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Isotropic-nematic transition of hard ellipses
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The orientational freezing of a system of hard ellipses, as a first approximation for a nematogen

adsorbed on a smooth substrate, is studied with the aid of an approximate density-functional theory
used previously for the study of hard ellipsoids. The isotropic-nematic transition, which was first

order for the ellipsoids, is shown to proceed via a continuous transition in the case of the ellipses.

We also show that when reducing the dimensionality of the angular space of ellipsoids, the width of
the transition shrinks continuously and reaches zero only for a strictly two-dimensional angular

space.

I. INTRODUCTION

The formation of liquid crystals or mesophases by
molecular systems is well known' to be closely related to
the presence of anisotropic interactions between the mole-
cules. One of the most important findings of the comput-
er simulations and theoretical studies of recent years is
the increasing evidence that it is suScient to have aniso-
tropic repulsiue (steric) interactions in order to form such
mesophases. This contradicts some of the early ideas
which stressed the importance of the anisotropic attrac-
tive interactions in liquid crystals forming substances.
The present situation is thus very reminiscent of the older
debate concerning the respective roles played by the
repulsive and attractive forces in the liquid-solid transi-
tion. Nowadays it is, nevertheless, generally accepted
that this freezing transition is monitored by the repulsive
forces and a similar issue is in view for the liquid-crystal
phase transitions. This, however, does not imply that the
attractive forces do not play any role in these phase tran-
sitions but only that the essence of these transitions can
already be learned from the study of simple nonrealistic
models with purely repulsive forces. Such model systems
can then be used as reference systems in a perturbational
treatment of the more realistic systems.

From all possible purely repulsive model systems, those
where the molecules are assimilated to hard convex bodies
are by far the simplest and most-studied ones. It is, for
example, known for more than two decades that the
hard-sphere system is a convenient reference system for
the study of the condensed phases of spherically sym-
metric molecules. Similarly, a system of hard ellipsoids
or spherocylinders appears to be a convenient reference
system ' for the study of nonspherical convex molecules
(more complex molecular shapes can also be introduced
by using the simpler shapes as building blocks). Much
progress in our understanding of the behavior of realistic
systems can thus be expected from the study of such
hard-core model systems. This is certainly true for the
bulk phases of matter but a similar reduction process ap-

pears to be feasible also for the surface phase -transitions

experienced by monolayers of adsorbed molecules. A
system of hard disks, for example, is known to capture
the essence of the liquid-solid transition of spherical mol-
ecules adsorbed on a smooth surface. In the present
study we consider similarly a system of hard ellipses as a
simple model for the study of the mesophases formed by
nonspherical molecules adsorbed on a smooth surface.

It is well known that the reduction in spatial dimen-
sionality from D = 3 (bulk phases) to D = 2 (surface
phases) has some profound consequences for the nature
of the ordered phases. Reducing the dimensionality usu-

ally increases the importance of the thermally excited
long-wavelength elastic waves which tend to destroy the
perfect long-range order leaving one with quasi-phases
whose order exhibits a system-size dependence. This
size dependence is usually suSciently weak (logarithmic
in D =2) that for many practical purposes the difference
between quasi long-range order and perfect long-range
order can be neglected for most systems of laboratory in-

terest. The algebraic decay of the order-parameter corre-
lation function associated with the presence of quasi-
long-range order has nevertheless been observed recently
in computer simulations and laboratory experiments. '

Such system-size effects are, however, also beyond the
scope of the present-day theories of phase transitions"
and will therefore be neglected in what follows.

We now consider the isotropic and nematic phases of a
two-dimensional system of hard ellipses as a rough ap-
proximation for the isotropic-nematic transition of ad-
sorbed nematogens. The present investigation closely
parallels a previous study' (hereafter referred to as I) of
the isotropic-nematic transition of hard ellipsoids. In
fact, exactly the same approximate density-functional
theory as used in I for D =3 will be used here for the
D =2 case. In this way the influence of the dimensionali-

ty D on the results of the density-functional theory can be
clearly assessed. In a previous study' it was shown al-

ready that the quantitative agreement between the ap-
proximate density-functional theory and the computer-
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simulation results for the liquid-solid transition transfers
nicely from the hard-sphere to the hard-disk system. In
the present case it can only be hoped that the similar
agreement found already in I for the isotropic-nematic
transition of hard ellipsoids will also be transferred to the
hard-ellipse case for which the corresponding computer
simulations are, however, still lacking.

