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Real clocks and the Zeno effect
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Real clocks are not perfect. This must have an effect in our predictions for the behavior of a quantum
system, an effect for which we present a unified description, encompassing several previous proposals. We
study the relevance of clock errors in the Zeno effect and find that generically no Zeno effect can be present~in
such a way that there is no contradiction with currently available experimental data!. We further observe that,
within the class of stochasticities in time addressed here, there is no modification in emission line shapes.
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I. INTRODUCTION

The problem of understanding time observables in qu
tum mechanics has a long and protracted history@1#. One of
the key observations in the process of a better formulatio
time quantities was carried out by Misra and Sudarshan@2#,
investigating how the measurement of lifetimes could be
fected by frequent probes into the evolution of the syst
under study. It should be pointed out that Misra and Sud
han placed their work in the context of time observabl
making explicit connections to the problem of time of a
rival, as discussed by Allcock@3–5#.

The result of Misra and Sudarshan that a continuou
observed unstable particle would never decay was assoc
by them with the name of Zeno of Elea, and it is under t
title that the effect or paradox is currently known. In fact, t
effect had been pointed out before in different forms@6,7#, as
was indicated by Chiu, Sudarshan, and Misra@8#. At any
rate, the number of papers referring to the Zeno effect
paradox increased substantially after 1977, and even mo
after the crucial experiment of Itanoet al. @9# ~for a review
of research in the topic up to 1997, with the correspond
bibliography, see Ref.@10#; a more up-to-date review of bib
liography can be found in Ref.@11#!.

Another intriguing aspect of time in quantum mechan
is related to decoherence and decoherence rates, both
general sense, and more specifically as a source of dec
ence. Milburn@12# proposed a simple modification of qua
tum dynamics in which the system does not evolve conti
ously under unitary evolution: it undergoes a sequence
identical unitary transformations, which take place or n
according to a Poisson distribution~i.e., the probability that
there ben such transformations in a time intervalt is given
by a Poisson distribution!. This proposal leads to decohe
ence, while at the same time it conserves energy~a feature
lacking in previous models of intrinsic decoherence, such
the well-known one of Ghirardi, Rimini, and Weber@13#!.

A different aspect of stochasticity in time was put forwa
in Ref. @14#: the fact that our clocks are not perfect impli
that incoherent superpositions of states at different instan
time are going to be necessary to account for the state
served at a given clock instant. The requirements for a cl
to be considered good were examined and formalized, le
ing to a claim of uniqueness for the effective description
1050-2947/2003/68~2!/022104~10!/$20.00 68 0221
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good clocks, in terms of a stationary, Gaussian, and Mark
ian stochastic process.

Bonifacio also proposed a generalization of Liouville
equation just by requiring that time be an stochastic varia
and demanding that a different form of stationarity hold@15#
@see below, Eq.~3! and the surrounding discussion, for th
expression of this property#. He further posed a claim o
uniqueness for the probability distribution that encoded s
chasticity in time, which he asserted was theG distribution.

All these three proposals shared the result that, under
equate approximations, the systems behaving accordin
them would actually follow an evolution equation for th
density matrix of the form

ṙ~ t !52 i @H,r~ t !#2
k2

q
†H,@H,r~ t !#‡, ~1!

where we have set\ to 1, as we do in the following,H is the
Hamiltonian of the system under consideration, describ
with the density matrixr at clock timet, andk and q are
constants with dimensions of time. In the formalism of R
@12#, the quotientk2/q is associated with the intrinsic tim
step of the unitary evolutions; in Ref.@14# k2/q2 stands for
the strength of the correlation function of relative errors~the
rates of increase or decrease of the clock error at diffe
clock times!, whereasq is the correlation time for those
relative errors; to be complete we mention that the combi
tion k2/q is equivalent to the ‘‘chronon’’ of Ref.@15#.

In fact, this kind of master equation was also known fro
the analysis of heat baths coupled to the system by a term
the form HG, whereH is the system’s Hamiltonian andG
some bath operator~see, for instance Ref.@16#, Sec. 2.3!.
The explicit connection between the proposal that quan
~and classical! systems evolve according to nonideal clock
on the one hand, and the heat bath language, on the o
was shown in Ref.@14#.

In a recent paper@17#, Adler, using the language of Itoˆ
calculus, considered together both Zeno’s effect and Eq.~1!,
with the result that the Zeno effect would be washed out
the new time scalek2/q. Given the results of Facchi an
Pascazio~and others! @18,11#, it is rather surprising that the
Zeno effect disappears no matter what the value of the n
time scale is. Even more, if this equation is the result o
©2003 The American Physical Society04-1
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I. L. EGUSQUIZA AND L. J. GARAY PHYSICAL REVIEW A68, 022104 ~2003!
coupling between the system being considered and the
bath, the total system~system plus bath! will of necessity
present Zeno’s effect.

We should mention, for the sake of completeness, that
idea of errors in time measurements seems to be croppin
in several other contexts by various authors~for a couple of
recent examples, see Ref.@19,20#!. The motivation behind
most of those efforts seems to be either a desire to un
stand decoherence better or the search for modification
the ordinary quantum axioms regarding evolution. An e
ample of this latter approach is to be found in the series
papers@21,22#; notice that the specific form of nonlocality i
time put forward in those papers leads to radical modificat
of the line shape, contrary to the results of Adler’s and o
own for nonlocality due to randomness in the measurem
of time.

