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Abstract We present a study of the wm scattering ampli-
tude in the o and p channels at finite temperature and nu-
clear density within a chiral unitary framework. Meson reso-
nances are dynamically generated in our approach, which al-
lows us to analyze the behavior of their associated scattering
poles when the system is driven towards chiral-symmetry
restoration. Medium effects are incorporated in three ways:
(a) by thermal corrections of the unitarized scattering am-
plitudes, (b) by finite nuclear-density effects associated to a
renormalization of the pion decay constant, and complemen-
tarily (c) by extending our calculation of the scalar—isoscalar
channel to account for finite nuclear-density and temper-
ature effects in a microscopic many-body implementation
of pion dynamics. Our results are discussed in connection
with several phenomenological aspects relevant for nuclear-
matter and heavy-ion collision experiments, such as p mass
scaling versus broadening from dilepton spectra and chiral
restoration signals in the o channel. We also elaborate on
the molecular nature of w7 resonances.

PACS 11.10.Wx - 12.39.Fe - 21.65.4+f - 25.75.-q

1 Introduction

The lightest meson resonances, the p(770) and the f(600)
or o, play a crucial role in different phenomena pertain-
ing to the hot and/or dense medium created both in rel-
ativistic heavy-ion collisions and in nuclear-matter exper-
iments. The modifications of the spectral function of the
p resonance in medium are crucial to understand correctly
the dilepton yield emerged from heavy-ion collisions [1, 2].
The two main theoretical scenarios currently proposed in
the literature can be classified into resonance mass shifting
and broadening, according to the resulting dominant effect.
Mass-shifting models are inspired by the Brown—Rho (BR)
scaling hypothesis [3], which predicted that vector-meson
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masses should scale with the quark condensate and there-
fore the main spectral modification of the resonance would
be dictated by chiral-symmetry restoration. This scenario
is supported also by the so-called hidden local-symmetry
approach [4]. The broadening-dominated scenario is sup-
ported by various theoretical analyses [5-9] including re-
cent unitarized chiral approaches [10—12]. The most recent
experimental dimuon data from the NA60 Collaboration [2]
clearly favor a broadening situation with negligible mass
shift, whereas the earlier CERES results [1] were reasonably
explained by both descriptions. It is worth to also mention
the results of the STAR Collaboration at RHIC [13], which
have reported a sizable mass reduction by medium effects
measured in p° — 77~ instead of dileptons. The mod-
ifications of the p properties have been also measured in
cold nuclear-matter experiments. The E325-KEK collabora-
tion [14] have reported a measurable shift in the masses of
vector mesons compatible with theoretical predictions based
on Brown—Rho scaling [15] and QCD sum rules [16]. On the
other hand, the JLab-CLAS experiment [17] has obtained re-
sults compatible with vanishing mass shift, as predicted by
most of the in-medium hadronic many-body analyses where
broadening is the dominant effect [5, 7, 10, 18].

The possible modification of the f;(600)/o in hot and
dense matter is interesting, because this is a state with the
same quantum numbers as the vacuum and therefore it might
be sensitive to chiral-symmetry restoration. In this sense,
an early proposal [19] suggested that the o could induce
a measurable threshold enhancement of the w7z cross sec-
tion, which would be interpreted as a precursor of chiral-
symmetry restoration. The argument was that the mass of
the o state should decrease by medium effects, since it is
proportional to its vacuum expectation value in the chiral
limit. Such a decrease would eventually shrink the available
two-pion phase space when the o mass reaches the two-pion
threshold, producing a bump in the imaginary part of the
scattering amplitude, due to the proximity of the pole to the
real axis. It is important to remark that in this original argu-
ment, it is implicitly assumed that i) the o is dominated by
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its gg component so that its expectation value behaves like
the quark condensate and ii) that the o is narrow enough so
that its width (imaginary part of the pole) vanishes when its
mass (real part) approaches the threshold. None of these as-
sumptions seem to be supported by the physical (vacuum)
f0(600) state quoted by the Particle Data Group [20], which
is a very broad state measured in w7 scattering. Although
it is commonly accepted that this state is a member of the
scalar nonet, its gg nature has been criticized on the ba-
sis of lattice [21] and large-N. [22] analyses. The physical
state is likely to have important non-gg compound such as
tetraquark, glueball or meson—meson, commonly referred to
as a “molecular” state. Nevertheless, threshold enhancement
is indeed observed in nuclear-matter experiments, both in
7A— wmw A [23,24] and in yA — w A’ [25] reactions.
Although the size of the effect is still under debate, a clear
signal is seen in the scalar channel for increasing nuclear
density as compared with the vector channel and this is in
fair agreement with most theoretical analyses at finite nu-
clear density [26-31]. In contrast, finite-temperature analy-
ses show that this state remains broad even near the chiral
phase transition despite the proximity of the pole to the two-
pion threshold [12, 30, 32], which in practice does not pro-
duce any sizable enhancement in the scattering amplitude or
cross section. A striking possibility to be explored is that by
increasing further the medium strength, the o could become
a . bound state, as suggested earlier in [33] and confirmed
recently in [12, 30, 32].

In the present work, we will investigate further about
these issues, within the context of unitarized chiral ap-
proaches. The main goal is to establish to what extent chi-
ral symmetry dictates the in-medium properties of the light
meson resonances. The most general framework to account
for all the interactions compatible with chiral symmetry is
the effective chiral Lagrangian approach. The most promi-
nent example is chiral perturbation theory (ChPT) for the
meson sector [34, 35], but it can equally well be applied
to the meson—baryon one [36]. Since these effective theo-
ries are built basically as expansions in derivatives or en-
ergies, they cannot account for resonances, since the chiral
expansion violates the unitarity bounds. This has tradition-
ally been solved by introducing unitarization methods, giv-
ing rise to the so-called chiral-unitary approaches, which
have proved to be very successful in vacuum to describe
meson—meson and meson-baryon interactions and gener-
ate dynamically low-lying resonances [39-45]. Further-
more, as commented above, the unitarization program has
been extended to account for finite-temperature and density
effects [10-12, 29, 31, 37, 38].

