
J
H
E
P
1
1
(
2
0
1
7
)
0
9
8

Published for SISSA by Springer

Received: July 19, 2017

Revised: October 19, 2017

Accepted: November 5, 2017

Published: November 16, 2017

Production of vector resonances at the LHC via

WZ-scattering: a unitarized EChL analysis

R.L. Delgado,a A. Dobado,a D. Espriu,b C. Garcia-Garcia,c M.J. Herrero,c

X. Marcanoc and J.J. Sanz-Cilleroa
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Abstract: In the present work we study the production of vector resonances at the LHC

by means of the vector boson scattering WZ →WZ and explore the sensitivities to these

resonances for the expected future LHC luminosities. We are assuming that these vector

resonances are generated dynamically from the self interactions of the longitudinal gauge

bosons, WL and ZL, and work under the framework of the electroweak chiral Lagrangian

to describe in a model independent way the supposedly strong dynamics of these modes.

The properties of the vector resonances, mass, width and couplings to the W and Z gauge

bosons are derived from the inverse amplitude method approach. We implement all these

features into a single model, the IAM-MC, adapted for MonteCarlo, built in a Lagrangian

language in terms of the electroweak chiral Lagrangian and a chiral Lagrangian for the

vector resonances, which mimics the resonant behavior of the IAM and provides unitary

amplitudes. The model has been implemented in MadGraph, allowing us to perform a

realistic study of the signal versus background events at the LHC. In particular, we have

focused our study on the pp→WZjj type of events, discussing first on the potential of the

hadronic and semileptonic channels of the final WZ, and next exploring in more detail the

most clear signals. These are provided by the leptonic decays of the gauge bosons, leading

to a final state with `+1 `
−
1 `

+
2 νjj, ` = e, µ, having a very distinctive signature, and showing

clearly the emergence of the resonances with masses in the range of 1.5–2.5 TeV, which we

have explored.
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1 Introduction

One of the most likely indications of the existence of physics beyond the standard model

(SM) could be the appearance of resonances in the scattering of longitudinally polarized W

and Z electroweak (EW) gauge bosons. This would be a formidable hint of the existence of

new interactions involving the electroweak symmetry breaking sector (EWSBS) of the SM.

This possibility is indeed contemplated in all composite Higgs scenarios, characterized by

the existence of a scale f � v = 246 GeV where some new strong interactions trigger the

dynamical breaking of a global symmetry group G to a certain subgroup H. The Goldstone

bosons that appear provide the longitudinal degrees of freedom of the weak gauge bosons,

while the Higgs boson would be one of the leftover Goldstone bosons. A non-zero mass for

the latter is often provided by electroweak radiative corrections, e.g., via some misalignment

mechanism between the gauge group and the global unbroken subgroup [1].
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In the present work we will not assume any specific model for the strong dynamics

underlying the EWSBS nor for the above mentioned misalignment mechanism. Instead,

we will work under the generic and minimal assumptions for the above global groups and

the spontaneous symmetry breaking pattern given by SU(2)L×SU(2)R → SU(2)L+R. This

involves the minimal set of Goldstone bosons that are needed to generate the EW gauge

boson masses, mW and mZ , and also preserves the wanted custodial symmetry SU(2)C =

SU(2)L+R. This symmetry protects the SM tree level relation mW = cos θWmZ from

potentially dangerous strong dynamics corrections, keeping the values of the mW,Z masses

close to each other. Under these generic assumptions, the most convenient approach to

study in a model independent way the phenomenology of the strongly interacting EWSBS

is provided by the electroweak chiral Lagrangian that is based on the above EW chiral

symmetry breaking pattern and has the same EW gauge symmetries as the SM. The use

of these effective chiral Lagrangians in the context of the electroweak theory was initiated

long ago in the eighties [2–8] by following the guiding lines of the well established chiral

perturbation theory (ChPT) of low energy QCD [9–11]. It was used in the early nineties

for LEP phenomenology [12, 13], and for LHC prospects [14–17], and it has received an

important push and upgrade in the last years, mainly after the discovery of the Higgs

particle. All this lead to the building of the EW chiral Lagrangian with a light Higgs

(EChL) [18–28]. A great effort has also been done in exploring the main implications of

the EChL for LHC phenomenology (see, for instance, [29] for a recent summary), although

no strongly interacting signal from the EWSBS has been seen yet at the LHC. The absence

of these signals at present and past colliders is translated, within the EChL framework,

into experimental bounds on the size of the a priori unknown chiral parameters of the

EChL [23, 27, 30–35].

One of the most characteristic features of strong dynamics is undoubtedly the appear-

ance of resonances in the spectrum, thus one should also expect new resonances if the

EWSBS is strongly interacting. The use of the EChL for the study of this strong dynamics

suggests that the scale associated to these resonances is related to the parameter with

dimension of energy controlling the perturbative expansion within this chiral effective field

theory, given typically, in the minimal scenario that we work with, by 4πv. Therefore,

one expects resonances to appear with masses typically of a few TeV, clearly in the range

covered at the LHC. The theoretical framework for the description of such resonances is,

however, not universal and one has to rely on a particular (author dependent) approach.

Once one chooses, as we do, the approach provided by the EChL, there are basically two

main paths to proceed. Either the resonances are introduced explicitly at the Lagrangian

level and the new terms added to the EChL are required to share the same symmetries

of this latter, in particular the EW chiral symmetry, or they are not explicitly included

but they are instead dynamically generated from the EChL itself. The first approach has

been followed in several works [36–40] essentially along the lines of previous works within

the context of low energy QCD [41]. This type of chiral resonances have also been studied

at the LHC [42]. The second approach has been followed in a number of works that use

the inverse amplitude method (IAM) to impose the unitarity of the amplitudes predicted

with the EChL [20–22, 24, 25, 28, 43–46]. Within this approach, the self-interactions of
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the longitudinal EW bosons, which are assumed to be strong, are the responsible of the

dynamical generation of the resonances, and these are expected to show up in the scat-

tering of the longitudinal modes, WL and ZL, essentially as it happens in the context of

ChPT where the QCD resonances emerge in the scattering of pions [47–50]. The IAM

was indeed used long ago in the context of the strongly interacting EWSBS framework

but without the Higgs particle, and the production of these IAM resonances at the LHC

was also addressed [14, 15, 51]. The advantage of this second approach is that it provides

unitary amplitudes, which are absolutely needed for a realistic analysis at the LHC, and it

predicts the properties of the resonances, masses, widths and couplings, in terms of the chi-

ral parameters of the EChL. The disadvantage of this method is that it does not deal with

full amplitudes but with partial waves, which are not very convenient for a MonteCarlo

analysis at the LHC.

The present work addresses the question of whether these IAM dynamically generated

resonances of the EWSBS could be visible at the LHC by means of the study of the

EW vector boson scattering (VBS). These VBS processes are the most relevant channels

to explore at the LHC if the longitudinal gauge modes are really strongly interacting,

since they involve the four point self-interactions of the EW gauge bosons. Moreover, the

resonances should emerge more clearly in VBS processes as they are generated from this

strong dynamics. Our study aims to quantify the visibility of these resonances and also to

determine the integrated luminosities that would be required to this end. More concretely,

our purpose here is to estimate the event rates at the LHC of the production of a SU(2)L+R
triplet vector resonance, V , via WZ → WZ scattering, and the subsequent decays of the

final W and Z. We have selected this particular subprocess because it has several appealing

features in comparison with other VBS channels. In the presence of such dynamical vector

resonances, these emerge/resonate (in particular, the charged V ±ones) in the s-channel

of WZ → WZ, whereas in other subprocesses like W+W+ → W+W+, W+W− → ZZ,

ZZ → W+W− and ZZ → ZZ do not. Other interesting cases like W+W− → W+W−

where the neutral resonance, V 0, could similarly emerge in the s-channel have, however,

severe backgrounds. For this reason it is known to be very difficult to disentangle the signal

from the SM irreducible background at the LHC. In particular, the SM one-loop gluon

initiated subprocess, gg → W+W−, turns out to be a very important background in this

case due to the huge gluon density in the proton at the LHC energies. Our selected process

WZ → WZ, in contrast, does not suffer from this background, and therefore it provides

one of the cleanest windows to look for these vector resonances at the LHC.

Consequently, our theoretical framework will be: 1) the effective electroweak chiral

theory with a light Higgs boson in terms of the ‘chiral’ effective couplings, a1,2,3,4,5, and

a and b effective Higgs boson couplings (custodial symmetry of the underlying strong dy-

namics will be assumed); 2) the unitarization of WLZL → WLZL via the IAM, following

the works [20–22, 24, 25, 28, 43, 44] and making sure that the predictions at the LHC

comply with the obvious requirement of unitarity; 3) we work with EW gauge bosons in

the external legs of the VBS amplitudes and not with Goldstone bosons. This means that

we go beyond the simpler predictions provided by the equivalence theorem (ET) [52–55],

and this will allow us to make realistic predictions for massive W and Z gauge bosons pro-
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duction and their decays at the LHC; 4) out of the EChL we shall construct and effective

Lagrangian including vector resonances, based on the Proca 4-vector formalism [36–40], in

order to introduce in a Lagrangian language the resonances that are dynamically generated

by the IAM. This effective Lagrangian includes the proper resonance couplings to the W

and Z and have the symmetries of the EChL, in particular the EW Chiral symmetry. With

this Lagrangian we will mimic the resonant behavior of the IAM amplitudes, having the

resonance masses and widths as predicted by the IAM. Indeed, we will make use of this

vector Lagrangian to extract the Lorentz structure of the WZ scattering vertex to be coded

in the MonteCarlo. The coupling itself will turn out to be a momentum-dependent func-

tion that will be derived from the IAM unitarization process in the IJ = 11 channel. This

IAM-MC model presented here is proper for a MonteCarlo analysis and it is included in

MadGraph5 [56] for this work. The corresponding UFO file for the present IAM-MC model

can be provided on demand. We would like to emphasize that our IAM-MC model provides

full A(WZ →WZ) amplitudes with massive external EW gauge bosons. The correspond-

ing cross section σ(WZ →WZ) is computed from these full amplitudes and not from the

first partial waves that do not provide a sufficiently accurate result, as we have checked.

Finally, a careful study of the signal versus backgrounds for the full process pp→WZjj,

leading to events with two jets plus one W+ and one Z will be performed. We will first

discuss on the potential of the hadronic and semileptonic channels of the final WZ. Then

we will explore the cleanest channels leading to events with two jets and the three leptons

and missing energy which come from the leptonic decays of the final W+ and Z. For that

study we will employ the well established VBS selection cuts [57–60] and some specific

optimal cuts on the final particles, which will eventually allow us to extract the emergent

vector resonances from the SM background in this kind of ` ¯̀̀ νjj events at the LHC.

The paper is organized as follows. In section 2 we summarize the main features of the

EChL. In section 3 we present the predictions for the WZ →WZ scattering process within

this EChL framework, we unitarize the corresponding amplitudes with the IAM, and we

select specific EChL scenarios with emergent vector resonances in this WZ scattering pro-

cess. Section 4 is devoted to the presentation of our IAM-MC model and the description

of how we deal with IAM vector resonances in WZ scattering within a MonteCarlo frame-

work. In section 5 we present our numerical results for the production and sensitivity to

vector resonances in pp→WZjj events at LHC. A dicussion on the extrapolated rates for

the hadronic and semileptonic channels is also included. The leptonic channels leading to

` ¯̀̀ νjj events are also explored in this section. A comparative study of the signal and back-

ground events is included. The final section summarizes our main conclusions. The final

appendices collect some of our analytical results and Feynman rules for the VBS amplitudes.

2 The effective electroweak chiral Lagrangian

Given that the possible physics existing beyond the minimal SM is model dependent,

even after restricting ourselves to the realm of strongly EWSBS, it is necessary to employ

a technology that is as model independent as possible. The appropriate tool to do so

is provided by the effective EChL. In this theory the information about the underlying
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microscopic theory is encoded in a number of so-called low-energy constants, i.e., coefficients

of local operators.

The EChL is a gauged non-linear effective field theory (EFT) coupled to a singlet

scalar particle that contains as dynamical fields the EW gauge bosons, W±, Z and γ, the

corresponding would-be Goldstone-bosons, w±, z, and the Higgs scalar boson, H. We will

not discuss the fermion sector in this article. The w±, z are described by a matrix field U

that takes values in the SU(2)L× SU(2)R/SU(2)L+R coset, and transforms as U → gLUg
†
R

under the action of the global group SU(2)L×SU(2)R. We will assume here that the scalar

sector of the EChL preserves the custodial symmetry, except for the explicit breaking due to

the gauging of the U(1)Y symmetry. We believe that this assumption is well justified, since

experimental measurements involving the well known ρ parameter, or the effective couplings

that parametrize the interaction between the Higgs and the EW gauge bosons show no

evidence of custodial breaking in the bosonic sector other than that induced from g′ 6= 0.

The basic building blocks of the SU(2)L×U(1)Y gauge invariant EChL are the following:

U(w±, z) = 1 + iwaτa/v +O(w2) ∈ SU(2)L × SU(2)R/SU(2)L+R, (2.1)

F(H) = 1 + 2a
H

v
+ b

(
H

v

)2

+ . . . , (2.2)

DµU = ∂µU + iŴµU − iUB̂µ, (2.3)

Ŵµν = ∂µŴν − ∂νŴµ + i[Ŵµ, Ŵν ], B̂µν = ∂µB̂ν − ∂νB̂µ, (2.4)

Ŵµ = g ~Wµ~τ/2, B̂µ = g′Bµτ
3/2, (2.5)

Vµ = (DµU)U †. (2.6)

According to the usual counting rules, the SU(2)L×U(1)Y invariant terms in the EChL

are organized by means of their ‘chiral dimension’, meaning that a term Ld with ‘chiral

dimension’ d will contribute to O(pd) in the corresponding power momentum expansion.