The purpose of this paper is thus threefold:~1! to present
a general formalism that accounts for various different p
posals in a unified manner and explains the centrality of
approximations leading to Eq.~1!; ~2! to examine whether
Zeno’s effect is indeed generically washed away by the m
fact that time should be considered as stochastic or whe
the result of Adler’s does not indeed extend to more gen
situations;~3! to resolve the different claims of uniquene
which seem contradictory.

II. UNIFIED FORMULATION

A good starting point is given by the initial stages
Bonifacio’s formulation@15#, which we present here with
notation and interpretation closer to that of Ref.@14#. Let
rS(s) represent the density matrix of systemS at Schro¨d-
inger’s ideal times; that is to say,rS evolves according to
von Neumann’s equation

d

ds
rS~s!52 i @H,rS~s!#52 iLrS~s!,

whereL is the Liouvillian ~super!operator.
This evolution equation is used to make predictions ab

the outcomes of experiments that we can describe in
following manner: after a preparation stage, in which
make sure that we have set the system in a well-defi
initial state, we let the system evolve a time intervalt that we
measure with our clock. At that instant, we measure
value of some observable of the system. Our predictions
general, will not concern the actual value measured i
single instance of the experiment; they will rather provide
with probability distributions, which will be checked b
many repetitions of the experimental procedure.

However, any clock we might use will have intrinsic u
certainties and the ideal time elapsed in each instance o
experiment will be different, even if we insist on alway
measuring the same time interval with our clock. We sho
then realize that the predictions we are required to prov
must be predictions inclock time(t), not in ideal time (s),
that is, we must have a way of computing probability dist
butions for all observables at timet. Through the standard
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arguments, this means that we can encode our prediction
a density matrix at clock timet, r(t).

The actual observed/predicted density matrix at clo
time t will be given by a superposition of the density mat
ces at different ideal times, under the assumption that,
different realizations of our experiment, the same readingt of
our clock corresponds to different ideal time intervalss hav-
ing elapsed since the preparation of the initial state. Let
describe this assumption by a probability density for tho
ideal timess at a fixedt, P(t,s): the actual density matrix
r(t) will be computed as

r~ t !5E
0

`

ds P~ t,s!rS~s!5E
0

`

ds P~ t,s!e2 isLrS~0!.

~2!

Here, one simple underlying assumption is that the prep
tion instant be labeled bys50 and t50. Another assump-
tion is that we know for certain that, at the instant we let t
system go, the state is indeed always the same.

Furthermore, we suppose that the clock goes forward
ideal time, which entails that the support ofP(t,s) be over
negatives; by the very definition of the probability density
which is to be used to predict the results of experime
using real clocks, the clock time intervalt is of necessity
positive. Note that a simple way of modifying the assum
tion of positive ideal time flow of the clock would be t
allow s to be negative. When we introduce laterPG(t,k), in
Eq. ~13! below, we shall actually relax this condition ons, as
explained at that point.

By the manner in which we have justified the introducti
of P(t,s), we have already demanded that it be a probabi
distribution. However, an alternative way of arriving at th
same concept would be to assume Eq.~2! and thatr(t) in-
deed be a density matrix~as is to be expected from the ge
eral arguments of Gleason’s theorem—see the strength
version provided by Busch@23#!. It would follow thatP(t,s)
would have to be positive and normalized to 1 when in
grated overs,

E
0

`

ds P~ t,s!51.

There is yet another important property that this proba
ity density should fulfill: the way in which errors could ac
cumulate should be independent of the instant of time
which we have started the clock. At least it should be so
good clocks; the way new errors are produced should
independent of the error up to that instant. Note, howev
that the error at one clock timet1dt does depend on the
error at timet. If this one is very big, it is very unlikely tha
at a later clock time the error could be zero. Therefore,
stationarity requirement we are now discussing cannot
understood as stationarity for the errors in time measu
ment, but rather as stationarity in the buildup of errors.

In order to obtain a mathematical statement of this s
tionarity requirement, consider the following setup: a syst
is prepared in an initial staterS(0) and is then evolved a
clock time intervalt1. The state at this clock time is now
4-2



e

n

re
ix

n-

re

to

r

o

c

es

-
t
a

at
-

t

-

f
be

ts

l

e
si-

of

REAL CLOCKS AND THE ZENO EFFECT PHYSICAL REVIEW A68, 022104 ~2003!
r~ t1!5E
0

`

ds1P~ t1 ,s1!e2 is1LrS~0!.

By whichever means, the state is then frozen, and then w
it evolve a further time intervalt2. This is another way of
saying that we repeat the evolution, but now for a differe
time interval, and with an initial state that is nowr(t1). The
end result would be the density matrix

r~ t11t2!5E
0

`

ds2 P~ t2 ,s2!e2 is2Lr~ t1!

5E
0

`

ds2P~ t2 ,s2!e2 is2L

3E
0

`

ds1 P~ t1 ,s1!e2 is1LrS~0!.

On the other hand, that freezing of the state need not be
it is simply a tool of our imagination, and the density matr
at the end must be given by

r~ t11t2!5E
0

`

dsP~ t11t2 ,s!e2 isLrS~0! .