In Sec. II we briefly recall the density-functional ap-
proach to orientational freezing (as introduced in I) in a
D-dimensional setting. The results for the isotropic and
nematic phases of hard ellipses are given in Sec. III. The
relation to the orientational freezing of some constrained
bulk systems is briefly considered in Sec. IV, while Sec. V
contains our conclusions.

II. APPROXIMATE DENSITY-FUNCTIONAL
THEORY FOR ORIENTATIONAL FREEZING

IN D DIMENSIONS

The density-functional theory (DFT} is a convenient
theoretical framework for the study of phase coexistence
mainly because it treats the disordered (isotropic) and the
ordered (nematic) phases on the same footing. Between
the various possible versions" of the DFT we will employ
here the one which uses the Helmholtz free energy F as
basic thermodynamic potential for reasons already advo-
cated in I. We will follow here the same notation as in I
which contains moreover a summary of the general ideas
behind the DFT in a setting valid for both positional and
orientational freezing. Let f=F/V be the (Helmholtz)
free energy per unit volume V, P=i/k~T the inverse
temperature (which plays only the role of a scale factor in
hard-core systems), and p the average (number) density so
that f /p is the free energy per particle and Pf /p its di-
mensionless form. Further, b,f=f~ fi will deno—te the
difference in free-energy density between the nematic (N)
and isotropic (I) phases of the same average density:

pz =pi =p. The dimensionless free-energy difference,
13hf /p, can then be written according to Eq. (2.10) of I:

P &
1

d p(x) p(x)dx ln
p V p p

fdx fdx'f dA(1 —A)c(x, x';[p+Abp])
pV 0

X bp(x)bp(x'), (2.1)

where Ap(x}=p(x) —p, with p(x) the local density at
x=(r, u) and c(x,x', [p]) the direct correlation function
(DCF) of a system of local density p(x). Here r labels the
position of the center of the molecule and u the orienta-
tion (u =1) of its symmetry axis (assumed present) with
respect to a laboratory-fixed coordinate system. Restrict-
ing ourselves to spatially uniform phases for which
p(x) =ph(u), with h(u) the angular distribution, and us-
ing the factorization approximation, '

c(x,x')=co(lr —r'll&(u u'),

between the translational and angular variables, Eq. (2.1)
is transformed into Eq. (4.7) of I:

A—f= fdub(u)lnh(u)
P

—&f dr c, ;g(g;y)
2 00

X f du f du'X(u. u')[h(u) —1]

X [h(u') —1], (2.2)

where X(u u') is the excluded volume of two molecules of
given orientation u and u', while co( lrl /o. o;g) is the DCF
of an isotropic system of spherical molecules of diameter
o.0 and of packing fraction g =pv, ~, with v „ the
volume of one molecule, or equivalently of the spherical
molecule which serves to model the translational correla-
tions of the original nonspherical molecules (see I for de-
tails). Finally, g=g(g;y) is the packing fraction of the
effective isotropic fluid of spherical molecules which is
used to model the DCF of the ordered phase of the origi-
nal nonspherical molecules. As in I, g will be defined im-

plicitly through the following rescaling of the contact dis-
tances:

co(1;7))=c,
]/2

1 —Ixl
1+ lxI

(2.3)

where y=(k —1)/(k +1) and k =cr~~~/cr~ is the aspect
ratio of the molecule with o.

