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Abstract

In this work we investigate novel spherical core-shell nanoparticles with band inversion. The core and
the embedding medium are normal semiconductors while the shell material is assumed to be a topological
insulator. The envelope functions are found to satisfy a Dirac-like equation that can be solved in a closed
form. The core-shell nanoparticle supports midgap bound states located at both interfaces due to band
inversion. These states are robust since they are topologically protected. The energy spectrum presents
mirror symmetry due to the chiral symmetry of the Dirac-like Hamiltonian. As a major result, we show
that the thickness of the shell acts as an additional parameter for the fine tuning of the energy levels, which
paves the way for electronics and optoelectronics applications.
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1. Introduction

Band-inverted semiconductor heterostructures
were already studied back in the 1980s and 1990s,
in which the fundamental gap has opposite sign on
each semiconductor. A remarkable feature is the
existence of midgap interface states (see Refs. [1–
6] and references therein). These states are pro-
tected by symmetry and are responsible for the
conducting properties of the surface. Semiconduc-
tor materials that can present band inversion are
II-VI compounds, such as HgxCd1−xTe and IV-VI
compounds, such as PbxSn1−xTe and Pb1−xSnxSe,
among others. In this context, Dziawa et al. pro-
vided strong evidence on how these IV-VI narrow-
gap compounds become a topological insulator (TI)
for x = 0.23 at temperatures below the critical tem-
perature, Tc, which is the temperature at which
a transition between a normal state and an in-
verted bandgap state occurs for a Sn content of
0.18 ≤ x ≤ 0.3 [7].

In recent years, nanoparticles based on TIs have
been thoroughly investigated for their interest in
photonics, optically controlled quantum memory
and quantum computing [8–14]. Surface states
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show little sensitivity to disorder, which is beneficial
for optical applications at the nanoscale [10]. Siroki
et al. have found that, under the influence of light,
a single electron in a topologically protected surface
state creates a surface charge density, similar to a
plasmon in a metallic nanoparticle [11]. Hybrid sys-
tems composed of a topological-insulator nanopar-
ticle and a quantum emitter dimer, interacting in
the strong-coupling regime, show the emergence of
a mode that stems from the coupling of the surface
topological particle polariton of the topological in-
sulator with the resonance state of the quantum
emitter [14].

By contrast, core-shell nanoparticles based on
TIs have received much less attention. Yue et
al. reported on a novel conic plasmonic nanostruc-
ture that is made of bulk TIs and has an intrinsic
core-shell formation. Through integration of the
nanocone arrays into a-Si thin film solar cells, up
to 15% enhancement of light absorption was pre-
dicted in the ultraviolet and visible ranges [15].
In this paper we consider a novel spherical core-
shell nanoparticle, where the core is made of a nor-
mal insulator (NI) and the shell is made of a TI.
The nanoparticle is embedded in the same NI of
the core. Consequently, the core-shell nanoparticle
present two band-inverted heterojunctions, leading
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to the hybridization of the surface states when the
width of the shell is of the order of the spatial de-
cay length of the states. As a major result, we show
that the thickness of the shell can be used for the
fine tuning of the surface energy levels and hence
the electric response of the system.

2. Model Hamiltonian

The two-band model is a reliable approach to
obtaining the electron states near the band edges
in narrow-gap IV-VI semiconductors, for which the
coupling to other bands is negligible [4, 16–18]. The
electron wave function is written as a sum of prod-
ucts of band-edge Bloch functions with slowly vary-
ing envelope functions. The corresponding envelope
function χ(r) is a four-component column vector
composed by the two-component spinors χ+(r) and
χ−(r) belonging to the two bands. Electron states
near the band edges are determined from the Dirac-
like equation Hχ(r) = Eχ(r) with [4, 5, 19]

H = ~vα · k +
1

2
EG(r)β + VC(r) . (1)

Here v is an interband matrix element having di-
mensions of velocity, EG(r) denotes the position-
dependent gap and VC(r) gives the position of the
gap center. α = (αx, αy, αz) and β denote the usual
4× 4 Dirac matrices

αi =

(
02 σi
σi 02

)
, β =

(
12 02

02 −12

)
,

σi being the Pauli matrices (i = x, y, z), and 1n
and 0n are the n × n identity and null matrices,
respectively. In order to keep the algebra as sim-
ple as possible, we restrict ourselves to the sym-
metric situation with same-sized and aligned gaps
[VC(r) = 0]. This is not a serious limitation, but
the calculations are largely simplified.