This entails the following condition on the probability de
sity P:

P~ t11t2 ,s!5E
0

s

ds8P~ t2 ,s2s8!P~ t1 ,s8!, ~3!

which is the mathematical expression of the stationarity
quirement.

In order to solve this functional equation, it is useful
use Fourier transforms. Define

P~ t,k!5E
0

`

ds P~ t,s!eiks.

Note for further use the following set of facts: sinceP is a
probability distribution for the stochastic variables, it fol-
lows thatP(t,0)51 ~remember thats is stochastic with re-
spect to the clock time which we measure!; sinceP has sup-
port only on the positive half line~as we are currently
assuming! P(t,k) will have singularities only on the lowe
half of the complexk plane. If all moments ins of the prob-
ability distributionP existed, thenP(t,k) would be analytic
at k50.

By means of this definition, Eq.~3! is transformed into the
algebraic equation

P~ t11t2 ,k!5P~ t1 ,k!P~ t2 ,k!, ~4!

with the solution

P~ t,k!5@g~k!# t/l, ~5!

where the dimensionful parameterl has been introduced t
adimensionalize the exponent, andg(k) is an arbitrary func-
tion. Thus, l and g(k) fully determine the characteristi
02210
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function P(t,k), and consequently, the probability densiti
P(t,s). The physical significance ofl andg(k) will become
clear soon. For the time being, it is worth noticing thatg(k)
is the characteristic function of the probability densityP(t,s)
at time t5l, and that changes in the parameterl can be
compensated by a change in the functiong(k) as follows.
Let gl(k) be an arbitrary function that determinesP(t,k)
together with the parameterl, that is to say, under the con
dition P(l,k)5gl(k). It is then straightforward to see tha
the same distributionP(t,k) can be described in terms of
new function gm(k) and parameterm, such that gl(k)
5@gm(k)#l/m.

The requirement thatP(t,k) be the Fourier transform of a
probability density, with the definition above, implies th
g(0)51. Similarly, the condition on the location of the sin
gularities also applies tog(k). Additionally, if we make the
further hypothesis that all~s! moments of the densityP(t,s)
exist, this would entail thatg(k) would have to be analytic a
k50. It is also clear thatg(k)→0 on the real line asuku
→`, if P(t,s) is a continuous density.

Assuming the existence of the first two moments~in s) of
the distributionP(t,s), we can make the following interest
ing statements derived from the form ofP(t,k) expressed in
Eq. ~5!. The expectation value ofs is given by

^s&5E
0

`

dsP~ t,s!s52 i ]kP~ t,k!uk505
2 ig8~0!

l
t,

where we have taken into account thatg(0)51. Observe
that the expectation value is proportional tot and that it is
indeed exactlyt if l52 ig8(0). It is immediate to appreci-
ate that the ratio2 ig8(0)/l measures the systematic drift o
the expected values of time. The systematic drift can
eliminated by recalibration of the clock, identified by i
characteristic function, and, indeed, the ratio2 ig8(0)/l is
invariant under the transformationsl→m above, and per-
tains exclusively to the functionP(t,k): if it is the case that
l52 igl8(0), it is then true thatm52 igm8 (0). As to the
variance, one can easily compute

Ds25E
0

`

ds P~ t,s!~s2^s&!25
1

l
@2g9~0!1g8~0!2#t,

whence we see thatDs;At ~with an adequate dimensionfu
proportionality constant!.

The simplest function that fits those criteria@to recap:
g(0)51, analyticity atk50, all singularities in the lower
half plane, andg(k)→0 as uku→` on the real line#, and
presents a singular point, is

gB~k!5
1

12 ikt
,

wheret is a real number with dimensions of time. Notic
that we are actually choosing a family of probability den
ties parametrized byl, i.e., by the instant of time at which
the characteristic functionP(t,k) equalsgB(k). For each
member of the family, as we shall see below, the meaning
4-3
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I. L. EGUSQUIZA AND L. J. GARAY PHYSICAL REVIEW A68, 022104 ~2003!
the characteristic timet will be slightly different. The sub-
scriptB stands for Bonifacio: the probability density derive
from this choice is

PB~ t,s!5
1

t

e2s/t

G~ t/l! S s

t D t/l21

,

which is exactly the one put forward in Ref.@15#. The ex-
pectation value is ^s&5tt/l and the dispersionDs
5tAt/l. This means that among all the different memb
of this family of distributions, the one labeled byl5t is the
only one for which there is no systematic drift in the expe
tation value of time; in which caset gives the rate of growth
of the dispersion of the successive probability densi
P(t,s).

Another simple alternative, with a very different analyt
structure associated with periodicity, is given by

gM~k!5exp~eikt21!,

where, again,t is a real number with dimensions of time an
the subscriptM now stands for Milburn. This functiongM(k)
is an entire periodic function, bounded on the real line~but,
of course, not everywhere, in keeping with Liouville’s the
rem!. On performing the inverse Fourier transform, one
led to the discrete probability density

PM~ t,s!5 (
n50

`
1

n! S t

l D n

e2t/ld~s2nt! ,

which is precisely that proposed in Ref.@12# @Eq. ~2.7!; in
order to make the identification between this formulation a
the original one, it is convenient to use the construction
the following section#. This discrete probability density ha
the interpretation provided in that paper: the probability t
there ben identical unitary transformations of the densi
matrix, exp(2itL)r(0) in a time intervalt is given by the
Poisson distribution. The expectation value^s& and the dis-
persion are given by the same expressions as those
gB(k).