Here we will analyze some of our recent results for the p
and o mesons obtained within the unitarized chiral frame-
work, paying special attention to their nature and their role
in chiral-symmetry restoration and studying some aspects
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not considered before like a new analysis of the combined
effects of temperature and nuclear density for the o me-
son based on a Lippmann—Schwinger (or Bethe—Salpeter)
equation approach accounting for many-body pion dynam-
ics versus a simplified f;-scaling scenario, a direct compar-
ison with nuclear-matter experiments of our results for the
p mass linear density dependence and the interpretation of
the results obtained for the behavior of the resonances near
threshold in terms of a “molecular” classification of those
states.

This paper is organized as follows: in Sect. 2 we shall
present the formalism and results within the framework of
the inverse amplitude method (IAM) at finite temperature.
In Sect. 3 we shall introduce nuclear-density effects only by
rescaling properly the decay constant of the pion at 7 =0
within the TAM. In that section, we shall provide in partic-
ular an interpretation of our results in terms of “molecular”
classification and a numerical comparison with experimen-
tal results from dilepton decays in resonance production in
finite nuclei. Finally, in Sect. 4 we present a new calculation
for the o channel, which includes temperature and nuclear-
density many-body effects in order to compare our different
approaches.

2 Finite-temperature resonances
with the inverse amplitude method

One of the simplest and more powerful unitarization meth-
ods for chiral theories is the so-called inverse-amplitude
method (IAM) [39—41]. Its name comes from the simple ob-
servation that unitarity implies that the inverse of a given
partial-wave amplitude ¢/ in wm — 77 scattering should
satisfy

StS=1=Imt' (s) =o0(s) |t ()|

1
:Imm :—UO(S) (21)

for s > 4m721, where s is the center of mass energy squared
and o (s) = /1 — 4m?Z /s is the two-pion phase space.
Consider now the ChPT expansion of partial-wave am-
plitudes:
" (s) =137 () + 17 () + O(p®). (2.2)
Here, p denotes generically a meson momentum, mass
or temperature (p is to be compared with the characteris-
tic chiral scale A, ~ 1 GeV, whereas T is meant to be be-
low T. ~ 200 MeV) and #; is the O(p*) contribution. Recall
that, according to standard ChPT power counting [34, 35], 1>
accounts for tree-level diagrams from the lowest-order La-
grangian £,. Up to that order, only the pion decay constant
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fr and the pion mass m, enter the result. The order 74 in-
cludes the one-loop diagrams from £, plus the tree-level L4
terms needed for renormalization. The £4 low-energy con-
stants entering the pion-scattering amplitude, when it is ex-
pressed in terms of the physical m, and f; are denoted l1-4
in the convention of [35].

The chiral expansion (2.2) satisfies only a perturbative
version of the unitarity relation (2.1), namely

m 7 (s) = a0 ()|} ()| 2.3)

and so on for higher orders, which eventually means that
chiral expansions are not compatible with the bounds on par-
tial waves implied by unitarity. In other words, they grow
arbitrarily with energy. Unitarization methods allow one to
construct chiral amplitudes that are exactly unitary. In par-
ticular, the IAM amplitudes are built by demanding i) exact
unitarity and ii) that at low energies they match the ChPT
series to a given order. These conditions lead to the IAM
result, which is formally justified by the use of dispersion
relations [39-41]. There is, however, a further, more tech-
nical requirement, which is that the IAM partial-wave am-
plitudes should vanish at the same values of the energy and
with the same power as the perturbative amplitudes. These
values are the so-called Adler zeros and lie below threshold.
Since a zero of the amplitude is a pole of its inverse, this af-
fects the analytic structure of 1/¢. A detailed discussion can
be found in [46] where the proper correction to the IAM is
derived using dispersion relations and it is shown that these
additional terms produce a negligible effect in the physical
region. However, as discussed in [12], taking into account
this correction is important when dealing with medium ef-
fects that can drive the poles to the real axis, as is the case
here, since otherwise there would be spurious poles both in
the first and second Riemann sheets below threshold.

The IAM can be extended at finite temperature by in-
cluding the thermal corrections to the scattering ampli-
tude, which have been calculated in [47] to one loop in
ChPT. Since temperature enters only in the loops, #; is T-
independent. For #4(s; T) one gets a perturbative unitarity
relation exactly like (2.2) but with the phase space replaced
by

or(s) =oo(s)[1 +2nB(V/s/2)],

with ng(x) = [exp(x/T) — 117! the Bose—Einstein distrib-
ution function.

The function or(s) is the thermal phase space, which is
increased with respect to the 7 = 0 one by the difference
[1+ng(EDI[1+nB(E2)]—n(E1)np(E2) = 1+ng(E1)+
ng(E2), where E| 5 are the energies of the two colliding pi-
ons, corresponding to the difference between enhancement
due to the increase of two-pion outgoing states and absorp-
tion due to collisions of the incoming pions with the ther-
mal bath ones. In the center-of-mass frame, in which partial

(2.4)

waves are defined, E1 = E; = /s /2, and the thermal phase
space reduces to (2.4). One can then use the same 7 =0
IAM requirements, replacing op — ot and the partial waves
by the finite-7" ones, provided that only intermediate two-
pion states are relevant in the thermal bath, as expected in
a dilute-gas regime at low and moderate temperatures. Fi-
nally, one arrives at the thermal IAM formula for a given
partial wave:

IAM __ t2(5)2
() —ta(s; T+ A(s; T)'
A(s; T) =t4(s2; T)
(2 =s4)(s = Sz)[
S —SA

t

th(s2) —t(s2: )], (2.5)
where the A function is the Adler zero contribution dis-
cussed above, sp denoting the Adler zero (T -dependent) ex-
panded as sp = 52 + 54 + -+ With 54 = —14(s2; T)/15(52).

