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Particle production from axial fields
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We study the production of massive fermions in arbitrary vector and axial-vector classical backgrounds
using effective action techniques. A perturbative calculation shows the different features of each field and in
particular it is seen that pure temporal axial fields can produce particles whereas it is not possible for a pure
vector background. We also analyze from a non-perturbative point of view a particular configuration with
constant electric and axial fields and show that the presence of the axial background inhibits the production
from the electric field[ S0556-2820199)04504-X]

PACS numbsd(s): 98.80.Cq, 04.62:v

I. INTRODUCTION In general, the problem of calculating particle production
can be approached in two different ways: on the one hand,
The production of particles from classical backgroundsthe Bogolyubov techniquEl], which allows the calculation
has become a very active area of research in the past yeadd.the spectrum of the particle produced. It is based on the
We can find it in numerous and disconnected fields of physresolution of the harmonic-oscillator equation with variable
ics such as cosmologhl,2], heavy-ion collisions or even frequency and only in some particular cases permits the deri-
plasma physicd3]. The pioneer work of Schwingel4] vation of exact results. On the other hand, we have the al-
mainly focused on the production of electron-positron pairgeady mentioned effective action technique, which allows
by strong electrostatic fields. Since then, many other sourcesne to obtain the total number of particles produced in a
of particles creation have been studied in the literature. Thumuch simpler way4,14,13, although the difficulties in find-
for example we can mention time dependent gravitationaing exact results are also present.
fields[2], varying Planck mass mod€]lS], compactification Most of the existing works about the creation of particles
of extra dimension$§6], dilaton field[5], inflaton field, etc.  from vacuum fluctuations concentrate on the production of
The original Schwinger’s work was based on the proper-timéhoson fields in the presence of scalar, vector or gravitational
technique for the evaluation of the effective action. Thisbackgrounds. In this paper we will study a different source
method allowed him to obtain an exact non-perturbative refor the production of fermions: it is the presence of general
sult for the total number of particles produced. However,vector and axial-vector backgrounds. We will thus extend the
although some other electromagnetic configurations hav8chwinger’'s work by including the effects of a non-
been studied7] and some particular cases have also beewanishing axial field. Classical axial backgrounds appear
solved[8], in general the number of models for which exactnaturally in modern theories of gravity such as supergravity
results can be obtained is very limited. [16] or in low-energy string effective actiorjd7,18. Both
In spite of its generalized use, it is probably in cosmologytheories contain torsioor axion fields as a fundamental
where particle production has been applied more extensivelyngredient and, in fact, recently several solutions with non-
Thus, for instance, it is believed that the presence of anyanishing axial fields have been found in the context of
small anisotropy in the early universe could have been erasestring cosmology{19,20. On the other hand, the idea of
very effectively by particle emssion processgs. The  modifying general relativity by introducing an arbitrary met-
theory of reheating after inflation is also based on the resoric connection with torsion is an old of€1], and in some
nant production of particles due to the oscillations of thesense quite natural from the point of view of the gauge theo-
inflaton field[10]. The reheating of fermions has been con-ries of gravity[22]. This torsion field is coupled minimally to
sidered in[11]. In addition, the formation of large scale fermions by means of its pseudotrace, thus providing a new
structures in the early universe is closely related to the gemmechanism for the production of particles. In fact in these
eration from vacuum fluctuation of small seed density inho-gravitational theories, torsion would be the dominant mecha-
mogeneities that due to the gravitational instability grew tonism for the production of massless fermions in cosmologi-
give rise to the current galactic structure. The generation ofal Robertson-Walker backgrounds. This is due to the fact
the vacuum fluctuations can be studied in much the samghat when gravity is minimally coupled to massless fermions,
way as the production of scalar particles in a Robertsonthe theory is conformally invariant. This implies the well-
Walker background12]. Recently the problem of particle known result of absence of particle production. However, the
production has also been extended to the area of string copresence of additional fields, such as torsion or metric
mology in which, apart from the gravitational background, anisotropies, breaks that invariance. Our work will be based
there is also an additional scalar field, the dilaton, that camn the effective action method, first from a perturbative point
also give rise to the generation of partic(&s13]. of view, and then we will study a particular case in which a
non-perturbative calculation is viable.
The paper is organized as follows. In Sec. Il we introduce
*Email address: alm@star.cpes.susx.ac.uk the Lagrangian for the model and also give a brief introduc-
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tion to the effective action technique. In Sec. lll, we perform 227 1 ,
the perturbative calculation and compare the result with the p= —32 —e nm/ek (4)
pure vector case. Section IV is devoted to the particular case 4m>n=1n

with constant electric and axial field and a non-perturbative Lo
result is obtained in the limit of small axial fields and in Sec. However, for non-constant electromagnetic fields or when