The two g functions presented above do not, of cour
exhaust all possible alternatives. Just as an example, con

ga~k!5
1

~12 ikt!~12 iks!
,

where botht ands are positive time quantities~the subindex
a stands for ‘‘alternative’’!. Note that ift ands are equal the
resulting probability would bePB(2t,s), which could also
be phrased asPB(t,s) by halving the value ofl. Without
loss of generality, lett.s. The resulting probability density
is

Pa~ t,s!5u~s!
Ap

G~ t/l!

1

Ast
S s

t2s D 21/21t/l

3e2(t1s)s/2stI t/l21/2S ~t2s!s

2st D ,
02210
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with I n(z) the modified Bessel function. This probabilit
density serves as a counterexample to the uniqueness c
presented in Ref.@15#. It should be pointed out that we mak
no claim whatsoever to the greater physical significance
this distribution, as compared toPB , and they are to be
evaluated according to their fitting whatever phenomena
would like to describe. The expectation value computes to
^s&5(s1t)t/l, while the dispersion reads asDs
5A(t21s2)t/l.

III. THE MASTER EQUATION

Direct comparison of the second integral in Eq.~2! with
the definition ofP(t,k) tells us that we can write the ave
aging process leading to the observed density matrix at c
time t in the form

r~ t !5P~ t,2L!rS~0!5e(t/l)ln[g(2L)]rS~0!. ~6!

By using the eigenoperators of the Liouvillian, that is to s
operators of the formun&^mu, whereun& and um& are eigen-
states of the Hamiltonian, we can write the exact evolution
the components of the density matrix in that basis: letr(t)
be given by(m,nrnmun&^mu. The components of the ob
served density matrix at clock timet are related to those a
time 0 by

rnm~ t !5P~ t,Em2En!rnm~0!. ~7!

This formal exact solution is very useful when analyzi
simple systems; however, it might be cumbersome in m
involved situations, and some other simplifications and lim
might come in handy. For this reason, let us rewrite Eq.~6!
as a differential equation,

ṙ~ t !5
1

l
ln@g~2L!#r~ t !. ~8!

Sinceg(0)51 andg(k) must be analytic atk50, Eq. ~8!
admits an expansion whose first terms will be

ṙ~ t !5
1

l S 2g8~0!L2
1

2
@2g9~0!1g8~0!2#L 21••• D r~ t !,

~9!

or, taking into account that this expansion is actually t
expansion of the generating function of the cumulants,

ṙ~ t !5S 2 i
^s&
t

L2
1

2

Ds2

t
L 21••• D r~ t !. ~10!

In order for this expansion to be physically relevant it
clear that there must be either a renormalization of the
ergy or else the first coefficient of the Taylor expansion
g(k) aroundk50 must be given byg8(0)5 il. In other
words, the clock must be such that it adequately tracks id
time, with no rescaling being necessary. Hence, here
wards we shall assume that the statementg8(0)5 il does
indeed hold@which entails a relation among the parameterl
and the characteristic times appearing ing(k)]. It would be
also pertinent to have some explanation for the validity
4-4
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REAL CLOCKS AND THE ZENO EFFECT PHYSICAL REVIEW A68, 022104 ~2003!
the expansion, which both forgB(k) and gM(k) reads, to
second order ink, and making use ofl5t @which is the
specific form of the conditiong8(0)5 il],

gB,M~k!511 i tk2t2k21O~t3k3!→ ṙ~ t !

5S 2 iL2
t

2
L 21••• D r~ t !.

These examples lead us to understand expansion~10! as
valid if the characteristic time of evolution~whose inverse
gives us the characteristic expansion scale ofL) is much
larger than the time constants that appear in the definitio
theg functions. In fact, those time constants, such ast @or s
andt for ga(k)], characterize either the period@in cases such
asgM(k)] or the closest singularities to the pointk50, so it
is sensible to expect that this expansion will only be valid
characteristic evolution times larger than them, under the
ther demand that there is no resonant effect. It is importan
notice that the characteristic evolution times are determi
by the Hamiltonian of the system and by the initial conditio
as follows. Since the Hamiltonian is usually semibound
and not bounded, the Liouvillian superoperator, whose eig
values are the differences of energy among energy eig
states, is unbounded. However, if only a restricted se
energy eigenstates contribute to the initial state, the Liou
lian is bounded for that initial state and for all later sta
evolved from that one. It is bounded by the largest ene
difference. We have previously demanded thatg(k) be ana-
lytic at k50, so that the moments of the distributionP(t,s)
exist; it follows that there exists akc radius of convergence
If the largest energy difference that comes into play
smaller thankc , then the expansion above is convergent, a
the approximation given by the truncation to the first tw
terms of the Taylor expansion is well controlled.