The chiral dimension of each term in the EChL can be found out by following the scaling

with p of the various contributing basic functions. Derivatives and masses are considered

as soft scales of the EFT and of the same order in the chiral counting, i.e. of O(p). The

gauge boson masses, mW and mZ are examples of these soft masses in the case of the

EChL. These are generated from the covariant derivative in eq. (2.3) once the U field is

expanded in terms of the wa fields as:

DµU =
i∂µ ~w ~τ

v
+ i

gv

2

~Wµ ~τ

v
− i g

′v

2

Bµ τ
3

v
+ . . . (2.7)

where the dots represent terms with higher powers of (wa/v) and whose precise form

will depend on the particular parametrization of U . Once the gauge fields are rotated to

the physical basis they get the usual gauge boson squared mass values at lowest order:

m2
W = g2v2/4 and m2

Z = (g2 + g′2)v2/4.

In order to have a power counting consistent with the loop expansion one needs all

the terms in the covariant derivative above to be of the same order. Thus, the proper

assignment is ∂µ, (gv) and (g′v) ∼ O(p) or, equivalently, ∂µ, mW , mZ ∼ O(p). In addition,

we will also consider in this work the Higgs boson mass mH as another soft mass in the
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EChL with a similar chiral counting as mW and mZ . That implies, mH ∼ O(p), or

equivalently (λv2) ∼ O(p2), with λ being the SM Higgs self-coupling.

With these building blocks one then constructs the EChL up to a given order in

the chiral expansion. We require this Lagrangian to be CP invariant, Lorentz invariant,

SU(2)L×U(1)Y gauge invariant and custodial preserving. For the present work we include

the terms with chiral dimension up to O(p4), therefore, the EChL can be generically

written as:

LEChL = L2 + L4 + LGF + LFP , (2.8)

where L2 refers to the terms with chiral dimension 2, i.e O(p2), L4 refers to the terms with

chiral dimension 4, i.e O(p4), and LGF and LFP are the gauge-fixing (GF) and the corre-

sponding non-abelian Fadeev-Popov (FP) terms. The relevant terms for the description of

EW gauge boson scattering amplitudes are:1

L2 = − 1

2g2
Tr
(
ŴµνŴ

µν
)
− 1

2g
′2

Tr
(
B̂µνB̂

µν
)

+
v2

4

[
1 + 2a

H

v
+ b

H2

v2

]
Tr
(
DµU †DµU

)
+

1

2
∂µH ∂µH + . . . , (2.9)

L4 = a1Tr
(
UB̂µνU

†Ŵµν
)

+ ia2Tr
(
UB̂µνU

†[Vµ,Vν ]
)
− ia3Tr

(
Ŵµν [Vµ,Vν ]

)

+ a4

[
Tr(VµVν)

][
Tr(VµVν)

]
+ a5

[
Tr(VµVµ)

][
Tr(VνVν)

]

− cW
H

v
Tr
(
ŴµνŴ

µν
)
− cB

H

v
Tr
(
B̂µνB̂

µν
)

+ . . . (2.10)

Regarding the present experimental constraints on the previous EW chiral coefficients, we

have summarized in figure 1 the most recent available set from the literature [23, 27, 29–35].

From the previous set of constraints we can see that the most constrained EW chiral cou-

plings at present are a1, from its relation with the oblique S parameter, and a3 where

the most important constraints come from its relation with the anomalous triple gauge

couplings. Also a2 is constrained, although more mildly, by triple gauge couplings. On the

other hand, the chiral couplings a4 and a5 are constrained mainly by the studies of the

anomalous quartic gauge couplings at the LHC and LEP [23, 32, 34, 35]. In addition, a is

constrained to be close to the SM value (aSM = 1) up to O(10%) deviations, the coefficient

b is unknown so far, see however [43]. Regarding cW and cB, the best constraint comes from

the related coefficient appearing in the photonic e2

16π2 cγγ
H
v FµνF

µν Lagrangian term. It has

been experimentally constrained to cγγ = −0.24 ± 0.37 [27]. A recent summary of con-

straints and some phenomenological issues of LEChL for LHC physics can be found in [29].

3 Selection of scenarios with vector resonances in WZ scattering

In this section we present the specific EChL scenarios that will be explored in our forthcom-

ming study at the LHC, having dynamical vector resonances V emerging in WZ scattering.

1Our notation is taken from [61, 62] and compares: 1) with [3] as, a1 = (g/g′)α1, a2 = (g/g′)α2,

a3 = −α3, a4 = α4, a5 = α5; 2) with [11] as, `1 = 4a5, `2 = 4a4, `5 = a1, `6 = 2(a2 − a3); and with [10] as,

L1 = a5, L2 = a4, L9 = a3 − a2, L10 = a1.

– 6 –
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Buchalla et al , 68 % CL

ATLAS , 95 % CL H 2014 L

CMS , 95 % CL

LEP , S - variable , 68 % CL

LEP , 95 % CL

LEP , 95 % CL

LEP , 90 % CL

ATLAS , 95 % CL H 2014 L

LEP , 90 % CL

ATLAS , 95 % CL H 2014 L

ATLAS , 95 % CL H 2017 L

ATLAS , 95 % CL H 2017 L

- 0.3 - 0.2 - 0.1 0 0.1 0.2 0.3 0.4 0.5

a -1

a1 × 102

a2

a3

a4

a5

SM

Figure 1. Present experimental constraints on the EChL coefficients. They are extracted from

refs. [23, 27, 29–35].

First we show the results of the cross-sections for WZ → WZ from the EChL, which are

compared with the SM predictions. Then we unitarize these EChL results, and finally,

within these unitarized results, we select the scenarios with emergent vector resonances V .

Even though all the EW chiral coefficients in the previously introduced EChL will enter

in the description of the subprocesses of our interest, i.e. the scattering of EW gauge bosons,

not all of them are equally relevant for all channels. As stated in the introduction, here

we will be mostly interested in studying the deviations with respect to the SM predictions

for the specific scattering process WLZL → WLZL, since it provides one of the cleanest

windows to look for charged vector resonances at the LHC. On the other hand, we know

by means of the ET [52–55], which applies to renormalizable gauges and is valid also for

the EChL [63–66], that the scattering amplitude for this subprocess WLZL → WLZL can

be approximated, at large energies compared to the gauge boson masses, by the scattering

amplitude of the corresponding would-be Goldstone bosons,

A(WLZL →WLZL) ' A(wz → wz) . (3.1)

Since the relevant EW chiral coefficients in the amplitude A(wz → wz) (i.e., those that

remain even switching off the gauge interactions, g = g′ = 0), are just a, b, a4 and a5, we

conclude that for our purpose of describing the most relevant departures from the SM in

A(WLZL →WLZL) it will be sufficient to work with just this subset of EChL parameters.

As we have said, in the present work we deal with massive gauge bosons in the external

legs of the VBS amplitudes and not with their corresponding Goldstone bosons. The

various contributing terms from the EChL to the EW gauge boson scattering amplitude of

our interest are the following:

A(WLZL →WLZL)EChL = A(0)(WLZL →WLZL) +A(1)(WLZL →WLZL) , (3.2)

where the leading order (LO), O(p2), and next to leading order contributions (NLO), O(p4),

– 7 –
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are denoted as A(0) and A(1) respectively, and are given by:

A(0)(WLZL →WLZL) = AEChL
(2)
tree ,

A(1)(WLZL →WLZL) = AEChL
(4)
tree +AEChL

(2)
loop . (3.3)

For completeness, we have also collected in the appendices the necessary Feynman

rules, Feynman diagrams and resulting scattering amplitudes, for the simplest case of a

tree level computation, i.e.,

A(WLZL →WLZL)EChL
(2+4)
tree = AEChL

(2)
tree +AEChL

(4)
tree . (3.4)

The analytical result is given in terms of the three EChL parameters, a, a4 and a5 involved,

and has been found with the help of FeynArts [67] and FormCalc [68]. We have also

included in the appendices the corresponding results for the SM amplitude at the tree

level, to illustrate clearly the differences with respect to the EChL results. It should be

noticed that the b parameter does not enter in WZ scattering at the tree level, and it just

enters in AEChL
(2)
loop . It should also be noticed that, to our knowledge, a full one-loop EChL

computation is not available in the literature for this process, i.e., the full analytical result

of AEChL
(2)
loop is unknown. However, we will use an approximation to estimate the size of this

one-loop contribution, following [20, 24, 25]. Concretely, the real part of the loop diagrams

is computed using the ET (but keeping mH 6= 0) and the imaginary part of the loops is

calculated exactly through the tree-level result by making use of the optical theorem. In

the following, we will refer to this NLO computation, EChL
(2+4)
loop , as quasi exact one-loop

EChL result.

We have chosen one example to illustrate numerically and graphically the energy be-

havior of the EChL cross section and the comparison with the SM prediction. This is

displayed in figure 2, where the chiral parameters have been set to a = 0.9, b = a2,

a4 = 9.5 × 10−4 and a5 = −6.5 × 10−4. As we can see in figure 2 the predictions from

the EChL grow with energy, and they depart clearly from the SM prediction which for

| cos θ| ≤ 1 is nearly flat with energy in the explored interval of
√
s ∈ (500, 3000) GeV.

This growth is more pronounced as larger the values of |a4| and/or |a5| are, and it leads

to amplitudes that cross over the unitarity bound at some energy
√
s, whose particular

value obviously depends on the assumed (a, a4, a5) parameters. We have checked that by

using input (a, a4, a5) parameters in the allowed region by the experimental constraints

in figure 1, this crossing, which is defined in terms of the IJ partial waves as |aIJ | = 1,

may indeed occur at the TeV energies explored by the LHC, even for as small values as

|a4,5| ∼ 10−3. For instance, in the example of figure 2 this crossing takes place first for the

|a00| partial wave, and it happens at around 2 TeV. Larger values of a4,5 would lead to the

unitarity violation happening at even lower energies.

At this stage, it is also interesting to comment on the goodness of our assumption of

neglecting other loop contributions in our computation of WZ scattering. In particular,

as we have said, we are ignoring in this work the contributions from fermions. Since

the fermions would only contribute via loops to this WZ scattering process, and since
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Figure 2. Predictions of the cross section σ(WLZL → WLZL) as a function of the center of

mass energy
√
s from the EChL. The predictions at leading order, EChL

(2)
tree, and next to leading

order, EChL
(2+4)
loop , are displayed separately. The EChL coefficients are set here to a = 0.9, b = a2,

a4 = 9.5×10−4 and a5 = −6.5×10−4. Here the integration is done in the whole | cos θ| ≤ 1 interval

of the centre of mass scattering angle θ. The prediction of the SM cross section is also included,

for comparison. All predictions have been obtained using FormCalc and our private Mathematica

code and checked with MadGraph5.

the dominant contributions would come from the third generation-quark loops, we have

performed an estimate of the size of these loop contributions to be sure that they are

indeed negligible. For this estimate we have assumed that all the fermion interactions

are the same as in the SM and we have used the analytical results of [69] which are

provided for the SM within the ET. Our numerical estimate of the heavy fermion loops

indicates that for the high energies of our interest here, say between 1 and 3 TeV, the

contributions from the top loops to σ(wz → wz) decrease with
√
s, in contrast to the

contributions from the EChL loops which increase with energy, and they are indeed very

small, between 10−1 pb and 10−2 pb. These are more than three orders of magnitude below

the prediction of σ(WLZL → WLZL) from the EChL (specifically, from our quasi exact

prediction EChL
(2+4)
loop in figure 2). Therefore we conclude that our assumption in this work

of ignoring the fermion loops is well justified.

The above commented deviations of the EChL predictions with respect to the SM ones

in the scattering of longitudinally polarized gauge bosons, are by themselves an interesting

result and suggest that they could lead to signals above the SM background given by an

enhancement in events with WLZL in the final state. However, the polarization of the

final gauge bosons is not expected to be measured at the LHC, and therefore the realistic

SM background will come from the full unpolarized SM cross section. The relevance of

the various polarization channels in the SM prediction is shown in figure 3. We display

the different polarization cross sections integrated in two choices of the center of mass

scattering angle, | cos θ| ≤ 1 and | cos θ| ≤ 0.96. We have checked that we get the same

results with FormCalc and MadGraph5. It is clear that the channel WTZT →WTZT (gray

lines in figure 3) is the dominant one, then go WLZT → WLZT and WTZL → WTZL
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Figure 3. Predictions of the SM cross section as a function of the center of mass energy,
√
s, of the

process WZ → WZ for different polarizations of the initial WAZB (AB = LL, TT, LT ) and final

WCZD (CD = LL, TT, LT ) bosons. We display the different polarization cross sections integrated

in two choices of the center of mass scattering angle, | cos θ| ≤ 1 (left panel) and | cos θ| ≤ 0.96 (right

panel), corresponding the latter to |ηW,Z | < 2. All predictions have been obtained with FormCalc

and checked with MadGraph5.

(pink lines) which we denote together here and along this work as LT → LT , and next

WLZL →WLZL (orange lines). For instance, in the energy interval
√
s ∈ (1000, 3000) GeV,

the size of σ(WLZL → WLZL) is approximately one order of magnitude smaller than

that of the σ(WTZT → WTZT ). Therefore, in order to extract clear signals at the LHC

from departures in the WLZL → WLZL channel we will have to produce cross-sections

emerging above this irreducible SM background. It is one of our main motivations here

to consider dynamically generated resonances as leading emergent signals from the EChL

in WZ → WZ scattering, instead of considering just smooth enhancements over the SM

background.

Finally, the previously mentioned violation of unitarity of the EChL scattering am-

plitudes leads to our major concern in this work: the need of an unitarization method in

order to provide realistic predictions at the LHC. We choose here one of the most used

unitarization methods for the partial waves, the IAM, which has the advantage over other

methods of being able to generate dynamically the vector resonances that we are interested

in. In terms of fixed isospin I and angular momentum J , and following a similar notation

as in eq. (3.2), for the LO a
(0)
IJ and NLO a

(1)
IJ contributions, the IAM partial waves are given

by (for a review, see for instance ref. [70]):

aIAM
IJ =

(
a
(0)
IJ

)2

a
(0)
IJ − a

(1)
IJ

. (3.5)

Other unitarization procedures such as N/D and the improved K matrix (IK) were

also studied and compared with the IAM in the present context in detail in ref. [71].