In the case of spherically symmetric nano-
particles, the gap function EG(r) depends only on
the distance r = |r| to the origin. This prompts us
to introduce spherical coordinates by a separable
ansatz

χ(r) =
1

r

(
u1(r)Qκ,µ(θ, φ)
iu2(r)Q−κ,µ(θ, φ)

)
, (2)

where u1(r) and u2(r) take into account the radial
part and Qκ,µ(θ, φ) are the eigenfunctions of the
angular dependent part, as defined in Ref. [20]:

(σ ·L+ ~)Q±κ,µ = ∓~κQ±κ,µ ,
JzQκ,µ = ~µQκ,µ . (3)

Here the total angular momentum is J = L + S,
κ = ±(j + 1/2) = ±1,±2,±3, . . ., µ = −j,−j +
1/2, . . . ,+j, and ` = j ± 1/2. Inserting the
ansatz (2) into Eq. (1) we obtain the following two
coupled differential equations

d

dr
U(r) =

 − κ

r

∆(r)+E

~v
∆(r)−E

~v
κ

r

U(r) , (4a)

with ∆(r) = EG(r)/2 being half of the position-
dependent gap and

U(r) =

(
u1(r)
u2(r)

)
. (4b)

3. Spherical quantum dot

For the sake of completeness, we first consider a
TI quantum dot of radius R0 embedded in a NI,
as shown in Fig. 1(a) and addressed in Ref. [8]
using Green’s function techniques associated with
the squared Hamiltonian. Regarding the materi-
als of choice, we take Pb0.57Sn0.43Te for the TI
and Pb0.67Sn0.33Te for the embedding NI. With
this choice of materials the magnitude of both gaps
∆ are approximately the same and we can set
∆(r) ≡ ∆ s(r), where

s(r) =

{
−1 , 0 ≤ r ≤ R0 ,
+1 , R0 < r <∞ .

(5)

Figure 1: Schematic representation of (a) a spherical TI
quantum dot and (b) a spherical core-shell nanoparticle,
where the core (shell) is made of a TI (NI). In both cases
the embedding medium is a NI.

We now introduce the length scale d = ~v/∆, the
dimensionless energy ε = E/∆ and the dimension-
less coordinate ξ = r/d. In these units, Eq. (4a)
reads

d

dξ
U(ξ) =

[
−κ/ξ s(ξ)+ε
s(ξ)−ε κ/ξ

]
U(ξ) . (6)
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Here s(ξ) = sgn(ξ − ξ0) with ξ0 = R0/d. Since the
function s(ξ) is piecewise constant, we can easily
solve Eq. (6) for ξ < ξ0 (region I hereafter) and
ξ > ξ0 (region II hereafter). Our interest concerns
midgap states (|E| < ∆) and we then define the real
parameter λ =

√
1− ε2. The solution to Eq. (6)

reads

u1(ξ) =
√
ξ
[
AiI|κ+1/2|(λξ)

+BiK|κ+1/2|(λξ)
]
,

u2(ξ) =
s(ξ)− ε

λ

√
ξ
[
AiI|κ−1/2|(λξ)

−BiK|κ−1/2|(λξ)
]
, (7)

where i = I, II, Ai and Bi are integration constants,
and Iν(z) and Kν(z) stand for the modified Bessel
functions [21]. For small arguments (z → 0) we
have [21]

Iν(z) ∼
(z

2

)ν 1

Γ(ν + 1)
, ν 6= −1,−2, . . .