Notice that even if the Taylor expansion is well controll
some phenomena could be out of the scope of the appr
mation, in the case of periodic functionsg(k). In fact, Mil-
burn @12# provided an explicit example of the breaking dow
of the expansion due to a resonant effect, by examining
average value of an oscillator and noticing that some
quencies would lead to the freezing of the evolution of
oscillator, namely, the harmonics of the evolution frequen
2p/t. Indeed, one should use in Eq.~7!

PM~ t,Em2En!5expF t

t
~ei t(Em2En)21!G ,

leading to freezing of the elementrnm(t) of the density ma-
trix if Em2En52p l /t, with l an entire number, i.e., in th
presence of a resonance among the characteristic time
system and real clock.

IV. GAUSSIAN WEIGHTS

Having characterized the evolution equation~1! as a two
term approximation of the whole family of evolutions~6!,
which fulfill the stationarity constraint~3!, we should now
examine to what extent the stationarity condition holds un
02210
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the master equation~1!. In order to do that, consider th
more generic set of master equations

ṙ~ t !5h~ t,2L!r~ t ! , ~11!

whereh is a function fulfilling a number of conditions: to
preserve the trace of the density matrix under this evoluti
it is necessary thath(t,0)51 for all times; demanding that

E
0

t

dsRe@h~s,k!#<0,

for all t and ~real! k is a sufficient condition to guarante
positivity.

In this case, the solution to the generalized master eq
tion ~11! is formally given by

r~ t !5expF E
0

t

ds h~s,2L!Gr~0!,

whence we recover the description of Eq.~2!, with the prob-
ability density computed as

Ph~ t,s!5E
2`

` dk

2p
e2 iks expF E

0

t

ds h~s,k!G .
As an example, consider ordinary von Neumann evoluti
associated withhvN(t,2L)52 iL. It leads to PvN(t,s)
5d(t2s), that is to say, to the identification of the appr
priate clock as a perfect one, which keeps perfect track
clock time t of the elapsed ideal times.

Let us now consider the dephasing master equation~1!,
which is associated with

hm.e.~ t,k!5 ik2
k2

q
k2,

and thus leads to

Pm.e.~ t,s!5A q

4pk2t
e2q(s2t)2/4k2t. ~12!

It is readily seen that this probability density does inde
satisfy the stationarity requirement. However, it has supp
over negative values ofs, not just on the positive half line.

It should be noticed that this is the unique Gaussian pr
ability distribution~up to changes in parameters! that fulfills
the stationarity requirement, which keeps exactly form~4!
even if the support ofP(t,s) extends to the whole real line
Notice that the references to Gaussianity and support of
distribution concern the ideal time variables.

More generally, we can characterize as stationary the e
lutions in whichh(t,k) is in fact independent oft. In this
manner, we see that the condition of stationarity stated ab
in terms of the probability densities is fully equivalent to th
more standard requirement of the evolution being associ
with a semigroup. Denotingh(t,k) by ln@g(k)# if it is indeed
independent oft, we see that the formalism presented in t
previous sections goes through with the minor difference t
4-5
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the support of functions ofs extends to the whole real line
and thatg(k) is no longer required to be analytic in th
whole upper half plane. The generator of the evolution se
group is thus ln@g(2L)#.

The meaning of the negative values ofs for a stationary
distribution is that the clock can go backwards in ideal tim
but, since it is for us a clock, we only perceive it as goi
forward. In other words, we organize the experiment acco
ing to the clock, so, by definition, we correlate measurem
instants with a particular reading of the clock. If the clo
were to go backwards, we could have marked the des
reading of the clock, which is a positive value oft, as having
been reached before~in ideal time! the clock had started
This looks like a rather undesirable characteristic for a clo
and indeed in Ref.@14# it was characterized as a breakdow
of ‘‘good’’ causality. On the other hand, if the characteris
error scale of the clock (k2/q in the Gaussian stationar
example above! is extremely small when compared to th
characteristic evolution of the system being analyzed, n
causal behavior will be unimportant.

There is a completely different reason for suspecting t
the probability distribution~12! could have some nonphys
cal aspect to it. Consider the stochastic sequence of rela
errorsa(t). Formally, this is defined through the Langev
equation

ds

dt
511a~ t !.

Notice that the restriction that the probability densityP(t,s)
should be zero for negative values ofs translates in this
language to the~formal! requirement thata(t) be bigger
than 21 at all times. However, this is not the only suspe
aspect of this Langevin equation: distribution~12! corre-
sponds to Gaussian white noise, that is to say, to the Ga
ian stochastic sequence characterized by

^a~ t !&50, ^a~ t !a~ t8!&5
k2

q
d~ t2t8!,

for all t and t8. This suffers from the well-known shortcom
ings of white noise, namely, unphysicality of the infini
variance. Nonetheless, we have obtained this distributio
a generic limit of a wide class of possible distributions an
therefore, of a wide class of stochastic error sequences.

As a matter of fact, the notation used up to now (k2/q
instead of a single quantity with dimensions of time! was
designed with exactly this problem in mind. Consider
alternative Gaussian stationary stochastic sequence, ch
terized by

^a~ t !&50, ^a~ t !a~ t8!&5c~ t2t8!.

This leads to a generating function

PG~ t,k!5eikte2k2f (t), ~13!

where
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f ~ t !5
1

2E0

t

dt1E
0

t

dt2c~ t12t2!. ~14!