In this reference the IAM, N/D and the IK unitarization methods are implemented in

a particular way compatible with the electroweak chiral expansion. All of these three

methods turn out to be acceptable, since they produce partial waves which are: IR and UV

finite, renormalization scale µ independent, elastically unitary, have the proper analytical
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structure (they feature a right and a left cut) and they reproduce the expected low energy

results of the EChL up to the one-loop level. Thus the three methods can provide an UV

completion of the low-energy chiral amplitudes. Moreover, for some region of the chiral

couplings parameter space, they can have a pole in the second Riemann sheet with similar

properties. These poles have a natural interpretation as dynamically generated resonances

with the quantum numbers of the corresponding channel.2 By comparison of the three

methods for different values of the chiral couplings it is possible to realize that all of them

normally produce the same qualitative results and, in many cases, the agreement is also

quantitative up to high energies. This is particularly true for the I = J = 0 channel.

However, as it is explained in detail in ref. [71], the N/D and the IK methods cannot be

applied to the I = J = 1 channel considered in this work in the particular case of b = a2,

since it leads to contributions from the left and right cuts which cannot be separated in a

µ-invariant way, as required by these two methods. Therefore, in the following we will use

only the IAM method. Contrary to the perturbative expansion of the EChL amplitudes, the

IAM amplitudes fulfill all the analyticity and elastic unitarity requirements. In addition,

aIAM
IJ may or may not exhibit a pole as discussed above. If present, it can be interpreted

as a dynamically generated resonance. In that case we use here the usual convention for

the position of the pole in terms of the mass, MR, and width, ΓR, of the corresponding

resonance R: spole = (MR− i
2ΓR)2. Finally, it is worth mentioning that the IAM is actually

derived from the re-summation of bubbles in the s-channel and therefore accounts for re-

scattering effects. The dynamical generation of resonances can be understood from the

inclusion of this infinite chain of diagrams. Concretely, in the present case of WZ → WZ

scattering, such re-summation of infinite bubbles in the s-channel means in practice to

consider the sequential chain of diagrams with W and Z in the internal bubbles, i.e.,

WZ → WZ → · · · → WZ → WZ. The charged vector resonance V ± is then understood

as emerging from this chain.

The solution to the position of the pole in the case of aIAM
11 is very simple if the ET is

used, and gives simple predictions for the mass and the width of the dinamically generated

vector resonances in terms of the EChL parameters, a, b, a4 and a5, given by [21, 22]:

(M2
V )ET =

1152π2v2(1− a2)
8(1− a2)2 − 75(a2 − b)2 + 4608π2(a4(µ)− 2a5(µ))

, (3.6)

(ΓV )ET =
(1− a2)
96πv2

M3
V

[
1 +

(a2 − b)2
32π2v2(1− a2)M

2
V

]−1
, (3.7)

with a4(µ) and a5(µ) the scale dependent parameters whose running equations for arbitrary

a and b can be found in [20–22, 24, 25]. These solutions apply to narrow resonances, i.e.,

for ΓV �MV , which is indeed our case. It should be noticed that, as it is well known, the

2The simplest and better known case, where this machinery is known to work very well, is provided by

ππ scattering. There, unitarization of the IJ = 11 partial wave provides the position and properties of the

ρ meson when the measured values of the low-energy chiral couplings in the chiral Lagrangian are used.

Note that these couplings are measured at energies well below mρ. Likewise determining the corresponding

anomalous coefficients in VBS at the LHC would give valuable information on resonances to be found at

higher values of s.
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Figure 4. Predictions for masses (left panel) and widths (right panel) of vector resonances as a

function of a and the combination (a4 − 2a5) in the EChL+IAM. Our fifteen selected scenarios

lay approximately over the contour lines of fixed MV , 1500 GeV (circles), 2000 GeV (squares), and

2500 GeV (triangles), and have values for a fixed, respectively, to 0.9 (biggest symbols, corresponding

to BP1’, BP2’ and BP3’), 0.925, 0.95, 0.975 and 1 (smallest symbols, corresponding to BP1, BP2,

and BP3). All studied cases with vector resonances are such that no corresponding scalar or tensor

resonances appear. The stripped area denotes the region with resonances heavier than 3000 GeV.

case with a = 1 cannot be treated in the IAM within the ET framework. This will not be

the case in our quasi-exact predictions, as we will see in the following.

The solution to the position of the aIAM
11 pole in the quasi-exact case with mW,Z 6= 0

is more involved [20, 24, 25], but it basically shares the main qualitative features of the

previous ET results. First, the main contribution from the parameters a4 and a5 appears

also in the particular combination (a4 − 2a5) which is µ-scale independent if b = a2. We

have checked explicitly that other contributions from a4 and a5 not going as (a4 − 2a5)

vanish in the isospin limit where mW = mZ . Second, the main dependence with a also

comes in the combination (1 − a2), and the main dependence with b also comes in the

combination (a2− b)2. All these generic features can also be seen in our numerical results,

displayed in figure 4, which we have generated with the FORTRAN code that implements

the quasi-exact EChL+IAM framework, borrowed from the authors in refs. [20, 24, 25].

The plots in figure 4 show the contour lines of fixed MV and ΓV in the [(a4 − 2a5), a]

EChL parameter space plane. Here we have explored values of these parameters in the

intervals that are allowed by present constraints, specifically, a ∈ (0.9, 1) and (a4 − 2a5) ∈
O(10−4, 10−3). The particular contour lines with MV = 1500, 2000, 2500 GeV are high-

lighted since they will be chosen as our reference mass values in our next study at the
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BP MV (GeV) ΓV (GeV) gV (M2
V ) a a4 · 104 a5 · 104

BP1 1476 14 0.033 1 3.5 −3

BP2 2039 21 0.018 1 1 −1

BP3 2472 27 0.013 1 0.5 −0.5

BP1’ 1479 42 0.058 0.9 9.5 −6.5

BP2’ 1980 97 0.042 0.9 5.5 −2.5

BP3’ 2480 183 0.033 0.9 4 −1

Table 1. Selected benchmark points (BP) of dynamically generated vector resonances. The mass,

MV , width, ΓV , coupling to gauge bosons, gV (MV ), and relevant chiral parameters, a, a4 and a5
are given for each of them. b is fixed to b = a2. This table is generated using the FORTRAN code

that implements the EChL+IAM framework, borrowed from the authors in refs. [20, 24, 25]. The

effective coupling gV (M2
V ) is defined in section 4.

LHC. This figure assumes b = a2, but we have checked explicitly that other choices for

the b parameter with b 6= a2 do not change appreciably these results. In fact, the contour

lines of MV and ΓV in the [(a4 − 2a5), b] plane with a fixed in the interval a ∈ (0.9, 1)

(not included here), do not show any appreciable dependence with b if this parameter is

varied in the interval b ∈ (0.8, 1). The distortions due to b 6= a2 are clearly subleading

in comparison to the leading effects from (1 − a2) and (a4 − 2a5), as explicitly shown in

the ET formulas of eq. (3.7), and will be neglected from now on. The main reason of this

secondary role of b, versus a, a4 and a5 is because, as we have previously said, in the a11
amplitude b enters only via loops, whereas a, a4 and a5 enter already at the tree level.

Therefore our selection of scenarios will be done in terms of a, a4 and a5, and b will be

fixed to b = a2, for simplicity. This choice of b = a2 is also motivated in several theoretical

models [72–74]. Our final results will not change appreciably for other choices of b.

In table 1 we present a number of selected benchmark points (BP); namely, some

specific sets of values for the relevant parameters a, a4 and a5 that yield to dynamically

generated vector resonances emerging in the IJ = 11 channel with masses around the

values 1.5, 2 and 2.5 TeV and not to resonances in the IJ = 00 (isoscalar) and IJ = 20

(isotensor) channels, which we do not consider in this work. These particular mass values

for the vector resonances, belonging to the interval (1000, 3000) GeV have been chosen on

purpose as illustrative examples of the a priori expected reachable masses at the LHC. In

the following sections we will use these benchmark points to predict the visibility of vector

resonances that may exist in the IJ = 11 channel, and therefore resonate in the process

WZ → WZ at the LHC. For the IJ = 00 channel there are recent alternative studies of

the IAM scalar resonances and their production at the LHC, see for instance [46].

The selected points in table 1 are also included in our previous contour plots in figure 4.

They are placed at the upper and lower horizontal axes in these plots, and are chosen on

purpose at the two boundary values of the a parameter: 1) a = 1 for BP1, BP2 and BP3 and

2) a = 0.9 for BP1’, BP2’ and BP3’. These will be our main reference scenarios to which we
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will devote most of our LHC analysis. However, in order to provide a complementary study

of the sensitivity to the a parameter we have also defined a family of additional scenarios

belonging to these contour lines of fixed MV = 1500, 2000 and 2500 GeV, respectively, but

with different values of a in the interval (0.9, 1). These BP points are specified by circles,

squares and triangles in figure 4 and will also be discussed in the final section.

4 Dealing with IAM vector resonances in WZ scattering

In order to study how the vector resonances that are predicted in the IAM could be seen at

the LHC with a MonteCarlo analysis, we need first to establish a diagrammatic procedure

for WZ → WZ scattering to implement the basic ingredients of these IAM resonances in

a Lagrangian framework. The use of MonteCarlo event generators like MadGraph requires

the model ingredients to be implemented in a Lagrangian language, which means in our

case that we have to specify the interactions of the emergent vector resonances with the

gauge bosons (and Goldstone bosons). Thus, instead of implementing the A(WLZL →
WLZL) scattering amplitude in terms of the predicted IAM partial waves, we simulate

this scattering amplitude with a simple model that contains the basic ingredients of the

emergent vector resonances. Namely, the mass, the width and the proper couplings to the

gauge bosons W and Z. The simplest Lagrangian to include these vector resonances, V ,

that shares the chiral and gauge symmetries of the EChL is provided in refs. [39–41, 75].

In the Proca 4-vector formalism, the corresponding P -even Lagrangian is given by:

LV = −1

4
Tr(V̂µν V̂

µν) +
1

2
M2
V Tr(V̂µV̂

µ) +
fV

2
√

2
Tr(V̂µνf

µν
+ ) +

igV

2
√

2
Tr(V̂µν [uµ, uν ]) , (4.1)

which includes the isotriplet vector resonances, V ± and V 0, via the V̂µ fields and the a priori

free parameters: mass MV , and couplings fV and gV . The basic definitions in eq. (4.1)

are [36–38]:

V̂µ =
τaV a

µ√
2

=




V 0
µ√
2

V +
µ

V −µ −
V 0
µ√
2


 , (4.2)

V̂µν = ∇µV̂ν −∇ν V̂µ , (4.3)

uµ = i u
(
DµU

)†
u , with u2 = U (4.4)

fµν+ = −
(
u†Ŵµνu+ uB̂µνu†

)
, (4.5)

∇µX = ∂µX + [Γµ,X ] , with Γµ =
1

2

(
ΓLµ + ΓRµ

)
, (4.6)

ΓLµ = u†
(
∂µ + i

g

2
~τ ~Wµ

)
u , ΓRµ = u

(
∂µ + i

g′

2
τ3Bµ

)
u† . (4.7)

In the unitary gauge (convenient for tree-level collider analyses) we have u = U = I,
and one finds a simpler result. In particular, after rotating to the mass eigenstate basis,

where the unphysical mixing terms between the V ’s and the gauge bosons (introduced by
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fV 6= 0) are removed, and after bringing the kinetic and mass terms into the canonical

form, we find:

LV = −1

4

(
2V +

µνV
−µν + V 0

µνV
0µν
)

+
1

2
M2
V

(
2V +

µ V
−µ + V 0

µ V
0µ
)

− ifV

v2

[
m2
WV

0
ν (W+

µ W
−µν −W−µ W+µν) +mWmZV

+
ν (W−µ Z

µν − ZµW−µν)

+mWmZV
−
ν (ZµW

+µν −W+
µ Z

µν)

]

+
i2gV

v2

[
m2
WV

0 µνW+
µ W

−
ν +mW mZ V

+ µνW−µ Zν +mW mZ V
− µνZµW

+
ν

]
, (4.8)

where we have used the short-hand notation V a
µν = ∂µV

a
ν − ∂νV

a
µ (for a = ±, 0),

W a
µν = ∂µW

a
ν − ∂νW a

µ (for a = ±), and Zµν = ∂µZν − ∂νZµ.

It should be noticed that in the previous Lagrangian of eq. (4.8) there are not in-

teraction terms between the vector resonances and two neutral gauge bosons, V ZZ, (as

there are not either V zz interactions in eq. (4.1) of V with two neutral Goldstones z) and

this explains why the vector resonances cannot emerge in the s-channel of WW → ZZ

nor ZZ → ZZ.3 This is a clear consequence of exact custodial invariance and it also

confirms that W±Z → W±Z are the proper channels to look for emergent signals from

the charged vector resonances V ±. The relevant set of Feynman rules extracted from the

above Lagrangian in eq. (4.8) is collected in the appendices, for completeness.

Since we are mostly interested here in the deviations with respect to the SM predictions

in the case of the longitudinal modes, we will mainly focus on their scattering amplitudes.

Therefore, from now on we will simplify our study by setting fV = 0. This is well justified

since this fV predominantly affects the couplings of the resonances to transverse gauge

bosons and, in consequence, gV is the most relevant coupling to the longitudinal modes.

Some additional comments on the behavior of the scattering amplitudes for the other modes

will be made at the end of this section.