Performing the conventional extension of the amplitude
to the second Riemann sheet, one finds poles in the I =
J =0 and I = J =1 channels, which are identified as the
f0(600) and the p(770). We show in Fig. 2.1 the results for
the pole position spoie = (M, —iI7,/2)? for different temper-
atures. The [; values we have used are [} = —0.3, [, = 5.6,
I3 =3.4 and I, = 4.3, which give for the mass and width of
the p(770) at T =0 M, >~ 756 MeV and I, >~ 151 MeV.
For the f,(600)/0 at T =0 we find M, >~ 441 MeV and
I, >~ 464 MeV.

The general features we observe are that the thermal p
pole shows a predominant and increasing broadening be-
havior, while for the o an important mass decrease takes
place, presumably due to chiral restoration, while the width
increases for low temperatures but decreases for tempera-
tures of 7 >~ 100 MeV and beyond. In the rest of this sec-
tion, we shall discuss in more detail these different behaviors
in connection with the phenomenological issues commented
on in the introduction.

2.1 The thermal p meson: broadening versus mass scaling
in wr scattering and dilepton probes

The p pole obtained in our IAM thermal approach under-
goes a significant broadening at finite temperature. The main
source of thermal broadening is the Bose—Einstein increase
of phase space given in (2.4). However, it is not the only one.
In fact, using the Breit-Wigner (I, < Mp) parametrization
for the p exchange in 7w — p — 7, one gets [11]

I'r gTMr
— = (1 +2np(M71/2) ,
Io [ ] 8o Mo

(2.6)

where g is the effective pr vertex.
In Fig. 2.2 (left) we show in detail the dependence of
the mass, width and effective vertex, and it is clearly seen
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Fig. 2.2 Thermal width and mass of the p as extracted from its IAM pole.

In the left panel we also show the T -dependence of the effective p

vertex. In the right panel we compare the mass with the quark condensate. The mass vanishes at 7y ~ 310 MeV

that the width increases roughly as the phase space up to
T ~ 100 MeV, and then further broadening arises due to
the increasing effective pmm vertex. The broadening we
have obtained is also present in the electromagnetic pion
form factor [48], which enters directly into the dilepton
yield (for back-to-back dileptons in our case) arising from
7w~ — [T]~. Our result is therefore compatible with the
broadening scenario observed clearly in NA60 [2] (see the
discussion in the introduction).

The mass of the pole barely changes with temperature
in our approach. This seems to be in contradiction with
the dropping-mass scenario obtained in scaling models,
which predict that the mass should scale roughly with the
quark condensate Mt/Moy >~ (gq)T1/{qq)0 [3]. However, it
is worth mentioning that more recent analyses based on the
same scaling hypothesis [4, 49] suggest that the mass drop-
ping might be really effective only very close to the transi-
tion temperature, which in practice would mean that those
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predictions are not strictly incompatible with the dilepton
data.

In order to clarify our results on this matter, we have plot-
ted in Fig. 2.2 (right) the pole mass and the quark conden-
sate calculated from a virial expansion [50] using the O( p4)
pion-scattering amplitudes, which gives a critical temper-
ature T, ~ 230 MeV. The results are extrapolated up to
the temperature Ty, where the mass vanishes, although our
ChPT-based approach is not meant to be valid there. We see
that the mass drops rather abruptly, with a 7% power, while,
as said before, it remains almost constant for 7 below the
chiral transition. We do not see a scaling pattern when com-
pared to the condensate and, besides, Tp >~ 310 MeV lies
far from the critical value where the condensate vanishes.
On the other hand, in BR-like scaling models, the effective
vertex decreases [4] and, as commented before, there is no
significant broadening. In conclusion, although we obtain a
dropping mass qualitatively compatible with BR-like mod-
els, our dominant broadening effect, the increase of the ef-
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Fig. 2.3 Comparison between the o/f)(600) mass (extracted from the IAM pole) at finite temperature and the root of the condensate, for the

physical pion mass and near the chiral limit

fective vertex and the departure from the condensate are in
conflict (at finite temperature) with that scenario.

2.2 The thermal fy(600)/0 meson: threshold behavior
and gq nature

As mentioned in the introduction, the interest in the o pole
concerns mainly its role as a precursor of the phase tran-
sition. The temperature dependence we obtain in Fig. 2.1
shows that a decreasing mass is a prominent feature in this
channel, thus signaling chiral restoration. In fact, this is the
dominant effect here over the phase-space increase for 7' >~
100 MeV and beyond. However, and this is crucial as far
as observable effects are concerned, the pole remains broad
even when its real part has reached the two-pion threshold.
The reason behind this is that for a broad state (I, ~ Mp)
the usual result I" oc o (M?)0(M?* — 4m2), which forbids
the pole to be at threshold with a nonzero width, should be
replaced by I" ~ [0 (s)0(s — 4m2)p(s) [12], where p(s)
is the resonance spectral function, different in general from
the narrow §-function p(s) = 278(s — M?). Therefore, the
width can remain sizable near threshold. In fact, a simple
model of thermal width based on this observation turns out
to reproduce quite well the obtained IAM poles [12]. This
behavior for the o pole implies no threshold enhancement
at finite temperature as a precursor of the transition, since
the pole is still far from the real axis. This is clearly ob-
served when we plot the squared modulus of the I = J =0
partial wave in Fig. 3.3 (left). Threshold enhancement for
a typical narrow resonance would mean for the amplitude
Im¢#(s) ~ 2m0(s —4m2)/\/s — 4m2 for s < 4m?2 [12]. As
we shall see below, the situation changes dramatically when
finite-density effects are included.

The role of the o pole as a precursor of the transition is
strongly linked to its gq nature, as discussed in the intro-
duction. In Fig. 2.3 we compare the mass of the pole with

the root of the quark condensate, similarly as we did with
the p in the previous section. Recall that, in a O (4) model,
M, ~ (o) ~ fr and, on the other hand, fjf =—my (ch)/m%
from the Gell-Mann—Oakes Renner (GOR) relation [51]. We
also plot the results near the chiral limit, where the con-
densate vanishes at a lower temperature and explicit chiral-
symmetry breaking effects are minimized. In any case, we
do not see a scaling pattern, as expected from our result of a
broad thermal state. Near the chiral limit, the pole mass does
not even go to threshold near the critical temperature, since
the width is notably increased due to the higher volume of
available phase space. From our analysis of the thermal ef-
fects one can also conclude that the non-gg component of
the fo(600) must be of crucial importance. As discussed in
the introduction, the same conclusion has been reached in
vacuum studies [21, 22]. The novelty here is the use of ther-
mal arguments. We shall see in Sect. 3 that finite-density
effects driving the resonance poles to the real axis below
threshold also allow one to extract interesting conclusions
about their gg nature.

