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Abstract 

We have used an isolated chimeric protein E1340E2661 that includes the ectodomains of 

the envelope proteins of hepatitis C virus to study its interaction with model membranes. 

E1340E2661 has some of the membrane destabilization properties, vesicle aggregation, 

lipid mixing and the release of internal aqueous content, which has been previously 

ascribed to fusion proteins. The effects are preferentially produced on vesicles of acidic 

phospholipids which would indicate the importance of the electrostatic interactions. In 

fact, an increase of the ionic strength of the buffer induced a considerable decrease of the 

destabilizing properties. On the other hand, fluorescence polarization studies show that 

the recombinant protein reduces the amplitude of the thermal transition of DMPG 

vesicles and increases the transition temperature at pH 5.0 in a dose-dependent manner. 

These data would indicate an electrostatic interaction between the phospholipid polar 

head and the protein which eventually would lead to the insertion of E1340E2661 into the 

bilayer. On the other hand, a decrease of the pH induces a conformational change in the 

protein structure as evidenced by fluorescence of tryptophan residues and 4,4’-bis(1-

anilinonaphtalene 8-sulfonate. A model for the fusion of HCV with the host cell 

membrane can be postulated. The dissociation of E1E2 dimers would uncover the fusion 

peptides which can then interact with the polar lipid heads of the outer leaflet of the lipid 

bilayer and next insert into the hydrophobic moiety producing the destabilization of the 

bilayer which finally leads to fusion. 
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Introduction 

Hepatitis C virus (HCV) is an enveloped, positive-stranded RNA virus that 

belongs to the Hepacivirus genus of the Flaviviridae family [1, 2]. HCV is the major 

cause of acute hepatitis and chronic liver disease, including cirrhosis and hepatocellular 

carcinoma, being the leading cause of liver transplantations in the developed world. 

According to the World Health Organization, nowadays the HCV infects 180 million 

people worldwide, and every year 3 to 4 million of new cases emerge. Currently there is 

no vaccine available against HCV and the present therapy consists of interferonand 

ribavirin. However, only 10-20% of patients respond to interferon treatment and 54-56% 

to the combined therapy [3]. 

The HCV envelope glycoproteins, E1 (gp31) and E2 (gp70), are released from the 

polyprotein coded for by the HCV genome after cleavage by host-cell endoplasmic 

reticulum proteases in positions 383/384 and 746/747 of the sequence, respectively [4]. 

The amino acid sequence analysis of E1 and E2 indicates that they are type-I 

transmembrane proteins, highly glycosylated, with an N-terminal ectodomain and a C-

terminal hydrophobic domain anchoring these glycoproteins to the membrane. In vitro 

expression studies have shown that both glycoproteins associate to form a stable non-

covalently linked heterodimer which accumulates in the endoplasmic reticulum that has 

been proposed as the site for HCV assembly and budding [5]. However, recent studies 

carried out using cell-cultured HCV (HCVcc) show that the envelope glycoproteins E1 

and E2 form large covalent complexes stabilized by disulfide bridges in the virion [6]. 

Several molecules expressed on the cell surface have been implicated in HCV cell 

attachment. Thus, HCV has been shown to interact with the tetraspanin CD81 and the 

scavenger receptor class B type I (SR-BI). Also, claudins (claudin-1, claudin-6 and 

claudin-9) and occludin, proteins that are present in the tight junctions of the cells, have 

also been identified as key proteins in the HCV infection [7-9]. Other proposed co-factors 
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involved in the endocytosis of HCV are LDL receptor [10], C-type lectins DC-SIGN and 

L-SIGN [10, 11], glicosaminoglycans (GAGs) [12], and it has also been observed that the 

Ewi-2wint protein inhibits HCV infection by blocking the interaction of CD81 with the 

envelope glycoproteins of the virus [13].  

Besides their role in cellular receptor binding, the viral envelope proteins must 

induce fusion between the viral and host cell membranes. The difficulty of propagating 

HCV in cell culture has hampered for many years functional studies on HCV infection. 

The cellular mechanism of HCV entry has been studied using HCV pseudoparticles 

(HCVpp), infectious retroviral particles with HCV envelope proteins on the surface, and 

the cell culture model which allows for the production and propagation of virus in cell 

culture (HCVcc) [14-16]. Reports using both HCVpp and HCVcc models have evidenced 

the pH sensitivity of HCV entry [17-19]. Several studies suggest that HCV enters cells by 

clathrin-mediated endocytosis [17] and that fusion occurs in the early endosomes [20]. 

Furthermore, the acidic pH of endosomes triggers the fusion process probably by 

inducing conformational changes in the envelope proteins [17, 20-22]. 