Our aim here is to use the Lagrangian LV in eq. (4.8) as a practical tool to mimic

the main features of the vector resonances found with the IAM. Specifically, we wish to

introduce all these features by means of a tree level computation of A(WZ → WZ) with

Lmodel = L2 + LV . This leads us to the issue of relating gV , MV and ΓV to the properties

of the IAM vector resonances found from aIAM
11 . On one hand, the mass and the width

are obviously related to the position of the pole, spole = (MV − i
2ΓV )2, of aIAM

11 (s). On

the other hand, the coupling gV should also be related to the properties of aIAM
11 (s) in the

resonant region. For instance, one could extract a value of gV by identifying the residues of

amodel
11 (s) and aIAM

11 (s) at spole. If for simplicity we had used the ET version of the relevant

amplitudes, this would have led to the simple relation g2V = 2(a4− 2a5). Alternatively, one

could follow the approach of refs. [39, 40] where close to the resonance mass shell, they find

Lmodel to be equivalent to a more general Lagrangian4 in which the on-shell vector coupling

gV is related to the O(p4) low-energy chiral parameters in the form a4 = −a5 = g2V /4.

3Notice that scalar resonances could resonate in these channels, but we do not considered them here.
4The Lagrangian in refs. [39, 40] considers the antisymmetric tensor representation for the spin-1 reso-

nances, which is fully equivalent to the Proca four-vector representation provided appropriate non-resonant

operators are added to the Lagrangian.
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Figure 5. Prediction of the |a11| partial wave as a function of the center of mass energy
√
s in the

three models explained in the text: IAM (green), IAM-MC (orange) and L2 + LV with constant

gV (purple). The values of the parameters are those of BP1’ in table 1.

However, this Lagrangian L2 + LV leads to problems if a constant gV is assumed.

Even though it gives a reasonable estimate of the partial wave at s ∼ M2
V , it does not

work satisfactorily away from the resonance region. Indeed, it yields to a bad high energy

behavior for s > M2
V : the subsequent partial wave a11(s) grows too fast with energy and

crosses the unitary bound at energies of a few TeV. This unwanted violation of unitarity

happens, indeed, for any choice of the constant gV in the Lagrangian L2 + LV . We depict

this failure in figure 5 for one particular example with a = 0.9, a4 = 9.5 × 10−4 and

a5 = −6.5× 10−4 that produces a IAM vector pole at MV = 1479 GeV and ΓV = 42 GeV,

and where we have assumed a constant value of gV = 0.058. In this case we have found

that the crossing over the unitarity bound occurs at around 3 TeV. From this study, we

conclude then that the a11(s) resulting from L2 + LV with constant gV does not simulate

correctly the behaviour of aIAM
11 , which is by construction unitary and therefore we will not

take gV as a constant coupling.

We will define in the following the specific model that we choose to mimic with a

chiral Lagrangian the IAM amplitude, which is referred in figure 5 as IAM-MC. This will

obviously lead us to consider again L2 + LV but with a momentum dependent gV . This

will be done in the next subsection.

4.1 Our model: IAM-MC

We work with the Lagrangian L2 + LV , first introduced in the EW interaction basis in

eqs. (2.9) and (4.1), to mimic the IAM amplitude of WZ scattering but with an energy

dependent coupling gV (s) (remember that we are setting fV = 0 in all our numerical esti-

mates), which leads to unitary results in the way that will be described in this subsection.

Firstly, our A(WLZL → WLZL) amplitudes have by construction the resonant behavior

of the IAM amplitudes at spole = (MV − i
2ΓV )2, as commented above. Secondly, it is

illustrative to notice that the effective coupling gV (s) is in fact related to a form factor, as

can be seen for instance using a current algebra language. Concretely, the matrix element
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of a vector current between two longitudinal W bosons and the vacuum is described by an

energy dependent form factor GV (s) given by [28]:

〈W i
L(k1)W

j
L(k2)|Jkµ |0〉 = (k1 − k2)µGV (s)εijk, (4.9)

where Jkµ is the interpolating vector current with isospin index k that creates a resonance

V . This form factor GV (s) can be easily related to gV (s) at s = M2
V by GV (M2

V ) =√
2M2

V gV (M2
V )/v2. In practice, gV (M2

V ) is determined by the matching procedure de-

scribed next.

In order to build our resonant A(WLZL → WLZL) amplitudes we use the following

prescription. First, we impose the matching at the partial waves level. Concretely, it is

performed by identifying the tree level predictions from L2 +LV with the predictions from

the IAM at MV , i.e:
∣∣∣aEChL

(2)
tree+LV

11 (s = M2
V )
∣∣∣ =

∣∣∣aIAM
11 (s = M2

V )
∣∣∣ , (4.10)

where a
EChL

(2)
tree+LV

11 is the partial wave amplitude computed from L2 + LV .

Solving (numerically) this eq. (4.10) for the given values of (a, a4, a5) and the corre-

sponding values of (MV ,ΓV ) leads to the wanted solution for gV = gV (M2
V ). For instance,

in the previous example of a = 0.9, a4 = 9.5× 10−4 and a5 = −6.5× 10−4 (our benchmark

point BP1’ in table 1) with corresponding MV = 1479 GeV and ΓV = 42 GeV, we found

gV (M2
V ) = 0.058. For the other selected benchmark points the corresponding values found

for gV (M2
V ) are collected in table 1 and in figure 6. Interestingly, these numerical results

in figure 6 for gV (M2
V ) show a clear correlation with the previously predicted MV and ΓV

values in figure 4, which fulfill approximately: ΓV ' M5
V g

2
V /(48πv4), as naively expected

from the Proca Lagrangian for fV = 0.

One may notice at this point that the computation of the IAM partial waves has been

done with electroweak gauge bosons in the external legs and not with Goldstone bosons.

The ET has only been used to compute the real part of the loops involved, as explained

before in the previous section.

Away from the resonance we consider an energy dependence in gV (s) with the following

requirements:

i) Below the resonance, at low energies, one should find compatibility with the result

from EChL
(2+4)
loop , which implies that the predictions from LV should match those from

L4 at these energies. This is what happens indeed to aIAM
11 below the resonance, by

construction.

ii) Above the resonance, at large energies, we require the cross section not to grow faster

than the Froissart bound [76], which can be written as:

σ(s) ≤ σ0 log2
(
s

s0

)
, (4.11)

with σ0 and s0 being energy independent quantities. Notice that when using this

bound we are implicitly assuming that there are no other resonances (in addition to

V ) emerging in the spectrum, at least until very high energies.
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Figure 6. Predictions of gV (M2
V ) as a function of a and (a4−2a5) computed from eq. (4.10), as dis-

cussed in the text. The benchmark points specified with geometric symbols correspond respectively

to those in figure 4.

We have found that these requirements above are well approximated by setting the following

simple function:

g2V (s) = g2V (M2
V )
M2
V

s
for s < M2

V ,

g2V (s) = g2V (M2
V )
M4
V

s2
for s > M2

V . (4.12)

This gV (s) coupling should be used when V is propagating in the s-channel. In the other

channels where the resonance could also propagate, t and/or u channels, the coupling

should be the same described in eq. (4.12) in terms of the corresponding t or u variables

to be fully crossing symmetric. Nevertheless, we have checked that a completely crossing

symmetric energy-dependent coupling, given by g2V (z) = θ(M2
V − z)g2V (M2

V )
M2
V
z + θ(z −

M2
V )g2V (M2

V )
M4
V
z2

, leads to a moderate violation of the Froissart bound in eq. (4.11) at

energies in the TeV range. To avoid this violation of unitarity, we propose the following

expression for the coupling in terms of the t and u variables:

g2V (z) = g2V (M2
V )
M2
V

z
for s < M2

V ,

g2V (z) = g2V (M2
V )
M4
V

z2
for s > M2

V , (4.13)

with z = t, u corresponding to the t, u channels, respectively, in which the resonance is

propagating.
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The accuracy of the result with this choice of energy dependent coupling in comparison

with the previous constant coupling can be seen in figure 5. It is clear from this figure

that the result for a11 using this energy dependent coupling simulates much better the

IAM result than that with a constant gV , and it also provides a good low and high energy

behaviors. It is worth commenting that we have tried other choices for the dependence with

energy of this gV (s) coupling, but none of these alternative tries have passed all the above

required conditions. We have also checked explicitly that our hypothesis in eqs. (4.12)–

(4.13) leads to a high-energy behavior of the cross section that is always below and close

to the saturation of this Froissart bound.

The above described method, which will be called from now on IAM-MC (named

after IAM for MonteCarlo), is the one we choose to simulate the IAM with a Lagrangian

formalism. We find that it is the most appropriate one for the forthcoming MonteCarlo

analysis with MadGraph5 of LHC generated events.

In summary, we follow the subsequent steps to get A(WLZL → WLZL)IAM−MC for

each of the given (a, a4, a5) input values:

1) Compute the amplitude from the tree level diagrams with the Feynman rules from

L2 + LV . This gives a result in terms of a,MV , gV and ΓV .

2) For the given values of (a, a4, a5), then set MV and ΓV to the corresponding values

found from the poles of aIAM
11 .

3) Extract the value of gV (M2
V ) by solving numerically eq. (4.10).

4) Substitute gV by gV (s) in the s-channel and by gV (u) in the u-channel (for the

process of study, WZ →WZ, the charged vector resonance only propagates in these

two channels) and use eqs. (4.12) and (4.13).

5) Above the resonance we assume that the deviations with respect to the SM come

dominantly from LV , which means in practice that the proper Lagrangian for the

computation of the IAM simulated amplitude is LSM+LV rather than L2+LV . This

is obviously equivalent to use L2 + LV with a = 1 at energies above the resonance.

The detailed description and the analytical results of this computation are collected

in the appendices. We emphasize again that these analytical results of the WZ scattering

amplitudes do not make use of the ET and they are obtained by a tree level diagrammatic

computation with massive external W and Z gauge bosons. For completeness and com-

parison we have also included in the appendices the predictions for the three cases of our

interest, the IAM-MC, the SM, and the EChL, as well as the corresponding Feynman rules.

As for the numerical results, we present in figure 7 our predictions of the partial waves

aIAM−MC
11 for all the selected benchmark points of table 1. We have also included in these

plots the corresponding predictions from the IAM and from the EChL, at both LO and

NLO, for comparison. In these plots we clearly see the accuracy of our IAM-MC model in

simulating the behavior of the IAM amplitudes. This happens not only at the close region

surrounding the resonance, where it is clearly very good, but also below and above the

resonance, inside the displayed energy interval of
√
s ∈ (200, 3000) GeV.
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Figure 7. Predictions of the |a11| partial waves as a function of the center of mass energy
√
s

for all the selected benchmark points in table 1. Different lines correspond to the different models

considered in the text: EChL unitarized with the IAM (green), our IAM-MC model (orange), non-

unitarized EChL up to O(p2) (dark blue) and non-unitarized EChL up to O(p4) including loop

contributions (light blue).

For the numerical computation that is relevant for the forthcoming study of the LHC

events we will not use the decomposition in partial waves, but the complete amplitude

instead. This is an important point, since a description of σ(WLZL →WLZL) in terms of

only the lowest partial waves would not give a realistic result for energies away from the

resonant region, which we have checked explicitly. Therefore, before starting the analysis

of the LHC events, it is convenient to learn first about the predictions of the cross section

at the WZ →WZ subprocess level. Thus, we present in figure 8 our numerical results for

σ(WLZL → WLZL) within our IAM-MC framework and for the same benchmark points
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Figure 8. Predictions of the cross section σ(W+
L ZL →W+

L ZL) as a function of the center of mass

energy
√
s for all the selected benchmark points in table 1 integrated over the whole center of mass

scattering angle, | cos θ| ≤ 1. Different lines correspond to the different models considered in the

text: SM (black), our IAM-MC model (orange) and non-unitarized EChL up to O(p4) (blue).

of table 1. In these plots we have also included the predictions from the SM and from

the EChL for comparison. What we learn from these figures is immediate: the vector

resonances do emerge clearly in the scattering of the longitudinal modes, well above the

SM background. We also see that the predictions from the IAM-MC match those from the

EChL at low energies, as expected. The main features of the resonances, i.e., the mass, the

width and the coupling are obviously manifested in each profile of the resonant IAM-MC

lines. It is also worth mentioning our explicit test that all these cross sections in figure 8

respect the Froissart unitary bound in eq. (4.11).
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Figure 9. Cross section σ(W+Z → W+Z) as a function of the center of mass energy
√
s for the

most relevant polarization channels and for the two selected benchmark points, BP1 (left panel)

and BP1’ (right panel). Results were obtained imposing a cut on the center of mass scattering

angle that corresponds to |ηW,Z | < 2. This cut will be used as a detector acceptance cut in the

LHC process. Solid lines are the predictions from our IAM-MC model and dashed lines are the

predictions from the SM.

So far we have been discussing about the predictions of the scattering amplitudes for

the longitudinal gauge boson modes. However, for a realistic study with applications to

LHC physics, as we will do in the next section, we must explore also the behavior of the

scattering of the transverse modes. In fact, the transverse WT and ZT gauge bosons are

dominantly radiated from the initial quarks at the LHC, as compared to the longitudinal

ones and, consequently, they will be relevant and have to be taken into account in the full

computation. Of course we will make our predictions at the LHC taking into account all

the polarization channels as it must be.

To compute the various amplitudes A(WAZB → WCWD) with all the polarization

possibilities for A,B,C,D being either L or T , we proceed as described above for the case

of the longitudinal modes. We use the same analytical results for the amplitudes given in

the appendices in terms of the generic polarization vectors and substitute there the proper

polarization vectors according to the corresponding L or T cases. The numerical results

of the cross sections σ(WAZB →WCWD) for the most relevant polarizations channels are

presented in figure 9 for the two benchmark points BP1 and BP1’ that we have chosen

as illustrative examples. We have also included the corresponding predictions of the cross

sections in the SM for comparison. All these results have been computed with FeynArts

and FormCalc, and have been checked with MadGraph5.

