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Real clocks and the Zeno effect
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Real clocks are not perfect. This must have an effect in our predictions for the behavior of a quantum
system, an effect for which we present a unified description, encompassing several previous proposals. We
study the relevance of clock errors in the Zeno effect and find that generically no Zeno effect can be(ppresent
such a way that there is no contradiction with currently available experimental Wétdurther observe that,
within the class of stochasticities in time addressed here, there is no modification in emission line shapes.
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[. INTRODUCTION good clocks, in terms of a stationary, Gaussian, and Markov-
ian stochastic process.

The problem of understanding time observables in quan- Bonifacio also proposed a generalization of Liouville’s
tum mechanics has a long and protracted hisfatyOne of ~ equation just by requiring that time be an stochastic variable
the key observations in the process of a better formulation ognd demanding that a different form of stationarity hid8]
time quantities was carried out by Misra and Sudarggdn  [see below, Eq(3) and the surrounding discussion, for the
investigating how the measurement of lifetimes could be afexpression of this property He further posed a claim of
fected by frequent probes into the evolution of the Systemjniqueness for the probability distribution that encoded sto-
under study. It should be pointed out that Misra and Sudarschasticity in time, which he asserted was fhelistribution.
han placed their work in the context of time observables, All these three proposals shared the result that, under ad-
making explicit connections to the problem of time of ar- equate approximations, the systems behaving according to
rival, as discussed by Allcodi3—5]. them would actually follow an evolution equation for the

The result of Misra and Sudarshan that a continuoushdensity matrix of the form
observed unstable particle would never decay was associated
by them with the name of Zeno of Elea, and it is under this ) K2
title that the effect or paradox is currently known. In fact, the p(=—i[H.p()]~ 5 [H.[H.p(D]] (1)
effect had been pointed out before in different fofi®g], as
was indicated by Chiu, Sudarshan, and Mif8 At any
rate, the number of papers referring to the Zeno effect owhere we have séi to 1, as we do in the following is the
paradox increased substantially after 1977, and even more $tamiltonian of the system under consideration, described
after the crucial experiment of Itaret al. [9] (for a review  With the density matrixp at clock timet, and x and ¢ are
of research in the topic up to 1997, with the correspondingconstants with dimensions of time. In the formalism of Ref.
bibliography, see Ref10]; a more up-to-date review of bib- [12], the quotient«?/d is associated with the intrinsic time
liography can be found in Ref11]). step of the unitary evolutions; in Refl4] «?/9? stands for

Another intriguing aspect of time in quantum mechanicsthe strength of the correlation function of relative err(ire
is related to decoherence and decoherence rates, both inrates of increase or decrease of the clock error at different
general sense, and more specifically as a source of decohetock timeg, whereasd is the correlation time for those
ence. Milburn[12] proposed a simple modification of quan- relative errors; to be complete we mention that the combina-
tum dynamics in which the system does not evolve continution «%/9 is equivalent to the “chronon” of Refl15].
ously under unitary evolution: it undergoes a sequence of In fact, this kind of master equation was also known from
identical unitary transformations, which take place or notthe analysis of heat baths coupled to the system by a term of
according to a Poisson distributidne., the probability that the formHI", whereH is the system’s Hamiltonian anid
there ben such transformations in a time interviais given ~ some bath operato(see, for instance Ref16], Sec. 2.3.
by a Poisson distribution This proposal leads to decoher- The explicit connection between the proposal that quantum
ence, while at the same time it conserves endegfeature  (and classicalsystems evolve according to nonideal clocks,
lacking in previous models of intrinsic decoherence, such asn the one hand, and the heat bath language, on the other,
the well-known one of Ghirardi, Rimini, and Webje3]). was shown in Ref{14].