Studies concerning the entry mechanism carried out with HCV isolated envelope 

proteins are scarce. Based on potential structural homology, E2 has been proposed as a 

Class II fusion protein [23]. Moreover, E1 has also been proposed as a candidate because 

sequence analyses suggest that it might contain a putative fusion peptide in its 

ectodomain [24, 25]. In relation to the location of the regions involved in the fusion 

process, some E1 and E2 peptides with a potential fusogenic activity have been identified 

[26, 27]. Although peptides might be a useful model to study the interaction of E2 with 

cellular membranes, a direct correlation with the fusion process in vivo is not always 

possible because of the lack of properties such as oligomerization or conformational 

changes. A directed mutagenesis study with HVCpp system has identified three important 

regions for the fusion with model vesicles [28]. The first one is located in E1 (residues 
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272 to 287) and the other two region are located in E2 (residues 419 to 433 and 597 to 

620). These data suggest that different E1 and E2 regions can cooperate for the fusion 

process. 

In order to shed light into the cell entry mechanism as well as into the protein and 

amino acid sequences involved on it, we have used a chimeric protein containing the E1 

and the E2 ectodomains connected by a small hydrophilic peptide (E1340E2661) and study 

its interaction with phospholipid vesicles. This chimeric protein obtained by baculovirus 

expression system has been previously shown to have the features of a correctly folded 

protein and it is recognized by HCV patient sera antibodies [29]. E1340E2661 is able to 

insert into the hydrophobic core of the bilayer inducing aggregation, lipid mixing and 

destabilization of the bilayers, which are the essential steps required for fusion [30]. 

Based on the results obtained, a model for the fusion activity of this chimeric protein is 

proposed.  
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Results 

E1340E2661 is able to induce destabilization of phospholipid vesicles 

Vesicle aggregation 

 The chimeric protein used throughout this study is composed of the two 

ectodomains of E1 and E2 HCV envelope glycoproteins (Fig. 1). This protein is 

produced in glycosylated form by insect cells infected by recombinant baculovirus, 

The recombinant protein has an oligomeric nature and is composed mainly of 

monomers, dimers and trimers [29]. Its ability to induce vesicle aggregation of PG, PS 

or PC liposomes was monitored by measuring the increment of the optical density at 

360 nm (OD360) as a result of the increase in vesicle size upon incubation with 

different concentrations of E1340E2661. The results obtained for the different 

phospholipids vesicles at various phospholipid/protein ratios at pH 5.0 and 100 mM 

NaCl are depicted in Fig. 2. In the presence of both PS and PG vesicles, the OD360 

value increased up to a phospholipid/protein ratio of 0.018, 2.5 M protein 

concentration, and then remained nearly constant. However, E1340E2661 induced little 

aggregation of PC vesicles. Therefore, the specificity toward negatively charged 

phospholipids points to the importance of the electrostatic component on the 

interaction which is on the other hand not dependent on the nature of the acidic polar 

head group. In fact when the experiment was performed at high salt concentration, 500 

mM, a reduction of almost 60% of the OD360 values reached at 100 mM was 

observed. Moreover, at neutral pH the changes in the OD360 observed with either 

phospholipid were almost negligible. The vesicles employed in these studies constitute 

a homogeneous population with an average size of 130 ± 40 nm as determined by 

dynamic light scattering. However, at the highest protein concentration used the 

vesicles became heterogeneous with an average size of 840 ± 500 nm. 
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As indicated by kinetic analysis performed at a protein/lipid molar ratio of 3.5 

x 10-3, the presence of 20 mol% cholesterol in acidic phospholipid vesicles resulted in 

an increase of almost 25% in vesicle aggregation at pH 5.0 produced by the 

recombinant protein (Fig. 3). A similar increase was observed at every protein/lipid 

molar ratio tested. Moreover, when vesicles composed of PC (36.8%), PE (20%), 

cholesterol (20%), sphingomyelin (13.6%), phosphatidylinositol (5.6%), PS (3.2%) 

and phosphatidic acid (0.8%), which resemble the plasma membranes of mouse 

hepatoma cells, similar results to those obtained with plain negatively charged vesicles 

were obtained. 

 

Lipid mixing 

 The ability of E1340E2661 to induce vesicle fusion, mixing of phospholipid vesicles 

was followed by the decrease in fluorescence resonance energy transfer (FRET) between 

the fluorescent probes NBD-PE and Rh-PE incorporated into a lipid matrix [31]. In this 

assay, the mixing of phospholipids from labelled and unlabelled liposomes results in an 

increase in the distance between the donor (NBD) and the acceptor (Rh), with the 

concomitant decrease in energy transfer (%FRET) which reflects accurately the degree of 

fusion. As it is observed in Fig. 4, E1340E2661 was able to induce lipid mixing of PG 

vesicles, both at pH 7.0 and 5.0, being the effect produced at neutral pH lower than that 