~~

(o~) being its diameter
parallel (perpendicular) to the symmetry axis. All the
above approximations are identical to those discussed al-
ready in detail in I and have been recalled here mainly to
show that they remain valid for a D-dimensional system
(through appropriate generalization of the vectors r and
u). Notice, however, that in the particular case of hard
ellipses (D =2) the oblate (0 & k & 1)—prolate (1 & k & oo )

symmetry discussed in I degenerates into a trivial state-
ment. This is because ellipses always have two symmetry
axes and hence u can be taken either along the major
(prolate) or the minor (oblate) axis. The Berne-Pechukas
Gaussian-overlap approximation' to the excluded
volume X(u u') can also be shown to remain valid for D
dimensional ellipsoids:

XBI,(u u') =
1/2

1 —y (u.u')

&
—x' (2.4)

provided D ~2. Similarly, for the DCF co(lrl/oo;g) we
can use the generalization to D-dimensional spheres of
the Percus- Yevick hard-sphere DCF elaborated else-
where. ' Finally, for the nematic phase the angular dis-
tribution h(u) must be of the form h(u) =h(u n) with n
the director (n =1). For a uniaxial nematic, n and —n
are equivalent directors so that h ( m ) = h ( —m ) with
m =u n. The parametrization of h(m ) used in I is then
easily generalized as

h(m)=exp g ) ~, C2, I~ (m)
1=0

(2.5)

where Ci'+ 2'~2(m ) are the Gegenbauer polynomials
which form a complete basis' for the representation of
the group of rotations of u around the polar axis n in a
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D-dimensional space (u-n=m =cosO). The Gegenbauer
polynomials C&'

' (x ) satisfy' the orthogonality con-
dition (D ) 1) ~,( 1 ~2)1/2 (2.16)

if l W n (2.6)

b f= y ——1 InZ(y)a

p c)p

with

2
I(n(q'X))[H(y'X) Ho(X)] (2.8)

[nZo(n)]
1

I, ~'9
(2.9)

where Zo(21) =pp/p is the hard D-sphere compressibility
factor, "and

H(y;g)= f du f du'X B(pu. 'u)h(u) h( 'u),

Ho(y) =H(y=0;y)—= f du f du'XBp(u. u'),

(2.10)

(2.1 1)

the average excluded volume of respectively, the nematic
and the isotropic phase.

To be more specific we now give some explicit expres-
sions for D =2 and D =3. For the Gegenbauer polyno-
mials C,' ' (m ) of (2.5) we have

C,"/ '(m ) =P, (m ), D =3

C, '(m)=T, (m), D=2
(2.12)

(2. 13)

where P~(m) are the Legendre polynomials' and
T&(cosO)—:cos(lO) the Chebyshev polynomials. ' The
normalization factor' Z(y) of (2.7) becomes then

Z(y ) = f dm exp[y( —,'m —
—,
' )]

— F(&(3/2)y), D =3
&(3/2)y

Z(y) = f dOexp[y cos(2O)]
2/i 0

=Io(y), D =2

(2.14)

(2.15)

where F(x ) and Io(x) are, respectively, the Dawson and
zeroth-order modified Bessel functions. ' The average ex-
cluded volume of the isotropic phase, Ho(y) of (2.11),
reads

and the symmetry property C~' ( —x )

=( —I )'C&~D ' I/ (x-).-The one order-parameter (y ==y2)
approximation corresponding to Eq. (4. 1) of I reads then

exp[yC2 " "-(m )]
h m

Z(y)
1

(2.7)
Z(y)= f dm (1—m )'D ' exp[yC2 ' (m )],

o XD

where we have put ND =I ( —', )I [(D —1)/2]/I (D/2)
with I (n+1)=n! the I function. ' The working form of
Eq. (2.2) reads now

whereas the equivalent D =3 expression is given by the
more complicated Eq. (4.9) of I. Finally the explicit ex-
pression used for c, (~r~/oo, g) in (2.3) is given by Eqs.
(3.31) and (3.32) (D =2) and Eq. (3.35) (D =3) of Ref. 15
together with the corresponding compressibility factors
Zo(rl) of (2.9) for which Z&(g) as given by Eq. (2.18) of
Ref. 15 was used (with N = 6 for D =2 and N =2 for
D =3).