A different aspect of stochasticity in time was put forward  In a recent papef17], Adler, using the language of lto
in Ref.[14]: the fact that our clocks are not perfect implies calculus, considered together both Zeno’s effect and(Byg.
that incoherent superpositions of states at different instants ofith the result that the Zeno effect would be washed out by
time are going to be necessary to account for the state ofhe new time scala®/. Given the results of Facchi and
served at a given clock instant. The requirements for a cloclPascazidand others[18,11], it is rather surprising that the
to be considered good were examined and formalized, leadzeno effect disappears no matter what the value of the new
ing to a claim of uniqueness for the effective description oftime scale is. Even more, if this equation is the result of a
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coupling between the system being considered and the heatguments, this means that we can encode our predictions in
bath, the total systenisystem plus bathwill of necessity a density matrix at clock timg p(t).
present Zeno's effect. The actual observed/predicted density matrix at clock
We should mention, for the sake of completeness, that theéme t will be given by a superposition of the density matri-
idea of errors in time measurements seems to be cropping wes at different ideal times, under the assumption that, for
in several other contexts by various auth@® a couple of  different realizations of our experiment, the same reatifg
recent examples, see R¢f9,20). The motivation behind our clock corresponds to different ideal time intervalsav-
most of those efforts seems to be either a desire to undeing elapsed since the preparation of the initial state. Let us
stand decoherence better or the search for modifications aescribe this assumption by a probability density for those
the ordinary quantum axioms regarding evolution. An ex-ideal timess at a fixedt, P(t,s): the actual density matrix
ample of this latter approach is to be found in the series op(t) will be computed as
paperd21,22; notice that the specific form of nonlocality in
time put forward in those papers leads to radical modification * * _
of the line shape, contrary to the results of Adler's and our  P(U= fo ds A(t,S)ps(s)= fo ds Rt,s)e”"*p5(0).
own for nonlocality due to randomness in the measurement 2
of time.
The purpose of this paper is thus threefdlt): to present  Here, one simple underlying assumption is that the prepara-
a general formalism that accounts for various different protion instant be labeled bg=0 andt=0. Another assump-
posals in a unified manner and explains the centrality of theion is that we know for certain that, at the instant we let the
approximations leading to Eql); (2) to examine whether system go, the state is indeed always the same.
Zeno’s effect is indeed generically washed away by the mere Furthermore, we suppose that the clock goes forward in
fact that time should be considered as stochastic or whethédeal time, which entails that the support Bft,s) be over
the result of Adler’s does not indeed extend to more generalegatives; by the very definition of the probability density,
situations;(3) to resolve the different claims of uniquenesswhich is to be used to predict the results of experiments
which seem contradictory. using real clocks, the clock time intervalis of necessity
positive. Note that a simple way of modifying the assump-
tion of positive ideal time flow of the clock would be to
allow s to be negative. When we introduce lalég(t,k), in
A good starting point is given by the initial stages of Ed.(13) below, we shall actually relax this condition enas
Bonifacio’s formulation[15], which we present here with a explained at that point.
notation and interpretation closer to that of REF4]. Let By the manner in which we have justified the introduction
ps(S) represent the density matrix of systednat Schral-  of P(t,s), we have already demanded that it be a probability
inger’s ideal times; that is to saypg evolves according to distribution. However, an alternative way of arriving at the
von Neumann’s equation same concept would be to assume Efj.and thatp(t) in-
deed be a density matrijas is to be expected from the gen-
d eral arguments of Gleason’s theorem—see the strengthened
d_SpS(S)= ~i[H,ps(s)]=—iLps(s), version provided by BL{S_CE%]). It would follow thatP(t,s)
would have to be positive and normalized to 1 when inte-
grated overs,

II. UNIFIED FORMULATION

where L is the Liouvillian (supejoperator.

This evolution equation is used to make predictions about f”ds At,s)=1
the outcomes of experiments that we can describe in the 0 ’ '
following manner: after a preparation stage, in which we
make sure that we have set the system in a well-defined There is yet another important property that this probabil-
initial state, we let the system evolve a time intetvidlat we ity density should fulfill: the way in which errors could ac-
measure with our clock. At that instant, we measure theumulate should be independent of the instant of time at
value of some observable of the system. Our predictions, imhich we have started the clock. At least it should be so for
general, will not concern the actual value measured in good clocks; the way new errors are produced should be
single instance of the experiment; they will rather provide usndependent of the error up to that instant. Note, however,
with probability distributions, which will be checked by that the error at one clock time+dt does depend on the
many repetitions of the experimental procedure. error at timet. If this one is very big, it is very unlikely that

However, any clock we might use will have intrinsic un- at a later clock time the error could be zero. Therefore, the
certainties and the ideal time elapsed in each instance of thetationarity requirement we are now discussing cannot be
experiment will be different, even if we insist on always understood as stationarity for the errors in time measure-
measuring the same time interval with our clock. We shouldnent, but rather as stationarity in the buildup of errors.
then realize that the predictions we are required to provide In order to obtain a mathematical statement of this sta-
must be predictions iclock time(t), not in ideal time §), tionarity requirement, consider the following setup: a system
that is, we must have a way of computing probability distri-is prepared in an initial states(0) and is then evolved a
butions for all observables at tinte Through the standard clock time intervalt;. The state at this clock time is now
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p(ty)= JO

ds;P(t1,s1)e”51%pg(0).
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functionII(t,k), and consequently, the probability densities
P(t,s). The physical significance of andg(k) will become
clear soon. For the time being, it is worth noticing thék)

By whichever means, the state is then frozen, and then we 1&% the characteristic function of the probability dens#t,s)

it evolve a further time interval,. This is another way of

at timet=\, and that changes in the paramekeican be

saying that we repeat the evolution, but now for a differentcompensated by a change in the functg(k) as follows.

time interval, and with an initial state that is ngwt,). The
end result would be the density matrix

p(ty+ty)= fo ds, P(ty,8)€ S24p(ty)
=f ds,P(t,,s,)e '%2¢
0

Xj ds; P(ty,5,)e 51£pg(0).
0

Let g,(k) be an arbitrary function that determinéqt,k)
together with the parametar, that is to say, under the con-
dition IT(\,k) =g, (k). It is then straightforward to see that
the same distributiol (t,k) can be described in terms of a
new function g,(k) and parameteru, such thatg, (k)
=[g,(K) M~