3 Finite-density chiral restoring effects at 7 =0
through f;; scaling in the IAM

The simplest way to incorporate nuclear-density effects at
T = 0 in the unitarized chiral approach is to encode them
only in the variation of the pion decay constant, to linear
order in density, as [52, 53] follows:

f;?(p)w(q'q>(p)w<1_ OnN p)
2(0) ~ (3q)(0) — m2 f2(0)

~ (1 —o.35£>, 3.1)
p0
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where p is the nuclear density, o,y =~ 45 MeV is the pion—
nucleon sigma term and pg ~ 0.17 fm~3 is the normal or

saturation nuclear-matter density.

Therefore, by varying f; in our IAM approach, we
mimic chiral restoring nuclear effects [12]. This approach
clearly ignores standard many-body corrections, like the
coupling of pions to particle-hole (ph) and Delta—hole (Ah)
excitations, considered for instance in [8, 10, 26, 31]. This
approximation is meant to be more adequate for o than for
p, since, as we have seen at finite temperature, chiral restora-

tion tends to dominate the o pole behavior under medium
effects. In fact, by changing only f, no medium broaden-
ing is produced, which is probably unrealistic for the p case,

as emphasized in many-body work [5, 7, 10]. This must be

borne in mind when interpreting our results for the p in

terms of BR-scaling. In any case, in Sect. 4 we shall con-

sider a different unitarization scheme, which allows us to

introduce all the above mentioned nuclear many-body ef-

fects and to compare with our simple “ f scaling” consid-
ered here.

The results obtained by varying f in the IAM ampli-

tudes are displayed in Figs. 3.1 and 3.2 for the pole trajec-
tories in the complex plane and mass scaling, respectively,
in the 00- and 11-channels. In Fig. 3.3 (right) we also show
the effect on the scattering amplitude in the o channel. As
fr decreases, the o pole becomes narrow enough so that
chiral mass reduction brings it to the real axis, which pro-
duces threshold enhancement in the amplitude although at
densities well above pp. Regarding the mass dropping, it
takes place now along with the condensate (see Fig. 3.2).
In Fig. 3.4 we show |fg0|?, considering simultaneously the
temperature and finite density according to (3.1) for f;. We
observe that, for a given value of f; (small enough), the
net effect of introducing temperature is to amplify thresh-
old enhancement, as the amplitude is notably softened at
higher energies, by thermal broadening, what makes the
low-energy region relatively more important. Still, one has
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to keep in mind that (a) this effect is driven by the prox-
imity of the o pole to the real axis when decreasing fr, (b)
thermal effects alone do not generate threshold enhancement
in the amplitude as discussed above, and (c) the w7 phase
space is not open below 2m, even at finite temperature. In
Sect. 4 we shall compare these results for the 00-channel
with an implementation of nuclear-density effects in a dy-
namical many-body calculation.

As for the p channel, the BR-like scaling pattern is now
closely followed. In fact, our p-meson pole moves grad-
ually from the /(gq) curve to the (gg) one, as obtained
in [54]. However, one must be careful about this conclu-
sion, since we are disregarding medium-related broaden-
ing, which might change the scaling picture observed here.
Strictly speaking, our results indicate that if the relevant den-
sity effects amount only to a scaling of f, then one gets
scaling in the pole mass, which is quite consistent with the
BR idea.

There is an additional interesting feature of our results:
when the density is increased further, 7w bound states (first-

sheet poles) appear just below threshold in both channels.
As we shall see in Sect. 3.2, this result allows for an in-
terpretation in terms of a “molecular” classification of res-
onances, which is completely different in both channels. In
fact, we note that in the o channel the bound state is pre-
ceded by a doubling of poles in the second sheet. This will
be further discussed in Sect. 3.2. The appearance of pole
doubling and bound states has been also analyzed in other
work [30, 32, 33].

3.1 Comparison with nuclear-matter experiments

As discussed above, apart from heavy-ion collisions, there
are several dedicated experiments on production reactions
in nuclei where our analysis can be useful, namely, those
related to threshold enhancement in w7 production and the
modification of dilepton spectra from p decays.

The threshold enhancement observed in [23-25] in the
I = J = 0 channel is qualitatively reproduced in our “f;
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scaling” finite-density approach. Comparing with our finite-
T analysis in the previous sections, our main conclusion is
that, due to the broad nature of the o at finite 7', thresh-
old enhancement is not visible at finite 7 and it can only
take place if chiral restoring finite-density effects are strong
enough, compared for instance with medium effects we
have neglected which could also increase the o width, pre-
venting the pole from approaching the real axis, as in the
finite-T case, and erasing the threshold effect. This does
not seem to be the case when many-body interactions are
properly accounted for [26, 29], which gives support to
this simple approximation. In fact, the observed effect is in
reasonable quantitative agreement with previous theoretical
works [27, 28, 30], and it is not very strong for densities
p < po (the range available experimentally) in line with the
experimental results in [24].

