. 2~b!, and it is necessary to go to highe
orders in perturbation theory to obtain the quasienergy
havior.

In summary, we have investigated the dynamics of
interacting two-electron system driven by an ac field. W
find that despite the Coulomb interaction a suitable ac fi
can nonetheless produce localized states. This localiza
occurs over a range of field strengths at frequencies
which an integer number of quanta,n, is equal to the inter-
action energy. At high fields we find a regime of behavior
which this localization vanishes at the roots ofJn(E/v), and
we explain this using perturbation theory. These results
of general applicability to ac-driven systems of interacti
electrons, and hold out the exciting prospect of controlli
and manipulating correlated quantum states on picosec
time scales by means of applying ac fields.
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