The requirement thdli(t,k) be the Fourier transform of a
probability density, with the definition above, implies that
g(0)=1. Similarly, the condition on the location of the sin-
gularities also applies tg(k). Additionally, if we make the
further hypothesis that als) moments of the densit(t,s)
exist, this would entail thag(k) would have to be analytic at

On the other hand, that freezing of the state need not be redd=0. It is also clear thag(k)—0 on the real line ask|

it is simply a tool of our imagination, and the density matrix
at the end must be given by

P(tl‘Hz):J dsP(t;+1t,,5)e Spg(0) .
0

This entails the following condition on the probability den-
sity P:

P(t;+t,,8)= fosds’P(tz,s— s")P(ty,s'), ©)]

which is the mathematical expression of the stationarity re

quirement.
In order to solve this functional equation, it is useful to
use Fourier transforms. Define

II(t,k)= f:ds A(t,s)e’s.

Note for further use the following set of facts: sinds a
probability distribution for the stochastic variabde it fol-
lows thatIl(t,0)=1 (remember thas is stochastic with re-
spect to the clock time which we measyreinceP has sup-
port only on the positive half lindas we are currently
assuming I1(t,k) will have singularities only on the lower
half of the complexk plane. If all moments irs of the prob-
ability distributionP existed, thedI(t,k) would be analytic
atk=0.

By means of this definition, E¢3) is transformed into the
algebraic equation

II(ty+1tp, k) =TI(ty, k) TI(t k), (4)

with the solution
II(t,k) =[g(k)]"*, 5

where the dimensionful parameterhas been introduced to
adimensionalize the exponent, ag(k) is an arbitrary func-
tion. Thus,\ and g(k) fully determine the characteristic

—oo, if P(t,s) is a continuous density.

Assuming the existence of the first two momefiiss) of
the distributionP(t,s), we can make the following interest-
ing statements derived from the formIdf(t,k) expressed in
Eqg. (5). The expectation value afis given by

” , —ig’(0)
(s)= fo dsP(t,s)s=—|&kH(t,k)|k:0=Tt,
where we have taken into account tlgg0)=1. Observe
that the expectation value is proportionalttand that it is
indeed exactlyt if A=—ig’(0). It isimmediate to appreci-
ate that the ratio-ig’(0)/\ measures the systematic drift of
the expected values of time. The systematic drift can be
eliminated by recalibration of the clock, identified by its
characteristic function, and, indeed, the ratiag’(0)/\ is
invariant under the transformations— u above, and per-
tains exclusively to the functiohl(t,k): if it is the case that
A=—ig;(0), it is then true thatu=—ig,(0). As to the
variance, one can easily compute

°° 1
A= [ “ds PS5 (97— T-0"0) +g' 0L,

whence we see thdts~ \ﬁ (with an adequate dimensionful
proportionality constant

The simplest function that fits those critelfito recap:
g(0)=1, analyticity atk=0, all singularities in the lower
half plane, andg(k)—0 as|k|— on the real ling, and
presents a singular point, is

= 1
0s( )—m,

where 7 is a real number with dimensions of time. Notice
that we are actually choosing a family of probability densi-
ties parametrized by, i.e., by the instant of time at which
the characteristic functiohlI(t,k) equalsgg(k). For each
member of the family, as we shall see below, the meaning of
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the characteristic time will be slightly different. The sub- with 1,(z) the modified Bessel function. This probability

script B stands for Bonifacio: the probability density derived density serves as a counterexample to the uniqueness claim

from this choice is presented in Ref15]. It should be pointed out that we make
no claim whatsoever to the greater physical significance of
this distribution, as compared tBg, and they are to be

' evaluated according to their fitting whatever phenomena we
would like to describe. The expectation value computes to be

which is exactly the one put forward in Rgfl5]. The ex- (s)=(o+7)t/\, while the dispersion reads as\s

pectation value is(sy=7t/\ and the dispersionAs = (7+ d)tIN.

= 7\t/\. This means that among all the different members

of this family of distributions, the one labeled by 7 is the 1. THE MASTER EQUATION

only one for which there is no systematic drift in the expec- i ) ) i )

tation value of time; in which casegives the rate of growth _ Direct comparison of the second integral in &2} with

of the dispersion of the successive probability densitiedh® definition ofII(t,k) tells us that we can write the aver-
P(t,s). aging process leading to the observed density matrix at clock

timet in the form

t/N—-1
PB(t!S) =

T

1 e*S/T s
7 T(t/N)

