
PHYSICAL REVIEW D, VOLUME 59, 063501
Particle production from axial fields

Antonio L. Maroto*
Astronomy Centre, University of Sussex, Falmer, Brighton, United Kingdom BN1 9QJ

~Received 21 October 1998; published 2 February 1999!

We study the production of massive fermions in arbitrary vector and axial-vector classical backgrounds
using effective action techniques. A perturbative calculation shows the different features of each field and in
particular it is seen that pure temporal axial fields can produce particles whereas it is not possible for a pure
vector background. We also analyze from a non-perturbative point of view a particular configuration with
constant electric and axial fields and show that the presence of the axial background inhibits the production
from the electric field.@S0556-2821~99!04504-X#

PACS number~s!: 98.80.Cq, 04.62.1v
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I. INTRODUCTION

The production of particles from classical backgroun
has become a very active area of research in the past y
We can find it in numerous and disconnected fields of ph
ics such as cosmology@1,2#, heavy-ion collisions or even
plasma physics@3#. The pioneer work of Schwinger@4#
mainly focused on the production of electron-positron pa
by strong electrostatic fields. Since then, many other sou
of particles creation have been studied in the literature. T
for example we can mention time dependent gravitatio
fields @2#, varying Planck mass models@5#, compactification
of extra dimensions@6#, dilaton field @5#, inflaton field, etc.
The original Schwinger’s work was based on the proper-ti
technique for the evaluation of the effective action. Th
method allowed him to obtain an exact non-perturbative
sult for the total number of particles produced. Howev
although some other electromagnetic configurations h
been studied@7# and some particular cases have also b
solved@8#, in general the number of models for which exa
results can be obtained is very limited.

In spite of its generalized use, it is probably in cosmolo
where particle production has been applied more extensiv
Thus, for instance, it is believed that the presence of
small anisotropy in the early universe could have been era
very effectively by particle emssion processes@9#. The
theory of reheating after inflation is also based on the re
nant production of particles due to the oscillations of t
inflaton field @10#. The reheating of fermions has been co
sidered in @11#. In addition, the formation of large scal
structures in the early universe is closely related to the g
eration from vacuum fluctuation of small seed density inh
mogeneities that due to the gravitational instability grew
give rise to the current galactic structure. The generation
the vacuum fluctuations can be studied in much the sa
way as the production of scalar particles in a Roberts
Walker background@12#. Recently the problem of particle
production has also been extended to the area of string
mology in which, apart from the gravitational backgroun
there is also an additional scalar field, the dilaton, that
also give rise to the generation of particles@5,13#.
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In general, the problem of calculating particle producti
can be approached in two different ways: on the one ha
the Bogolyubov technique@1#, which allows the calculation
of the spectrum of the particle produced. It is based on
resolution of the harmonic-oscillator equation with variab
frequency and only in some particular cases permits the d
vation of exact results. On the other hand, we have the
ready mentioned effective action technique, which allo
one to obtain the total number of particles produced in
much simpler way@4,14,15#, although the difficulties in find-
ing exact results are also present.

Most of the existing works about the creation of particl
from vacuum fluctuations concentrate on the production
boson fields in the presence of scalar, vector or gravitatio
backgrounds. In this paper we will study a different sour
for the production of fermions: it is the presence of gene
vector and axial-vector backgrounds. We will thus extend
Schwinger’s work by including the effects of a non
vanishing axial field. Classical axial backgrounds app
naturally in modern theories of gravity such as supergrav
@16# or in low-energy string effective actions@17,18#. Both
theories contain torsion~or axion! fields as a fundamenta
ingredient and, in fact, recently several solutions with no
vanishing axial fields have been found in the context
string cosmology@19,20#. On the other hand, the idea o
modifying general relativity by introducing an arbitrary me
ric connection with torsion is an old one@21#, and in some
sense quite natural from the point of view of the gauge th
ries of gravity@22#. This torsion field is coupled minimally to
fermions by means of its pseudotrace, thus providing a n
mechanism for the production of particles. In fact in the
gravitational theories, torsion would be the dominant mec
nism for the production of massless fermions in cosmolo
cal Robertson-Walker backgrounds. This is due to the f
that when gravity is minimally coupled to massless fermio
the theory is conformally invariant. This implies the we
known result of absence of particle production. However,
presence of additional fields, such as torsion or me
anisotropies, breaks that invariance. Our work will be ba
on the effective action method, first from a perturbative po
of view, and then we will study a particular case in which
non-perturbative calculation is viable.