III. RESULTS OF THE OFT
FOR HARD ELLIPSES

We now consider the results obtained from the general
theory proposed in Sec. II in the particular case of hard
ellipses (D =2). Unfortunately, we know of very little
other data on ellipses to compare with. As far as we
know, there are the pioneering Monte Carlo (MC) simu-
lations of Vieillard-Baron' and the theoretical results of
Boublik and of Ward and Lado. '

To start, let us consider the isotropic phase where the
angular distribution is uniform [h(u)=—1]. In this case
the compressibility factor of the hard ellipses, Pp /p, can
be written using Eq. (3.14) of I:

p=:Z(ti X)=—&+Ho(X)[ZO(n) —1]
P

(3.1)

where Ho(g) is given now by Eq. (2.17) above. Here
k =o.

~~

/o ~ is the aspect ratio of the ellipses and
g=(k —1)/(k + 1) the related eccentricity variable.
From Eq. (3.1) it is seen that the compressibility factor of
the hard ellipses of eccentricity g and packing fraction
g=(vr/4)o.

~,

o.~, Z(g;y), is given in terms of the
compressibility factor of hard disks, Zo(~l), of the same
area and packing fraction [g=(7r/4)crop with oo=o ~~cr~]

In other words, Eq. (3.1) states that the dimensionless ex-
cess pressures of the corresponding ellipses and disks
scale like the respective average excluded volumes:

[Z(n r) —I]/[Zo(n) —1]=Ho(r) .

As illustrated in Fig. 1, the resulting hard-ellipse equa-
tion of state Z(rl;y) depends slightly on which hard-disk
equation of state Zo(g) is being used as input in (3.1). In
Fig. 2 we compare our results to those obtained by Boub-
lik from the sealed particle theory (SPT) for hard el-

Ho(y) =—,D =22 E(y )

+2)1/2 ' (2.17)

where E(y )= Jo dO(1 —g sin O)' is the complete el-
liptic integral of the second kind. ' The average excluded
volume of the nematic phase, H(y;y) of (2.10), reads us-
ing (2.7)

1 /2
1 4 ~/'2 1 —y cos 0H y;y)= [I.(y) l'

XIo(2y cosO), D =2

(2.18)
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FIG. l. Compressibility factor )Ijp/p vs the packing fraction

g of a system of hard ellipses of aspect ratio k = 2, 4, 6, 8, and
10 (from bottom to top) as obtained from Eq. (3.1) for two
different input hard-disk equations of state: the equation,
Zo =(1+g /8)/(1 —g), proposed by Henderson (Ref. 27)
(dashed lines) and the equation proposed by Baus and Colot
(Ref. 15) (solid lines). The differences in the resulting hard-
ellipse equations of state (visible only in the high-density region
shown here) are comparable to the differences already present
(Ref. 15) in the underlying hard-disk equations of state.

FIG. 2. Reduced pressure p =cpu „vs the packing fraction
g of a system of hard ellipses of aspect ratio k = 2, 4, and 6
(from bottom to top) as obtained from Eq. (3.1) with the SPT
hard-disk result [Zo=(l —g) '] as input (solid lines) and com-
pared to the hard-ellipse SPT results of Boublik (Ref 20) as
quoted by Ward and Lado (Ref. 21) (dots). While both theories
are identical for k=1 the difference between them increases
with increasing k value.

I I I I I I I I I I I I I T I ! I I

lipses. In this case we use the SPT result for hard disks in
(3.1), Zo(q)=(1 —g), so that both theories will have
the same limit as k tends to 1. Comparing Figs. 1 and 2
we conclude that the theoretical uncertainties in the
hard-ellipse equation of state are similar to those of the
underlying hard-disk equation of state. While the latter
have already been compared to the computer simulations
elsewhere, ' the corresponding simulations for hard el-
lipses are unfortunately still lacking.