Another simple alternative, with a very different analytic
structure associated with periodicity, is given by p(1)=TI(t,— £)ps(0) =M=, Q). (6)

gu(k)=expe"—1), By using the eigenoperators of the Liouvillian, that is to say,
o o _ _ operators of the fornin)(m|, where|n) and|m) are eigen-
where, againy is a real number with dimensions of time and sates of the Hamiltonian, we can write the exact evolution of
the subscripM now stands for Milburn. This functiogy (k) the components of the density matrix in that basis:pl
is an entire periodic function, bounded on the real libet, o given by, wonmn)(m|. The components of the ob-

of course, not everywhere, in keeping with Liouville’s theo- seryed density matrix at clock tinteare related to those at
rem). On performing the inverse Fourier transform, one istime o by

led to the discrete probability density
Pam(D) =IL(t,En—En) prm(0). (7)

Pu(t,s)= >, n_|(X) e "™ §5(s—n7), This formal exact solution is very useful when analyzing
n=0 "t simple systems; however, it might be cumbersome in more

Lo . . . involved situations, and some other simplifications and limits
which is premsely.that.proposed In R@lZ]. [Eq. (2'7)’. n ight come in handy. For this reason, let us rewrite @&.
order to make the identification between this formulation and’:S a differential equation
the original one, it is convenient to use the construction o ’
the following sectioih This discrete probability density has . 1
the interpretation provided in that paper: the probability that p(t)=Infg(=L)]p(V). (8)
there ben identical unitary transformations of the density
matrix, exp(-i7L)p(0) in a time intervalt is given by the  sjnceg(0)=1 andg(k) must be analytic ak=0, Eq. (8)
Poisson distribution. The expectation Valﬁﬂé and the dis- admits an expansion whose first terms will be
persion are given by the same expressions as those for
gB(k) ) _ 1 ’ 1 ” ’ 2 2

The two g functions presented above do not, of course, #(V= 5| =9 (0 L=5[=g"(0)+g"(0)T]L"+ - - |p(1),
exhaust all possible alternatives. Just as an example, consider 9)

or, taking into account that this expansion is actually the
ga(k) = (A=ikn(1=ike)’ expansion of the generating function of the cumulants,

69
t

where bothr ando are positive time quantitigghe subindex p(t) :(
a stands for “alternative}. Note that ifr ando are equal the

resulting probability would bePg(2t,s), which could also
be phrased a®g(t,s) by halving the value of\. Without
loss of generality, let> ¢ . The resulting probability density
is

1As*
E_ETE +~-~)p(t). (10

In order for this expansion to be physically relevant it is
clear that there must be either a renormalization of the en-
ergy or else the first coefficient of the Taylor expansion of
g(k) aroundk=0 must be given byg'(0)=i\. In other

71 g |- l2+in words, the clock must be such that it adequately tracks ideal
P(t,5)=6(s) m ( ) time, with no rescaling being necessary. Hence, here on-
an L(tIN) Jor\T—0 wards we shall assume that the statemgi{0)=i\ does
indeed holdwhich entails a relation among the parameter
x @ (Tt a)si207| muz( (17— ‘7)5), and the gharacteristic times appearingg(rk)]. It Would_bg
207 also pertinent to have some explanation for the validity of
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the expansion, which both fayg(k) and gy (k) reads, to the master equatiofl). In order to do that, consider the
second order irk, and making use ok =7 [which is the =~ more generic set of master equations
specific form of the conditioy’ (0)=i\], )

p(t)=h(t,—L)p(t), 1y

e 212 3,3y
ge,m(k)=1+i7k=7k™+O(7k) = p(1) whereh is a function fulfilling a number of conditions: to

_ T, preserve the trace of the density matrix under this evolution,
=| T SL - (D). it is necessary that(t,0)=1 for all times; demanding that
t
These examples lead us to understand expan&ion as fdsRe[h(s,k)]$0,
valid if the characteristic time of evolutiof(whose inverse 0

gives us the characteristic expansion scaleCpfis much , . .
larger than the time constants that appear in the definition dPr !l t and (rea) kis a sufficient condition to guarantee
the g functions. In fact, those time constants, suchrfer o POSItIVILY. , ,
andr for g,(k)], characterize either the periich cases such In thls_ case, the s_olutlon to the generalized master equa-
asgy(K)] or the closest singularities to the pokit=0, so it ton (11) is formally given by
is sensible to expect that this expansion will only be valid for ¢
characteristic evolution times larger than them, under the fur- p(t) =exr{ f ds h(s, —ﬁ)}p(O),
ther demand that there is no resonant effect. It is important to 0
notice that the characteristic evolution times are determined o .
by the Hamiltonian of the system and by the initial condition,\’vh.e.nce We recover the description of E2), with the prob-
as follows. Since the Hamiltonian is usually semiboundeoablllty density computed as
and not bounded, the Liouvillian superoperator, whose eigen- = dk N
values are the differences of energy among energy eigen- ph(t,s)zf —eiksexp{f ds h(s,k)
states, is unbounded. However, if only a restricted set of — 2 0
energy eigenstates contribute to the initial state, the Liouvil- . ) )
lian is bounded for that initial state and for all later states”S @n €xample, consider ordinary von Neumann evolution,
evolved from that one. It is bounded by the largest energ@ssociated withh,\(t,—£)=—iL. It leads to Py(t,s)
difference. We have previously demanded thét) be ana- =_5(t—s), that is to say, to the |d_ent|f|cat|on of the appro-
lytic at k=0, so that the moments of the distributiet,s) priate _clock as a perfect one, Whlch keeps perfect track in
exist; it follows that there exists l, radius of convergence. Cclock timet of the elapsed ideal time
If the largest energy difference that comes into play is L€t Us now consider the dephasing master equation
smaller thark,, then the expansion above is convergent, andVNich is associated with
the approximation given by the truncation to the first two 2
terms of the Taylor expansion is well controlled. i e(t,K) =ik — K_k2’