The paper is organized as follows. In Sec. II we introdu
the Lagrangian for the model and also give a brief introd
©1999 The American Physical Society01-1
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tion to the effective action technique. In Sec. III, we perfo
the perturbative calculation and compare the result with
pure vector case. Section IV is devoted to the particular c
with constant electric and axial field and a non-perturbat
result is obtained in the limit of small axial fields and in Se
V we give the main conclusions of the work. Finally we ha
included an appendix with some useful formulas of stand
perturbation theory in quantum mechanics.

II. MODEL LAGRANGIAN AND THE EFFECTIVE
ACTION METHOD

We will consider the following interaction Lagrangian fo
massive fermions minimally coupled to Abelian vector a
axial-vector fields. For simplicity we will use the left-righ
notation and at the end we will recover the vector-ax
fields:

L5c̄~ iD” 2m1 i e!c ~1!

where iD” 5 igm(]m1 iAmPL1 iBmPR). As usual the1 i e
factor is introduced to ensure the convergence of the p
integral and the left and right projectors are defined asPL
5(12g5)/2 andPR5(11g5)/2. We will use the chiral rep-
resentation for the Dirac matrices in whichg5 is diagonal.
The coupling constants are included in the own fields.

Let us now introduce the effective action~EA! for theAm
andBm fields that is obtained after integrating the fermio
out:

^0,t→`u0,t→2`&5Z@A,B#5eiW[A,B]

5NE dcdc̄ expS i E d4xLD
5N det~ iD” 2m1 i e!. ~2!

Here, u0,t→6`& denote the initial and final vacuum stat
that in general will be different due to the presence of
external sources.N is a normalization constant that is take
as usual in such a way thatZ@0,0#51; this will allow us to
discard the vacuum divergences as shown below.

The EA will be in general a complex non-local function
in the external fields. Its real part will contain the dive
gences that will be renormalized by adding suitable lo
counterterms to the action. The imaginary part will be fin
and will contain information about the particle productio
probabilities. In fact, the probability that the vacuum rema
stable is given byu^0,t→`u0,t→2`&u2. Therefore the prob-
ability that the vacuum decays by particle emission will
given by

P512u^0,t→`u0,t→2`&u2

512e22 Im W[A,B].2 ImW@A,B#. ~3!

When we only have a vector field such that its correspond
electric field is constant, the probability density per unit tim
and unit volumep can be obtained exactly and the result
given by @4#
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n51
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n2
e2m2np/eE. ~4!

However, for non-constant electromagnetic fields or wh
the axial part is switched on, the computation becomes v
involved and it is necessary to rely on some perturbat
method.

Before concluding this section we will mention that a
though the notion of torsion appears in strings and sup
gravity in slightly different ways, both can be interpreted
the antisymmetric part of the affine connection in pseu
Riemannian geometry@18#. Thus, if the components of th
metric connection areĜ mn

l , its antisymmetric partT mn
l

5Ĝ mn
l 2Ĝ nm

l is known as the torsion tensor. By means
the Einstein equivalence principle, it is now possible to mi
mally couple torsion to fermion fields@23,24#; one gets

L5c̄ igmS ]m1Vm1
i

8
Smg5Dc ~5!

whereSr5emnlrTmnl is the torsion pseudotrace andVm the
spin connection.