observed at acidic pH. At pH 5.0, %FRET decreased from 60%, in the absence of protein, 

to 7% at a protein/lipid ratio of 7 x 10-3. This value corresponds to a 9 fold dilution in 

acceptor surface density. This fact together with the considerable increase in vesicle size 

stated above argue in favour of the complete fusion of the vesicles, since their mere 

aggregation would not result in such a change in energy transfer [32]. When neutral 

phospholipids were used, a slight decrease in energy transfer was observed. 
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At neutral pH the presence of cholesterol has no effect on the lipid mixing of PG 

vesicles. However, at pH 5.0 and a protein/lipid ratio of 3.5 x 10-3 the presence of 20% 

cholesterol induced an additional decrease in the percentage of FRET, from 18% to 7%. 

These values correspond to a decrease in the acceptor surface density of 3.5 in the 

absence of cholesterol and almost 9 in its presence.  

 

Release of aqueous contents 

 The ability of E1340E2661 protein to destabilize the lipid bilayer was assessed by 

determining the release of aqueous contents of phospholipid vesicles. Liposome 

leakage was monitored by measuring the increase in ANTS fluorescence at 520 nm 

[33]. Fig. 5 shows the leakage induced by the recombinant protein when it is added to 

PG vesicles at pH 5.0 and 7.0. E1340E2661 was able to induce the release of internal 

contents of the vesicles in a dose-dependent manner. At a protein/lipid ratio of 0.45 x 

10-3, an 80% of Fmax is reached in both cases, and the 100% leakage was observed at a 

protein concentration of 0.33 M, concentration much lower than that needed to 

induce vesicle aggregation or lipid mixing (1.4-1.8 M). Then, there was no a pH-

dependence of the lipid destabilization as it was observed in the aggregation and lipid 

mixing assays. On the other hand, when the experiments were carried out at 500 mM 

NaCl a reduction of almost 35% of the leakage induced by the recombinant protein 

was observed. 

 

E1340E2661 interacts with phospholipid vesicles 

Fluorescence polarization 

To ascertain the interaction of E1340E2661 protein with acidic and neutral 

phospholipids, its effect on the thermotropic behaviour of the phospholipids has been 

studied by measuring the fluorescence polarization of these liposomes labelled in the 
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hydrophobic core of the bilayer with the fluorescent probe DPH. Fig. 6 shows the 

fluorescence depolarization of DPH-labelled DMPG vesicles with increasing 

temperatures in the presence of E1340E2661 protein a protein/phospholipid molar ratio of 

3.5 x 10-3 at pH 7.0 (Fig. 6A) and 5.0 (Fig. 6B). The addition of the recombinant protein 

to DMPG vesicles at acidic pH induced a slight decrease in the amplitude of the 

transition and an increase in the transition temperature. The effect on the fluorescence 

polarization was observed almost exclusively at temperatures above the transition 

temperature, indicating that the protein affected mainly the acyl chains in the liquid-

crystal phase, inducing a higher order in the chain packing (Fig. 6B). On the other hand, 

the fact that the amplitude of the phase transition was modified reveals the importance of 

the hydrophobic component in the interaction of E1340E2661 with phospholipids. The shift 

in the transition temperature indicates that the interaction of the recombinant protein with 

lipid membranes induces perturbations of the lipid packing due to the relative 

immobilization of phospholipid molecules around the protein. At temperatures below 

Tm, E1340E2661 is probably excluded from the ordered lipid phases and does not cause 

substantial effects on the packing of the phospholipid acyl chains. On the other hand, 

little changes in the transition curve were observed at pH 7.0 (Fig. 6A). Moreover, when 

neutral phospholipids (DMPC) vesicles were used no changes in the amplitude nor in the 

temperature of the transition were observed neither at neutral or acidic pH. 

 
Intrinsic and bis-ANS fluorescence spectroscopy studies 
  

The effect of both the pH change and the interaction with phospholipid vesicles 

on the protein structure was studied both by the use of tryptophan and bis-ANS 

fluorescence. The later is a compound with a high quantum yield in hydrophobic 

environments but which almost does not fluoresce in water. Hence it is widely used to 

detect conformational changes which expose hydrophobic regions of the protein structure 

[34]. The fluorescence spectrum of E1340E2661 at pH 7.0 shows a maximum at 331 nm 
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characteristic of Trp in a relatively low hydrophobic environment [29]. When the pH is 

brought to 5.0 a 20% decrease in the Trp quantum yield was observed (Fig. 7A), 

probably due to a higher exposure of Trp residues. The change is readily reversible since 

the spectrum obtained after adding NaOH to bring the pH back to 7.0 is indistinguishable 

of the initial one at that pH. The conformational change is also evidenced by the 

fluorescence of bis-ANS (Fig. 7B). The increase in fluorescence observed at pH 5.0 is 

indicative of the existence of new solvent-exposed hydrophobic surfaces in the protein, 

compatible with tryptophan residues in a more hydrophilic environment. Again, 

reversing the pH back to 7.0 recovered the bis-ANS fluorescence to its initial value. 