Notice that even if the Taylor expansion is well controlled Ll
some phenomena could be out of the scope of the approxi-
mation, in the case of periodic functiog¢k). In fact, Mil-  and thus leads to
burn[12] provided an explicit example of the breaking down
of the expansion due to a resonant effect, by examining the P (t,s)= / 9 o (s—1) 24kt
average value of an oscillator and noticing that some fre- mesn 4Kt '
guencies would lead to the freezing of the evolution of the
oscillator, namely, the harmonics of the evolution frequencyit is readily seen that this probability density does indeed
27/ 7. Indeed, one should use in E{) satisfy the stationarity requirement. However, it has support
over negative values & not just on the positive half line.

It should be noticed that this is the unique Gaussian prob-
ability distribution (up to changes in parametgibat fulfills
the stationarity requirement, which keeps exactly fden
leading to freezing of the elemept,(t) of the density ma- even if the support oP(t,s) extends to the whole real line.
trix if E,,—E,=2l/7, with | an entire number, i.e., in the Notice that the references to Gaussianity and support of the
presence of a resonance among the characteristic times @fstribution concern the ideal time variakde

(12

t
HM(tvEm_ En) = GXF{;(Q' 7(Em~En) — 1)} )

system and real clock. More generally, we can characterize as stationary the evo-
lutions in whichh(t,k) is in fact independent of. In this
IV. GAUSSIAN WEIGHTS manner, we see that the condition of stationarity stated above

in terms of the probability densities is fully equivalent to the
Having characterized the evolution equatidn as a two  more standard requirement of the evolution being associated
term approximation of the whole family of evolutiori6),  with a semigroup. Denoting(t,k) by In[g(K)] if it is indeed
which fulfill the stationarity constrain¢3), we should now independent of, we see that the formalism presented in the
examine to what extent the stationarity condition holds undeprevious sections goes through with the minor difference that
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the support of functions of extends to the whole real line, 1t t

and thatg(k) is no longer required to be analytic in the f(t):Efodtlfodtzc(tl_tz)- (14
whole upper half plane. The generator of the evolution semi-

group is thus Ifg(—£)]. The effective support of the correlation functiot) will be

_ The meaning of the negative valuesfor a stationary  cnaracterized by the correlation tinfe while the maximum
distribution is that the clock can go backwards in ideal time,,5;,e c(0) will be an adimensional numbex?/92. For
but, since it is for us a clock, We_only perceive it as 90iNg|arge values oft, f(t) will then be approximately propor-
forward. In other words, we organize the experiment accordyqna1 1o «2t/9. We thus see that the distributid®, (t,s)

. .. . e\t

ing to the clock, so, by definition, we correlate measurement s concomitant dephasing master equation are approxi-
instants with a particular reading of the clock. If the clock . oiions in two different ways: on one hand, it is required
were to go backwards, we could have marked the desireff 5 the characteristic evolution time of the system being
reading of the clock, which is a positive valuetphs having - gydied be much smaller than the characteristic se3i,

been reached beforgn ideal time the clock had started. so that the approximation @1 (t,— £) can make sense; and
This looks like a rather undesirable characteristic foraclockOn the other, the elapsed tini[emust be bigger thar’1 the’
and indeed in Ref.14] it was characterized as a breakdown relative erroré’ correlation times

of “good” causality. On the other hand, if the characteristic As an specific example of nonwhite Gaussian noise, that

error scale of the clock«/# in the Gaussian stationary i pe adequately described by white noise fdarger than
example gpov)els e>§tremely small when .compared to the ¥, consider the Ornstein-Uhlenbeck process, characterized
characteristic evolution of the system being analyzed, nonby
causal behavior will be unimportant.

There is a completely different reason for suspecting that 2
the probability distribution(12) could have some nonphysi- (a(1))=0, {(a(t)a(t'))= _Zefltft’llv?_
cal aspect to it. Consider the stochastic sequence of relative U
errorsa(t). Formally, this is defined through the Langevin )
equation The functionf(t) would be

t
fou(t) = KZ(_ -1+ e“ﬁ) y

ds
—=1+a(t). 0

dt
and the effective evolution equation would read
Notice that the restriction that the probability dend#{t,s)
should be zero for negative values sftranslates in this : ) K? o a2
language to theformal) requirement thaix(t) be bigger Pou(t)=(—'ﬁ—3(1—e )L )Pou(t)y
than —1 at all times. However, this is not the only suspect
aspect of this Langevin equation: distributidh2) corre-  which indicates that there is a transient effect up to times of
sponds to Gaussian white noise, that is to say, to the Gausthe order of the correlation time for the proce$s Notice
ian stochastic sequence characterized by that att=0 there are no non-Liouvillian terms, due to the
specific character of the transient of the correlation function.
) K? , As we shall see, this will be particularly relevant in Zeno's
(a(1))=0, (a(Ha(t))= 35(t_t ), effect. After times of the order of, the evolution is dictated
by the master equatiofi).