III. PERTURBATIVE METHOD

In this section we present the evaluation of the EA in E
~2! as an expansion in the external fields, i.e. an expansio
coupling constants. Let us start by writing

W@A,B#5 i Tr log ~ iD” 2m1 i e! ~6!

which can formally be expanded as

W@A,B#5 i (
k51

~21!k

k
Tr @~ i ]”2m!21~A” PL1B” PR!#k

~7!

where the Dirac propagator is defined as usual by

~ i ]”2m!xy
215 E dq̃e2 iq~x2y!

q”1m

q22m21 i e
. ~8!

The functional traces Tr are evaluated in dimensional re
larization withD542e anddq̃5medDq/(2p)D. The low-
est order contribution in the expansion is given by the tw
point terms, i.e.

W@A,B#~2!5
i

2E d4xd4ydp̃dq̃
q”1m

q22m2

3e2 iq~x2y!~A” yPL1B” yPR!
p”1m

p22m2

3e2 ip~y2x!~A” xPL1B” xPR!. ~9!

Expanding these terms and definingk5q2p, we obtain the
following expression:
1-2
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W@A,B#~2!52i E d4xd4ydk̃dq̃
e2 ik~x2y!

~q22m2!@~q2k!22m2#

3S qmAm
y ~q2k!r

2
Ar

x2qm
~q2k!m

2
Ay

nAn
x

1qmAm
x An

y~q2k!n

2
1

m2

2
gmnAm

y Bn
x1~A→B! D .

~10!

All the integrals, except for that involved in the term propo
tional to m2, can now be reduced to a common form that
evaluated in dimensional regularization:

E dq̃
qa~q2k!b

~q22m2!@~q2k!22m2#

5
i

~4p!D/2S kakbG~22D/2!E
0

1

dt
t22t

D 22D/2

2
gab

2
G~12D/2!E

0

1

dtDD/221D ~11!

with D5m22k2t(12t). The integral proportional tom2 is
nothing but

E dq̃
1

~q22m2!@~q2k!22m2#

5
1

~4p!D/2
G~22D/2!E

0

1

dtDD/222. ~12!

The imaginary part ofW@A,B# can be easily extracted from
the integrals in the Feynman parametert. They give rise to

Im E
0

1

dt~ t22t !log@m22k2t~12t !2 i e#

5E
0

1

dt~ t22t !3H 0, m2.k2t~12t !,

2p/2, m25k2t~12t !,

2p, m2,k2t~12t !

5
p

4
A12

4m2

k2 S 2

3
1

4m2

3k2 D ,
k2

m2
.4, ~13!

and in a similar fashion we obtain

ImE
0

1

dt@m22k2t~12t !# log@m22k2t~12t !2 i e#

52pA12
4m2

k2 S 2

3
m22

k2

6 D ~14!

and
06350
Im E
0

1

dt log@m22k2t~12t !2 i e#

52pA12
4m2

k2 S 2

3
m22

k2

6 D ,
k2

m2
.4. ~15!

Putting all the contributions together and changing to
vector and axial-vector fields defined byV5B1A and S
5B2A respectively, we obtain the final result for the imag
nary part in terms of the Fourier transformed fields:

Im W~2!@A,B#5
1

8p2E dk̃u~k224m2!A12
4m2

k2

3F2
1

6S 11
2m2

k2 D @Fmn~k!Fmn~2k!

1Smn~k!Smn~2k!#12m2Sm~k!Sm~2k!G .

~16!

We see that unlike the vector case, the axial contribution
the imaginary part has an additional term proportional
m2S2. This term is prohibited by gauge invariance in th
vector case; however, as it is well-known it may appear
axial theories with massive fermions since those theo
violate the corresponding gauge invariance. In fact study
the divergences that appear in the model we see that the
proportional to the following operators:FmnFmn, SmnSmn

and m2SmSm @25,24#. The S4 operator, although having th
same dimension, does not contribute to the divergent p
Therefore it is only neccesary to introduce a kinetic and
mass counterterms for the axial field in order to render
theory finite.

Since the integrand of imaginary part has to be und
stood as a probability density, it is important to verify that
is always positive. As far ask2.4m2, because of the step
function present in Eq.~16!, it is possible to find a referenc
frame in whichkW50. Then we have

1

3S 11
2m2

k0
2 D @k0S0~k!k0S0~2k!2k0

2Sm~k!Sm~2k!1S→V#

12m2Sm~k!Sm~2k!