Regarding this figure 9, one can confirm that at the subprocess level, WZ → WZ,

the scattering of longitudinal modes in our IAM-MC model clearly dominates over the

other polarization channels in the region surrounding the resonance. This is in contrast

with the SM case, where the TT → TT channel dominates by far in the whole energy

region studied. This feature of the IAM-MC was indeed expected since, as already said,

the coupling gV affects mainly to the longitudinal modes. Secondly, the predictions of the

resonant peaks in the IAM-MC are clearly above the SM background in all the polarization

channels that resonate. Thirdly, we also learn that the LL → LL channel is not the only
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one that resonates. In fact, also the LL→ LT , LT → LL and LT → LT channels manifest

a resonant behavior (barely appreciated in the figure in the LT → LT case) in the IAM-

MC, although with much lower cross sections at the peak than the dominant LL → LL

channel. In these examples the hierarchy found in the IAM-MC predictions at the peak is

the following:

σ(LL→ LL)� σ(LL→ LT ) > σ(LT → LL) > σ(TT → TT ) > σ(LT → LT ), (4.14)

where σ(AB → CD) is short-hand notation for σ(WAZB → WCZD), and where LT

corresponds to WLZT + WTZL. Also from figure 9 one can see that σ(LL → LT ) is

approximately two orders of magnitude smaller than σ(LL→ LL). Therefore, we conclude

that the main features found previously for the σ(WLZL → WLZL)IAM−MC, in the region

close to the resonance, should emerge in the total cross section, σ(WZ → WZ)IAM−MC,

given the fact that this channel is by far the domminant one. This will be confirmed in

the next section. We would like to mention that all the plots presented in this section have

been done with FormCalc and checked with MadGraph5.

5 Production and sensitivity to vector resonances in pp → WZjj events

at the LHC

The process that we wish to explore here is pp→WZjj at the LHC via the VBS subprocess

WZ → WZ, as generically depicted in figure 10. Concretely, we select the process with

W+ instead of W− since the former is more copiously produced from the initial protons.

However, these type of events containing two gauge bosons W+ and Z and two jets in the

final state can happen at the LHC in many different ways, not only by means of VBS.

Therefore, in order to be able to select efficiently these VBS mediated processes, one has

to perform the proper optimal cuts in the kinematical variables of the outgoing particles

of the collision. These cuts should favor the VBS configuration versus other competing

processes. Thus, we are going first to specify our selection of these VBS cuts in terms of

the kinematical variables of the two final jets and the final W+ and Z gauge bosons.

There are many studies in the literature searching for these optimal VBS cuts (see,

for instance, refs. [34, 57–60]) and where different kinematical variables like transverse

momenta, pseudorapidities, and invariant masses of the final particles have been considered.

The common feature explored by all these studies is the generic topology showed in these

type of VBS mediated events, which have two opposite-sided large pseudorapidity jets

together with two gauge bosons, W+ and Z in our case, within the acceptance of the LHC

detectors. This is in contrast to pure QCD events which produce mainly jets in the low

pseudorapidity region.

For the present work, we have first selected the cuts in the pseudorapidities of the final

jets, j1, j2, and of the final W+, Z gauge bosons by giving the following basic VBS cuts:

|ηj1,j2 | < 5 , ηj1 · ηj2 < 0 , pj1,j2T > 20 GeV , |ηW,Z | < 2, of ref. [58]. For all the results

and plots presented in this section we use MadGraph5, and set the LHC energy to 14 TeV.

For the parton distribution functions we set the option NNPDF2.3 [77]. The results from

our IAM-MC model, which has been described in the previous section, are generated by
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Figure 10. Graphical representation of the pp → WZjj process at the LHC, at the parton level,

by means of WZ → WZ scattering. The initial W and Z gauge bosons are radiated from the

constituents quarks of the protons and are generically virtual particles which re-scatter to produce

the final W and Z.

means of a specific UFO file that contains the model and the needed four point function

ΓIAM−MC
WZWZ of the blob represented in figure 10, whose analytical result is also collected in

the appendices in terms of the IAM-MC model parameters, see eqs. (F.8)–(F.11). This

four point function has obviously momentum dependence and is treated by MadGraph5

as an effective four point vertex which is then used by the MonteCarlo to generate the

signal events that we are interested in. With the simplifications assumed in this work,

the IAM-MC parameters contained in the UFO file are basically the chiral coefficient a

and the vector resonance parameters MV , ΓV and gV (MV ), which are fixed from the given

input values of a, a4 and a5 accordingly to our previous discussion. Concretely, we use the

selected points in figure 4 to make our predictions with MadGraph5 of the signal events at

the LHC from the IAM-MC model.

5.1 Study of the most relevant backgrounds

Regarding the background events from the SM we also generate them with MadGraph5.

We only consider here the main irreducible WZjj backgrounds since we are assuming that

the final W and Z gauge bosons can be reasonably identified and disentangled from pure

QCD (O(αnS)) events leading to fake ‘WZjj’ configurations. For the same reason, we do

not consider either the potential backgrounds from top quarks production and decays. This

will be totally justified in the final part of this study where we will focus on the leptonic

decays of the final W and Z leading to a very clear signal with three leptons, two jets and

missing energy in the final state and with very distinct kinematics. We therefore focus here

on the two main irreducible SM backgrounds:

1) The pure SM-EW background, from parton level amplitudes A(q1q2 → q3q4WZ) of

order O(α2).

2) The mixed SM-QCDEW background, from parton level amplitudesA(q1q2→q3q4WZ)

of order O(ααS).

We show our predictions of the IAM-MC signal for the selected BP1’ scenario together

with those of the two main irreducible SM-EW and SM-QCDEW backgrounds in figure 11,
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Figure 11. σ(pp → W+Zjj) distributions with the pseudorapidity of the outgoing jet ηj1 (left

panel) and with the invariant mass of the final jet pair Mjj (right panel). The predictions for

the IAM-MC signal for the selected BP1’ scenario (blue) and the two main SM backgrounds, SM-

QCDEW (yellow) and SM-EW (purple), are shown separately.

for the simple VBS cuts specified in the figure. The selected distributions for this signal

versus background comparison are the final jet pseudorapidity, ηj1 (with j1 being the most

energetic jet), and the invariant mass of the two final jets, Mjj . As we can clearly see

in this figure, the signal is mainly produced in the interval 2 < |ηj1 | < 5 and with a

rather large jet invariant mass of Mjj > 500 GeV, whereas the SM-QCDEW background

is mainly centrally produced, with |ηj1 | < 2 and at lower invariant masses Mjj < 500 GeV.

Therefore, this suggests our more refined selection of cuts for discriminating the IAM-MC

signal from the SM-QCDEW background given by the following optimal VBS cuts:

2 < |ηj1,j2 | < 5 ,

ηj1 · ηj2 < 0,

pj1,j2T > 20 GeV ,

Mjj > 500 GeV ,

|ηW,Z | < 2 . (5.1)

Regarding the SM-EW background, as we can see in figure 11, it has very similar kinematics

with respect to our IAM-MC signal in these two jet variables ηj1 and Mjj . This was

expected, since, after applying the basic VBS cuts, both receive dominant contributions

from the VBS kind of configurations. In order to disentangle our signal from this SM-EW

background one has to rely on additional discriminants. As suggested by our previous

analysis in section 4, the most powerful of these discriminants would be a devoted study

of the final gauge boson polarizations, since the IAM-MC signal produces mainly WLZLjj

events whereas the SM-EW background produces mainly WTZT jj events. This latter case

can be clearly seen in our results in figure 12, where we show the separated predictions of

the SM-EW backgrounds for the various polarizations of the final gauge bosons, WLZLjj,

WLZT jj+WTZLjj and WTZT jj. Both distributions, the one in the invariant mass of the

WZ pair, MWZ , and the one in the transverse momentum of the most energetic final jet,

pj1T , show the clear dominance of the WTZT jj type of events in this SM-EW background.
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Figure 12. σ(pp → W+Zjj) distributions of the SM-EW background with the invariant mass of

the WZ pair, MWZ (left panel) and with the transverse momentum of the most energetic jet, pj1T
(right panel). The imposed cuts are |ηj1,j2 | < 5 , ηj1 · ηj2 < 0 and |ηW,Z | < 2. The predictions

for the various polarizations σAB of the final WAZB pair as well as the total unpolarized, σUnpol,

result are displayed separately, for comparison. Starting from the upper to the lower lines they

correspond respectively to: σUnpol, σTT, σLT and σLL.

This was expected, since as shown in figure 3, the polarizations are practically preserved in

the SM, and these background WTZT jj events are basically mediated by WTZT →WTZT ,

which is the dominant VBS SM channel. We also see in figure 12 that the pj1T distribution

of these SM-EW background events peaks towards lower values in pj1T in the WLZLjj

events than in the WTZT jj events. This can be understood by the fact that longitudinally

polarized vector bosons tend to be emitted at a smaller angle with respect to the beam,

and hence smaller transverse momentum, with respect to the incoming quark direction

than the transversely polarized ones. As a consequence, the final quark (and thus the final

jet) accompanying a longitudinal gauge boson is more forward than the one accompanying

a transverse W or Z. This translates into different pjT distributions. Whereas the ones

coming from events with transverse gauge bosons tend to peak closer to the EW boson

mass, the ones with longitudinally polarized W or Z peak normally around half of the EW

boson mass.

These features are very interesting regarding future prospects of polarization studies.

As we have argued, being able to disentangle the polarization of the gauge bosons in the

final state will be enormously helpful to discriminate signal versus background in these sce-

narios. Indeed, a more detailed study of the relevant kinematical variables to perform this

kind of discrimination deserves some future development, although there are already some

analysis in this direction, see for instance ref. [34]. However, as sophisticated techniques to

distinguish among the polarizations of the final W and Z are not yet well stablished, we are

not going to use a polarization analysis as a discriminant in this work. We prefer to leave

this issue for a forthcoming work. Thus, we will rely in the following in the most obvious

and simple way to discriminate the IAM-MC signal and the SM backgrounds, which is

by looking for resonant peaks in the MWZ invariant mass distributions of the unpolarized

cross sections.
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Figure 13. Predictions of the σ(pp → W+Zjj) distributions with the invariant mass of the WZ

pair, MWZ , for the benchmark points of the IAM-MC model BP1 (blue), BP2 (green), BP3 (gray) in

the left panel and BP1’ (blue), BP2’ (green), BP3’ (gray) in the right panel, and of the two main SM

backgrounds, SM-QCDEW (yellow) and SM-EW (purple). The cuts in eq. (5.1) have been applied.

5.2 Results for the resonant signal events

In this subsection we present the main results of our IAM-MC resonant signal events

together and compared with the relevant backgrounds explored previously. Our predictions

of the above mentioned MWZ distributions for the IAM-MC signal and of the two main SM

backgrounds, SM-QCDEW and SM-EW, are displayed in figure 13. We have summarized

in these plots the results for all the selected benchmark points in table 1, after applying

the optimal cuts in eq. (5.1). We see in these figures that the resonant peaks, coming

mainly from the interaction of longitudinally polarized gauge bosons, clearly emerge above

the SM backgrounds (dominated by the transverse modes) in all these distributions and

in all the studied BP scenarios. In order to quantify the statistical significance of these

emergent peaks, we define σstatWZ in terms of the predicted events in our IAM-MC model,

N(pp→W+Zjj)IAM−MC, and the background events, N(pp→W+Zjj)SM, as follows:

σstatWZ =
SWZ√
BWZ

, (5.2)

with,

SWZ = N(pp→W+Zjj)IAM−MC −N(pp→W+Zjj)SM ,

BWZ = N(pp→W+Zjj)SM . (5.3)

Here the event rates are summed over the interval in MWZ surrounding the corresponding

resonance mass. In the SM predictions we have summed the purely EW contribution

and the QCDEW contributions. We display in table 2 the results for these σstatWZ of the

pp → W+Zjj events, for different LHC luminosities: L = 300 fb−1, L = 1000 fb−1 and

L = 3000 fb−1, that are expected for the forthcoming runs [78]. We have included the

results of two intervals for comparison. First, the events are summed in MWZ over the

corresponding narrow (MV −0.5 ΓV ,MV + 0.5 ΓV ) interval. Second, they are summed over

the wider interval around the resonances of (MV − 2 ΓV ,MV + 2 ΓV ). The results differ

– 27 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
8

BP1 BP2 BP3 BP1’ BP2’ BP3’
L

=
30

0
fb

−
1 NIAM−MC

WZ 89 (147) 19 (25) 4 (9) 226 (412) 71 (151) 33 (59)

NSM
WZ 6 (17) 2 (4) 0.3 (2) 11 (45) 5 (27) 3 (14)

σstatWZ 34.8 (31.1) 10.8 (9.7) 6 (5.4) 64.9 (54.4) 28.9 (23.8) 16.1 (12)

L
=

10
00

fb
−
1

NIAM−MC
WZ 298 (488) 64 (82) 13 (30) 752 (1374) 237 (504) 110 (196)

NSM
WZ 19 (57) 8 (15) 1 (6) 36 (151) 17 (90) 11 (46)

σstatWZ 63.5 (56.8) 19.8 (17.7) 11 (9.9) 118.5 (99.4) 52.7 (43.5) 29.3 (22)

L
=

30
00

fb
−
1

NIAM−MC
WZ 893 (1465) 193 (246) 39 (89) 2255 (4122) 710 (1511) 331 (589)

NSM
WZ 58 (172) 24 (44) 3 (17) 109 (454) 52 (271) 34 (139)

σstatWZ 110 (98.5) 34.3 (30.6) 19 (17.1) 205.3 (172.2) 91.3 (75.3) 50.8 (38.1)

Table 2. Predicted number of pp→W+Zjj events of the IAM-MC, NIAM−MC
WZ , for the selected BP

scenarios in table 1 and of the SM background (EW+QCDEW), NSM
WZ , at 14 TeV, for different LHC

luminosities: L = 300 fb−1, L = 1000 fb−1 and L = 3000 fb−1. We also present the corresponding

statistical significances, σstat
WZ , calculated according to eq. (5.2). These numbers have been computed

summing events in the bins contained in the interval of ±0.5 ΓV (±2 ΓV ) around each resonance

mass, MV . The cuts in eq. (5.1) have been applied.

a bit in the two chosen intervals, as expected, but the conclusions are basically the same:

we find very high statistical significances for all the studied BP scenarios in this case of

pp→W+Zjj events.