for all t andt’. This suffers from the well-known shortcom-
ings of white noise, namely, unphysicality of the infinite V. THE ZENO EFFECT
variance. Nonetheless, we have obtained this distribution as
a generic limit of a wide class of possible distributions and
therefore, of a wide class of stochastic error sequences.
As a matter of fact, the notation used up to norf/(

instead of a single quantity with dimensions of timeas
designed with exactly this problem in mind. Consider an
alternative Gaussian stationary stochastic sequence, char
terized by

The generality of Zeno’s effect has been shown in many
forms. An early clear description of the general character of
the effect was provided by Chiu, Sudarshan, and Migtaif
the Hamiltonian is bounded from below, and the initial state
is such that the expectation value of the Hamiltonian is finite,
then the derivative of the survival probability with respect to
e at the initial instant is zero, which entails that the decay
of the survival probability is slower than any exponential.
, , The survival probability at ideal times is given by
(a(1)=0, (a(a(t’))=c(t-t"). Tr{p(0)[exp(—isL) p(0)]}. As, under these conditions, this
survival probability has no linear term, close $6=0, on
performing sufficiently frequent measurements we find that
_ ) the survival probability at any later time is equal to 1: the
Ig(t, k) =ekte K10, (13)  systemis confined to its initial state. On the other hand, if the
survival probability did indeed have a linear termsnthen
where the evolution under frequent measurements would be an ex-

This leads to a generating function
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ponential decay, with the decay constant given by the coeffr[p(0)a,I1(0,— £)p(0)], generically nonvanishing. In the
ficient of the linear term. Gaussian case, which is not stationary in the sense of3:q.

We shall now investigate whether the uncertainties in timewith initial pure state, and the functici(t) defined accord-
do eliminate Zeno’s effect from taking place. The quantitying to Eq.(14) leads to
we want to investigate is the survival probability, that is,

given an initial statep(0), we should compute 2f(0)
pe(t)=1— ——t+0O(t?).
pP(t)=Tr[p(0)p(t)], "z
where we measure the time elapsed with a real clock, andhus, a very special situation is associated with the Ornstein-
therefore[see Eq(6)] Uhlenbeck clock, for whicH (0)=0, and Zeno's effect sur-
vives. Note, however, the exceptional character of this case,
p(t)=Tr{p(0)[IL(t, — £)p(0)]}. due to the specific form of the transient.

We have thus shown that clock errors generically wash

Note that the objects which |n(_;lude t_he L|o_uvn||an aré su-q¢ any possible Zeno effect. This being the case, how can
peroperators, not operators. This entails a slight comphcatloule explain the experimental results of Itaebal. [9]? For-

of notation, which we will fix by requiring that superopera- going an analysis in terms of the full three-level system

torls; act on everythlntg O? :'helr .”gtht' Is that satisfv the st coupled to the electromagnetic figla4—28 and neglecting
__mor measurements of ime intervals that sa isty the s abptical pumping due to the measuring laser, we can concen-
tionarity constraint(3), the linear term in clock time of the

. A trate on the following conceptual setup: consider a two-level
survival probability is given by system undergoing a&-pulse Rabi oscillation. At regular in-
1 tervals the system is queried as to the state it is in, whether
=Tr{p(0)In[g(—L£)]p(0)}, the first or the second level. Formally, at regular intervals the
A coherences of the density matrpg, andp,; are set to zero.
In the standard analysis, the evolution between measure-
ments is ordinary unitary Schdinger evolution with the
2 HamiltonianH = (/2) (8 é). Given an initial density matrix
x 2 |pam(0)2IN[g(Eq—Epy). p(0)=(8 9_,), and measurements at intervaté(n(2), the
n>m ope . . :
probability of finding the system in the second Ie\@l éfter

Unless this quantity is zero, the quantum Zeno effect will notime 7/ is
take place[notice by the way in the previous computation
that, by constructiong(k)* =g(—k) for realk.].