5
1

3S 112
m2

k0
2 D ~ uSi u21uVi u2!12m2~ uS0u22uSi u2!

5
1

3
~k0

224m2!uSi u21
1

3
~k0

212m2!uVi u212m2uS0u2>0.

~17!

From this expression we can extract some of the differ
features of the production from vector and axial fields. Fi
we see that if the axial field is purely spatial in the abo
reference frame, i.e.,S050, and we chooseSi(k)5Vi(k),
1-3
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ANTONIO L. MAROTO PHYSICAL REVIEW D 59 063501
then the production from pure axial fields is always s
pressed with respect to the pure vector case. However, w
S0(k)5V0(k) andSi5Vi50 then, whereas there is no pro
duction in the vector case, it is possible to create particle
the axial one. In the massless case both fields give rise to
same amount of particles.

IV. CONSTANT ELECTRIC AND AXIAL FIELDS:
A NON-PERTURBATIVE RESULT

In the previous section we have obtained the particle p
duction probabilities up to second order in perturbat
theory. This is in general a good approximation for sm
background fields; however, even in those cases, it does
contain all the information about the particle production p
cesses. In this section we will study a particular configu
tion of vector and axial fields for which it is possible to fin
an expression for the imaginary part which is no
perturbative in the electric field, in the limitS2!E and
m2S2/E2,1.

Let us start by introducing the operatorsXm andPm acting
on statesux& and up& in the usual form:Xmux&5xmux& and
Pmup&5pmup&. In addition ^xuPmuf&5 i ]m^xuf&. The co-
mutator is given by @Xm ,Pn#52 igmn and ^pux&
5eipx/(2p)2.

Following Itzykson and Zuber@26# we recast the Dirac
operator in Eq.~1! as

iD” 5~P” 2A” PL2B” PR! ~18!

and taking the transpose we have

~P” 2A” PL2B” PR! t52C~P” 2A” PR2B” PL!C21 ~19!

whereC5 ig2g0 is the charge conjugation matrix that sat
fiesCgmC2152gm

t andCg5C215g5
t . The effective action

in Eq. ~2! can be written with this notation as

W@A,B#52 i Tr log S ~P” 2A” PL2B” PR2m1 i e!
1

P” 2m1 i e
D

~20!

where we have explicitly introduced the normalization fac
N in the last term. The effective action can also be written
terms of the transposed operators

W@A,B#52 i Tr log S ~P” 2A” PL2B” PR2m1 i e! t

3S 1

P” 2m1 i e
D tD

52 i Tr log S ~P” 2A” PR2B” PL1m2 i e!

3
1

P” 1m2 i e
D . ~21!

Adding both expressions we get
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2W@A,B#52 i Tr log S ~P” 2A” PL2B” PR2m1 i e!

3~P” 2A” PR2B” PL1m2 i e!
1

P22m21 i e
D

52 i Tr log F S ~Pm2AmPR2BmPL!22
i

4
~AmnPR

1BmnPL!@gm,gn#1m~A” 2B” !g52m21 i e D
3

1

P22m21 i e
G . ~22!

Finally we change to the vector and axial fields; the effect
action is then written as

2W@V,S#52 i Tr log F S ~Pm2Vm2Smg5!2

2
i

4
~Vmn1Smng5!@gm,gn#2mS”g52m21 i e D

3
1

P22m21 i e
G . ~23!

HereVmn5]mVn2]nVm andSmn5]mSn2]nSm . Let us take
the following background fields:Vm5(0,0,0,Bx1) and Sm

5(0,0,0,S) with B and S arbitrary constants. This choic
corresponds to a constant magnetic fieldB along they axis
and a constant axial fieldS in the z direction. Obviously the
same result will be obtained if we choose the fields in d
ferent spatial directions, provided they are orthogonal.
means of the Schwinger proper-time integral we can writ

2W@V,S#

52 i Tr E
0

`ds

s
e2 is~m22 i e!

