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Expansion of matter waves in static and driven periodic potentials
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We study the nonequilibrium dynamics of cold atoms held in an optical lattice subjected to a periodic driving
potential. The expansion of an initially confined atom cloud occurs in two phases: an initial quadratic expansion
followed by a ballistic behavior at long times. Accounting for this gives a good description of recent experimental
results and provides a robust method to extract the effective intersite tunneling from time-of-flight measurements.
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I. Introduction. Experimental advances in confining ul-
tracold atoms in optical lattices have undergone spectacular
progress in recent years. Optical lattice potentials are ex-
tremely clean and controllable, and the excellent coherence
properties of atomic condensates hold out the prospect of
controlling their dynamics using quantum coherent methods.
This is interesting from the point of view of fundamental
physics and has many potential applications to quantum
information processing, where it is vital that the coherence
of the system is preserved during its time evolution. One such
scheme is to use a time-periodic driving potential to induce
the effect termed “dynamical localization” [1] or “coherent
destruction of tunneling” [2]. This is a quantum interference
effect in which a particle acquires a phase from its interaction
with the driving potential, which leads to a renormalization
of the single-particle tunneling probability. For specific values
of the driving parameters the effective tunneling probability
can be highly suppressed, providing a sensitive means of
coherently controlling the localization of the atoms [3]. This
renormalization has recently been directly observed in cold
atom experiments [4–6].

A convenient way of measuring the effective tunneling
is to observe the rate of expansion of a condensate once a
harmonic potential trapping the atoms along the direction of
the optical lattice has been switched off [4,5]. Although the
results of these experiments agreed well with the theoretically
expected scaling of the renormalized tunneling probability
with the Bessel function of the driving strength, for particular
initial conditions the scaling seemed to be quadratic rather
than linear in the Bessel function. A number of explanations
of this phenomenon have since been put forward, including
a possible crossover from coherent to sequential tunneling
[5,7] induced by phase scrambling arising from dynamical
instabilities, a time-averaging effect produced by finite time-
resolution of the measurement [8], and driving-induced atom
pairing [9]. A recent theoretical stability analysis [10] has
shown, however, that phase scrambling is unlikely to occur for
the experimental parameters of Refs. [4,5], and the pairing
mechanism would require rather stronger interactions than
were present in those experiments. In this brief report we
propose an alternative explanation for the observed quadratic
scaling of the renormalized tunneling probability based on the
exact form of the expansion of the condensate, which is linear

in the long time limit but quadratic for short times [11]. Using
this complete time dependence in order to extract the tunneling
probability from the experimental data gives quantitatively
accurate agreement with theory, with no adjustable parameters.

II. Model and analysis. The Bose-Hubbard model is
described by the Hamiltonian

HBH = −J
∑
〈i,j〉

[a†
i aj + H.c.] + U

2

∑
j

nj (nj − 1)

+
∑

j

V (rj )nj , (1)

where aj and a
†
j are annihilation and creation operators for a

boson on lattice site j , J (taken to be positive) describes the
hopping amplitude between nearest-neighbor sites 〈i,j 〉, and
U is the repulsive energy between two bosons occupying the
same site. The operator nj = a

†
j aj is the standard number

operator, and V (r) is the external trap potential, which is
usually considered to be parabolic, V (r) = mω2

T r2/2, where
ωT is the trap frequency. Although simple in appearance, the
Bose-Hubbard model can provide an excellent description [12]
of ultracold atoms held in optical lattice potentials.

Adding a static and a sinusoidally varying force to the
system leads to the general time-dependent potential

H (t) = HBH +
∑

j

nj j (� + K cos ωt), (2)

where � is the static tilt applied to the lattice, and K and ω

are the amplitude and frequency, respectively, of the oscillating
component. Experimentally, the two forces are introduced into
the rest frame of the optical lattice by applying appropriate
frequency differences to the acousto-optic modulators creating
the lattice beams, as described in detail in [4]. A time-periodic
system of this type can be analyzed using Floquet theory,
revealing [13] that the effect of the driving can be described by
the static Hamiltonian (1) with a renormalized tunneling Jeff .
For an untilted lattice (� = 0), this renormalization is given
by the zeroth-order Bessel function Jeff = JJ0(K0), where
for convenience we define K0 ≡ K/h̄ω. Thus at the values
K0 = 2.404, 5.52, . . . , at which the Bessel function vanishes,
the effective tunneling is suppressed. This effect thus provides
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a means to coherently control the dynamics of trapped atoms,
without altering any of the parameters of the optical lattice.