 Fig. 8 shows kinetic data of the effect of pH and the addition of PG on the 

fluorescence of bis-ANS when added to E1340E2661. The exposed hydrophobic areas 

which the recombinant protein possesses at pH 5.0 become almost instantaneously 

labelled by bis-ANS (Fig. 8A). As stated above part of them become buried when the pH 

is brought to 7.0 (Fig. 8A). However, when the protein in the presence of PG vesicles at 

pH 5.0 is incubated with bis-ANS, the fluorescence does not reach the value observed 

when the protein alone is incubated with the probe at pH 5.0 in the absence of 

phospholipids (Fig. 8B). This result could mean that most of the hydrophobic regions of 

the protein that become exposed at pH 5.0 are not accessible to bis-ANS in the presence 

of PG vesicles. In fact, when PG is added to bis-ANS labelled E1340E2661 at pH 5.0, the 

fluorescence reach a value close to that observed at pH 7.0 (Fig. 8C).   
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Discussion 

 
The knowledge of the HCV viral cycle is scarce and the sequence(s) involved in 

the fusion step between the host cell and the viral membranes have not yet been 

identified. By searching for classical features of fusion peptides through the protein 

sequence, several groups have identified some regions of HCV glycoproteins E1 and E2 

that could act as fusion peptides [26-28]. These regions may contribute to merging of 

viral and cellular membranes either by interacting directly with phospholipid membranes 

or by assisting the fusion process through their involvement in the conformational 

changes of E1E2 heterodimer at low pH. In this work, we have used an isolated chimeric 

protein E1340E2661 that includes the ectodomains of E1 and E2 envelope proteins to study 

the interaction and destabilization of lipid bilayers. This protein has been previously 

shown to have all the conformational features of a native protein [29]. Aggregation of 

phospholipid vesicles results showed that both the phospholipid nature and the pH are 

very important to ascertain the interaction of the recombinant protein with the 

phospholipids. Thus, E1340E2661 interacts preferentially with acidic phospholipids, PG or 

PS, at pH 5, although it is also able to interact with neutral phospholipid vesicles, PC, at 

this pH but to a much lower extent. Furthermore, this protein was also able to induce 

phospholipid mixing of acidic vesicles at pH 5.0 and the release of aqueous content of 

acidic vesicles at both neutral and acidic pH. The fact that the protein concentration at 

which E1340E2661 induces the last effect is considerably lower than that needed to induce 

aggregation and lipid mixing indicates that fusion is not necessary to destabilize the 

bilayer and induce the release of the aqueous contents. A similar behaviour has been 

described in other systems such as the amino-terminal peptide of HIV [35].  

The pH dependence of the fusogenic properties of the protein might indicate that, 

in vivo, infection might proceed through receptor mediated endocytosis. In this case, a 
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conformational change in the viral envelope glycoprotein induced by the acidic pH might 

be a prerequisite for membrane insertion and destabilization. Others authors have shown 

that HCV entry occurs in a pH-dependent manner via endocytosis. Thus, the use of drugs 

that inhibit endosomal acidification efficiently blocked HCVpp infection [18, 36-38]. 

Furthermore, low pH treatment of HCVpp led to the exposure of new epitopes in E2 

[39], supporting the notion that low pH induces conformational rearrangements in HCV 

glycoproteins, eventually leading to fusion with the endosome membrane. This would be 

consistent with a membrane fusion mechanism similar to that described for the 

glycoproteins of Flaviviruses, such as tick-borne encephalitis virus (TBEV) [40], dengue 

virus [41] and West Nile virus [42]. 

The dependence of the interaction on the nature of the polar head group indicates 

the importance of the electrostatic interactions. In fact, when these are diminished by 

increasing the salt concentration, a considerable reduction of all the destabilizing 

properties tested was observed. Analogous dependence with bilayer composition has 

been observed with other fusogenic viral peptides and proteins. In this sense, one of the 

features of the viral fusion mechanism is the variable requirement for specific lipids in 

the target cell membrane. For example, for simian immunodeficiency virus and HIV 

fusion peptides, lipid mixing occurs when there is PE in the lipid bilayer [43, 44]; 

vesicular stomatitis virus has a preference for PS [45], and influenza virus and Sendai 

virus peptides interact preferentially with PC membranes [46-48]. However, this 

dependence with the pH and the lipid composition observed in viral fusion proteins or 

even with whole viruses does not necessarily have a physiological significance. 