The effective support of the correlation functionc(t) will be
characterized by the correlation timeq, while the maximum
value c(0) will be an adimensional number,k2/q2. For
large values oft, f (t) will then be approximately propor
tional to k2t/q. We thus see that the distributionPm.e.(t,s)
and its concomitant dephasing master equation are app
mations in two different ways: on one hand, it is requir
that the characteristic evolution time of the system be
studied be much smaller than the characteristic scalek2/u,
so that the approximation ofP(t,2L) can make sense; and
on the other, the elapsed timet must be bigger than the
relative errors’ correlation timeq.

As an specific example of nonwhite Gaussian noise, t
will be adequately described by white noise fort larger than
q, consider the Ornstein-Uhlenbeck process, character
by

^a~ t !&50, ^a~ t !a~ t8!&5
k2

q2
e2ut2t8u/q.

The functionf (t) would be

f OU~ t !5k2S t

q
211e2t/qD ,

and the effective evolution equation would read

ṙOU~ t !5S 2 iL2
k2

q
~12e2t/q!L 2D rOU~ t !,

which indicates that there is a transient effect up to times
the order of the correlation time for the processq. Notice
that at t50 there are no non-Liouvillian terms, due to th
specific character of the transient of the correlation functi
As we shall see, this will be particularly relevant in Zeno
effect. After times of the order ofq, the evolution is dictated
by the master equation~1!.

V. THE ZENO EFFECT

The generality of Zeno’s effect has been shown in ma
forms. An early clear description of the general character
the effect was provided by Chiu, Sudarshan, and Misra@8#: if
the Hamiltonian is bounded from below, and the initial sta
is such that the expectation value of the Hamiltonian is fin
then the derivative of the survival probability with respect
time at the initial instant is zero, which entails that the dec
of the survival probability is slower than any exponenti
The survival probability at ideal times is given by
Tr$r(0)@exp(2isL)r(0)#%. As, under these conditions, thi
survival probability has no linear term, close tos50, on
performing sufficiently frequent measurements we find t
the survival probability at any later time is equal to 1: t
system is confined to its initial state. On the other hand, if
survival probability did indeed have a linear term ins, then
the evolution under frequent measurements would be an
4-6
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ponential decay, with the decay constant given by the co
ficient of the linear term.

We shall now investigate whether the uncertainties in ti
do eliminate Zeno’s effect from taking place. The quant
we want to investigate is the survival probability, that
given an initial stater(0), weshould compute

p~ t !5Tr@r~0!r~ t !#,

where we measure the time elapsed with a real clock, a
therefore@see Eq.~6!#

p~ t !5Tr$r~0!@P~ t,2L!r~0!#%.

Note that the objects which include the Liouvillian are s
peroperators, not operators. This entails a slight complica
of notation, which we will fix by requiring that superoper
tors act on everything on their right.

For measurements of time intervals that satisfy the
tionarity constraint~3!, the linear term in clock time of the
survival probability is given by

1

l
Tr$r~0!ln@g~2L!#r~0!%,

which, in terms of the energy basis, can be written as

2

l (
n.m

urnm~0!u2lnug~En2Em!u.

Unless this quantity is zero, the quantum Zeno effect will n
take place@notice by the way in the previous computatio
that, by construction,g(k)* 5g(2k) for real k.#.

Let us assume the validity of the expansion in Eq.~10!,
with ^s&5t, and further that the initial state is a pure sta
r(0)5ua&^au. In such a situation, the linear term will have
leading term of the form

2
Ds2

2t
Tr@r~0!L 2r~0!#52

Ds2

t
~DH !2,

where (DH)25^auH2ua&2^auHua&2. That is to say, the
small time survival probability will be

p~ t !512
Ds2

tZ
2

1•••,

with tZ51/DH. No Zeno effect survives: frequent measur
ments of a system will not maintain it in the initial stat
sinceDs2;t. There will be an exponential decay no matt
how fast the measurements are. Admittedly with a v
small decay constant, but exponential nonetheless. We
reobtain this result in a slightly different fashion, by notin
that all terms of the Taylor expansion of the~ideal! survival
probability in ideal times contribute to a linear term int
when we perform the averaging withP(t,s): all cumulants
are proportional tot, as we have seen, and this is itself
consequence of the stationarity property.

For general clocks, that do not necessarily fulfill statio
arity condition~3!, the term linear in time will be of the form
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Tr@r(0)] tP(0,2L)r(0)#, generically nonvanishing. In the
Gaussian case, which is not stationary in the sense of Eq.~3!,
with initial pure state, and the functionf (t) defined accord-
ing to Eq.~14! leads to

pG~ t !512
2 ḟ ~0!

tZ
2

t1O~ t2!.

Thus, a very special situation is associated with the Ornst
Uhlenbeck clock, for whichḟ (0)50, and Zeno’s effect sur-
vives. Note, however, the exceptional character of this ca
due to the specific form of the transient.