When the trap potential along the lattice direction is
removed, the atom cloud will expand in time, at a rate
determined by Jeff . To quantify this process we calculate the
spread of the wave function:

σ (t) =
√

〈x2〉 − 〈x〉2, (3)

aligning the optical lattice with the x axis. We begin by
setting the Hubbard interaction, U , to zero. In the continuum
approximation, valid when the kinetic energy of the condensate
is much less than the width of the first Bloch band, the
ground state of a parabolic trap is simply given by a Gaussian,
ψ(x) = N exp[−x2/(2a2)], where N is the normalization such
that

∫ ∞
−∞ |ψ(x)|2dx = 1 and a = √

h̄/(mωT ) is the harmonic
trap-length. If the trap potential is now removed, this initial
state will expand while remaining Gaussian. This expansion
can be calculated analytically [11] yielding the result

σ (t) = σ0

√
1 + 4(J t/h̄)2(dL/a)4, (4)

where dL is the spacing of the optical lattice and σ0 = a/
√

2.
Similar, but more complicated, expressions that coincide with
this result were obtained by Korsch et al. [14] using a lattice
representation instead of the continuum approximation. The
expansion clearly occurs in two different phases, separated by
a crossover time, tc = (h̄/2|J |)(a/dL)2. For long expansion
times, t � tc, the wave function spreads linearly with time,
σ (t) ∝ |J |t , reproducing the expected ballistic expansion of
a released wave packet. For short times, however, t < tc,
the expansion is instead quadratic, σ (t) − σ0 ∝ J 2t2. It is
important to note that the expansion depends on both the
magnitude of the tunneling, J , and the size of the initial wave
packet a. In particular, a tightly confined wave packet will have
a higher spread in momentum and so will enter the regime of
linear expansion more quickly. The extreme case where only
a single lattice site is filled was considered in Ref. [1], where
it was found that the expansion was always linear with time.
This result is exactly reproduced by Eq. (4) by appropriately
taking the limit a → 0.

III. Results. A. Undriven lattice. We first consider the case
of a static lattice, with �,K0 = 0. In Fig. 1 we show the
time dependence of the expansion of an initial Gaussian wave
packet, numerically evolved in time under the time-dependent
Hamiltonian (2). Using J = 0.1Erec, where the recoil energy
Erec = h̄2π2/2md2

L, we see that the analytic expression (4)
accords exactly with the numerical result, indicating the
validity of the continuum approximation. The transition from
the initial quadratic expansion to the ballistic regime is clearly
visible. Halving the value of J used produces the expected
result of reducing the rate of expansion and moving the
crossover from the quadratic to the ballistic regime to a later
time.

B. Untilted driven lattice. We now consider the effect
of including the time-dependent driving potential V (t) =
K cos ωt . We choose a high driving frequency, h̄ω = 4J ,
and tune the amplitude of the driving so that Jeff = 0.5J . In
accordance with the predictions of the Floquet analysis, we
see that the expansion of the wave packet in the driven system
with a bare tunneling of J = 0.1Erec closely follows the
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FIG. 1. (Color online) Top: Expansion of an initial Gaussian
wave packet in a flat lattice potential, obtained by the numerical
propagation under Hamiltonian (2). When no driving potential is
applied (K = 0), σ (t) increases following Eq. (4). For J = 0.1Erec

(black solid line) the expansion is clearly quadratic initially and
becomes linear at long times. Setting J = 0.05Erec [red (gray)
solid line] reduces the expansion rate as expected. By applying
a periodic driving potential the tunneling can be renormalized
to an effective value Jeff . Tuning K0 = 1.22 reduces Jeff so that
the expansion of the condensate (dashed red line) reproduces the
J = 0.05Erec result. Setting K0 = 2.404—first zero of the Bessel
function—produces coherent destruction of tunneling (CDT), and
the condensate no longer expands with time (blue dash-dotted line).
Inset: Detail of the periodically driven result (K0 = 1.22). The
driven expansion on average reproduces the J = 0.05Erec result, but
shows small oscillations with the same frequency of the driving.
The amplitude of these oscillations decreases with increasing driving
frequency. Bottom: Experimental comparison of the free expansion
of a condensate (K0 = 0) with a condensate experiencing CDT
(K0 = 2.4). As predicted, the expansion of the second condensate
is strongly suppressed.