As for dileptons in nuclear matter, a parameter directly
measurable in those experiments is the coefficient of the
linear-density term for the mass of the p(770) meson:
M(p) 1 o

U, . 3.2
M(0) “o0 G2

The experimental values available so far are o = 0.092 £
0.002 obtained by the E325-KEK collaboration [14] and
o = 0.02 £ 0.02 measured by the JLab-CLAS experi-
ment [17]. We have performed a linear fit of our pole re-
sults in the / = J = 1 channel for f; =93, 85, 80,75 MeV,
i.e., up to p < pg, in order to be closest to the experimen-
tal situation. Our fit gives « = 0.2, which is closer to the
result in [14] than to the one in [17], although a bit above
the experimental value. Our result is also in agreement with
Brown—Rho scaling [15] and QCD sum rules [16], which
predict & >~ 0.1-0.2. It is important to remark again that so
far we ignore all medium-broadening effects, which, unlike
the case of the o, may be crucial in this case, as empha-
sized in many-body treatments [5, 7, 10, 18]. In fact, in [55]
it was realized that QCD sum rules themselves do not pro-
vide a unique constraint for the in-medium mass and width
variation, unless additional model assumptions are made. In
particular, it is shown that if one assumes that the width is
not increased then automatically the mass drops. This is the
scenario we have recovered in our present approach, which,
as commented several times above, does not mean that this
is the physically relevant case.

3.2 “Molecular” classification of resonances

One of the objectives of this work is to analyze the gg struc-
ture of light meson resonances from a thermal and finite-
density viewpoint. We have already discussed in Sect. 2.2
that our results for the thermal o are not consistent with its
pure gq nature.

@ Springer

The situation changes qualitatively with the 7 = O finite-
density dependence obtained in Sect. 3. We see in Fig. 3.2
that the o pole follows quite well the same pattern of a O (4)
o-like gq state. One may then wonder about the implication
of this for the gg nature of the in-medium o. We want to
point out here that actually one can gain very useful informa-
tion about that by looking at the behavior of the poles near
threshold. Our argument is supported by the classification of
resonances lying near threshold given in [56, 57] and based
on the effective-range approximation. In those works it is
stated that although generally it is difficult to extract proper-
ties about the “internal” nature of resonances from its decay
products (scattering poles), when the pole lies near thresh-
old, a general rule can be applied: a “potential” or “mole-
cular” resonance shows up as a single pole near threshold,
while for a gg-like state two poles near threshold appear
very close to another in different Riemann sheets. This clas-
sification was originally applied to states like the f,(980),
which lies very close to the K K threshold.

Our claim here is that this classification argument can
equally be applied to light resonances if medium effects
drive the poles to the real axis. This is exactly the situation
when we include density effects only through (3.1), as is
clear from the results in Fig. 3.1, although bearing in mind
that the effective values of f; for which the poles reaches
the real axis are too small to trust entirely our ChPT-based
approach. We see that the o pole follows a clear “molec-
ular” pattern, since the pole that remains close to threshold
and eventually becomes a bound state is well separated from
the second-sheet pole that lies below threshold. We interpret
this as the coexistence of two states for high enough den-
sities: a wr “molecule” and a virtual state which behaves
as a “chiral partner” of the pion, in the sense that it tends
to become degenerate in mass with it (albeit with different
quantum numbers) following the order parameter. Note that
the pole we represent in Fig. 3.2 is precisely this virtual
state. This picture is in contrast with what we observe for
the p channel, where two nearby poles remain below thresh-
old, one of them moving to the first sheet and becoming a
bound state. This is clearly a gg, non-molecular scenario,
according to the previously discussed classification. We re-
mark that a similar picture for the real axis poles has been
obtained in [30], where the density dependence is also para-
metrized in f; and in vacuum by increasing the quark mass
in order to compare with lattice results [58].

4 Finite temperature and density
in a many-body unitarized approach

In this section we extend our previous results inthe / = J =
0 channel by incorporating finite nuclear-density and tem-
perature effects in a many-body description of pion dynam-
ics. We follow the line of Refs. [26, 31] where the effective
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mw scattering amplitude in cold nuclear matter was eval-
uated in a chiral unitary framework. For technical reasons
which we discuss below, it is convenient to use a different
unitarization scheme for the #-matrix, which however pro-
vides similar results in vacuum to those from the IAM, i.e.,
the light meson—meson resonances are dynamically gener-
ated in the scalar channel and many scattering observables
are described in good agreement with experiment [59-61].

The idea is to solve the coupled-channel Bethe—Salpeter
(BS) equation for the partial-wave scattering amplitude (in
matrix notation),

T=V+VGT, .1

where the potential (kernel) V of the equation is provided
by the lowest-order tree-level amplitude from the chiral La-
grangian. In (4.1),

Gi(P) = i/ d*q 1
Qm)* (PO —g%2 — g2 —m? +ie
1
% (%2 — q% — ml2 +ie

4.2)

stands for the intermediate two-particle meson—meson
Green’s function of channel i (G is diagonal), where P =
(PO, 0) is the total external momentum in the center of mass
frame of the two pions (rest frame with respect to the nu-
clear medium), with s = (P%)2. In principle, both V and
T enter off-shell under the momentum integration (VGT
term) of the meson—meson loop. However, as was shown in
Ref. [59], the (divergent) off-shell contributions of V and
T in the s-wave interaction can be reabsorbed in a renor-
malization of the bare coupling constants and masses order
by order. Therefore, both V and T can be factorized on-
shell, leaving the four-momentum integration only in the
two-particle meson—meson propagator; cf. (4.2). An alter-
native justification for solving the Bethe—Salpeter equation
with on-shell amplitudes can be found in the framework
of the N/D method, applied for meson—meson [62] and
meson—baryon [63] interactions. We are thus left with a set
of linear algebraic equations with trivial solution,

T=[1-VG]'v. 4.3)

Since we are interested in the o meson energy region (and
particularly close to the two-pion threshold), for simplic-
ity we shall work in a single-channel approach (the cou-
pled K K channel lies far above in energy and has little ef-
fect at low energies). The conditions under which this unita-
rization procedure is equivalent to the IAM were discussed
in [60, 61]. The main difference of the present approach
as compared to the full IAM amplitude lies in the O(p*)
contribution (which here comes from the s-channel meson—
meson loop; and no tadpole or L4 tree-level terms are in-
cluded) and the absence of 7- and u-channel diagrams (or,

in other words, the left-hand analytical cut is ignored). Still,
the present scheme dynamically generates the o pole with
similar properties as in the IAM and the experimental phase
shifts in w7 scattering are well reproduced [59-61]. Also
note that (2.1), (2.4) are equally satisfied in this approach.
We show in Fig. 4.1 a diagrammatic representation of the
series of s-channel diagrams which is summed in the BS
equation.