The above predictions in table 2 are for the selected reference scenarios with the values

of the a parameter fixed to the borders of the considered interval (0.9, 1). In order to study

further the sensitivity at the LHC to different values of the a parameter within this interval,

we have also performed the computation of predicted W+Zjj events, for the additional

benchmark points specified in figure 4. The results for these new BP’s are collected in

figure 14. It shows both the predicted event rates, NIAM−MC
WZ , and statistical significances,

σstatWZ , as a function of the a parameter, taken within the interval (0.9, 1), for an integrated

luminosity of L = 3000 fb−1. The corresponding rates and significances for the other

two luminosities considered here can be easily scaled from these results of L = 3000 fb−1.

The marked points correspond to our selected BP’s of figure 4. As in table 2, the two

lines displayed for each MV value correspond, respectively, to summing events in the bins

contained in the interval of ±0.5 ΓV and ±2 ΓV around each resonance mass. From this

figure 14 it is clear that the high luminosity LHC with L = 3000 fb−1 would be sensitive

to all values of a in (0.9, 1) through the study of vector resonances with masses of 1.5, 2

and 2.5 TeV. Actually, for this WZ final state, these same conclusions apply to the other

two luminosities considered, L = 1000 fb−1 and L = 300 fb−1.

The previous results for the statistical significances of W+Zjj events are really encour-

aging. The high statistical significances found show that the resonances would be visible

if the W+ and Z gauge bosons could be detected as final state particles. However, this
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Figure 14. Predictions for the number of events, NIAM−MC
WZ (left panel), and the statistical signif-

icance, σstat
WZ (right panel), as a function of the parameter a for L = 3000 fb−1. The marked points

correspond to our selected benchmark points in figure 4. The two lines for each mass are computed

by summing events within ±0.5 ΓV and ±2 ΓV , respectively.

is not the real case at colliders, and one has to reconstruct W ’s and Z’s from their decay

products. In particular, the study of the so called ‘fat jets’ in the final state, coming from

the hadronic decays of boosted gauge bosons, could lead to a reasonably good reconstruc-

tion of the W+ and the Z. The typical signatures of these hadronic events would then

consist of four hadronic jets, two thin ones jj triggering the VBS, and two fat ones JJ

triggering the final WZ. If these type of signal events were able to be extracted from

the QCD backgrounds, the predicted resonances that we show in figure 13 could be very

easily discovered. For a fast estimation of the number of signal events and significances

that will be obtained by analyzing these kind of hadronic channels with ‘fat jets’ we have

performed a naive extrapolation from our results for WZjj events by assuming two hypo-

thetical efficiencies ε for the W/Z reconstruction from ‘fat jets’, which we take from the

literature [79–82], and are usually referred to as ‘medium’ with ε = 0.5, and ‘tight’ with

ε = 0.25. The corresponding JJjj signal event rates can be extracted simply by [82]:

NIAM−MC
hadronic = NIAM−MC

WZ × BR(W → hadrons)× BR(Z → hadrons)× εW × εZ . (5.4)

We show in figure 15 our predictions for these naively extrapolated number of events and

statistical significances. These results are very encouraging and clearly indicate that with

a more devoted study of the W and Z hadronic decays leading to ‘fat jets’ the vector

resonances of our selected scenarios would all be visible at the high luminosity option of

the LHC with L = 3000 fb−1. Looking at the scaled results for other luminosities, one can

see that some of the resonances could be seen already for L = 300 fb−1. Concretely, we

find that resonances of MV ∼ 1.5 TeV could be observed at the LHC with this luminosity

with statistical significances larger than 11 (6) for all values of the a parameter if a medium

(tight) reconstruction efficiency is assumed. A medium reconstruction efficiency would also

allow to find heavier resonances of MV ∼2 (2.5) TeV for values of a <0.975 (0.925). The

case of L = 1000 fb−1, is also very interesting. For this luminosity, the resonances with

MV =1.5 TeV and MV =2 TeV could all be seen for any value of the a parameter between 0.9

and 1 and for the two efficiencies considered. The heaviest ones, with masses of ∼2.5 TeV,

– 29 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
8

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ
æ

æ æ
æ

æ

æ

æ

æ

æ

MV = 1.5 TeV

MV = 2 TeV

MV = 2.5 TeV

L = 3000 fb-1

Ε = 0.5

Ε = 0.25

Extrapolated
rates

0.9 0.925 0.95 0.975 1
0

50

100

150

200

250

a

N
h
a
d
ro

n
ic

IA
M
-

M
C

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

MV = 1.5 TeV

MV = 2 TeV

MV = 2.5 TeV

L = 3000 fb-1

Ε = 0.5

Ε = 0.25

Extrapolated

significances

0.9 0.925 0.95 0.975 1
0

10

20

30

40

50

60

70

a

Σ
h

a
d

ro
n

ic

s
ta

t

Figure 15. Extrapolated JJjj signal event rates from figure 14 (for ±0.5 ΓV ), NIAM−MC
hadronic (left

panel), and their corresponding extrapolated statistical significances (right panel), σstat
hadronic. The

two lines shown for each resonance mass correspond, respectively, assuming an efficiency in the

reconstruction of W ’s and Z’s from the ‘fat jets’ of ε = 0.5 (upper line) and ε = 0.25 (lower line).

would have significances larger than 3, and therefore could be used to probe values of a

in the whole interval studied in this work, if a medium efficiency is assumed. For a tight

efficiency, one could still be sensitive to values of the a parameter between 0.9 and 0.95.

On the other hand, the alternative semileptonic channels where one final EW gauge

boson goes to leptons and the other one to hadrons observed as one fat jet, will also lead to

interesting signatures like `νJjj and ``Jjj and are also very promising, with comparable

statistics to the previous hadronic channels, as our corresponding naively extrapolated rates

(not shown) indicate. The potential of these semileptonic channels can also be inferred

from the studies in [35], where they have been used to notably improve the experimental

constraints on a4 and a5 by roughly one order of magnitude, with respect to their previous

constraints based on the pure leptonic decays [32]. Nevertheless, our previous estimates of

event rates involving ‘fat jets’ although really encouraging are yet too naive and deserve

further studies for a more precise conclusion. A more realistic and precise computation

is needed, but it would require a fully simulated MC analysis of the events with ‘fat jets’

and a good control of the QCD backgrounds and other reducible backgrounds, which is far

beyond the scope of this work.

Therefore, from now on, we will focus on the cleanest decays of the W+ and Z, which

are the pure leptonic ones, leading to a final state from the WZ pair with three leptons and

one neutrino. Concretely, to unsure a good efficiency in the detection of the final particles

we consider just the two first leptonic generations. Therefore, all together, we propose to

explore at the LHC events of the type (`+1 `
−
1 `

+
2 /pT j1j2), with `1,2 being either a muon or an

electron, /pT the missing transverse momentum coming from the neutrino, and j1,2 the two

emergent jets from the final quarks that are key to tag the VBS configuration. The event

rates in these leptonic channels suffer from a suppression factor of BR(WZ→```ν)'0.014,

but have the advantage of allowing us to reconstruct the invariant mass of the WZ pair in

the transverse plane, and also to provide a good reconstruction of the Z.

For the present study of the leptonic channels we apply the set of cuts that are partially

extracted from ref. [59] and optimized as described in the previous background subsection,

to make the selection of VBS processes more efficient when having leptons in the final state.
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Figure 16. Predictions of the σ(pp → `+1 `
−
1 `

+
2 νjj) distributions with the transverse invariant

mass, MT
```ν , for the selected benchmark points of the IAM-MC model BP1 (blue), BP2 (green),

BP3 (gray) in the left panel and BP1’ (blue), BP2’ (green), BP3’ (gray) in the right panel, and for

the two main SM backgrounds, SM-QCDEW (yellow) and SM-EW (purple). The cuts in eq. (5.5)
have been applied.

These contain all the previous VBS cuts and others, and are summarized by:

2 < |ηj1,2 | < 5 ,

ηj1 · ηj2 < 0 ,

pj1,j2T > 20 GeV ,

Mjj > 500 GeV ,

MZ − 10 GeV < M`+Z `
−
Z
< MZ + 10 GeV ,

MT
WZ ≡MT

```ν > 500 GeV ,

/pT > 75 GeV ,

p`T > 100 GeV , (5.5)

where ηj1,2 are the pseudorapidities of the jets, Mjj is the invariant mass of the jet pair,

M`+Z `
−
Z

the invariant mass of the lepton pair coming from the Z decay (this means at least

one of the two `+`− combinations in the case of `+`−`+ν with the same lepton flavor), /pT
the transverse missing momentum, p`T the transverse momentum of the final leptons, and

MT
WZ the transverse invariant mass of the WZ pair defined as follows in terms of the final

lepton variables:

MT
WZ ≡MT

```ν =

√(√
M2(```) + p2T (```) + |/pT |

)2
−
(
~pT (```) + ~/pT

)2
, (5.6)

with M(```) and ~pT (```) being the invariant mass and the transverse momentum of the

three final leptons respectively, and ~/pT the transverse momentum of the neutrino.

As before, we generate all the signal, IAM-MC, and background, SM-QCDEW and

SM-EW, events with MadGraph5. The results obtained, after applying the previous cuts

in eq. (5.5), are displayed in figure 16, where the total cross section per bin has been plotted

as a function of the transverse invariant mass of the WZ pair as defined in eq. (5.6). From

this figure we can conclude that the peaks, although smoother, are again clearly seen

over the SM backgrounds, specially for the lighter resonances. The shape of the emergent
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BP1 BP2 BP3 BP1’ BP2’ BP3’

L
=

3
0
0

fb
−
1 NIAM−MC

` 2 0.5 0.1 5 2 0.7

NSM
` 1 0.4 0.1 2 0.6 0.3

σstat` 0.9 – – 2.8 1.4 –
L

=
1
0
00

fb
−
1

NIAM−MC
` 7 2 0.4 18 5 2

NSM
` 4 1 0.3 6 2 1

σstat` 1.6 0.3 – 5.1 2.5 1.4

L
=

3
00

0
fb

−
1

NIAM−MC
` 22 5 1 53 16 7

NSM
` 12 4 1 17 6 3

σstat` 2.7 0.6 0.3 8.9 4.4 2.4

Table 3. Predicted number of pp → `+1 `
−
1 `

+
2 νjj events of the IAM-MC, NIAM−MC

` , and of the

SM background (EW+QCDEW), NSM
` , at 14 TeV, for different LHC luminosities: L = 300 fb−1,

L = 1000 fb−1 and L = 3000 fb−1. We also present the corresponding statistical significances, σstat
` ,

calculated according to eq. (5.7) after summing events in the intervals collected in eq. (5.9). We

only display the value of σstat
` for the cases in which there is at least one IAM-MC event. The cuts

in eq. (5.5) have been applied.

peaks is different than in figure 13, typically smaller and broader, as corresponding to

distributions with the transverse invariant mass, having the maximum at bit lower values,

and getting spread in a wider invariant mass range.

Finally, in order to quantify the statistical significance of these emergent peaks,

we have computed the quantity σstat` , defined in terms of the predicted number of

events from the IAM-MC, N(pp → `+1 `
−
1 `

+
2 /pT jj)

IAM−MC, and the background events,

N(pp→ `+1 `
−
1 `

+
2 /pT jj)

SM, as follows:

σstat` =
S`√
B`

, (5.7)

with,

S` = N(pp→ `+1 `
−
1 `

+
2 /pT jj)

IAM−MC −N(pp→ `+1 `
−
1 `

+
2 /pjj)

SM ,

B` = N(pp→ `+1 `
−
1 `

+
2 /pT jj)

SM . (5.8)

The final numerical results for σstat` are collected in table 3. Again, we have considered

three different LHC luminosities: L = 300 fb−1, L = 1000 fb−1 and L = 3000 fb−1. The

numbers of events presented are the results after summing over the intervals in which

we have found the largest statistical significance with at least one IAM-MC event for

L = 3000 fb−1. In particular we consider the following ranges of MT
```ν :

BP1 : 1325–1450 GeV , BP2 : 1875–2025 GeV , BP3 : 2300–2425 GeV ,

BP1′ : 1250–1475 GeV , BP2′ : 1675–2000 GeV , BP3′ : 2050–2475 GeV . (5.9)
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Figure 17. Predictions for the number of pp → `+1 `
−
1 `

+
2 νjj events, NIAM−MC

` , (left panel) and

the statistical significance, σstat
` , (right panel) as a function of the parameter a for L = 3000 fb−1.

Marked points correspond to our selected benchmark points in figure 4. The cuts in eq. (5.5) have

been applied.

As we can see in this table 3, these more realistic statistical significances for the

leptonic channels, σstat` are considerably smaller than the previous σstatWZ . However, we

still get scenarios with sizable σstat` larger than 3. Concretely, the scenarios with a = 0.9

leading to vector resonance masses at and below 2 TeV, could be seen in these leptonic

channels at the LHC in its forthcoming high luminosity stages. Particularly, for BP1’ with

MV = 1.5 TeV we get sizeable significances around 3, 5, and 9 for luminosities of 300, 1000

and 3000 fb−1 respectively, whereas for BP2’ with MV = 2 TeV the significances are lower,

close to 3 for 1000 fb−1 and slightly above 4 for 3000 fb−1. The scenarios with a = 1 have

comparatively smaller significances, and only the lightest resonances with MV = 1.5 TeV,

like BP1, lead to a significance of around 3 for the highest studied luminosity of 3000 fb−1.

Notice that there are some cases that we do not consider in our discussion because of

the lack of statistics. The scenarios with heavier resonance masses, at and above 2.5 TeV

seem to be very difficult to observe, due to the poor statistics for these masses in the

leptonic channels. Only our benchmark point BP3’ gets a significance larger that 2 for

3000 fb−1. Therefore, in order to get more sizable significances in those cases one would

have to perform a more devoted study in other channels like the semileptonic and hadronic

ones of the final WZ pair, as we have already commented above.