V we give the main conclusions of the work. Finally we have the axial part is switched on, the computation becomes very
included an appendix with some useful formulas of standardvolved and it is necessary to rely on some perturbative

perturbation theory in quantum mechanics. method. _ _ _ _ _
Before concluding this section we will mention that al-

though the notion of torsion appears in strings and super-
gravity in slightly different ways, both can be interpreted as
the antisymmetric part of the affine connection in pseudo-

We will consider the following interaction Lagrangian for Riemannian geometr}j18]. Thus, if the components of the
massive fermions minimally coupled to Abelian vector andmetric connection ard“"w, its antisymmetric part‘l’”w

axial-vector fields. For simplicity we will use the left-right — _fhm is known as the torsion tensor. By means of

14

notation and at the end we will recover the vector-axialihe Einstein equivalence principle, it is now possible to mini-
fields: mally couple torsion to fermion field23,24); one gets

II. MODEL LAGRANGIAN AND THE EFFECTIVE
ACTION METHOD

L=y(iD—m+ie 1 _ i

4 4 @ L=diy* d,+Q,+ gSH'ys o (5)
where iD =iy*(d,+iA,P_+iB,Pg). As usual the+ie

factor is introduced to ensure the convergence of the Dath/heresp= EMWTMA is the torsion pseudotrace afl, the
integral and the left and right projectors are definedP@s  spin connection.

=(1-y5)/2 andPg=(1+ ys5)/2. We will use the chiral rep-
resentation for the Dirac matrices in whigly is diagonal.

. . . . Ill. PERTURBATIVE METHOD
The coupling constants are included in the own fields.

Let us now introduce the effective acti¢BA) for the A, In this section we present the evaluation of the EA in Eq.
andB,, fields that is obtained after integrating the fermions(2) as an expansion in the external fields, i.e. an expansion in
out: coupling constants. Let us start by writing

(0t—|0t— —x)=Z[A,B]=e"IAB] W[A,B]=i Trlog(iD —m+ie) (6)
_ Nf dydd exp if dixr which can formally be expanded as
- . . (_ 1)k . 71 k
=Ndet(iD —m+ie). ) vv[A,B]=|k2 o Tr(i4—m) (AP +BPg)]
=1
Here,|0t— =) denote the initial and final vacuum states @)

that in general will be different due to the presence of theWhere the Dirac propagator is defined as usual by
external sourceN is a normalization constant that is taken

as usual in such a way thZf0,0]=1; this will allow us to

discard the vacuum divergences as shown below. (i6—m) = j dge~ax-y)
The EA will be in general a complex non-local functional Y

in the external fields. Its real part will contain the diver-

gences that will be renormalized by adding suitable localThe functional traces Tr are evaluated in dimensional regu-

counterterms to the action. The imaginary part will be finite|arization withD=4— e anddq= ¢ d®q/(27)P. The low-

and will contain information about the particle production est order contribution in the expansion is given by the two-

probabilities. In fact, the probability that the vacuum remainspoint terms, i.e.

stable is given by(0,t—|0,t— —=)|2. Therefore the prob-

g+m

®

g2—m?+ie

a_bility that the vacuum decays by particle emission will be i o~ 4+m
given by W[A,B]*?==| d*xd*ydpdq
2 92— m?
-1 N — )|
P=1—|(0t—®|0t— — )| I b m
:1_elemW[A,B]:2 ImW[A,B] (3) xXe (AyPL+ ByPR)—pz_mz
When we only have a vector field such that its corresponding x e PYX(A P +BPR). 9)

electric field is constant, the probability density per unit time
and unit volumep can be obtained exactly and the result isExpanding these terms and definikg g—p, we obtain the
given by[4] following expression:
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e~ ik(x=y)
(@2=m?)[(g—k)2—m?]