The calculation of the thermal amplitude proceeds by first
reanalyzing the on-shell factorization of V and T in the BS
equation. At finite temperature, the divergent contribution
from off-shell terms in the one-loop amplitude has the same
structure as in vacuum, but a finite, temperature-dependent
part survives, which cannot be cast as a (vacuum) renormal-
ization of f; or m . This contribution can be accounted for
as a temperature correction to the O( p?) kernel,

(SVonf(s) = i2<Von(s) + L)IOT, 4.4)

3f, 3fz
with 1] = 277! [7° dgq*ng(wg)/wq, Von(s) = —(s —
m% /2)/f]$ and a)é =q%+ m?, (we follow in this section the
normalization of partial waves given in [59, 60], which dif-
fers from the one in Sect. 2 in a factor 167r). In order to keep
as close as possible to the physics described by the IAM am-
plitude, we have also considered the finite-7" contribution
from tadpole terms, which becomes relevant as the o meson
pole is driven towards the two-pion threshold and its behav-
ior is no longer dominated by the two-pion phase space [47].
The corresponding diagrams are depicted in Fig. 4.2 and, to
lowest order in the chiral counting, they emerge from O(p?)
interaction terms with up to six meson fields. The finite-T
correction to the tree-level amplitude to account for these
terms reads

20 25

(Svtgd(s) = |:_SIOT - _12Tj|/f7? + Von(s)i

17,
3£2°°

9 6
with 7] = m2 1.

In Fig. 4.3 (left) we show the o pole trajectory for the
thermal calculation in the BS equation approach with the
O(pz) kernel including the thermal corrections discussed
above. As we can see, the evolution of the pole follows quite

Fig. 4.1 Diagrammatic representation of the Bethe—Salpeter equation
for mm scattering

Fig. 4.2 Pion tadpole diagrams -
. . PR \
~ - ~ -
in o scattering St - N -
N2
Ll s N
- - ~
L4 ~ L4 ~
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Fig. 4.3 Left: Temperature dependence of the o complex pole in the
BS equation approach including thermal corrections to the O( p?) ker-
nel (the temperature interval between each point is 5 MeV). Right:

a similar pattern as in the IAM, although the position of the
o mass reaches values further below the two-pion threshold
for high temperatures. As in the IAM, the o pole stays far
from the real axis, indicating a substantial width for temper-
atures up to about 200 MeV, despite the low value of M.
The stronger attraction felt by the o meson in this approach
as compared to the IAM seems to reflect that missing ther-
mal contributions from ¢- and u-channel dynamics are rele-
vant in this energy region and provide a repulsive contribu-
tion. Nevertheless, we obtain a qualitatively similar physical
behavior of the o pole in both the BS equation approach
and the IAM. Thus, we shall use the former as a starting
point to incorporate finite-density effects. As a further test,
we have also calculated the o pole trajectory in the effec-
tive “ f scaling” scenario, which we depict in the right-hand
panel of Fig. 4.3. We obtain a similar result as in the [AM
regarding the o pole collapsing onto the real energy axis
for f; values below approximately 50 MeV. We also find a
pole-doubling effect which follows the “molecular” pattern
discussed in Sect. 3. Differences are observed at the numer-
ical level as the close-to-threshold behavior of the o pole
is dictated by the relative weight of the O(p?) and O(p*)
amplitudes, which are different for the two approaches dis-
cussed in this work. Finally, we have also studied threshold
enhancement in the w7 amplitude for decreasing values of
[, which we omit here as our results resemble very much
those depicted in Figs. 3.3 and 3.4 for the IAM calculation.
The introduction of nuclear-density effects on top of the
temperature follows by a renormalization of the pion prop-
agator in the hot and dense medium. In cold nuclear mat-
ter, the pion spectral function exhibits a mixture of the pion
quasi-particle mode and p-wave particle-hole (ph), Delta—
hole (Ah) excitations [64]. The lowest-order, irreducible p-
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Pole trajectory from f; scaling. The numbers attached to each point
indicate the value of f; in MeV

wave pion self-energy due to ph and Ah excitations reads

H:NN_1+7TAN_I (qu qﬂ T)

2
= (f—N> qz[UNN—I (610, q; T) + UAN_I (qo’ q; T)]’

My

(4.6)

where U stands for the finite-temperature Lindhard func-
tion, which we evaluate in imaginary time formalism
(ITF) [38, 65], and the density dependence enters U through
the baryon chemical potential. We use phenomenological
NN and 7 N A coupling constants determined from analy-
sis of pion—nucleon and pion—nucleus reactions, fy/m; =
0.007244 MeV~! and fu/fy = 2.13. The strength of the
considered collective modes is modified by repulsive, spin—
isospin NN and N A short range correlations [64], which we
include in a phenomenological way with a single Landau—
Migdal interaction parameter, g’ = 0.7. The RPA-summed
(retarded) pion self-energy then reads

7 (q0.q;T)
e\ 2
() Fr @) WUyy-190.4: T) + Usy-1(90.4: )]
- (%)28/[%1\/—1(%, q;:T) +Upn-1(q0,4:T)] ’
4.7

where we have accounted for the finite size of 7 NN and
wNA vertices with the hadronic monopole form factors
Fr(q%) = A2 /(A2 — ¢?), with A, = 1300 MeV.