result for J = 0.05Erec, indicating that the driving field indeed
renormalizes the tunneling as expected. Looking in detail at
the expansion (inset of Fig. 1) we see that, although on average
the expansion of the driven condensate closely matches that
of the static case with J = 0.05Erec, the driven result contains
small amplitude oscillations with the same frequency as
the driving. These oscillations arise from the intrinsic time
dependence of the Floquet states themselves. Their amplitude
reduces as the driving frequency becomes larger, indicating
that the approximation of modeling the driven system with a
renormalized static Hamiltonian becomes increasingly good.
Finally we also show in Fig. 1 the most dramatic effect of the
renormalization of tunneling. Since Jeff = JJ0(K0), tuning K0

to a zero of the Bessel function should result in the complete
suppression of tunneling (neglecting next-nearest-neighbor
tunneling [15]). We indeed see that setting K0 = 2.404 results
in the condensate not expanding with time, due to the vanishing
of Jeff . Similar to the K0 = 1.22 case, this curve again displays
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FIG. 2. Dynamical suppression of tunneling in a periodically
driven lattice. The effective tunneling parameter was calculated
assuming a simple linear expansion (open symbols) and by taking into
account the exact expansion dynamics (solid symbols). In the latter
case the agreement with the theoretically expected scaling (solid line)
is clearly better. The experimental parameters were J/h = 240 Hz
and ω/2π = 4 kHz, and the expansion time was 150 ms.

small oscillations, which become larger at low values of
ω. This low-frequency behavior would correspond to the
“dynamical localization” regime [1], where the wave packet
periodically returns to its initial state at stroboscopic times
t = nT = n2π/ω, but between these times can exhibit large
excursions.

In Ref. [4] the effective tunneling was deduced by
measuring the expansion rate of the condensate at a fixed
time and assuming this rate was directly proportional to
Jeff . Accordingly the ratio between the tunneling parame-
ters in the static and the driven lattice was calculated as
|Jeff/J | = (σ (t) − σ0)/(σstat − σ0), where σstat is the size of
the condensate after expansion in the static lattice. For the
experimental parameters (dL = 426 nm and J/h = 270 Hz),
we calculate a crossover time of tc 	 9.7 ms for a weakly
interacting condensate released from a 20-Hz harmonic trap.
As the experiment employed an expansion time of 100 ms,
the results can thus be expected to be reliable only as long as
|Jeff/J | � 0.1. In order to get better agreement with theory,
we now use Eq. (4) containing the full expansion dynamics,
giving

|Jeff/J | =
√

σ (t)2 − σ 2
0

σ 2
stat − σ 2

0

. (5)

Figure 2 shows that, as expected, using Eq. (5) to calculate the
renormalized tunneling gives better agreement with theory.

It is interesting to note that although Jeff is strongly
suppressed near K0 = 2.4, it does not actually reach zero

when the Bessel function vanishes. This is due to the effect of
higher-order hopping terms present in the system’s dynamics.
Although they too are renormalized by the driving potential,
for sinusoidal driving they will not vanish at the same driving
parameters as for the nearest-neighbor hopping. The residual
value of Jeff , visible in Fig. 2, is in reasonable agreement with
the value of the next-to-nearest-neighbor hopping (around 5%)
calculated for a similar system in Ref. [15].

C. Tilted lattice, resonant driving. Applying Eq. (5) to
the experimental data on photon-assisted tunneling [5] leads
to an even more striking improvement in the agreement
between theory and experiment. In those experiments a tilt was
applied to the lattice through a constant acceleration, leading
to a suppression of tunneling by Wannier-Stark localization.
Periodic driving of the lattice at a frequency ω matching
the energy offset between two adjacent lattice wells then led
to partial restoration of the tunneling probability, with the
effective tunneling probability given by |Jeff/J | = J1(K0);
that is, one expects a scaling with the first-order Bessel
function. As shown in Fig. 3(b), assuming linear expansion in
order to extract Jeff/J led to a scaling that interpolated between
a linear and a quadratic dependence on J1(K0), depending on
the initial size of the condensate (which in the experiment was
varied through the nonlinearity by changing the atom number).
If the full expansion dynamics is taken into account through
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FIG. 3. (a) Effective tunneling for resonant driving in a tilted lat-
tice (photon-assisted tunneling). The effective tunneling parameters
were calculated for two different initial condensate sizes [around
15 µm (open symbols) and around 17 µm (solid symbols)] using
Eq. (4). For comparison, (b) shows the same experimental data
with the renormalized tunneling parameter calculated assuming linear
expansion. One clearly sees that in this case the experimental data
interpolate between a linear Bessel scaling (solid line) and a quadratic
scaling (dashed line).
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Eq. (5), however, both data sets give the same dependence on
K0, which is very close to the theoretical prediction.