(a—=k),
2

W[A,B]?@=2i f d*xd*ydkdq

a-k*
A
(q—k)* m?

m
QAL 7gWA{L|3§+(A_>B)) :

X

_q/-L

y VAX
q“AM AyAV

(10

All the integrals, except for that involved in the term propor-

tional tom?, can now be reduced to a common form that is

evaluated in dimensional regularization:
~ q“(q—k)*

dq 2 2 2 2

(@°=m9)[(q—k)*=m?]

t2—

1
alB —
kkFT'(2 D/2)fO dtDZ*D/2

|
- (477) DIZ(
g’

- (11

1
I'(1-D/2) dtDD’“)
0

with D=m?—k?t(1—t). The integral proportional tm? is
nothing but

J

1
d
Y2 —m)r(a-K2—m?

1
r(z—Dlz)f dtpP2-2, (12)
0

- (47T)D/2

The imaginary part oYM A,B] can be easily extracted from
the integrals in the Feynman parameterhey give rise to

Im Joldt(tz—t)log[mz—k2t(1—t)—ie]

0, m>>k2t(1-t),
1
=f dt(t2—t)x{ — /2, m*=k%(1-1),
° —a, m?*<k’t(1-t)

_7 )y 4m?( 2 4Am? k2 4 13
“aNT ezt w 49
and in a similar fashion we obtain
1
Imf dtfm?—k?t(1—t)]logf m?>—k?t(1—t)—ie€]
0
B 4m2(2 ) kz) 14
A VR E LS (14

and
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1
Im j dtloglm?—Kk?t(1—t)—ie€]
0
2 k2
2 —>4.
mZ

/1 4m?
o7 _?§m_€’

Putting all the contributions together and changing to the
vector and axial-vector fields defined f=B+A and S
=B— A respectively, we obtain the final result for the imagi-
nary part in terms of the Fourier transformed fields:

(15

1 - 4m?
ImW3A,B =—f dko(k?—4m? 1-—
[A,B] P ( ) 2
mz
S Bl LN

+S,,(KS(=k) ]+ 2m28M(k)S/‘( - k)l .

(16)

We see that unlike the vector case, the axial contribution to
the imaginary part has an additional term proportional to
m2S?. This term is prohibited by gauge invariance in the
vector case; however, as it is well-known it may appear in
axial theories with massive fermions since those theories
violate the corresponding gauge invariance. In fact studying
the divergences that appear in the model we see that they are
proportional to the following operatorsz , F*", S, S*"

and mZSMS/‘ [25,24). The S* operator, although having the
same dimension, does not contribute to the divergent part.
Therefore it is only neccesary to introduce a kinetic and a
mass counterterms for the axial field in order to render the
theory finite.

Since the integrand of imaginary part has to be under-
stood as a probability density, it is important to verify that it
is always positive. As far ak>>4m?, because of the step
function present in Eq16), it is possible to find a reference

frame in whichk=0. Then we have

|

2

2m
1+ ?) [koSP(K)koSO(—k)— késﬂ(k)sﬂ( —k)+S—V]
0

+2m?S, (k) S*(—k)

;(

1 1
3 (kG—4m?)|Si|2+ 2 (K5+2m?)|Vi|2+ 2m?| S |2=0.

2
1425 |12+ Vi) + 2 oS )

0

17

From this expression we can extract some of the different
features of the production from vector and axial fields. First
we see that if the axial field is purely spatial in the above
reference frame, i.e$;=0, and we choos&,; (k) =V;(k),
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then the production from pure axial fields is always su-

pressed with respect to the pure vector case. However, wheBW[A,B]= —i Trlog ( (P—AP_—BPr—m+ie)
So(k) =Vy(k) andS;=V;=0 then, whereas there is no pro-

duction in the vector case, it is possible to create particles in

the axial one. In the massless case both fields give rise to the X(P—APr—BP_+m—ie)
same amount of particles. P

2_ml+ie
IV. CONSTANT ELECTRIC AND AXIAL FIELDS:

A NON-PERTURBATIVE RESULT =—iTrlog

i
( (P,~A,Pr—B,P )%~ Z(AWPR

In the previous section we have obtained the particle pro-
duction probabilities up to second order in perturbation + BM,,PL)[)/'“,)/V]-Fm(A—B)’y5—m2+i6
theory. This is in general a good approximation for small
background fields; however, even in those cases, it does not 1
contain all the information about the particle production pro- X ——|. (22
cesses. In this section we will study a particular configura- PZ-m?+ie

tion of vector and axial fields for which it is possible to find

an expression for the imaginary part V‘{h;Ch IS NON-Finally we change to the vector and axial fields; the effective
perturbative in the electric field, in the Iim&<E and  ction is then written as

m?S*E2< 1.