3~^xueis~P0
2
2P1

2
2P2

2
2~P32BX12Sg5!21 iB[g1,g3]/22mSg3g5!ux&

2^xueisP2
ux&!. ~24!

The action of the translation operator will simplify this e
pression:

~P32BX12Sg5!25e2 i ~P1P3/B!~2BX12Sg5!2ei ~P1P3/B!.
~25!

Let us now introduce complete sets of momentum eig
states:
1-4
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PARTICLE PRODUCTION FROM AXIAL FIELDS PHYSICAL REVIEW D59 063501
2W@V,S#

52 i Tr E
0

`ds

s
e2 is~m22 i e!

3F S 1

~2p!4E d4pdp̃1eis~p0
2
2p2

2
!eip3~ p̃12p1!/Be2 i ~ p̃12p1!x1

3^p1ueis~2P1
2
2~2BX12Sg5!21 iB[g1,g3]/22mSg3g5!u p̃1& D

2E d4pd4p̃

~2p!4
ei ~ p̃2p!x^pueisP2

u p̃&G . ~26!

Performing the integral in thep3 variable and in thep0 and
p2 by means of

E
2`

`

dqe2 isq2
5Ap

is
~27!

the above expression reduces to:

2W@V,S#

5 i Tr E
0

`ds

s
e2 is~m22 i e!

3F B

8p2E dp^pueis~2P22~BX1Sg5!21 iB[g1,g3]/22mSg3g5!up&

2
i

~4p!2s2G ~28!

where for simplicity we have denotedX5X1 and P5P1 .
The integral inp together with the matrix trace can be co
sidered as the trace of the evolution operator correspon
to the HamiltonianH5H01H1 in ordinary quantum me-
chanics with

H05S 2P22~BX1S!22Bs2 0

0 2P22~BX2S!22Bs2D
~29!

and

H15S 0 mSs3

mSs3 0 D ~30!

with s i the corresponding Pauli matrices. The problem
evaluating the effective action is thus reduced to the ca
lation of the spectrum of theH operator. However, since w
cannot obtain such spectrum in an exact form, we will co
siderH1 as a small perturbation. With that purpose, we w
assume that the contributions to the spectrum coming f
the perturbation are smaller than the eigenvalues ofH0, i.e.,
m2S2,B2. We can then apply the standard Kato theory
time-independent perturbations in quantum mechanics@27#.
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The H0 operator is made out of two shifted harmoni
oscillator Hamiltonians with massM51/2, frequencyv
52B and a new coupling to the magnetic field. Its spectru
$ln,i

(0)% and eigenfunctions$cn,i
(0)% with $n50, . . . ,̀ , i

51, . . . ,4% can be easily obtained; they are given by

ln,1
~0!5En1B, cn,1

~0!5
1

A2S ifn

fn

0

0

D ,

ln,2
~0!5En2B, cn,2

~0!5
1

A2S fn

ifn

0

0

D ,

~31!

ln,3
~0!5En1B, cn,3

~0!5
1

A2S 0

0

i f̂n

f̂n

D ,

ln,4
~0!5En2B, cn,4

~0!5
1

A2S 0

0

f̂n

i f̂n

D
whereEn522B(n11/2) are the energy levels of the ord
nary harmonic oscillator and

fn~x!5A AB

Ap2nn!
HnFABS x1

S

BD Ge2B~x1S/B!2/2,

~32!

f̂n~x!5A AB

Ap2nn!
HnFABS x2

S

BD Ge2B~x2S/B!2/2

with Hn the Hermite polynomials. Notice the different func
tional form of these two functions; it reflects the fact that t
two harmonic oscillators in Eq.~29! are displaced in differ-
ent ways. We will express the spectrum and the eigenfu
tions of the complete HamiltonianH as perturbative series
ln,i5(p50ln,i

(p) and cn,i5(p50cn,i
(p) . To first order in the

perturbation, the spectrum is given by the solutions of
equation@27#

detu^cn,i uH1ucn, j&2~ln,i2ln,i
~0!!d i j u50. ~33!