The effect of the recombinant protein on the transition temperature of DMPG 

vesicles at pH 5.0, as indicated by fluorescence polarization studies, is indicative of an 

electrostatic interaction at surface level, typical of peripheral proteins. Moreover, the 

decrease in transition amplitude is characteristic of integral membrane proteins [49], 
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suggesting that some protein regions are able to insert into the membrane interacting in a 

hydrophobic manner with the hydrocarbon core and restricting the mobility of the acyl 

chain. Thus, the interaction of E1340E2661 protein with the bilayer would take place in 

two steps: a first one governed by electrostatic interactions between the phospholipid 

polar head and the protein, and a second step driven by hydrophobic interactions which 

leads to the insertion of the protein into the bilayer. When the first step does not take 

place, such as when neutral phospholipids are used, the protein does not insert into the 

bilayer. Moreover, this mechanism of interaction would explain the differences observed 

with acidic phospholipids at pH 7.0 and 5.0 since an increment in positive charge as a 

consequence of the decrease of the pH would favour the initial step and hence the 

insertion into the bilayer.  

Cholesterol is a major component of mammalian membranes. When it 

incorporates into the bilayer, the main consequence is that it enhances lipid lateral 

interactions and it is able to locally induce negative membrane curvature [50]. It has been 

found that there is an important relationship between membrane fusion and cholesterol 

content for several viruses [51, 52]. In order to determine if this was also the case of 

HCV, we measured the ability of E1340E2661 to induce aggregation, lipid mixing and 

leakage of liposomes containing 20 mol% cholesterol. In all cases, a lower protein 

concentration was necessary to reach the highest destabilization when cholesterol-

containing vesicles were used. Thus, inclusion of cholesterol in liposomes, although it is 

not essential, facilitates fusion of HCV, which could indicate the involvement of lipid 

rafts in HCV entry. These results are consistent with other studies that have been 

performed with HCV. Thus, it has been described that the presence of cholesterol 

facilitates the fusion of HCVpp with the target membrane [18, 38] and enhances fusion of 

HCVcc [19]. On the other hand, it has been described that cholesterol affects the 

interaction of a peptide derived from the region 314-342 of E1 with liposomes, favouring 
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that the peptide positions close to the bilayer surface [53]. Also, in other Flaviviruses, 

cholesterol has been shown to enhance fusion [54]. Moreover, cholesterol has also been 

reported to enhance entry, but not the fusion process itself, of many other pH-dependent 

viruses [40]. In contrast, for alphaviruses such as the Semliki Forest (SFV) and Sindbis 

viruses, the presence of cholesterol in the target membrane is an absolute requirement for 

fusion to occur [51, 55-57]. 

The data on the conformational change induced by decreasing the pH and by the 

interaction with phospholipids allow us to propose the following model for the fusion of 

HCV. As a consequence of the diminution of the pH a shift to a more hydrophilic 

environment of some of the aromatic residues could have been produced. On the other 

hand, the acidic pH increases the surface hydrophobic area as monitored by bis-ANS. 

Taking into account that the interaction with phospholipid vesicles preserves the increase 

of bis-ANS fluorescence, it can be argued that the hydrophobic regions which become 

exposed as a consequence of acidification are those which become inserted into the 

bilayer impairing the interaction with bis-ANS molecules. These changes are compatible 

with a split of E1 and E2 ectodomains in the E1340E2661 chimera which could uncover the 

fusion peptides allowing their interaction with the polar lipid heads of the outer leaflet of 

the lipid bilayer and next insert into the hydrophobic moiety producing the destabilization 

of the bilayer which finally leads to fusion. This model is analogous to that observed with 

other class II fusion protein in which glycoproteins contact with surface at pH 7.0 

exposing aromatic side chains at the outer leaflet of the lipid bilayer [58, 59]. Next, a 

conformational change is observed at low pH which allows insertion of fusion peptides 

into the bilayer. This state precedes the opening of the fusion pore [60]. 

Therefore, the data presented herein indicated that E1340E2661 could serve as a 

good model to study the initial infective steps of HCV, allowing the location of those 

regions responsible for the interaction and the fusion with the cellular membrane. 
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Moreover, if this protein is involved in the fusion process it can be a good candidate to 

develop antiviral strategies to block viral infection. 
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Materials and methods 

 

Reagents 

  Synthetic phospholipids, dimyristoylphosphatidylcholine (DMPC), 

dimyristoylphosphatidylglycerol (DMPG), and natural phospholipids, egg 

phosphatidylcholine (PC), bovine brain phosphatidylserine (PS) and cholesterol were 

purchased from Avanti Polar Lipids (Birmingham, AL, USA). Egg yolk 

phosphatidylglycerol (PG) was obtained from SIGMA. N-(7-nitro-2,1,3-benzoxadiazol-

4-yl) dimyristoylphosphatidyl-ethanolamine (NBD-PE) and N-(lissamine rhodamine B 

sulphonyl) diacylphosphatidyl-ethanolamine (Rh-PE) were provided by Avanti Polar 

Lipids. 8-aminonaphthalene-1,3,6-trisulphonic acid (ANTS) and p-xylenebis-

(pyridinium) bromide (DPX) and 4,4’-bis(1-anilinonaphtalene 8-sulfonate (bis-ANS) 

were obtained from Molecular Probes. 1,6-diphenyl-1,3,5-hexatriene (DPH) was from 

Aldrich. 