Let us start by introducing the operatotg andP, acting
on stategx) and|p) in the usual formX,|x)=x,|x) and
P.IP)=p.lp). In addition (x|P,|¢)=id,(x|¢). The co-
mutator is given by [X,,P,]=—ig,, and (p[x)

2W[V,S]=—iTrlog

((P,L—vﬂ—sm)2

=elPX/(2m)2. i w o 2,
Following Itzykson and Zubef26] we recast the Dirac - Z(Vﬂv+sﬂv7’5)[7 ¥’ 1= mBys—m“+ie
operator in Eq(1) as
) 1
|D:(P_APL—BPR) (18) Xm . (23)

and taking the transpose we have

P— AP, —BPo)=—C(P—APo—BP,)C~ 1 (19 Herev,,=4d,V,—d,V, andS,,=4,S,—4d,S,. Let us take
( L~ BPR) ( R™BPU 9 e following background fieldsv#=(0,0,0Bx!) and S*
whereC=i?° is the charge conjugation matrix that satis- = (0,0,05) with B and S arbitrary constants. This choice
fiesCy,C 1=—4' andCysC~=4%. The effective action corresponds to a constant magnetic fiBl@dlong they axis
in Eq. (’é) can be vlflritten with this notation as and a constant axial fiel8 in the z direction. Obviously the
same result will be obtained if we choose the fields in dif-

1 ferent spatial directions, provided they are orthogonal. By
W[A,B]=—iTrlog (P—APL—BPR—erie)P iy means of the Schwinger proper-time integral we can write
—m+ie
(20)
2W[V,S]
where we have explicitly introduced the normalization factor
N in the last term. The effective action can also be written in d
terms of the transposed operators =_j Trf _Sefis(mzfie)
0
W[A,B]=—iTrlog ( (P—AP_ —BPr—m+ie) ><(<X|eis<PS—Pf—Pi—(P3—Bxl—Svs)z+iB[yl,y3]/2—mSy3y5>|X>
i p2
L —(x|ePx)). (24)
X| ————
P-m+ie

The action of the translation operator will simplify this ex-
pression:

=—iTrlog ( (P—APR—BP_ +m—ie)
(P3— BX!— 375)2: e—i(P1P3/B)( _BX!— S,ys)zei(PlP?’/B)_

1 (25
X ——]. (21
P+m—ie _ _
Let us now introduce complete sets of momentum eigen-
Adding both expressions we get states:
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2W[V,S]

—iTr fxd_se—is(mz—ie)
o S

|

X < p1|ei5(— Pi—(— BX1—575)2+iB[71,73]/2—mSy375)|’I31>)

|

Performing the integral in thp® variable and in the° and

p? by means of
- —isq?_ \/E
f_wdqe is

the above expression reduces to:

1
(2m)*

J d*pdplelsPo—Pa)gip’(pl-pHBg-i(pl-phx!

d*pd*p
(2m)*

e‘(f"pwple‘spzlﬁﬁ- (26)

(27)
2W[V,S]
—iTr de_seis(mzie)

o S

% if dp<pleis(—PZ—(Bx+3y5)2+i5[yl,y3]/2—ms«ygys)lp>
872

- 28
(4)°s? (28

where for simplicity we have denoted=X! and P=P;.
The integral inp together with the matrix trace can be con-

sidered as the trace of the evolution operator corresponding

to the HamiltonianH=H,+H, in ordinary quantum me-
chanics with

X

and

—P2—(BX+9)?-Bo?
0 —P2—(BX—S)°—B¢?