IV. Conclusions. We have shown that in order to extract
the effective tunneling from expansion measurements it is
important to account for the detailed time dependence of
the condensate expansion. When the effective tunneling is
small, or the initial width of the condensate is large, the
crossover to ballistic expansion will not be reached until
very long times. Measurements made at earlier times will
thus underestimate the effective tunneling rate, which gives
a quantitatively accurate interpretation of the “squared Bessel
function” behavior noted in Refs. [4,5]. Although we have
not included the effects of interactions, this is a reasonable
approximation for the systems studied in Refs. [4,5] where
the interactions were fairly small (U/h 	 10 Hz) and their

effect rapidly became negligible as the condensate expanded
and became more dilute. Using the correct expansion formula,
Eq. (4), not only provides an accurate means of deducing the
value of the effective tunneling but also is essential to study
subtle effects, such as the transition to diffusive tunneling and
the influence of higher-order tunneling terms, which would
otherwise be masked by this behavior when the effective
tunneling is small.

This research was supported by the Acción In-
tegrada/Azioni Integrate scheme (Spain/Italy). The authors
also acknowledge support from the Spanish MICINN through
Grant No. FIS-2007-65723 and the Ramón y Cajal program
(CEC). We thank H. Lignier, C. Sias, Y. Singh, and A. Zenesini
for assistance with the experiments.

[1] D. H. Dunlap and V. M. Kenkre, Phys. Rev. B 34, 3625 (1986).
[2] F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Phys. Rev.

Lett. 67, 516 (1991).
[3] C. E. Creffield, Phys. Rev. Lett. 99, 110501 (2007).
[4] H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini,

O. Morsch, and E. Arimondo, Phys. Rev. Lett. 99, 220403
(2007).

[5] C. Sias, H. Lignier, Y. P. Singh, A. Zenesini, D. Ciampini,
O. Morsch, and E. Arimondo, Phys. Rev. Lett. 100, 040404
(2008).

[6] E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, and
M. K. Oberthaler, Phys. Rev. Lett. 100, 190405 (2008).

[7] A. R. Kolovsky and H. J. Korsch, J. Sib. Fed. Univ. Math. Phys.
3, 311 (2010).

[8] C. E. Creffield and F. Sols, Phys. Rev. Lett. 100, 250402 (2008).
[9] C. Weiss and H.-P. Breuer, Phys. Rev. A 79, 023608

(2009).
[10] C. E. Creffield, Phys. Rev. A 79, 063612 (2009).
[11] A. Galindo and P. Pascual, Quantum Mechanics I (Theoretical

and Mathematical Physics) (Springer-Verlag, Berlin, 1990),
Chap. 3.

[12] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,
Phys. Rev. Lett. 81, 3108 (1998).

[13] M. Holthaus, Phys. Rev. Lett. 69, 351 (1992).
[14] H. J. Korsch and S. Mossmann, Phys. Lett. A 317, 54 (2003);

A. Klumpp, D. Witthaut, and H. J. Korsch, J. Phys. A 40, 2299
(2007).

[15] A. Eckardt et al., Phys. Rev. A 79, 013611 (2009).

035601-4

http://dx.doi.org/10.1103/PhysRevB.34.3625
http://dx.doi.org/10.1103/PhysRevLett.67.516
http://dx.doi.org/10.1103/PhysRevLett.67.516
http://dx.doi.org/10.1103/PhysRevLett.99.110501
http://dx.doi.org/10.1103/PhysRevLett.99.220403
http://dx.doi.org/10.1103/PhysRevLett.99.220403
http://dx.doi.org/10.1103/PhysRevLett.100.040404
http://dx.doi.org/10.1103/PhysRevLett.100.040404
http://dx.doi.org/10.1103/PhysRevLett.100.190405
http://dx.doi.org/10.1103/PhysRevLett.100.250402
http://dx.doi.org/10.1103/PhysRevA.79.023608
http://dx.doi.org/10.1103/PhysRevA.79.023608
http://dx.doi.org/10.1103/PhysRevA.79.063612
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1103/PhysRevLett.69.351
http://dx.doi.org/10.1016/j.physleta.2003.08.038
http://dx.doi.org/10.1088/1751-8113/40/10/006
http://dx.doi.org/10.1088/1751-8113/40/10/006
http://dx.doi.org/10.1103/PhysRevA.79.013611