 

Expression and purification of E1340E2661  

E1340E2661 was expressed and purified as described in [29]. Briefly, DNA 

encoding E1340E2661 was inserted into a baculovirus transfer vector pAcGP67A with 

the addition of a six-histidine tag. To produce the recombinant virus that expresses the 

protein, Sf9 insect cells were cotransfected with the recombinant vector and wild-type 

viral DNA. In a homologous recombination event, the E1340E2661 gene was inserted 

into the viral genome to generate the recombinant baculovirus. The protein was 

expressed by infecting High Five cells in Insect X-Press serum-free media with high 

titer virus (>108 pfu/ml) at MOI of 5-10. Medium was collected approximately 120 h 

postinfection, dialyzed against 20 mM Tris-HCl pH 8.0, 50 mM NaCl and loaded onto 

a Ni2+-nitrilotriacetic acid-agarose column (Qiagen) which had been previously 
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equilibrated with the same buffer. Once the protein solution had entered the column, it 

was washed with 10 mM imidazole and later with 30 mM imidazole in dialysis buffer. 

The recombinant E1340E2661 protein was eluted with 200 mM imidazole. The presence 

of E1340E2661 was monitored by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) which was performed according to Laemmli using 15% 

polyacrylamide gels [61]. By using this method approximately 2 mg of pure protein 

from 1 L of culture media were obtained [29]. 

 

Vesicle preparation 

 In all cases a lipid film was obtained by drying a chloroform:methanol (2:1) solution of 

the lipid under a current of nitrogen. This film was kept under vacuum 6-8 h. The 

phospholipids were resuspended at a concentration of 1 mg/ml in medium buffer (5 mM 

Tris-HCl, 100 mM NaCl, 5 mM MES, 5 mM sodium citrate, 1 mM EDTA) at the 

appropriate pH value for 1 h at 37 ºC and eventually vortexed vigorously. This 

suspension was sonicated in a bath sonicator (Branson 1200, Bransonic) and was 

subsequently subjected to 15 cycles of extrusion in an Extruder apparatus (LiposoFastTM-

Basic, Avestin) with 100 nm polycarbonate filters (Avestin). The size and size 

distribution of the vesicles were determined by dynamic light scattering on a Malvern 

Zetasizer Nano ZS instrument. 

   

Aggregation studies 

  The aggregation of phospholipid vesicles induced by the recombinant protein was 

studied by adding different amounts of protein to recently prepared lipid vesicles in 

medium buffer containing either 100 mM or 500 mM NaCl at the appropriate pH. The 

change in OD360 was measured on a Beckman DU-640 spectrophotometer after 

incubation for 1 h at 37ºC. The final phospholipid concentration was 0.14 mM. In all 
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cases, controls of lipid vesicles in the absence of protein and protein in absence of lipid 

were obtained.  

 

Lipid mixing assay 

  To follow the adhesion and fusion of lipid membranes induced by the protein we 

have used the classical fluorescent probe dilution assay [31], in which the decrease in 

efficiency of the fluorescence energy transfer between NBD-PE (energy donor) and Rh-

PE (energy acceptor) incorporated into liposomes, as a consequence of lipid mixing, is 

monitored. Liposomes, in medium buffer at the appropriate pH, labelled with 1 mol% 

NBD-PE and 0.6 mol% Rh-PE were mixed in a 1:9 molar ratio with unlabelled 

liposomes. Lipid mixing was initiated by the addition of the protein from a stock solution 

in 20 mM Tris pH, 7.5, NaCl 100 mM. The samples were incubated for 1 h at 37ºC and 

the emission spectra were recorded in a SLM AMINCO 8000C spectrofluorimeter, with 

the excitation wavelength set at 450 nm. Both the excitation and emission slits were set 

at 4 nm. The excitation polarizer was kept constant at 90º and the emission polarizer was 

kept constant at 0º to minimize dispersive interference. The efficiency of fluorescence 

resonance energy transfer was calculated from the ratio of the intensities at 530 and 590 

nm and the appropriate calibration curve which was obtained by using labelled vesicles 

containing 1% NBD-PE and variable concentrations of Rh-PE (between 0 and 1%). The 

final phospholipid concentration was 0.14 mM. 