Finally, we have also explored the additional BP points with different values of the a

parameter and studied the sensitivities to this parameter in the leptonic channels. The re-

sults of the predicted pp→ `+1 `
−
1 `

+
2 νjj event rates, NIAM−MC

` , and statistical significances,

σstat` , in terms of the parameter a, within the interval (0.9, 1) are displayed in figure 17.

From this figure we can clearly conclude that, for the highest luminosity L = 3000 fb−1,

and for MV = 1.5 TeV, there will be good sensitivity to the a parameter, with σstat` larger

than 3, in the full interval (0.9, 1), except for the limiting value of a = 1 where σstat` is

slightly below 3. For the heavier resonances, we find lower sensitivities, with σstat` larger

than 3 only for MV = 2 TeV and a below around 0.94. The case MV = 2.5 TeV is not very

promising to learn about the parameter a in the fully leptonic channel except, perhaps,

for the scenario with the lowest considered value of a = 0.9 where, as said above for BP3’,
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σstat` gets larger than 2. Nevertheless, this would be strongly improved by exploring other

decay channels, as we mentioned before.

6 Conclusions

In this work we have explored the production and sensitivity to vector resonances at the

LHC. We have worked under the framework of the EChL supplemented by another effec-

tive chiral Lagrangian to describe the vector resonances that have the same properties as

the dynamically generated resonances found by the IAM. This approach provides unitary

amplitudes and effectively takes into account the re-summation of the infinite re-scattering

bubbles of the longitudinal gauge bosons which are the dominant ones in the case of a

strongly EWSB scenario. We have then built our IAM-MC model that uses this La-

grangian framework and mimics the resonant behavior of the IAM amplitudes. We believe

that this IAM-MC framework, where the VBS amplitudes are built from Feynman rules,

is the proper one for a MonteCarlo analysis like the one we have done in the present work

with MadGraph5. For that purpose we have built the needed UFO file with our IAM-MC

model which is ready for other users, upon request. Our IAM-MC model for the vector

resonance production at LHC provides unitary VBS amplitudes (we have checked indeed,

that the LHC cross sections respect the Froissart bound given by eq. (4.11)), and therefore

does not require unphysical ad hoc cuts to respect unitarity in the study of the signal ver-

sus background events. We also wish to emphasize that our predictions presented here for

both the amplitudes and the cross sections are for massive W and Z gauge bosons and are

complete in the sense that they are not obtained from the lowest partial waves but from a

complete tree level diagrammatic computation.

Concretely, we have focused on the pp → W+Zjj channel which is the most relevant

one if one is interested in the study of charged vector resonances from a strongly inter-

acting EWSB. This particular channel is also appealing because it suffers from less sever

backgrounds than other channels with two EW vector bosons and two jets in the final state

like, for instance, pp→W+W−jj and pp→ ZZjj. With the selection of the proper opti-

mal VBS cuts, the process, pp → W+Zjj, proceeds mainly via the scattering subprocess

W+Z →W+Z and it is in this VBS where the resonances of our interest manifest.

We have selected specific benchmark points in the IAM-MC model parameter space

which have vector resonances emerging at mass and width values that are of phenomeno-

logical interest for the searches at the LHC. Concretely, the fifteen scenarios that we have

chosen, summarised in figure 4, have their respective resonance masses placed at MV = 1.5,

2 and 2.5 TeV, and they correspond in our approach to specific values of the relevant EChL

parameters, a, a4 and a5 in the experimentally allowed region. Specifically, we have con-

sidered the intervals a ∈ (0.9, 1) and a4, a5 ∈ O(10−4, 10−3) and set our first six reference

scenarios in the borders of the a interval: BP1, BP2, and BP3 with a = 1 and BP1’, BP2’,

BP3’ with a = 0.9. These scenarios are used to perform the full study of the MC generated

events. The remaining nine scenarios have been used to further explore the sensitivity to

the a parameter by trying other values in the allowed (0.9, 1) interval.

We have fully analyzed the W+Zjj event distributions of both the signal and main

SM background events with respect to the MWZ invariant mass by using MadGraph5, and
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we have seen clearly the emergence of the vector resonances in all these distributions on

top of the SM backgrounds with extremely high statistical significances. Our numerical

results are summarised in figure 13, table 2 and in figure 14. We have found, indeed,

great sensitivity in all the studied scenarios, with masses at MV = 1.5, 2 an 2.5 TeV, and

with values of the a parameter in the allowed interval (0.9, 1). The largest significances

are obtained for the lightest resonances with MV = 1.5 TeV and the lowest studied values

of a = 0.9, corresponding to our BP1’ scenario, which lead to σstatWZ as large as 65, 118

and 205 for respective luminosities of L = 300 fb−1, 1000 fb−1 and 3000 fb−1. The lowest

significances are obtained for the heaviest resonances with MV = 2.5 TeV and the highest

studied value of a = 1, corresponding to our BP3 scenario, but they are yet quite sizable,

6, 11 and 19, again for L = 300 fb−1, 1000 fb−1 and 3000 fb−1, respectively.

These encouraging results for W+Zjj events are assuming that the W and the Z can

be fully detected. However, this is not the real case at colliders and one has to rely instead

on the partial reconstruction of the final W and Z from their decay products. Thus, in order

to profit from the largest rates, we have first discussed the case of the hadronic channels

where each EW gauge boson decays into hadrons measured as ‘fat jets’, leading to total

signatures of type JJjj with four jets, two thin ones jj triggering the VBS, and two fat

ones JJ triggering the final WZ. We have performed a fast estimate of the event rates and

significances of these hadronic channels by a naive extrapolation from our results of WZjj

events. This is done by using the corresponding decay ratios to hadrons and by assuming

two hypothetical efficiencies ε for the W/Z reconstruction from ‘fat jets’, ‘Medium’ with

ε = 0.5, and ‘Tight’ with ε = 0.25 following [79–82]. Our results in figure 15 show the

big potential of these hadronic channels in the future discovery of these vector resonances,

leading to extrapolated significances larger than 3 for all the studied scenarios with masses

MV = 1.5, 2 an 2.5 TeV, and values of the a parameter in the allowed interval (0.9, 1),

if the highest luminosity option for the LHC with L = 3000 fb−1 is assumed. Looking

into other luminosities, one can see that some of the resonances could be seen already for

L = 300 fb−1. Concretely, we find that resonances of MV ∼ 1.5 TeV could be observed at

the LHC with this later luminosity with statistical significances larger than 11 (6) for all

values of the a parameter if a medium (tight) reconstruction efficiency is assumed. At this

luminosity, a medium reconstruction efficiency would also allow to find heavier resonances

of MV ∼2 (2.5) TeV for values of a <0.975 (0.925). For L = 1000 fb−1, the resonances with

MV =1.5 TeV and MV =2 TeV could all be seen for any value of the a parameter between 0.9

and 1 and for the two efficiencies considered. The heaviest ones, with masses of ∼2.5 TeV,

would have significances larger than 3, and therefore could be used to probe values of a

in the whole interval considered, if a medium efficiency is assumed. For a tight efficiency,

one could still be sensitive to values of the a parameter between 0.9 and 0.95. We have

also commented on the comparable statistics that we get for the extrapolated rates in the

case of semileptonic channels of the final WZ leading to signatures like `νJjj and ``Jjj,

showing also the big potential of these channels.

Nevertheless, our previous estimates of event rates involving ‘fat jets’ although really

encouraging are not sufficiently precise and we have emphasized that a more realistic and

precise computation is needed. This would require a fully simulated MC analysis of the
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events with ‘fat jets’ and a good control of the QCD backgrounds and other reducible

backgrounds, which is far beyond the scope of this work. Instead, we have preferred to

study here in full detail the cleanest channels where the final W and Z decay into leptons

and to provide our most realistic predictions in those leptonic channels, with lowest rates

but with cleanest signatures.

We have then fully studied the golden leptonic W and Z decay channels, i.e., the

channels leading to a final state with `+1 `
−
1 `

+
2 νjj, ` = e, µ, and we have presented the

results of the appearing resonances in terms of an experimentally measurable variable,

the transverse invariant mass of the `+1 `
−
1 `

+
2 ν final leptons. As it is clearly illustrated in

figure 16, the shape of the peaks is softened as expected with respect to the final W and

Z case, but they are still visible. Our numerical evaluation of the future event rates and

sensitivities are summarized in table 3 and in figure 17.

The results in table 3 demonstrate that with a luminosity of 300 fb−1 a first hint (with

σstat` around 3) of resonances with mass around 1.5 TeV for the case a = 0.9 could be seen

in the leptonic channels. For the first stage of the high luminosity LHC, with 1000 fb−1, we

estimate that these scenarios could be tested with a high statistical significance larger than

5 and a discovery of these resonances with masses close to 1.5 TeV, like in BP1’, could be

done. Interestingly, for the last luminosity considered, 3000 fb−1, all the studied scenarios

with resonance masses at and below 2 TeV and with a = 0.9 could be seen. Concretely,

for BP1’ and BP2’ we get σstat` close to 9 and 4 respectively. For the heaviest studied

resonances, with masses around 2.5 TeV, small hints with σstat` slightly larger than 2 might

as well show up in the highest luminosity stage. The sensitivities to other values of a

in the interval (0.9, 1) have also been explored. Our numerical results in figure 17 show

that for the highest luminosity L = 3000 fb−1, and for MV = 1.5 TeV, there will be good

sensitivity to the a parameter in the leptonic channels, with σstat` larger than 3, in the

full interval (0.9, 1) except for the limiting value of a = 1 where σstat` is slightly below 3.

For the heavier resonances, we find lower sensitivities, with σstat` larger than 3 only for

MV = 2 TeV and a below around 0.94. The case MV = 2.5 TeV does not show appreciable

sensitivity to a, except for the lowest considered value of a = 0.9 where, σstat` gets larger

than 2. Therefore, a fully efficient study of charged vector resonances with masses at (and

heavier than) 2.5 TeV would imply to analyze the hadronic and semileptonic channels of

the WZ final gauge bosons, as we have already indicated above.
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A Relevant Feynman rules for A(WZ → WZ)SM

In this appendix we collect the relevant Feynman rules, figure 18, for the computation of

the A(WZ → WZ) scattering amplitude in the SM at the tree level. Notice that our

conventions here for the SM Feynman rules are the same as in FeynRules [83], except

for the sign in the vertex V SM
W+W−Z that is opposite. However, this will not give any

difference in the predicted amplitudes nor in the predicted events with MadGraph5 (which

uses the FeynRules conventions), since this particular vertex always appears squared in

all quantities predicted in the present work. We use here and in the following the short

notation cw = cos θW . We also label the momenta according to the charge of the associated

particle. This way, p±,0 refers to an incoming W± or a Z respectively.

W+
µ

Zν

W−
ρ

V SM

W+
µ W−

ρ Zν
= igcw

[
gµν(p+ − p0)ρ + gνρ(p0 − p−)µ + gµρ(p− − p+)ν

]

W+
µ

Zν

W−
ρ

Zσ

V SM

W+
µ W−

ρ ZνZσ
= ig2c2w

[
gµνgρσ + gµσgνρ − 2gµρgνσ

]

W+
µ

W−
ν

H

V SM

W+
µ W−

ν H
= ig mW gµν

Zµ

Zν

H

V SM
ZµZνH

=
ig mW

c2w
gµν

Figure 18. Relevant Feynman rules for the WZ →WZ process in the SM. We take all momenta

as incoming.
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B Relevant Feynman rules for A(WZ → WZ)EChL

In this appendix we summarize the relevant EChL Feynman rules, figure 19, for the com-

putation of the A(WZ → WZ) scattering amplitude at the tree level. These rules come

from L2, defined in eq. (2.9), and L4, defined in eq. (2.10), as we are computing up to order

O(p4). We signal with a gray circle the vertices that receive contributions from the chiral

parameters that we consider in this work, a, a4 and a5. We also present these Feynman

rules with the SM common part singled out for an easier comparison.

W+
µ

Zν

W−
ρ

V EChL

W+
µ W−

ρ Zν
= V SM

W+
µ W−

ρ Zν

W+
µ

Zν

W−
ρ

Zσ

V EChL

W+
µ W−

ρ ZνZσ
= V SM

W+
µ W−

ρ ZνZσ
+

ig4

c2w

[
a4
(
gµνgρσ + gµσgνρ

)
+ 2 a5

(
gµρgνσ

)]

W+
µ

W−
ν

H

V EChL

W+
µ W−

ν H
= V SM

W+
µ W−

ν H
+ ig mW (a− 1) gµν

Zµ

Zν

H

V EChL
ZµZνH

= V SM
ZµZνH

+
ig mW

c2w
(a− 1) gµν

Figure 19. Relevant Feynman rules for the WZ →WZ process in the EChL. Gray circles represent

vertices that are sensitive to the chiral parameters a, a4 and a5 of our simplified scenario. We take

all momenta as incoming.

C Relevant Feynman rules for A(WZ → WZ)IAM−MC

In this appendix we summarize the relevant Feynman rules, figure 20, for the computation

of the A(WZ → WZ) scattering amplitude in our IAM-MC at the tree level. These rules

come from L2, defined in eq. (2.9), and from LV in eq. (4.8). We signal with a gray circle

the vertices that receive contributions from the chiral parameter a, and with a gray square

the one that involves the charged resonance, V ±, and therefore gV . We also show, for

completeness, the terms involving fV from LV , although in all the numerical estimates in

this work we set it to 0.
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W+
µ

Zν

W−
ρ

V IAM-MC

W+
µ W−

ρ Zν
= V SM

W+
µ W−

ρ Zν

W+
µ

Zν

W−
ρ

Zσ

V IAM-MC

W+
µ W−

ρ ZνZσ
= V SM

W+
µ W−

ρ ZνZσ

W+
µ

W−
ν

H

V IAM-MC

W+
µ W−

ν H
= V SM

W+
µ W−

ν H
+ ig mW (a− 1) gµν

Zµ

Zν

H

V IAM-MC
ZµZνH

= V SM
ZµZνH

+
ig mW

c2w
(a− 1) gµν

W+
µ

Zν

V −
ρ V IAM-MC

W+
µ ZνV

−
ρ

=
ig2

4cw

[
2gV (gρµpV ν − gρνpV µ)

+ fV (gµν (p+ − p0)ρ − gρµp+ν + gρνp0µ)
]

Figure 20. Relevant Feynman rules for the WZ → WZ process in the IAM-MC. Gray circles

represent vertices that are sensitive to the chiral parameter a. The gray square shows the vertex

with contributions from LV . We take all momenta as incoming.