Kν(z) ∼
(z

2

)−ν 1

2Γ(ν)
, ν 6= 0 . (8a)

Consequently, we must set BI = 0 to obtain regular
solutions at the origin. Similarly, the asymptotic
expansion for large arguments (z →∞) reads [21]

Iν(z) ∼ 1√
2πz

ez
(

1− 4ν2 − 1

8z

)
,

Kν(z) ∼
√

π

2z
e−z

(
1 +

4ν2 − 1

8z

)
. (8b)

Therefore, normalizability of the envelope function
requires AII = 0. Finally, the continuity of u1(ξ)
and u2(ξ) at the interface ξ = ξ0 between the TI
and the NI leads to

AII|κ+1/2|(λξ0) = BIIK|κ+1/2|(λξ0) ,

AI(1 + ε)I|κ−1/2|(λξ0)

= BII(1− ε)K|κ−1/2|(λξ0) , (9)

whence

F(ε, κ, ξ0) = 0 , (10a)

with

F(ε, κ, ξ) ≡ (1 + ε)I|κ−1/2|(λξ)K|κ+1/2|(λξ)

− (1− ε)I|κ+1/2|(λξ)K|κ−1/2|(λξ) . (10b)

Notice that Eq. (10a) is invariant under the change
ε→ −ε and κ→ −κ.

It is instructive to consider two limiting cases.
In the first place, when R0 → ∞ (i.e. ξ0 → ∞),
we might recover the energy level of a flat inter-
face. This is indeed the case because in this limit we
can take the asymptotic expansion (8b) in Eq. (10),
yielding ε ∼ −κ/4ξ0. Undoing the change of vari-
ables we get E ∼ −κ~v/4R0 and the energy of the
topological interfaces states approaches the center
of the gap on increasing R0, as expected [1–6]. In
the second place, we realize that there exists a min-
imum radius Rmin for the quantum dot to support
topological interface states. On decreasing the ra-
dius of the quantum dot R0 from infinite (flat in-
terface) to Rmin the energy of the interface states
moves away from the center of the gap (E = 0)
towards the band edges (|E| = ∆). Hence, the con-
dition to obtain Rmin is λ = 0 and we can then
use the approximation (8a) for small arguments in
Eq. (10), yielding

Rmin(κ) =
√
κ2 − 1/4 d =

√
j(j + 1) d . (11)

Figure 2 shows the energy of the topological in-
terfaces states as a function of the radius of the
quantum dot for κ < 0. We can obtain the energy
levels for κ > 0 reversing the sign of the energy
due to the invariance mentioned above. As we al-
ready anticipated, the energy levels shift upwards
from the gap center when κ < 0 (and downwards
for κ > 0) on decreasing the radius of the quantum
dot and reaches the band edge at Rmin(κ) ' |κ|d,
according to Eq. (11).

Figure 2: Energy of the topological interface states as a func-
tion of the radius of the quantum dot for κ = −(j+1/2) < 0.

The radial probability density of interfaces states,
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P (r;R0) ≡ r2χ†(r)·χ(r) = u21(r)+u22(r) for κ = −1
is shown in Fig. 3. When R0 . Rmin(κ) ' |κ|d, the
radial probability density presents a long tail out-
side the quantum dot (black lines in Fig. 3). How-
ever, the radial probability density becomes almost
symmetric at the interface as soon as R0 exceeds
Rmin(κ), approaching the results for a flat interface.

Figure 3: Left panel shows the contour plot of the radial
probability density P (r;R0) of interfaces states with κ = −1
as a function of r and R0. Right panel shows the radial
probability density of interfaces states at a function of r for
selected values of R0, indicated in the legend, and corre-
sponding to the vertical lines in the left panel.

4. Spherical core-shell nanoparticle

In this section we focus on the core-shell nanopar-
ticle shown schematically in Fig. 1(b). The inner
(core) and embedding media are assumed to be the
same NI, such as Pb0.67Sn0.33Te, while the shell is
a TI, such as Pb0.57Sn0.43Te. The inner and outer
radii are R1 and R2, respectively [see Fig. 1(b)].
Thus, the gap profile in the nanoparticle is given as
∆(r) ≡ ∆ s(r), where now

s(r) =

 +1 , 0 ≤ r ≤ R1 ,
−1 , R1 < r < R2 ,
+1 , R2 ≤ r <∞ .