Next we consider the nematic phase [h(u)&l] as de-
scribed by Eqs. (2.7)—(2.11). The effective density,
g=q(g;y), entering Eq. (2.8) is shown in Fig. 3. Its be-
havior is very similar to that of the D = 3 case considered
in I. The free-energy difference, b f of (2.8), is shown in
Fig. 4 as a function of the nematic order parameter y of
(2.7). Here the difference with the D =3 case of I is quite
striking. There is clear evidence that the first-order tran-
sition of I has become a continuous transition in D =2.
Similar evidence for a continuous isotropic-nernatic tran-
sition in D=2 has also been obtained for other systems
and by other methods (for a recent discussion see Ref. 9).
It is noteworthy, however, that this result is obtained
here using exactly the same approximation scheme for
D =2 as for D =3 so that the change from a first-order to
a continuous transition can only be ascribed to the
change in dimensionality and not to changes in the ap-

0.8

0.6

0.0 0.2 0.4
I ~ I I I 0.

0.6 0.8

FIG. 3. The relation, Eq. (2.3), between the packing fraction
of the nematic q and the packing fraction g of the effective iso-
tropic phase used to approximately describe the correlations in
the nematic phase. From top to bottom k = 2, 4, 6, and 8 (solid
lines). For convenience, the limiting cases k =1 and k = ~ have
also been included (dashed lines).
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FIG. 4. Reduced free-energy difference Phf/p between the
nematic and isotropic phases of hard ellipses of aspect ratio
k =6, Eq. (2.8), as a function of the nematic order parameter y,
Eq. (2.7), for various packing fractions: g= 0.29, 0.31, 0.33,
0.35, 0.37, and 0.39 (from top to bottom). The critical isochore

=0.33 separates the situations where the isotropic phase
(y =0) is the only free-energy minimum (g&g*) from those
for which the nematic phase (y %0) is the only free-energy
minimum (g & g*).

proximation scheme. It is clear also that graphically one
cannot distinguish between a continuous and a very weak
first-order transition. This point is quite pertinent here
because the isotropic-nematic transition is already weakly
first order for D =3. To settle this question we can use a
small order-parameter expansion just like in the familiar
Landau theory already discussed in the present context
in I. Using the same procedure as in I we first switch
from the unbounded order parameter y of (2.7) to the
bounded and physically more interesting order parameter

q
= ( cos(29) ) = lnZ(y ),= a

ay
(3.2)

b f= g a„q "+O(q')—,
P n=0

with ao =a
&
=a3 =0 and

a ~
= 1 —gI ( r) ) ( A q

—A c ),
a ~

=
—,
' —gI ( rI ) ( —,

' A 4
—A ~ + —,

' A o ),

(3.3)

(3.4)

(3.5)

where rI = rj(il;y), as above, and A„= A„(g) is given by

where Eq. (2.15) was used. The relation between y
(0&y & ao ) and q (0&q &1) is displayed in Fig. 5.
Proceeding as in I we obtain then the following small-q
expansion of (2.8):

FIG. 5. Relation between the nematic order parameters y of
Eq. (2.7) and q of Eq. (3.2).

( )
(2n)! y&d 1

(ii!)2 o 2n

1/2
1 —y cos cz

cos cx
l —X'

—
I 1 [(D —2)/2] I

and hence a 3 approaches zero continuously when D
reaches the value 2 from above. The value D =2 appears
thus as a marginal value for which the generally first-
order transition (D & 2) becomes continuous (D =2).

This point being settled, we return now to the general
properties of the isotropic-nematic transition in D =2. If
we denote by q* the value of the order parameter q for
which, at a given value of g and g, the free energy attains
its minimum, then q*=q*(g;y) tends continuously to
zero when g is decreased from the high-density region
down to a critical value g* at which q

* vanishes
[q "(g*;y)=0 for g*=il*(y)]. For g&g', the free-
energy minimum remains at q =0, corresponding to the
isotropic phase (q*=0) being the only stable phase,
whereas for g & q* the nematic phase (q "%0) is the only
stable phase. There are no metastable phases here; the
extrapolation of (3.1) into the region il & il' corresponds