(29
ek

0

mSo
0

0

mSos (30)
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The H, operator is made out of two shifted harmonic-
oscillator Hamiltonians with mas#$1=1/2, frequencyw
=2B and a new coupling to the magnetic field. Its spectrum

(A} and eigenfunctions{y{")} with {n=0,... e, i
=1,...,4 can be easily obtained; they are given by
i n
1| ¢n
Ani=EntB, vhi= 5| o |
0
&n
1| ién
Nia=Eq—B, E{’%=ﬁ o |
0
(31
0
(0) o_1 0
Ay3=EqntB, ¢51,3:E % |
&
0
0 0 1 0
Na=Eq—B, w;)eﬁ 3
n
i b

whereE,,= —2B(n+1/2) are the energy levels of the ordi-
nary harmonic oscillator and

1/ VB S| - x+S/B)%
dn(x)= —;Znn!Hn VB X+§ e B B)“2
(32
g A / VB =Y S —B(x—S/B)2/2
n()= \/wznn!Hn Bl X~ E) ©

with H, the Hermite polynomials. Notice the different func-
tional form of these two functions; it reflects the fact that the
two harmonic oscillators in Eq29) are displaced in differ-
ent ways. We will express the spectrum and the eigenfunc-
tions of the complete HamiltoniaH as perturbative series:
Mni=Zp—oA P and ¢, == ,-oyP). To first order in the
perturbation, the spectrum is given by the solutions of the
equation[27]

with o' the corresponding Pauli matrices. The problem of det|<wni|H1|¢nj>_()\ni_}\(noi))ﬁijlzo-
evaluating the effective action is thus reduced to the calcu- ’ ' ' '

lation of the spectrum of thEl operator. However, since we The solutions imph (H=0,Vn,i; i.e., there is no first order
cannot obtain such spectrum in an exact form, we will congrrection to the energies. The second order contributions are
siderH, as a small perturbation. With that purpose, we will giyen py
assume that the contributions to the spectrum coming from

the perturbation are smaller than the eigenvalueld gfi.e.,

m?S?<B2?. We can then apply the standard Kato theory for
time-independent perturbations in quantum mechafi@é

(33

K

i Halyi)I?
R

A

(34)
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Although, theH spectrum is double degenerated, it is pos-also the case of the second order corrections to the eigen-
sible to use the above expression valid for non-degeneratefdnctions; i.e., from Eq(A3) we get|4{%)=0Vn,i. Thus
spectra, since there is no contribution from states in the samge can calculate fourth order corrections to the energies
multiplet. In any case, the explicit calculation using Kato from Eg.(A5) which are non-vanishing. Finally, we see that
theory yields the same results. The values of the second othe fifth order correction again vanishes. In conclusion, our
der perturbation can be evaluated in a straightforward waytesults for the perturbed spectrum, up to sixth order in per-

we get turbations is given by
m2s? m?2s?
Kﬁ?{z’\ﬁ%:fﬁv M=\ =~ B K5 (35) Ana1=Nn3
m?S?  m?*st mose
=B|-2|n+5|+1+ - +0 ,
where 2B®> 8B* B®
5 -s?B s
kn=|{¢nlPn)| =€ Ln ZE (36) Ap2=Ana
1 m?’S?  m?*st mose
=B| —2({n+t5|-1-——+—F+ 5
with L, the Laguerre polynomials. These polynomials are 2 2B 8B B
bounded as n grows, in fact asymptotically we (39)

have [28] L, (X)~(1/\/m)e¥’?x ¥n~Y4cos(2/nx— m/4)
+O(n~%4 for x>0 and thereforex,, is bounded. In fact for ‘ n bed dily cal
IB<1, we can expand: x2=1-(SYB)(4n+2) Once we know the perturbed spectrum we can readily calcu-

+O(S*B?). Therefore, as expected for small values of theIate the traces in E(28) g we will only pgrform .the Dirac
N . . o traces, but not the functional trace that is equivalent to the

axial field with respect to the magnetic omﬁ,— lisagood . . 4 . .

approximation. Notice that, although the first correctionmtegrat'(.)nf d E Thus we obtgug the res%lt for tgxe effective

grows liken, the growth must be controlled by higher order Lagrangianw that as expected does not depenckon

terms since the function is bounded. Let us stress that we

have two different parameters in our problem: on the one

hand, S*/B, which we assume to be very small, and our (*ds _ , [ B m?s?
perturbative parametenS?/(2B2). 2w[V,S]=4i fo —e sl a2 sB 1+ B2
Using Eg.(A3) we can obtain the first correction to the S ™
eigenfunctions; we get
m*s* m®s?
T TRRT
imS imS
06D = g kal YR |96 = g wal UAR),
. [
XE e|s[—28(n-¢—1/2)]_ ) (39)
n (4m)%s

imS imS
)= kol ) L) = e U 3D

Evaluating now the third order corrections in perturbationFinally performing explicitly the addition of the series in
theory from Eq.(A5) they again turn out to be zero. This is we obtain