The solutions implyln,i
(1)50,;n,i ; i.e., there is no first order

correction to the energies. The second order contributions
given by

ln,i
~2!5(

j Þ i

u^cn,i
~0!uH1ucn, j

~0!&u2

ln,i
~0!2ln, j

~0!
. ~34!
1-5
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ANTONIO L. MAROTO PHYSICAL REVIEW D 59 063501
Although, theH0 spectrum is double degenerated, it is po
sible to use the above expression valid for non-degener
spectra, since there is no contribution from states in the s
multiplet. In any case, the explicit calculation using Ka
theory yields the same results. The values of the second
der perturbation can be evaluated in a straightforward w
we get

ln,1
~2!5ln,3

~2!5
m2S2

2B
kn

2 , ln,2
~2!5ln,4

~2!52
m2S2

2B
kn

2 ~35!

where

kn5u^fnuf̂n&u5e2S2/BULnS 2
S2

B D U ~36!

with Ln the Laguerre polynomials. These polynomials a
bounded as n grows, in fact asymptotically we
have @28# Ln(x);(1/Ap)ex/2x21/4n21/4cos(2Anx2p/4)
1O(n23/4) for x.0 and thereforekn is bounded. In fact for
S2/B!1, we can expand: kn

2512(S2/B)(4n12)
1O(S4/B2). Therefore, as expected for small values of t
axial field with respect to the magnetic one,kn

251 is a good
approximation. Notice that, although the first correcti
grows liken, the growth must be controlled by higher ord
terms since the function is bounded. Let us stress that
have two different parameters in our problem: on the o
hand, S2/B, which we assume to be very small, and o
perturbative parameterm2S2/(2B2).

Using Eq.~A3! we can obtain the first correction to th
eigenfunctions; we get

ucn,1
~1!&5

imS

2B
knucn,4

~0!&,ucn,2
~1!&5

imS

2B
knucn,3

~0!&,

ucn,3
~1!&5

imS

2B
knucn,2

~0!&,ucn,4
~1!&5

imS

2B
knucn,1

~0!&. ~37!

Evaluating now the third order corrections in perturbati
theory from Eq.~A5! they again turn out to be zero. This
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also the case of the second order corrections to the ei
functions; i.e., from Eq.~A3! we get ucn,i

(2)&50 ;n,i . Thus
we can calculate fourth order corrections to the energ
from Eq. ~A5! which are non-vanishing. Finally, we see th
the fifth order correction again vanishes. In conclusion,
results for the perturbed spectrum, up to sixth order in p
turbations is given by

ln,15ln,3

5BF22S n1
1

2D111
m2S2

2B2
2

m4S4

8B4
1OS m6S6

B6 D G ,

ln,25ln,4

5BF22S n1
1

2D212
m2S2

2B2
1

m4S4

8B4
1OS m6S6

B6 D G .

~38!

Once we know the perturbed spectrum we can readily ca
late the traces in Eq.~28!. We will only perform the Dirac
traces, but not the functional trace that is equivalent to
integration*d4x. Thus we obtain the result for the effectiv
Lagrangianw that as expected does not depend onx:

2w@V,S#54i E
0

`ds

s2
e2 is~m22 i e!S B

8p2
cosH sBF11

m2S2

2B2

2
m4S4

8B4
1OS m6S6

B6 D G J
3(

n
eis[ 22B~n11/2!]2

i

~4p!2s
D . ~39!

Finally performing explicitly the addition of the series inn,
we obtain
2w@V,S#52
4

~4p!2E0

`ds

s2
e2 is~m22 i e!

3
F B

cosH sBF11
m2S2

2B2
2

m4S4

8B4
1OS m6S6

B6 D G J
sin~sB!

2
1

s
G . ~40!
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It can be seen that the result is purely real@29#; i.e., there is
no particle production in the presence of constant magn
and axial fields. In addition, the integral ins is divergent in
the ultraviolet limits→0. As usual these divergences have
be removed by adding suitable counterterms. In order to
tain them, let us expand the part of the integrand in brack
arounds50; we have

B

cosH sBF11
m2S2

2B2
2

m4S4

8B4
1OS m6S6

B6 D G J
sin~sB!