The in-medium pion propagator modifies the analytical
structure of the meson—meson loop function, G. At lowest
order in a density expansion (number of baryon-hole irre-
ducible insertions) the in-medium 7 v amplitude at one loop
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Fig. 4.4 Lowest-order N
baryon-hole insertions in the
meson—meson loop function
including vertex corrections (a)

includes diagram (a) in Fig. 4.4, in which one of the inter-
mediate pions excites a ph (or Ah) bubble (and similarly
with the lower pion line), on top of the vacuum w7z loop
(Fig. 4.4, second diagram). Again one is obliged to check
whether the on-shell factorization of V and T is still valid in
anuclear medium. This is actually the case for w7 scattering
in the scalar channel as it was shown in [26]. The argument
is as follows: in addition to diagram (a), chiral symmetry
requires a set of meson—baryon contact terms, depicted as
diagrams (b—d) (which can be seen as contributions to the
nN — nw N amplitude by cutting simultaneously the ph
bubble and the lower pion line in diagrams (a—d)). It turns
out that the contribution from the off-shell part of V in di-
agram (a) exactly cancels with the sum of the amplitudes
from diagrams (b—d), leaving us with diagram (a) with each
of the mm vertices factorized on-shell. Therefore, the alge-
braic solution of (4.1) is no altered and one only has to re-
place the vacuum pion propagators in G, cf. (4.2), by the in-
medium ones, D, = [(qo)2 —wy — 11,17 !. The argument
holds at finite temperature as we have checked explicitly, in
ITF, that the same cancellation of off-shell terms takes place
in the thermal amplitude.

In order to re-evaluate G in the hot and dense medium
we use the spectral (Lehmann) representation of the pion
propagator. The final expression for G, once continued onto
the real energy axis, reads

G(P;p,T)

/"Od.Q 1
o 2| [PO—Q2+4ie PO+ Q2+

]F(Q), (4.8)
with

d3q 2
F(Q):fmf duz[1 — ng(Ey) — np(E_)]

-2

X Sy (Ey.q)Sn(E—.q), (4.9)

where S, = —7~!'Im D, is the spectral function of the re-
tarded pion propagator and E+ = (£2 £ u)/2 (we have omit-
ted here the contribution from diffusion poles which typi-
cally provides a small correction in the time-like region).
Note that Im G(PO) = —F(PO)/Z and thus F plays the role
of a generalized in-medium two-pion phase space includ-
ing both temperature and nuclear-density effects. In the pure
thermal case, F(v/s) = or(s)/87 6(s — 4m?2).

In Fig. 4.5 we show the phase-space function, F(PY),
at normal nuclear-matter density (pg = 0.17 fm—3) and dif-
ferent temperatures in the range 7' = 0-150 MeV. We have
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Fig. 4.5 Two-pion phase-space function at finite nuclear density and
temperature
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Fig. 4.6 O(1, p, pz) contributions to the meson—meson loop function
from irreducible pion self-energy insertions

also depicted the vacuum and thermal cases for compari-
son. The very first difference that one observes at finite nu-
clear density is the appearance of strength below the two-
pion threshold, which is absent in the thermal case. It can
be understood on the basis of the baryon-related interaction
mechanisms of the pion discussed above. At small nuclear
densities, one of the intermediate pions may excite a ph pair
whereas the other is placed on the mass shell (see the second
diagram in Fig. 4.6). This mechanism is responsible for the
strength right below 2m; and lowers the threshold down to
my . For increasing density, the probability for the two pi-
ons to be absorbed by baryon—hole excitations sets in (third
diagram in Fig. 4.6), which builds additional strength below
m, and shifts the threshold practically down to PY = 0 (note
the smaller size of this O(pz) contribution with respect to
the excitation of one single ph bubble). Beyond P = 2m,,
F(P%) also exhibits a remarkable enhancement with respect
to the vacuum and thermal cases, indicating an increased
phase space for 0 — wm decays. This reflects the widely
spread structure of the spectral function of the pion in the
medium and the considerable attraction experienced by the
pion quasiparticle peak.
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When the temperature is increased, the low energy re-
gion loses some strength, as the phase space for NN ! ex-
citations is smeared off by the thermal motion of the nucle-
ons. Above P = m, Bose enhancement is more effective
as one of the pions is placed on-shell and one can appreci-
ate some increase over the 7 = 0O result. The latter effect is
strongly magnified right above the two-pion threshold, since
(i) the pion spectral function is populated at low energies
and (ii) the pion quasiparticle peak is strongly attracted in
the medium. Note that the rapid energy dependence of the
p-wave pion self-energy is also responsible from the quick
increase of phase space right beyond the opening of the w7
channel.

We finally show in Fig. 4.7 the imaginary part of the 7
amplitude for different densities and temperatures, which we
can compare to the thermal calculation and the “f; scal-
ing” scenario, in order to study threshold enhancement ef-
fects. We recall here that in the vacuum and thermal cases
Im7T vanishes below the two-pion threshold. Our result,
from a dynamical calculation of many-body effects in the
intermediate two-pion state, exhibits a sizable accumula-
tion of strength at and below P = 2m,, already at nuclear-
matter density and zero temperature. On the other hand, the
amplitude is strongly depleted beyond /s = 400 MeV as
compared to the vacuum case, an effect that is not shared
by the reduced- f; calculation at the equivalent density
(cf. Fig. 3.4) which does not account for baryon-related o -
decay mechanisms. Only for much smaller values of f;; the
strength focuses at the vacuum threshold, as the o pole lies
very close to the real energy axis; the resulting enhance-
ment in the amplitude in that case is by far larger than ob-
tained here, which is related to, but not fully driven by the o
pole behavior as we explain below. With respect to the ther-
mal calculation, finite density additionally softens the ampli-
tude at high energies and brings strength below the vacuum

threshold, a feature which is linked to the presence of a bary-
onic medium and the excitation of pionic collective modes,
as discussed above.