4 »ds .,
2w[V,S]=~ — e ismie
’ (4m)?lo &2
m2s2 mi*st m8sP
cos sB| 1+ — +0
5 2B?2 8B* BS 1 40
x Sin(sB) sl (40)
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It can be seen that the result is purely rg29]; i.e., there is

no particle production in the presence of constant magnetic
and axial fields. In addition, the integral #nis divergent in 2x107° T
the ultraviolet limits— 0. As usual these divergences have to
be removed by adding suitable counterterms. In order to ob-
tain them, let us expand the part of the integrand in brackets
arounds=0; we have

1.5x107® ¢
m’S® m*st m®sP?
cos sB| 1+ — +0
5 2B2 8B* BS 1
sin(sB) s P
18l
|1 sB stSZJrO m®s? 1+O . 1x10
“Blgs™ 2 2B e | |5
(41)

The O(s?) give rise to finite contributions when integrated.  5x107°{
The first term is exactly cancelled by thesI3ubstraction.
But we will have to include new counterterms proportional
to s(B2+m?S?). Notice that these are exactly the same op-
erators that we found in the perturbative calculation in Sec. |
IIl. In fact there is no contribution frons* operators due to 0 002 0.04 0.06 003 o1
an exact cancellation of the different quartic terms in the S

expansion in Eq(41). Since the theory is renormalizable, it

is necessary that the same kind of cancellation operates on I::sﬁ fldr';fz?::t':?;df;?;tfg |]r}T:12n|thhn; uverzgijrf/lzlr?aelrfsl,gnts
the higher order terms on the right-hand side of the abov%h ’ ! ; T PP prese
e perturbative calculation up to sixth order. The lower curve is the

expression. : : ; ) :
. . . resummation of the perturbative series estimated in the text.
The presence of the axial field is known that does not P

introduce any gauge ano_maly ir_' the _electromagngtic current e represents the probability dengityas a function ofS
[30]; therefore the effective action will be gauge invariant, for E=0.1m?; this value for the electric field ensures that the

As a consequence it should be built out of scalar and gaug onditionS?<E is satisfied for all the values &in the plot.

invariant functions. In our case, with constant magneEic and "\ve can try to extend further the above result by means of
torsion fields, the only possibilities ar&,,F*"=2(B*  the following observation. Since the only possible diver-
—E?) and FZVF“”=(4B- E)2. Since the second term van- gences in our model are those mentioned before, it is neces-
ishes in our case with constant magnetic or electric fields, theary that, when expanding the cos function in Etl), the
effective action is invariant under the transformati@n higher order terms irs cancel; this implies

— —IiE [29]. In this way we can convert our results for con-

stant magnetic field to pure constant electric fields.

Taking into account that now sisl®)— —isinhSE sB?
and co$sH 1+nPSY/(2B%)—m’SY(8B%]}—cosHsH1—nmPS/

(26%) ~m'SY(8E?)]} and integrating using the residues tech- herefore we can obtain the complete result for the effective
nigue we can obtain the expression for the imaginary part ogction to all orders in perturbation theory in the lingt

the effective Lagrangian: <B. Performing the rotation to electric fields, the result is

2
m?s? m*s?t

1+ +
2B? 8B*

=s(B?+m?S?). (43

1 = (=1 given by
=2 Imw[E,S]= —E?
P [E.S] 473 ngl n2 p=2Imw[E,S]
m2s?  mAs? més? 1 “ (1" m?2S2
Xcost nr| 1— _ +0 e—mznvr/E_ :_EZ ( ) cod nr 1— efmznw/E.
2E? 8E* ES 47° n=1 n? E2
(42 (44)