2
1

s

5BF 1

Bs
2

sB

2
2

sm2S2

2B
1OS m6S6

B6 D G2
1

s
1O~s3!.

~41!

TheO(s3) give rise to finite contributions when integrate
The first term is exactly cancelled by the 1/s substraction.
But we will have to include new counterterms proportion
to s(B21m2S2). Notice that these are exactly the same o
erators that we found in the perturbative calculation in S
III. In fact there is no contribution fromS4 operators due to
an exact cancellation of the different quartic terms in
expansion in Eq.~41!. Since the theory is renormalizable,
is necessary that the same kind of cancellation operate
the higher order terms on the right-hand side of the ab
expression.

The presence of the axial field is known that does
introduce any gauge anomaly in the electromagnetic cur
@30#; therefore the effective action will be gauge invaria
As a consequence it should be built out of scalar and ga
invariant functions. In our case, with constant magnetic a
torsion fields, the only possibilities areFmnFmn52(BW 2

2EW 2) and Fmn* Fmn5(4BW •EW )2. Since the second term van
ishes in our case with constant magnetic or electric fields,
effective action is invariant under the transformationB
→2 iE @29#. In this way we can convert our results for co
stant magnetic field to pure constant electric fiel
Taking into account that now sin(sB)→2i sinh(sE)
and cos$sB@11m2S2/(2B2)2m4S4/(8B4)#%→cosh$sE@12m2S2/
(2E2)2m4S4/(8E4)#% and integrating using the residues tec
nique we can obtain the expression for the imaginary par
the effective Lagrangian:

p52 Imw@E,S#5
1

4p3
E2(

n51

`
~21!n

n2

3cosH npF12
m2S2

2E2
2

m4S4

8E4
1OS m6S6

E6 D G J e2m2np/E.

~42!

WhenS50 we recover the original Schwinger result in E
~4!. Notice that in the absence of electric field there is
particle production even with non-vanishing axial fiel
When the mass is zero, we recover the usual result; i.e., a
fields only contribute in the massive case. In Fig. 1 the up
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curve represents the probability densityp as a function ofS
for E50.1m2; this value for the electric field ensures that t
conditionS2,E is satisfied for all the values ofS in the plot.

We can try to extend further the above result by means
the following observation. Since the only possible dive
gences in our model are those mentioned before, it is ne
sary that, when expanding the cos function in Eq.~41!, the
higher order terms inS cancel; this implies

sB2S 11
m2S2

2B2
2

m4S4

8B4
1••• D 2

5s~B21m2S2!. ~43!

Therefore we can obtain the complete result for the effec
action to all orders in perturbation theory in the limitS2

!B. Performing the rotation to electric fields, the result
given by

p52 Imw@E,S#

5
1

4p3
E2(

n51

`
~21!n

n2
cosS npA12

m2S2

E2 D e2m2np/E.

~44!

In Fig. 1, this probability is represented by the lower curv
We see that the effect of the axial field is to suppre

particle production. Eventually it could make it to vanis
The point of vanishingp should indicate the breakdown o
the perturbative approximation since the probabilities sho

FIG. 1. Probability densitiesp in unitsm4 versus axial fieldS in
units m, for an electric fieldE50.1m2. The upper curve represent
the perturbative calculation up to sixth order. The lower curve is
resummation of the perturbative series estimated in the text.
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be positive. In order to check whether the perturbative c
culation is valid up to the point in whichP vanishes, we will
study the convergence of the perturbative series. In part
lar, there is a general result due to Kato@31# that states tha
if there are two non-negative constantsa and b such that
uuH1uu<auuH0uc&uu1buuuc&uu for all uc&PD(H0) and if the
operatorH1 is bounded, then the eigenvalues perturbat
series is absolutely convergent if 2uuH1uu,d. With d being
the distance fromln,i