D Analytical expressions for A(WZ → WZ)SMtree

The total amplitude A(W+(k1, ε1)Z(k2, ε2)→W+(k3, ε3)Z(k4, ε4))
SM
tree reads:

A(WZ →WZ)SMtree = ASM
c +ASM

sW +ASM
tH +ASM

uW , (D.1)

where we have used a shorthand notation to name the amplitude of each of the diagrams

that contribute to the process, depicted in figure 21: contact, ASM
c , s-channel with a

propagating W , ASM
sW , t-channel with a propagating Higgs, ASM

tH , and u-channel with a

propagating W , ASM
uW . We find the following analytical results for the varios contributions
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W

Z

W

W

Z

W

Z

W

Z

W

W

Z

W

Z

W

Z

H

W

Z

Figure 21. Feynman diagrams that contribute to the A(WZ → WZ)SMtree amplitude in the SM at

the tree level and in the unitary gauge.

to the amplitude:

ASM
c = g2c2w

[
(ε1 · ε∗4)(ε2 · ε∗3) + (ε1 · ε2)(ε∗3 · ε∗4)− 2(ε1 · ε∗3)(ε2 · ε∗4)

]
, (D.2)

ASM
sW = − g

2

c2w

1

s−m2
W

[
(ε1 · ε2)(ε∗3 · ε∗4)

(
s4wm

2
W + c4w(t− u)

)

+ 4c4w(ε2 · k1)
[
(ε1 · k3)(ε∗3 · ε∗4) + (ε1 · ε∗4)(ε∗3 · k4)− (ε1 · ε∗3)(ε∗4 · k3)

]

− 4c4w(ε1 · k2)
[
(ε2 · k3)(ε∗3 · ε∗4) + (ε2 · ε∗4)(ε∗3 · k4)− (ε2 · ε∗3)(ε∗4 · k3)

]

− 4c4w(ε1 · ε2)
[
(ε∗3 · k4)(ε∗4 · k1))− (ε∗3 · k1)(ε∗4 · k3)

]]
, (D.3)

ASM
tH = − g

2

c2w

m2
W

t−m2
H

(ε1 · ε∗3)(ε2 · ε∗4) , (D.4)

ASM
uW = − g

2

c2w

1

u−m2
W

[
(ε1 · ε∗4)(ε2 · ε∗3)

(
s4wm

2
W + c4w(t− s)

)

− 4c4w(ε∗4 · k1)
[
(ε1 · ε∗3)(ε2 · k3) + (ε1 · ε2)(ε∗3 · k2)− (ε1 · k2)(ε2 · ε∗3)

]

+ 4c4w(ε1 · k4)
[
(ε2 · k3)(ε∗3 · ε∗4) + (ε2 · ε∗4)(ε∗3 · k2)− (ε2 · ε∗3)(ε∗4 · k2)

]

− 4c4w(ε1 · ε∗4)
[
(ε2 · k3)(ε∗3 · k1) + (ε2 · k1)(ε∗3 · k2)

]]
. (D.5)

E Analytical expressions for A(WZ → WZ)EChL
tree

The total amplitude, A(W+(k1, ε1)Z(k2, ε2) → W+(k3, ε3)Z(k4, ε4))
EChL
tree , computed with

the EChL at the tree level is:

A(WZ →WZ)EChL
tree = AEChL

c +AEChL
sW +AEChL

tH +AEChL
uW , (E.1)

quantified in the gray dots of the diagrams in figure 22, which are again the ones that con-

tribute to the process of interest. We find the following results for the various contributions

to the amplitude:
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W

Z

W

W

Z

W

Z

W

Z

W

W

Z

W

Z

W

Z

H

W

Z

Figure 22. Feynman diagrams that contribute to the A(WZ →WZ)EChL
tree amplitude in the EChL

and in the unitary gauge. Gray circles represent vertices that are sensitive to the chiral parameters

a, a4 and a5 of our simplified scenario.

AEChL
c =ASM

c +
g4

c2w

[
a4

(
(ε1 ·ε∗4)(ε2 ·ε∗3)+(ε1 ·ε2)(ε∗3 ·ε∗4)

)
+2a5(ε1 ·ε∗3)(ε2 ·ε∗4)

]
, (E.2)

AEChL
sW =ASM

sW , (E.3)

AEChL
t =ASM

tH a2 , (E.4)

AEChL
uW =ASM

uW . (E.5)

F Analytical expressions for A(WZ → WZ)IAM−MC

Finally, we present the amplitudes that allow to compute the total prediction,
A(W+(k1, ε1)Z(k2, ε2) → W+(k3, ε3)Z(k4, ε4))

IAM−MC
tree , of our model, the IAM-MC. In

this case we have:

A(WZ→WZ)IAM−MC
tree = AIAM−MC

c +AIAM−MC
sW +AIAM−MC

tH +AIAM−MC
uW +AIAM−MC

sV +AIAM−MC
uV ,

(F.1)

because of the two extra diagrams involving the resonance, as shown in figure 23. Here the

deviations from the SM are encoded in the gray dots (contributions from a 6= 1 in L2) and

in the gray squares (resonance couplings) of the above diagrams. We find the following

analytical results for the various contributions to the amplitude:

AIAM−MC
c =ASM

c , (F.2)

AIAM−MC
sW =ASM

sW , (F.3)

AIAM−MC
tH =AEChL

tH , (F.4)

AIAM−MC
uW =ASM

uW , (F.5)
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AIAM−MC
sV =

g4

4c2w

g2V
s−M2

V +iMV ΓV

[
(ε2 ·k1)

[
(ε1 ·ε∗3)(ε∗4 ·k3)−(ε1 ·ε∗4)(ε∗3 ·k4)

]

+(ε1 ·k2)
[
(ε2 ·ε∗4)(ε∗3 ·k4)−(ε2 ·ε∗3)(ε∗4 ·k3)

]]

+
g4

16c2w

f2V
s−M2

V +iMV ΓV

[(
u−t− s

4
w

c4w

m4
W

M2
V

)
(ε1 ·ε2)(ε∗3 ·ε∗4)

+2(ε1 ·ε2)
[
(ε∗3 ·k4)(ε∗4 ·k1)−(ε∗3 ·k1)(ε∗4 ·k3)

]

+2(ε∗3 ·ε∗4)
[
(ε1 ·k2)(ε2 ·k3)−(ε1 ·k3)(ε2 ·k1)

]

+ (ε2 ·k1)
[
(ε1 ·ε∗3)(ε∗4 ·k3)−(ε1 ·ε∗4)(ε∗3 ·k4)

]

+ (ε1 ·k2)
[
(ε2 ·ε∗4)(ε∗3 ·k4)−(ε2 ·ε∗3)(ε∗4 ·k3)

]]

+
g4

4c2w

gV fV
s−M2

V +iMV ΓV

[
(ε2 ·k1)

[
(ε1 ·ε∗3)(ε∗4 ·k3)−(ε1 ·ε∗4)(ε∗3 ·k4)

]

+(ε1 ·k2)
[
(ε2 ·ε∗4)(ε∗3 ·k4)−(ε2 ·ε∗3)(ε∗4 ·k3)

]

+(ε1 ·ε2)
[
(ε∗3 ·k4)(ε∗4 ·k1)−(ε∗3 ·k1)(ε∗4 ·k3)

]

+(ε∗3 ·ε∗4)
[
(ε1 ·k2)(ε2 ·k3)−(ε1 ·k3)(ε2 ·k1)

]]
, (F.6)

AIAM−MC
uV =AIAM−MC

sV

(
k2↔−k4, ε2↔ ε∗4

)
. (F.7)

It must be noticed that when computing AIAM−MC
uV the width is not appearing in the

propagator.

Finally, we present the four point vertex, ΓIAM−MC

W+
µ ZνW

+
σ Zλ

shown schematically in figure 10.

It corresponds to the total IAM-MC amplitude coming from the computation of the dia-

grams displayed in figure 23, i.e., the formula presented in eq. (F.1), with the polarization

vectors factored out. It receives contributions from L2 and LV , as defined in the section 4,

− iΓIAM−MC

W+
µ ZνW

+
σ Zλ

= −iΓL2
W+
µ ZνW

+
σ Zλ
− iΓLV

W+
µ ZνW

+
σ Zλ

, (F.8)

or, equivalently, extracting the SM amplitude out,

− iΓIAM−MC

W+
µ ZνW

+
σ Zλ

= −iΓSM
W+
µ ZνW

+
σ Zλ
− iΓ

(a−1)
W+
µ ZνW

+
σ Zλ
− iΓLV

W+
µ ZνW

+
σ Zλ

. (F.9)

Here ΓSM comes from the diagrams in figure 21, Γ(a−1) denotes the new effects introduced

by L2 with a 6= 1 with respect to the SM and ΓLV accounts for the new contributions from

the dynamically generated resonance. The decomposition defined in eq. (F.9) turns out to

be very convenient to introduce our model in MadGraph, as one can use the SM default

model as the basic tool to build the UFO. In this way, we just add up to the SM model

– 42 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
8

W

Z

W

W

Z

W

Z

W

Z

W

W

Z

W

Z

W

Z

H

W

Z

W

Z

V

W

Z

W

Z

V

Z

W

Figure 23. Feynman diagrams that contribute to the A(WZ → WZ)IAM−MC
tree amplitude in the

IAM-MC and in the unitary gauge. Gray circles represent vertices that are sensitive to the chiral

parameter a. Gray squares show vertices with contributions from LV .

files the Γ(a−1) and ΓLV as four point effective vertices given by:

−iΓ
(a−1)
W+
µ ZνW

+
σ Zλ

= − g
2

c2w

m2
W

t−m2
H

(
a2 − 1

)
gµσgνλ , (F.10)

−iΓLV
W+
µ ZνW

+
σ Zλ

=
g4

4 c2w

[
g2V (s)

s−M2
V + iMV ΓV

[
hνhλgµσ − hνhσgµλ − hµhλgνσ + hµhσgνλ

]

+
g2V (u)

u−M2
V

[
lν lλgµσ − lλhσgµν − lµlνgλσ + lµlσgνλ

]]
, (F.11)

where h = k1 + k2 and l = k1 − k4. The energy dependent couplings gV (s) and gV (u) are

the ones defined in eqs. (4.12)–(4.13).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B

719 (2005) 165 [hep-ph/0412089] [INSPIRE].

[2] T. Appelquist and C.W. Bernard, Strongly Interacting Higgs Bosons, Phys. Rev. D 22

(1980) 200 [INSPIRE].

– 43 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.nuclphysb.2005.04.035
https://doi.org/10.1016/j.nuclphysb.2005.04.035
https://arxiv.org/abs/hep-ph/0412089
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0412089
https://doi.org/10.1103/PhysRevD.22.200
https://doi.org/10.1103/PhysRevD.22.200
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D22,200%22


J
H
E
P
1
1
(
2
0
1
7
)
0
9
8

[3] A.C. Longhitano, Heavy Higgs Bosons in the Weinberg-Salam Model, Phys. Rev. D 22

(1980) 1166 [INSPIRE].

[4] A.C. Longhitano, Low-Energy Impact of a Heavy Higgs Boson Sector, Nucl. Phys. B 188

(1981) 118 [INSPIRE].

[5] M.S. Chanowitz and M.K. Gaillard, The TeV Physics of Strongly Interacting W’s and Z’s,

Nucl. Phys. B 261 (1985) 379 [INSPIRE].

[6] O. Cheyette and M.K. Gaillard, The Effective One Loop Action in the Strongly Interacting

Standard Electroweak Theory, Phys. Lett. B 197 (1987) 205 [INSPIRE].

[7] A. Dobado and M.J. Herrero, Phenomenological Lagrangian Approach to the Symmetry

Breaking Sector of the Standard Model, Phys. Lett. B 228 (1989) 495 [INSPIRE].

[8] A. Dobado and M.J. Herrero, Testing the Hypothesis of Strongly Interacting Longitudinal

Weak Bosons in Electron-Positron Collisions at TeV Energies, Phys. Lett. B 233 (1989) 505

[INSPIRE].

[9] S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].

[10] J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the

Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].

[11] J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158

(1984) 142 [INSPIRE].

[12] A. Dobado, D. Espriu and M.J. Herrero, Chiral Lagrangians as a tool to probe the symmetry

breaking sector of the SM at LEP, Phys. Lett. B 255 (1991) 405 [INSPIRE].

[13] D. Espriu and M.J. Herrero, Chiral Lagrangians and precision tests of the symmetry breaking

sector of the Standard Model, Nucl. Phys. B 373 (1992) 117 [INSPIRE].

[14] A. Dobado, M.J. Herrero and J. Terron, The Role of Chiral Lagrangians in Strongly

Interacting WLWL Signals at pp Supercolliders, Z. Phys. C 50 (1991) 205 [INSPIRE].

[15] A. Dobado, M.J. Herrero and J. Terron, W±Z0 signals from the strongly interacting

symmetry breaking sector, Z. Phys. C 50 (1991) 465 [INSPIRE].

[16] A. Dobado, M.J. Herrero, J.R. Pelaez, E. Ruiz Morales and M.T. Urdiales, Learning about

the strongly interacting symmetry breaking sector at LHC, Phys. Lett. B 352 (1995) 400

[hep-ph/9502309] [INSPIRE].

[17] A. Dobado, M.J. Herrero, J.R. Pelaez and E. Ruiz Morales, CERN LHC sensitivity to the

resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector,

Phys. Rev. D 62 (2000) 055011 [hep-ph/9912224] [INSPIRE].

[18] R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian

for a Light Dynamical “Higgs Particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. B 726

(2013) 926] [arXiv:1212.3305] [INSPIRE].
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