We have also studied the behavior of the o pole at finite
nuclear density. The analytic continuation of 7 in this case is
not trivial and we have used an approximated prescription,
namely to add to the evaluation of G in the first Riemann
sheet the discontinuity on the real axis with respect to the un-
physical (second) sheet, Disc G(PY) = —2iIm G(P?). Still,
this procedure provides the qualitative in-medium behavior
of the o pole [29], although its absolute position in the com-
plex plane carries some uncertainty (which we believe is su-
perseded by other theoretical uncertainties in the evaluation
of the pion self-energy). The combined effects of tempera-
ture and nuclear density accelerate the migration of the o
pole towards the mr threshold. For instance, at p = po/2,
the o mass reaches M, = 2m;, at about T ~150 MeV,
whereas at normal nuclear density M, >~ 300 MeV already
at T = 0 and it quickly reaches the two-pion threshold at
about 7' = 100 MeV. This is correlated with the cusp struc-
tures observed in the amplitude at threshold; cf. Fig. 4.7.
However, the strength observed at lower energies is linked
to the many-body pion dynamics. In spite of this, the o re-
mains as a broad resonance at nuclear matter density and
temperatures approaching the transition one, similarly to
what happens in the thermal calculation (at comparatively
higher temperatures) and at variance with the simplified “ f;
scaling” approximation. In fact, if we keep increasing the
density, at some point the ¢ pole crosses below 2m, (one
should not trust our implementation of medium effects far
beyond p = pg, but as an exercise it provides information
about the phase-space behavior of the resonance). For in-
stance, at p = 2pg and T = 100 MeV the o mass from the
pole lies about 70 MeV below the two-pion threshold but
still we find I, >~ 150 MeV. A more detailed investigation of
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Fig. 4.7 Imaginary part of the w7 amplitude in the / = J = 0 channel at finite temperature and nuclear density. We also include the result in free

space for reference
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possible pole-doubling effects in this approach is on-going
and will be reported in a future work.

5 Conclusions

We have presented an analysis of the behavior of 7w scat-
tering amplitudes in unitarized chiral perturbation theory
with medium effects incorporated in several ways. In par-
ticular, we have focused on the behavior with finite temper-
ature and nuclear density of the p(770) and f(600) /o reso-
nances, which are generated dynamically within the inverse-
amplitude method (IAM).

By considering only thermal effects on the IAM 7 am-
plitudes, the p exhibits a considerable broadening with a
small mass decrease as temperature increases, whereas the
o mainly decreases its mass, effectively signaling chiral-
symmetry restoration, although it still remains as a broad
resonance even at the transition temperature. The broaden-
ing obtained in our approach for the p meson at finite tem-
perature is compatible with the spectral function analysis
from dilepton spectra in the recent experiment by the NA60
Collaboration. The evolution of the p mass with tempera-
ture does not scale as the condensate, which renders our re-
sults in quantitative disagreement with the Brown—Rho scal-
ing scenario. The fact that the o pole remains far from the
real axis even at the two-pion threshold when only temper-
ature effects are considered implies no significant threshold
enhancement for the scattering amplitude, which has been
advocated as a precursor of chiral-symmetry restoration. We
neither observe a scaling of the o mass with the quark con-
densate, which indicates that the f(600)/0 resonance dy-
namically generated in our unitarized chiral approach has a
non-gg component, which is relevant near the phase transi-
tion.

By introducing a finite nuclear density the picture changes
dramatically. In a first approximation we have incorporated
the effect of a nuclear medium by decreasing f; accord-
ing to the GOR relation to linear order in density. At suffi-
ciently low (high) values of f;; (density), the p and o poles
collapse onto the real energy axis at the threshold energy,
which is preceded by a significant threshold enhancement in
the scattering amplitudes. We have discussed these effects
in the context of recent results from resonance production in
finite nuclei, and our results are in line with the experimental
observations. A detailed analysis reveals that when the reso-
nance pole is close to the real axis it splits into two states in
separated Riemann sheets. The markedly different proper-
ties of these double poles for the p and o channels allows us
to classify these mmr resonances according to their internal
structure: whereas the p meson presents a clear predominant
gq behavior for high densities (the two poles stay close to
threshold, one of them migrating to the first Riemann sheet

as a wr bound state), the o exhibits a “molecular” behav-
ior (one of the poles stays close to threshold, well separated
from the other one which evolves to lower energies to be-
come degenerate with the pion). The mass scaling from the
o and p pole with f; (p) follows the quark-condensate evo-
lution, and therefore is compatible with a Brown—Rho scal-
ing scenario, although one should keep in mind that relevant
finite-density mechanisms are neglected in this approxima-
tion.

Finally, we have improved our implementation of finite
nuclear-density (and temperature) effects by considering a
microscopic calculation of many-body pion dynamics in 7 7
scattering. We have chosen a different unitarization scheme
for the w7 scattering amplitude, namely to solve the Bethe—
Salpeter equation for the lowest-order ChPT interaction. De-
spite differences in the amplitudes at O(p*), this scheme
essentially provides the same results as the IAM and al-
lows for a systematic analysis and resummation of a rele-
vant class of pion-interaction mechanisms with the nuclear
medium. The pion interactions with the medium are encoded
in the single-particle pion self-energy, which accounts for
the excitation of p-wave particle-hole and Delta—hole com-
ponents as well as short-distance correlation effects from
nucleon—nucleon and Delta—nucleon interactions. The open-
ing of baryon-related channels on top of ¢ — 7 at finite
density extends the available phase space to lower energies,
and therefore the wm scattering amplitude exhibits an in-
creased strength at and below the two-pion threshold, which
is magnified at finite temperature as a consequence of Bose
enhancement on the low-energy modes of the m interme-
diate states. Such an effect has been found to provide a satis-
factory description of the data from the two-pion photopro-
duction reaction in nuclei when comparing the mass spec-
trum in the neutral versus charged-pion channels for differ-
ent nuclei [25, 29], where nuclear densities of the order of
po and below are explored. In our analysis we have consid-
ered both finite temperature and nuclear density, thus ex-
tending the applicability of the present approach to other
experimental scenarios such as the forthcoming heavy-ion
physics program at FAIR. As compared to the purely ther-
mal calculation, the attractive-interaction mechanisms of the
pion at finite density accelerate the migration of the o pole
towards the two-pion threshold. The threshold enhancement
observed in the w7 amplitude is correlated to the evolution
of the o pole towards (and below) 2m . However, differ-
ently from the reduced- f;; result, the o pole stays far from
the real axis indicating a sizable decay width of the reso-
nance at densities as high as 2py and temperatures close to
the transition one.

As a continuation of this work we plan to implement a
similar many-body analysis of finite-density effects for the
electromagnetic pion vector form factor, an extension of the
present work to the SU(3) case, where other resonances and
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heavier meson states come into play, and to introduce the
effect of a finite meson-number chemical potential. We shall
report on these studies elsewhere.
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