(12)

We introduce the same dimensionless magnitudes
as before and define ξ1 = R1/d and ξ2 = R2/d.
The general solution to Eq. (6) in the three regions
of the nanoparticle, namely core (region I), shell
(region II) and embedding medium (region III),
are still given by Eq. (7) with i = I, II, III. Nor-
malizability of the envelope function implies that

BI = AIII = 0. On the other hand, continuity of
u1(ξ) and u2(ξ) at the interfaces ξ = ξ1 and ξ = ξ2
yields

AI = AII +BII

K|κ+1/2|(λξ1)

I|κ+1/2|(λξ1)
,

AI = − 1 + ε

1− ε

[
AII −BII

K|κ−1/2|(λξ1)

I|κ−1/2|(λξ1)

]
,

BIII = BII +AII

I|κ+1/2|(λξ2)

K|κ+1/2|(λξ2)
,

BIII = − 1 + ε

1− ε

[
BII −AII

I|κ−1/2|(λξ2)

K|κ−1/2|(λξ2)

]
. (13)

Setting the determinant to vanish we get

F(−ε, κ, ξ1)F(ε, κ, ξ2)

+ 4I|κ+1/2|(λξ1)I|κ−1/2|(λξ1)

×K|κ+1/2|(λξ2)K|κ−1/2|(λξ2) = 0 , (14)

where F(ε, κ, ξ) is defined in Eq. (10b). As in the
case of the quantum dot, the symmetry ε → −ε
and κ → −κ is preserved as well. In the limit
ξ1 → 0, the second term of Eq. (14) vanishes and
F(−ε, κ, ξ1) remains finite. We then recover the re-
sults for a quantum dot of radius ξ2, discussed in
the previous section [see Eq. (10a)].

Figure 4 shows the energy of the topological in-
terfaces states as a function of the outer radius R2

for κ < 0 and inner radius R1 = 5d. The energy lev-
els for κ > 0 are obtained reversing the sign of the
energy due to the symmetry mentioned above. Two
set of states are observed. On the one side, energy
levels above the center of the gap display the same
behavior ∼ 1/R2 observed in quantum dots. There-
fore, the corresponding states are mainly localized
at the outer interface. On the other side, energy
levels below the center of the gap approaches the
energy levels corresponding to a quantum dot of
radius R0 = 5d (see dashed lines in Fig. 4). Thus,
the corresponding states are localized at the inner
interface. When κ > 0, states above (below) are
localised at the inner (outer) interface.

Figure 5 corroborates the above statement re-
garding the spatial localization of the states. The
radial probability density displays a small side peak
at R1 (R2) for E > 0 (E < 0) in addition to the
main peak at R2 (R1) when R2 −R1 ∼ d (see blue
lines in Fig. 5). The small peak becomes unnotice-
able when R2 − R1 � d (see red lines in Fig. 5).

It is then clear from the previous figure that
the hybridization of the interface states can be
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Figure 4: Energy of the topological interfaces states as a
function of the outer radius of the core-shell nanoparticle for
κ = −(j+1/2) < 0. The inner radius is R1 = 5d and dashed
lines indicate the energy levels of a quantum dot with radius
R0 = 5d.

Figure 5: Left panels show the contour plot of the radial
probability density P (r;R2) of interfaces states with κ = −1
and R1 = 5d as a function of r for (a) E > 0 and (b) E < 0.
Right panels show the radial probability density of interfaces
states at a function of r for selected values of R2, indicated
in the legend, and corresponding to the vertical lines in the
left panel.

greatly tuned by modifying the radii. Indeed, when
R2 −R1 � d, the two interfaces are essentially de-
coupled, leading to the behaviour of two indepen-
dent quantum dots, whereas they strongly couple
when R2 − R1 ∼ d. This is clearly observed in the
fact that, as R2 increases while keeping R1 fixed,
the smaller peak in the radial probability density
vanishes, until a single peak at R1 and R2 remains
for E < 0 and E > 0, respectively.