We have thus shown that clock errors generically wa
out any possible Zeno effect. This being the case, how
we explain the experimental results of Itanoet al. @9#? For-
going an analysis in terms of the full three-level syste
coupled to the electromagnetic field@24–28# and neglecting
optical pumping due to the measuring laser, we can conc
trate on the following conceptual setup: consider a two-le
system undergoing ap-pulse Rabi oscillation. At regular in
tervals the system is queried as to the state it is in, whe
the first or the second level. Formally, at regular intervals
coherences of the density matrix,r12 andr21 are set to zero.
In the standard analysis, the evolution between meas
ments is ordinary unitary Schro¨dinger evolution with the
HamiltonianH5(V/2)(0 0

0 1). Given an initial density matrix
r(0)5(0 12b

b 0 ), and measurements at intervalsp/(nV), the
probability of finding the system in the second level (1

0) after
time p/V is

p2S p

V D5
1

2
1S 1

2
2bD cosnS p

n D .

If the evolution and measurement process were to take p
according to a clock with characteristic functionP(t,k), the
population of the second level would read

p2S p

V D5
1

2
1S 1

2
2bD C nS p

n D ,

where

C~ t !5
1

2
@P~ t,V!1P~ t,2V!#.

It is worth mentioning that in the case of a perfect clock, f
which Pperfect(t,k)5exp(ikt) both expressions coincide, a
they should.

In order to illustrate this result numerically, let us consid
the characteristic function of the master equation~1!, which
leads to

p2S p

V D5
1

2
1S 1

2
2bDe2Vtp/2cosnS p

n D ,

with the parametert being defined as 2k2/q. For the system
examined by Itanoet al., V5p/256 m s21 andt should be
larger than 1025 s for it to have any noticeable effect. As
matter of fact,t should be larger than 1024 s for the effect to
4-7
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compete with optical pumping due to the measuring la
On the other hand, the coherence times mentioned in@9#
~550 s! lead tot<1024 s; additionally, the precisions men
tioned for time quantities in their experiment are of the ord
of 1025 s or better. It follows that the inhibition of trans
tions from level 1 to level 2 due to frequent measuremen
still in place, even though no ‘‘perfect’’ Zeno effect cou
take place if the clocks themselves are not perfect.

The observability of the master equation~1! can be
achieved by purposefully adding a source of errors to
clocks being used in the laboratory, in a controlled mann
One way to detect its effects would be to perform an exp
ment similar to the one described above, but using a
perfectly regular clock for the measuring pulses.

VI. EXAMPLES: OSCILLATING
AND DECAYING SYSTEMS

Consider an oscillating system in an initial stateua&
evolving under the HamiltonianH,

H5S 0 V 0

V 0 K

0 K 0
D , ua&5S 1

0

0
D .

It is easy to compute the exact survival probability und
unitary evolution with the preceding Hamiltonian, and th
perform the averaging over clock errors, leading to

p~ t !5
1

V84 H K41
V4

2
12K2V2Re@P~ t,V8!#

1
V4

2
Re@P~ t,2V8!#J ,

whereV85AV21K2.
The small time expansion of this exact evolution in t

case of the decohering master equation~1!, with t
52k2/q, is quite simply

pm.e.~ t !;12V2tt1O~ t2!.

It is immediate to see that there will be no full Zeno effe
since there is a linear term in the expansion.

If we were to usegM(k), the full result would be

pM~ t !5
1

V84 FK41
V4

2
12K2V2e2(12cosV8t)t/t

3cosS t

t
sinV8t D1

V4

2
e2(12cos 2V8t)t/t

3cosS t

t
sin 2V8t D G .

A particularly interesting aspect of this expression is t
wheneverV852np/t, the Zeno effect reappears: the m
tion of the system is indeed frozen, as Milburn pointed o
for different reasons.
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Finally, for good Ornstein-Uhlenbeck clocks, we find

pOU~ t !5
1

V84 S K41
1

2
V412K2V2e2k2V82(t/q211e2t/q)

3cos~V8t !1
1

2
V4e24k2V82(t/q211e2t/q)

3cos~2V8t ! D . ~15!

As soon ast is substantially bigger than the correlation tim
of the OU clock, the two survival probabilities compute
with the master equation and with the OU probability weig
coincide. However, for small times their behavior is radica
different: there is no linear term int in the expansion of
pOU(t), in keeping with the general formal result present
above.

Let us now perform an analogous computation for
model of a decaying system, in such a way that we c
extrapolate without difficulty to more general decaying pr
cesses. On the by side, we will obtain an expression for
line shape, confirming generically the result of Adler’s tha
is not modified by phase decoherence@17#.

Consider thus a system with a discrete orthogonal b
$ua&%ø$uv&%v , wherev takes values in some discrete set
frequencies, and such that the Hamiltonian can be written
H5H01V, with

H05vaua&^au1(
v

vuv&^vu, ~16!

and the only nonzero elements ofV being^auVuv& and their
complex conjugates. The initial state will be the pure st
ua&. This system is a simplified model of decay from th
pure state to the rest of Hilbert space.

By using the resolvent,G(z)5(z2H)21, the exact
Dyson-Schwinger’s equation

G~z!5G0~z!1G0~z!VG~z!

for this system can be solved to

Ga~E!5
1

E2va2Sa~E!
, ~17!

Gv~E!5
^vuVua&

~E2v!@E2va2Sa~E!#
, ~18!

where

Ga~z!5^auG~z!ua&, Gv~z!5^vuG~z!ua&

and

Sa~E!5(
v

u^auVuv&u2

E2v
~19!

is the exact self-energy for this model. In more general m
els, it is still the case that we can write the expectation va
4-8
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of the resolvent in stateua& in terms of the self-energy
Sa(E), as expressed in Eq.~17!. The change will come
about because of the modifications of the self-energy, wh
will no longer be determined by Eq.~19!. The transition
quantityGv(E) will also have a different expression.