Let us assume the validity of the expansion in EL)),
with (s)y=t, and further that the initial state is a pure state,
p(0)=la)(al. In such a situation, the linear term will have a
leading term of the form

which, in terms of the energy basis, can be written as

T\ 1 1 b @ T
6 _§+ 5— co ﬁ .
If the evolution and measurement process were to take place

according to a clock with characteristic functibk(t,k), the
population of the second level would read

P2

2 2

As

S T p(0)£2p(0)] (AH)? w1 (1 m
— 5 MLp P =T 5 ) R e nl =
2t t Dz(Q) 2+ 5 b)C(n ,
where (AH)?=(a|H?|a)—(a|H|a)?. That is to say, the where
small time survival probability will be
1
As? C(t)= = [I1(t,Q)+II(t,— Q)].
pH=1- "o, (0= [t Q) +1I( )]
77

It is worth mentioning that in the case of a perfect clock, for
with 72=1/AH. No Zeno effect survives: frequent measure-which IT,yec(t,k) =exp(kt) both expressions coincide, as
ments of a system will not maintain it in the initial state, they should.
sinceAs?~t. There will be an exponential decay no matter  In order to illustrate this result numerically, let us consider
how fast the measurements are. Admittedly with a verythe characteristic function of the master equatiby which
small decay constant, but exponential nonetheless. We cdsads to
reobtain this result in a slightly different fashion, by noting
that all terms of the Taylor expansion of tfideal) survival
probability in ideal times contribute to a linear term in P2
when we perform the averaging wifk(t,s): all cumulants
are proportional tat, as we have seen, and this is itself awith the parameter being defined as 2%/ 9. For the system
consequence of the stationarity property. examined by ltanet al, Q= /256 ms ! and 7 should be

For general clocks, that do not necessarily fulfill station-larger than 10° s for it to have any noticeable effect. As a
arity condition(3), the term linear in time will be of the form matter of fact,r should be larger than 10 s for the effect to

T2

1 T
- b) e—QTﬂT/ZCOé‘I( _
2 n

w

Q
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compete with optical pumping due to the measuring laser. Finally, for good Ornstein-Uhlenbeck clocks, we find
On the other hand, the coherence times mentionefR]n
(550 9 lead tor<10* s; additionally, the precisions men-
tioned for time quantities in their experiment are of the order Pou(t) =
of 107° s or better. It follows that the inhibition of transi-
tions from level 1 to level 2 due to frequent measurement is , 1., 420 21+ e
still in place, even though no “perfect” Zeno effect could xcog Q')+ 5 0%
take place if the clocks themselves are not perfect.

The observability of the master equatigd) can be ,
achieved by purposefully adding a source of errors to the xcog2() t))' (19
clocks being used in the laboratory, in a controlled manner.
One way to detect its effects would be to perform an experiAs soon ag is substantially bigger than the correlation time
ment similar to the one described above, but using a nodf the OU clock, the two survival probabilities computed

K4+ 294+2K292 — K202t/ 9—1+e" )

7{/1?)

perfectly regular clock for the measuring pulses. with the master equation and with the OU probability weight
coincide. However, for small times their behavior is radically
VI. EXAMPLES: OSCILLATING different: there is no linear term ibin the expansion of
AND DECAYING SYSTEMS pou(t), in keeping with the general formal result presented
above.
Consider an oscillating system in an initial stai) Let us now perform an analogous computation for a
evolving under the Hamiltoniahl, model of a decaying system, in such a way that we can

extrapolate without difficulty to more general decaying pro-

0 &0 1 cesses. On the by side, we will obtain an expression for the
H=| Q 0 K|, Jay=[0]. line shape, confirming generically the result of Adler’s that it
0 K 0 0 is not modified by phase decoherendd].

Consider thus a system with a discrete orthogonal basis

It is easy to compute the exact survival probability under{|a)}U{|w)}, . wherew takes values in some discrete set of
unitary evolution with the preceding Hamiltonian, and thenfrequencies, and such that the Hamiltonian can be written as

perform the averaging over clock errors, leading to H=Hy+V, with
4
p(t) = 14 K4+g +2K202R TI(1,0")] Ho=wala)(al+ X wlw)(w], (16)
Q' ¢

04 and the only nonzero elements\¢theing(a|V|w) and their
+7Re[H(t,2Q’)]], complex conjugates. The initial state will be the pure state
|a). This system is a simplified model of decay from this

whereQ)' = JOZF K2 pure state to the rest of Hilbert space.
- . . _ _ _1
The small time expansion of this exact evolution in theD Bgn USS(:Ing'r;[hgr’ reesol\;?_r(;tr,]G(z)—(z H)™" the exact
case of the decohering master equati¢t), with 7 yson-schwingers equati

=2«?19, is quite simply G(2)=Gy(2)+Go(2)VG(2)