5. Quadrupole moment of the core-shell
nanoparticle

Quantum dots and nanoparticles find a niche of
applications in lasers, sensors, solar cells and single-
electron transistors (see Ref. [22] and references
therein). In the latter, Coulomb blockade plays a
major role in the electrical response. Therefore, a
detailed description of the electron-electron interac-
tion is essential to properly explain the response of
the device. The multipole expansion of the electro-
static potential created by a single electron inside
the core-shell nanoparticle provides a direct way to
determine the magnitude of the electron-electron
interaction. Since the dipole field vanishes, we now
focus on the quadrupole field created by an elec-
tron occupying a topological state of the core-shell
nanoparticle. The components of the quadrupole
tensor are given as

Qij = −e
∫

d3r |χ(r)|2
(
3xixj − r2δij

)
. (15)

We restrict ourselves to the calculation of Qzz here-
after. Defining Q0 ≡ −ed2 and using Eq. (2) one
gets

Qzz
Q0

=

∫ ∞
0

dξ ξ2
∫

dΩ
[
u21(ξ)Q†κ,µ(Ω) · Qκ,µ(Ω)

+ u22(ξ)Q†−κ,µ(Ω) · Q−κ,µ(Ω)
] (

3 cos2 θ − 1
)
,

(16)

where Ω is the solid angle. After lengthy but
straightforward calculations, one can find

Qzz
Q0

=
j(j + 1)− 3µ2

2j(j + 1)

×
∫ ∞
0

dξ ξ2
[
u21(ξ) + u21(ξ)

]
. (17)

Figure 6 shows Qzz as a function of R2 when
R1 = 3.5d and the core-shell nanoparticle is occu-
pied by a single electron in the state with j = 3/2,
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µ = 1/2 and κ = −(j + 1/2) = −2. It is worth
mentioning that we obtain the same magnitude of
the quadrupole moment but opposite sign when
µ = 3/2. As we have already shown in Fig. 4, for
a given value of κ there exist two states, one with
positive energy and the other one with negative en-
ergy. In Fig. 6, the solid red (blue) line shows the
result for the positive (negative) energy state. For
the state with positive energy, located at the outer-
most interface, the quadrupole moment approaches
the value obtained in a quantum dot of the same
radius as soon as R2 exceeds R1 + d. On the con-
trary, for the state with negative energy, located in
the innermost interface, the quadrupole moment is
much lower and rapidly approaches the value cor-
responding a quantum dot of radius R0 = 3.5d.
This suggests that the single-electron state can be
assessed by measuring the quadrupole moment.

Figure 6: Quadrupole moment Qzz in units of Q0 = −ed2
of the core-shell nanoparticle with a single electron in the
state with j = 3/2, µ = 1/2 and κ = −(j + 1/2) = −2, as
a function of R2 when R1 = 3.5d. Solid red and blue lines
correspond to the state with positive and negative energy,
respectively. For comparison, the black solid line shows the
result for a quantum dot of the same radius.

6. Conclusions

Topological insulators at the nanoscale are en-
visaged to have an ever-increasing number of ap-
plications. However, a more complete understand-
ing of the properties of these materials is needed in
order to better exploit these applications. In this
work, we have proposed and studied a novel spher-
ical core-shell nanoparticle system composed of a
TI shell and a NI core and embedding medium. A
realistic two-band description of the nanoparticle

allowed us to describe topologically protected elec-
tron states that arise at the TI/NI interface. In
addition, we were able to exactly solve the equa-
tion for the two-component envelope function. We
found that there exists a strong hybridization of
the topologically protected electron states located
at the innermost and outermost interfaces, provided
that the separation between the two surfaces is of
the order of the decay length. A similar hybridiza-
tion of topological states has been found in quan-
tum wells [23]. Since the hybridization can be con-
trolled by selecting the thickness of the shell, we
argue that it acts as an additional parameter for
fine tuning the energy levels, which paves the way
for electronics and optoelectronics applications.

This work was supported by Ministerio de Cien-
cia e Innovación (Grant PID2019-106820RB-C21).
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