 

Release of aqueous contents 

Leakage was determined by the ANTS/DPX assay [32] which is based on the 

dequenching of ANTS fluorescence caused by its dilution upon release of the aqueous 

contents of a vesicle population containing both ANTS and DPX. The assay was 

performed by coencapsulating 12.5 mM ANTS and 45 mM DPX in 10 mM Tris, pH 7.5, 
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20 mM NaCl or medium buffer, pH 5.0, in either PG or PC phospholipid vesicles. The 

lipid film was vortexed and the vesicles were sonicated in a bath for 15 min. Afterwards, 

the vesicles were subjected to five cycles of freeze-thawing in liquid nitrogen and passed 

at least 15 times through an Extruder apparatus (LiposoFastTM-Basic, Avestin) with 100 

nm polycarbonate filters (Avestin). After the vesicles with the coencapsulated probe and 

quencher had been formed, the whole sample was passed through a Sephadex G-75 

column (Pharmacia) to separate the vesicles from the nonencapsulated material using 10 

mM Tris, pH 7.5, 100 mM NaCl, 1 mM EDTA, or medium buffer, pH 5.0 for elution. 

The final phospholipid concentration in the assay was 0.14 mM. Both the excitation and 

emission slits were set at 4 nm. The excitation polarizer was kept constant at 90º and the 

emission polarizer was kept constant at 0º to minimize dispersive interference. Leakage 

was started by addition of the protein and the increase of the fluorescence emission at 

520 nm upon excitation at 385 nm was continuously recorded (Ft). The measurements 

were performed in a thermostated cell holder at 37 ºC. The fluorescence scale was set to 

100% by addition of 0.5% Triton X-100 and to 0%  by measuring the fluorescence of the 

control vesicles after the addition of equivalent volumes of buffer.  

 

Fluorescence polarization measurements 

 Fluorescence measurements were carried out on a SLM AMINCO 8000C 

spectrofluorimeter. Excitation and emission slit widths were 4 nm. Phospholipid vesicles 

were labelled with DPH in a probe:phospholipid ratio of 1:500. Emission spectra of DPH 

were measured at 425 nm with the excitation wavelength set at 365 nm, after 

equilibration of the sample at the required temperature. DMPG, or DMPC vesicles were 

incubated in the absence or in the presence of E1340E2661 at 37ºC for 30 min, using a lipid 

concentration of 0.14 mM and protein/lipid molar ratios of 1.75·10-3 and 3.5·10-3.  
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Intrinsic emission fluorescence 

Emission spectra of E1340E2661 protein were obtained at 37 ºC on a SLM 

AMINCO 8000C spectrofluorimeter. Excitation and emission slit widths were 4 nm. The 

protein concentration was 0.05 mgml-1 and a 0.4 x 1 cm cuvette was used. In all cases 

medium buffer at the appropriate pH value was used. Excitation was performed at 275 or 

295 nm, and the emission spectra were recorded over the range 285-450 nm. The 

contribution of the buffer with different concentrations of phospholipid vesicles was 

always subtracted. The excitation and emission polarizers were kept constant at 90º and 

0º to minimize dispersive interference. 

 

Extrinsic emission fluorescence 

The fluorescent probe bis-ANS was dissolved in methanol. The fluorescence 

emission spectra of bis-ANS were obtained on a SLM AMINCO 8000C 

spectrofluorimeter by using an excitation wavelength of 395 nm, and were recorded over 

the range 405-600 nm. Samples were prepared by adding 5 l of 0.2 mM bis-ANS to 

E1340E2661 in 5 mM sodium acetate, 5 mM MES, 5 mM Tris, 150 mM NaCl at the 

appropriate pH. These samples were incubated at 37 ºC for 5 min before the spectra were 

taken. Controls without protein and without protein and probe were obtained. 

 

Protein and phospholipid concentrations 

The UV-spectrum of the protein was routinely used to calculate the concentration 

of E1340E2661. An extinction coefficient (0.1% w/v, 1 cm, 280 nm) of 1.99 was used [29]. 

Lipid concentration was calculated based on their phosphorous content determined 

according to Barlett [62]. 
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Figure Legends 

 

Fig.1. Amino acid sequence of the chimeric protein E1340E2661. Positions 1-16 of the 

recombinant protein are introduced by the cloning procedure. Positions 17-166 and 181-

458 correspond to residues 192-341 and 384-661 of HCV E1 and E2 ectodomains 

respectively. The FLAG region which connects both ectodomains and which contains the 

enterokinase recognition sequence (DDDDK) is shown in bold [29]. The putative 

fusogenic sequences of both ectodomains are underlined [26]. The tryptophan residues of 

these fusogenic regions are highlighted. 

 

Fig. 2. Aggregation of PS,  PG, and PC phospholipid vesicles induced by E1340E2661. 