2 2
Pme(t)~1-Q%7t+O(t%). for this system can be solved to

It is immediate to see that there will be no full Zeno effect, 1
since there is a linear term in the expansion. G.(E)= E o —S(E) a7
If we were to usegy(k), the full result would be wa~2a(E)
Via)
94 , _ <w|
pM(t)_ K4+ > +2K292e—(1—cosﬂ tiT Gw(E) (E_ w)[E_wa_Ea(E)] ) (18)
% CO{ ESinQ/ . +Q_46—(1—COS 20 ntlr where
T 2 Ga(2)=(alG(2)|a), G,(2)=(w|G(2)a)
t
X cos( ;sin 201 and
Y G 9
A particularly interesting aspect of this expression is that p”

whenever(Q)'=2nx/7, the Zeno effect reappears: the mo-
tion of the system is indeed frozen, as Milburn pointed outis the exact self-energy for this model. In more general mod-
for different reasons. els, it is still the case that we can write the expectation value
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of the resolvent in statéa) in terms of the self-energy We shall now study th&arge time behavior of the system.
3.(E), as expressed in Eq17). The change will come Assume now that the states orthogonal to the initial omk,
about because of the modifications of the self-energy, whiclfiorm a continuum, in the manner postulated by Weisskopf
will no longer be determined by Eq19). The transition and Wigner{29], so that an imaginary part can arise for the
quantity G, (E) will also have a different expression. poles of G,(E). Then, for large times, the dominant behav-
The small time behavior of the survival amplitude in ideal ior, both for the survival amplitude and for the probability
time sis determined by the large-energy behavioiQf E) amplitude to find the system in a state different from the
and, consequently, of the large energy behavior of the selfinitial one, will be determined by the pole &,(E) closest
energy. In our specific example, it is very easy to see that, foto the real axis. Assume there is only one such relevant pole,

energies large in comparison to allvalues, of the formw,—iy/2. The contribution of this simple pole to
the survival amplitude is
1
Ea(E)NEg |<a|V|w>|2 Ap(S)Z\/Z)e_inS_YSIZ,
1 1 where Z, is the relevant residue. Hence, the contribution of
=—(<a|H2|a)—<a|H|a>2)=2—. the simple pole to the survival probability at ideal tirse

E 77 becomes

Under general assumptions, and for large energies, the self- Pp,ideal S) = Zp€ *°.

energy function has exactly the same structdig(E) ) o ) -
Nl/TgE for generic models. Then, since the survival prob—'f this were the only contribution to the survival probability,
ability amplitude A(s) is determined by the resolvent and it Would be immediate to conclude that at clock timéne
hence by the self-energy through survival probability would read

pp(t) = ZpH(tai ).

For large times, it is to be expected that the main contribu-
tion of real clocks will be given by the master equation ap-
where byl" here we denote the adequate integration path, thproximation. It results that

survival probability at small ideal timeis [11]

A(s)zzl—ﬂ_frdE e 'ESG,(E),

pp(t) ~ Zpe_ y(1- 'yT/Z)t,

cos( 4+ wgrgi) - 1} which means that the long-times delay is slowed down as an
7z effect of clock errors, the new decay constant being given by
(20 v(1—y7/2). As the half-life and the error dispersion param-
eter approach, the long-time decay will become slower.
Under the same approximatiofsingle simple pole or
Weisskopf-Wigner’s approximationwe have for the prob-

2 - . o
t)~1+ ——[ReI(t, w2+ 4/72)—1]. ability amplitude of states orthogonal to the initial one, at
Pt 4+ wgé[ ( a 2)~1] very late times, and for the specific Hamiltoniéi®),

2
pidea(s):|~’4(s)|2~1+4+—2

2
WaT7

On performing the averages for E@O0), we obtain

(w|V|a>(e*“"pSe* vysl2_ efin)
wp—w—iy/2

The objection might be posed that sntadloes not imply that

s is small (the comparison term in order to state the small-
ness or otherwise of these dimensionful quantities is always
taken to be the characteristic evolution time of the system whence it follows that the probability of finding stdi®e) at
However, we have seen above that clocks that satisfy thesufficiently large clock timet is

stationarity requirement of E¢3) display an average value

B,(s)=(we "*"a)~

of s that trackst, and that the dispersion is given as? Pu(t)=1B,(1)]?
~t. It then follows that indeed we can approximate snall 5
behavior by extracting the smalbehavior and then averag- = 0(t) [{w[V]a)]
ing. (wp—w)2+ Y214
We see again that through this method we recover again ) )

that there is a linear term, and that the disappearance of X[1+H(tiy) -t o= wptiy/2)
Zeno'’s effect is completely generic. An exception can be Tt on— w+iv2
found in the OU clock case, for which (Lop=otiy2)]

-  Kalvia)?

Pou(t)~1- =, (wp— @)+ y°l4’
7z
which means that the line shape, within the approximation

as we already know. carried out(Weisskopf-Winger approximation, see Rgf9))
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does not change at all because of the errors in the clocks. Wer some frequencies in the case put forward by Milburn, and
have not actually fully proved this statement: we have noin the Ornstein-Uhlenbeck clock.

justified that the use of the long-time approximation in ideal (4) Under the assumptions of real clocks put forward in
time is enough before taking the average. However, for probRef. [14] and in this paper, there is no change in the line
ability densities that lead to conditid), the average value shape due to nonlocality in time.

of s is proportional tot, and its quadratic dispersion goes The master equatiofl) has also been shown to be a
instead withy/t. It follows that one can carry over the ap- generic approximation to evolutions under clocks with dif-
proximation of large ideal times to large Sctiger time. ferent sets of errors, in a controlled manner, thus amenable to

measurement.

VII. CONCLUSIONS
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