When S=0 we recover the original Schwinger result in Eq. In Fig. 1, this probability is represented by the lower curve.
(4). Notice that in the absence of electric field there is no We see that the effect of the axial field is to suppress
particle production even with non-vanishing axial field. particle production. Eventually it could make it to vanish.
When the mass is zero, we recover the usual result; i.e., axidlhe point of vanishing should indicate the breakdown of
fields only contribute in the massive case. In Fig. 1 the uppethe perturbative approximation since the probabilities should
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be positive. In order to check whether the perturbative cal- ACKNOWLEDGMENTS
culation is valid up to the point in whicR vanishes, we will
study the convergence of the perturbative series. In partlcu[I o
lar, there is a general result due to K&g&i] that states that
if there are two non-negative constargsand b such that
|Hal[<al|[Hol#)|[ +bl|[)]| for all |¢) e D(Ho) and if the
operatorH, is bounded, then the eigenvalues perturbative
series is absolutely convergent if|Bl,||<d. With d being
the distance from;; to the rest of the spectrum ofy. In APPENDIX
our case, we taka=0 and provided|, ;)} is a complete
set of eigenfunction we can expandH1|z/f>
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Somety

In this appendix we summarize the main formulas of the
standard perturbation theory used in the text. Let us assume

—len iCn ||2$n ). It is then easy to show thdtHq|#)[|*  that the Hamiltonian of theory can be decomposed in
—m2S?3,,;C2,=m>2S% Therefore if we takdb=mS$ since
H, is bounded(lt is constant and in our casel=2B, we H=Hg+H;. (A1)

have that the series is absolutely convergent for
2 2 2 H :
S°/(2B“) < 1/2. Transforming to the electrostatic case, if As shown in the text, we denote Wnoi) and|w$,°i)) the ei-
we look at the plot, we can realize that for those particular . :
envalues and eigenfunctions ldf,, which are assumed to

values, the point in which the curve crosses the axis is in fa e known. The unperturbed spectrum is assumed to be non
| ling th ki f th -
approximately signaling the breakdown of the perturbative degenerated and discrete. The eigenfunctions and eigenval-

series. ues of the complete Hamiltoniad are expanded in series:
Mni=Zp=oA P and| i, ) == o ¥P)) where
V. CONCLUSIONS
In this work we have studied the production of massive NP = (o Hal ) (A2)

fermions from a classical vector and axial-vector back-
ground. Using a perturbative evaluation of the effective acypg
tion we have obtained the contributions to the imaginary part
of the effective action up to second order in the external
fields. We have shown that in the reference frame for which
k=0, th i ial axial fields o) =Sna| Hal il V)= 2 NSl | (A3)
=0, the production from purely spatial axial fields is sup- ni ’ ni
pressed with respect to that of the vector background. In
addition, for purely temporal axial fields it is possible to
create particles whereas this is not the case for vector fields.
In the particular case of a small constant axial field and a
constant electric field, it is shown that a non-perturbative <0)><¢<0)|
calculation can be carried out when those fields are orthogo- Shi= 2 (0) (0) .
nal. In this case, it is shown that, in the massless limit, the 171 Api—Ap
axial field does not affect the production from the electric
field. However, in the massive case, the presence of the axifome simplified formulas for the lowest order terms in the
background inhibits such production. spectrum are given by
Finally, let us compare these result with the anisotropy
damping phenomenon at the Planck era. As is well-known (1) (yl0) 0)
the presence of small anisotropies in the early universe c = (nilHalni),
be damped in a few Planck times due to the back reaction of
the particles produced on the geometry. An interesting pos- 0 5
sibility is that a similar mechanism could take place in the NCOE (¢, |H1|¢n 1>|
presence of some primordial torsion field. In this case, smce”' iFi n| M]OJ) ’
torsion can be generated by the intrinsic spin, this could hap-
pen when the fermions are produced in some configuration
such that the total spin angular momentum of the system d|§1<3>—<¢(1>||-| (1>| ¢<1>>
not vanish. The use of effective action methods for fermions
could be extended to the production of higher spin fields,
such as gravitinos in a straightforward way. In addition, it |3)\<4>—<¢ UIH =Ny = N2 o),
also interesting to study not only the particle production rate
derived from the effective action, but also the spectra and
angular distribution of fermions produced. This could be apA{>)=(2|H;— A2y — 2012 Re( g wi?))
proached by means of the traditional Bogolyubov technique. 3) (D) (D)
Work is in progress in this directiof82]. =N (i) (A5)

(A4)
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