The increment of the optical density at 360 nm (OD360) was measured after the 

incubation of vesicles in medium buffer at pH 5.0 with E1340E2661 at different 

protein/lipid ratios. (●) PS  (■) PG  (▲) PC vesicles. The final phospholipid 

concentration was 0.14 mM. The results shown are the average ± SD of two different 

experiments. 

 

Fig. 3. Aggregation kinetic of vesicles induced by E1340E2661. PG vesicles in the 

absence (●, ■) or presence (○, □) of 20 % Chol were incubated with E1340E2661 at pH 

5.0. (○, ●) and pH 7.0 (□, ■). The optical density at 360 nm (OD360) was measured after 

the addition of the protein (arrow). The protein/lipid ratio was 3.5 x 10-3. The results 

shown are representative of those obtained for two different experiments. 

 

Fig. 4. Lipid mixing of PG vesicles induced by E1340E2661. Increasing concentrations 

of E1340E2661 were added to a 1:9 mixture of labelled (NBD-PE 1% and Rh-PE 1%) and 

unlabelled PG vesicles hydrated in medium buffer at pH 7.0 (○) or 5.0 (●). The 
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efficiency of fluorescence resonance energy transfer (FRET) was calculated from the 

ratio of the intensities at 530 and 590 nm and the appropriate calibration curve. The final 

phospholipid concentration was 0.14 mM. The results shown are the average ± SD of 

two different experiments. 

 

Fig. 5. Leakage of ANTS/DPX from PG vesicles induced by E1340E2661. Increasing 

concentrations of E1340E2661were added to vesicles loaded with ANTS and DPX in 

medium buffer at pH 7.0 (●) and 5.0 (■). Fmax was obtained upon addition of 0.5% Triton 

X-100. The measurements were performed at 37 ºC and the final phospholipid 

concentration in the assay was 0.14 mM. The results shown are the average ± SD of two 

different experiments. 

 

Fig. 6. Temperature dependence of fluorescence polarization of DPH-labelled 

DMPG liposomes. The vesicles were incubated with E1340E2661 at a protein/lipid molar 

ratio of 3.5 x 10-3 in medium buffer at pH 7.0 (A) and 5.0 (B). (●) DMPG vesicles alone  

(■) vesicles in the presence of the recombinant protein. The results shown are 

representative of those obtained for two different experiments. 

 

Fig. 7. Fluorescence emission spectra of E1340E2661 (A) and bis-ANS-E1340E2661 (B). 

The spectra were taken in medium buffer at pH 7.0 ( — ) and 5.0 ( - - - ) upon excitation 

at 275 (A) and 395 nm (B). The protein concentration was 0.05 mg/ml (A) and 0.025 

mg/ml (B). The results shown are representative of those obtained for two different 

experiments. 

 

Fig. 8. Change of emission fluorescence of bis-ANS. bis-ANS was added to E1340E2661 

at pH 5.0 in the absence (A) or in the presence (B) of PG vesicles or at pH 7.0 in absence 
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of lipid (C) and incubated at 37 ºC. The arrows indicate the time at which the 

corresponding compound was added. The addition of NaOH and HCl bring the pH back 

to 7.0 and 5.0, respectively. The protein/lipid molar ratio employed was 1.75 x 10-3. The 

excitation and emission wavelength were 395 and 495 respectively. The final 

concentration of bis-ANS was 2.5 M. The results shown are representative of those 

obtained for two different experiments. 

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    1 ADPGYLLEFMHHHHHHYQVRNSTGLYHVTNDCPNSSIVYEAADAILHTPGCVPCVHEGNA 60 
 
   61 SRCWVALTPTVATRDGKLPTTQLRRHIDLLVGSATLCSALYVGDLCGSVFLVGQLFTFSP  120 
 
  121 RRHWTTQDCNCSIYPGHITGHRMAWDMMMNWSPTAALVVAQLLRIPDTKDDDDKAMGVDP  180 
 
  181 ETHVTGGTAAQTTAGLVSLLSPGAKQDIQLINTNGSWHINSTALNCNDSLYTGWLAGLFY  240 
 
  241 HHKFNSSGCPERFASCRPLTDFAQGWGPISHANGSGPDQRPYCWHYPPKPCGIVPAKSVC  300 
 
  301 GPVYCFTPSPVVVGTTDRSGAPTYSWGANDTDVFVLNNTRPPLGNWFGCTWMNSTGFTKV  360 
 
  361 CGAPPCVIGGVGNNTLHCPTDCFRKHPEATYSRCGSGPWITPRCLVNYPYRLWHYPCTIN  420 
 
  421 YTIFKVRMYVGGVEHRLEAACNWTRGERCNLEDRDRSERSHHHHHH  
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