The small time behavior of the survival amplitude in ide
time s is determined by the large-energy behavior ofGa(E)
and, consequently, of the large energy behavior of the s
energy. In our specific example, it is very easy to see that
energies large in comparison to allv values,

Sa~E!'
1

E (
v

u^auVuv&u2

5
1

E
~^auH2ua&2^auHua&2!5

1

tZ
2E

.

Under general assumptions, and for large energies, the
energy function has exactly the same structureSa(E)
;1/tZ

2E for generic models. Then, since the survival pro
ability amplitudeA(s) is determined by the resolvent an
hence by the self-energy through

A~s!5
i

2pEG
dE e2 iEsGa~E!,

where byG here we denote the adequate integration path,
survival probability at small ideal times is @11#

pideal~s!5uA~s!u2;11
2

41va
2tZ

2 FcosSA41va
2tZ

2 s

tZ
D21G .

~20!

On performing the averages for Eq.~20!, we obtain

p~ t !;11
2

41va
2tZ

2 @ReP~ t,Ava
214/tZ

2!21#.

The objection might be posed that smallt does not imply that
s is small ~the comparison term in order to state the sma
ness or otherwise of these dimensionful quantities is alw
taken to be the characteristic evolution time of the syste!.
However, we have seen above that clocks that satisfy
stationarity requirement of Eq.~3! display an average valu
of s that trackst, and that the dispersion is given asDs2

;t. It then follows that indeed we can approximate smat
behavior by extracting the smalls behavior and then averag
ing.

We see again that through this method we recover ag
that there is a linear term, and that the disappearanc
Zeno’s effect is completely generic. An exception can
found in the OU clock case, for which

pOU~ t !;12
t2

tZ
2

,

as we already know.
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We shall now study thelarge time behavior of the system
Assume now that the states orthogonal to the initial one,ua&,
form a continuum, in the manner postulated by Weissk
and Wigner@29#, so that an imaginary part can arise for th
poles ofGa(E). Then, for large times, the dominant beha
ior, both for the survival amplitude and for the probabili
amplitude to find the system in a state different from t
initial one, will be determined by the pole ofGa(E) closest
to the real axis. Assume there is only one such relevant p
of the formvp2 ig/2. The contribution of this simple pole to
the survival amplitude is

Ap~s!5AZpe
2 ivps2gs/2,

whereZp is the relevant residue. Hence, the contribution
the simple pole to the survival probability at ideal times
becomes

pp,ideal~s!5Zpe
2gs.

If this were the only contribution to the survival probabilit
it would be immediate to conclude that at clock timet the
survival probability would read

pp~ t !5ZpP~ t,ig!.

For large times, it is to be expected that the main contri
tion of real clocks will be given by the master equation a
proximation. It results that

pp~ t !'Zpe
2g(12gt/2)t,

which means that the long-times delay is slowed down as
effect of clock errors, the new decay constant being given
g(12gt/2). As the half-life and the error dispersion param
eter approach, the long-time decay will become slower.

Under the same approximation~single simple pole or
Weisskopf-Wigner’s approximation!, we have for the prob-
ability amplitude of states orthogonal to the initial one,
very late times, and for the specific Hamiltonian~16!,

Bv~s!5^ve2 isHua&;
^vuVua&~e2 ivpse2gs/22e2 ivs!

vp2v2 ig/2
,

whence it follows that the probability of finding stateuv& at
~sufficiently large! clock time t is

pv~ t !5uBv~ t !u2

5u~ t !
u^vuVua&u2

~vp2v!21g2/4

3@11P~ t,ig!2P~ t,v2vp1 ig/2!

2P~ t,vp2v1 ig/2!#

→ u^vuVua&u2

~vp2v!21g2/4
,

which means that the line shape, within the approximat
carried out~Weisskopf-Winger approximation, see Ref.@29#!
4-9
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does not change at all because of the errors in the clocks
have not actually fully proved this statement: we have
justified that the use of the long-time approximation in ide
time is enough before taking the average. However, for pr
ability densities that lead to condition~3!, the average value
of s is proportional tot, and its quadratic dispersion goe
instead withAt. It follows that one can carry over the ap
proximation of large ideal times to large Schro¨dinger time.

VII. CONCLUSIONS

We have shown the following using a general descript
of errors in clocks:

~1! Decoherence, although a slow process if the clocks
good, starts taking place immediately for generic models
clocks.

~2! As a consequence, Zeno’s effect would never fu
freeze the system in its initial state, for generic clocks.

~3! We have found two kinds of exception to this resu
whenever the decoherence itself freezes the state, as hap
a
no

d

02210
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for some frequencies in the case put forward by Milburn, a
in the Ornstein-Uhlenbeck clock.

~4! Under the assumptions of real clocks put forward
Ref. @14# and in this paper, there is no change in the li
shape due to nonlocality in time.

The master equation~1! has also been shown to be
generic approximation to evolutions under clocks with d
ferent sets of errors, in a controlled manner, thus amenab
measurement.
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