0 to the rest of the spectrum ofH0 . In
our case, we takea50 and provided$ucn,i&% is a complete
set of eigenfunction we can expandH1uc&
5H1(n,iCn,i ucn,i&. It is then easy to show thatuuH1uc&uu2

5m2S2(n,iCn,i
2 5m2S2. Therefore if we takeb5mS, since

H1 is bounded~it is constant! and in our cased52B, we
have that the series is absolutely convergent
m2S2/(2B2),1/2. Transforming to the electrostatic case,
we look at the plot, we can realize that for those particu
values, the point in which the curve crosses the axis is in
approximately signaling the breakdown of the perturbat
series.

V. CONCLUSIONS

In this work we have studied the production of mass
fermions from a classical vector and axial-vector ba
ground. Using a perturbative evaluation of the effective
tion we have obtained the contributions to the imaginary p
of the effective action up to second order in the exter
fields. We have shown that in the reference frame for wh
kW50, the production from purely spatial axial fields is su
pressed with respect to that of the vector background
addition, for purely temporal axial fields it is possible
create particles whereas this is not the case for vector fie

In the particular case of a small constant axial field an
constant electric field, it is shown that a non-perturbat
calculation can be carried out when those fields are ortho
nal. In this case, it is shown that, in the massless limit,
axial field does not affect the production from the elect
field. However, in the massive case, the presence of the a
background inhibits such production.

Finally, let us compare these result with the anisotro
damping phenomenon at the Planck era. As is well-kno
the presence of small anisotropies in the early universe
be damped in a few Planck times due to the back reactio
the particles produced on the geometry. An interesting p
sibility is that a similar mechanism could take place in t
presence of some primordial torsion field. In this case, si
torsion can be generated by the intrinsic spin, this could h
pen when the fermions are produced in some configura
such that the total spin angular momentum of the system
not vanish. The use of effective action methods for fermio
could be extended to the production of higher spin fiel
such as gravitinos in a straightforward way. In addition, it
also interesting to study not only the particle production r
derived from the effective action, but also the spectra a
angular distribution of fermions produced. This could be a
proached by means of the traditional Bogolyubov techniq
Work is in progress in this direction@32#.
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APPENDIX

In this appendix we summarize the main formulas of t
standard perturbation theory used in the text. Let us ass
that the Hamiltonian of theory can be decomposed in

H5H01H1 . ~A1!

As shown in the text, we denote byln,i
(0) and ucn,i

(0)& the ei-
genvalues and eigenfunctions ofH0 , which are assumed to
be known. The unperturbed spectrum is assumed to be
degenerated and discrete. The eigenfunctions and eigen
ues of the complete HamiltonianH are expanded in series
ln,i5(p50ln,i

(p) and ucn,i&5(p50ucn,i
(p)& where

ln,i
~p!5^cn,i

~0!uH1ucn,i
~p21!& ~A2!

and

ucn,i
~p!&5Sn,iS H1ucn,i

~p21!&2 (
k51

p21

ln,i
~k!ucn,i

~p2k!& D ~A3!

with

Sn,i5(
j Þ i

ucn, j
~0!&^cn, j

~0!u

ln,i
~0!2ln, j

~0!
. ~A4!

Some simplified formulas for the lowest order terms in t
spectrum are given by

ln,i
~1!5^cn,i

~0!uH1ucn,i
~0!&,

ln,i
~2!5(

j Þ i

u^cn,i
~0!uH1ucn, j

~0!&u2

ln,i
~0!2ln, j

~0!
,

ln,i
~3!5^cn,i

~1!uH12ln,i
~1!ucn,i

~1!&,

ln,i
~4!5^cn,i

~1!uH12ln,i
~1!ucn,i

~2!&2ln,i
~2!^cn,i

~1!ucn,i
~1!&,

ln,i
~5!5^cn,i

~2!uH12ln,i
~1!ucn,i

~2!&22ln,i
~2! Rê cn,i

~1!ucn,i
~2!&

2ln,i
~3!^cn,i

~1!ucn,i
~1!&. ~A5!
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