(3.6)

with n =0, 1,2, . . . . The fact that in the Landau expan-
sion (3.3) we have a3—:0, together with our findings at
finite q (see Fig. 4) clearly establishes that in the present
case (D =2) the isotropic-nematic transition predicted by
this theory is continuous. For D =2 one can also show
that the free energy (2.8) is, in fact, an even function of
q (or y), i.e., a~„+i ——0 for all n =0, 1,2, . . . in (3.3),
whereas for general D one can show that the coefficient
a3 of (3.3) behaves like
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thus to an unstable isotropic phase. It is easily shown
that, in the vicinity of g* and for all g values, q* behaves
like q* —(g —g*)' for q ~ g'. Such a classical critical-
point behavior was to be expected here since we made no
attempt to incorporate order-parameter Auctuations
into the theory The location of the critical point q" (y)
is very sensitive to the value of g. For very elongated el-
lipses one can show from (3.3) that g' tends to zero as
g'-3m/4k, for k ~ ~. In the opposite limit of weak ec-
centricity g is instead pushed into the high-density re-
gion according to 1 —q* —(k —I), for k~ l. This be-
havior together with the intermediate values of g* is fur-
ther illustrated in Fig. 6. It should also be remembered
here that in the high-density region the isotropic-nematic
transition may be preemptied by other transitions not
taken into account here. For instance, for 1 & k & 2. 5, g*
exceeds the value (g=0.690) at which hard disks (k =1)
will freeze. '

Having located the stable phases we can now construct
the full equation of state of the nematic phase. The sim-
plest procedure here is to use Eq. (2.2) of Ref. 23, which
in the present approximation reads

nematic phase while pl is the pressure of the isotropic
phase as given by Eq. (3.1). Notice that in (3.7), Eq. (3.1)
has to be evaluated in the region g & g* where the isotro-
pic phase is thermodynamically unstable. From Figs. 1

and 2 it is seen that this offers no particular diSculty. In
Fig. 7 we compare the results obtained from Eqs. (3.7)
and (3.1) to the MC simulations of Vieillard-Baron' and
to the numerical solution of the Percus-Yevick equation
as obtained by Ward and Lado. ' %'hile the overall be-
havior of the various results is quite similar our compar-
ison calls nevertheless for some remarks. In the comput-
er simulations of Vieillard-Baron a very weak first-order
isotropic-nematic transition was observed at a density
considerably higher than our q* which corresponds to a
continuous transition. It is well known that Vieillard-
Baron s pioneering simulations exhibit a large amount of
scatter and his results have already been criticized by
Frenkel and Eppenga. It is clearly advisable to redo
these simulations before drawing a definite conclusion.
Some reservations should also be made with respect to
our comparison with the results of %'ard and Lado. '

Indeed, while their equation-of-state data exhibit no tran-

1(n(n x»[~(r*(n x)'x) Ho(x)]

(3.7)

where y* denotes the value of y corresponding to q*
[i.e., q*=q(y*) using (3.2), although in practice q* is de-
duced from y' which is obtained directly by minimiza-
tion of the free energy] and p~ is the pressure of the

1.0

10

= 10

0.8

— 10 -4 — 0.6

0.0 0.2 0.4

10
10 0.4

I I I I I II 0 0
1 10 10 ' 10

FICx. 6. Critical packing fraction q* vs the aspect ratio k as
obtained from Eq. (3.4) (solid lines) and the asymptotic behavior
discussed in the main text (dashed lines).

FIG. 7. Reduced pressure p *=tv „vs the packing fraction
q of hard ellipses of aspect ratio k = 2, 4, and 6 (from bottom to
top) as obtained from the present theory [Eqs. (3.1) and (3.7);
solid lines for the stable isotropic and nematic phases, dashed
lines for the unstable isotropic phase] and compared to the
MC-simulation results of Vieillard-Baron (Ref. 19) (k =6, open
circles) and to the numerical solution of the Percus-Yevick
equations by Ward and Lado (Ref. 21) (closed circles). The ar-
row indicates the density for which Vieillard-Baron (k=6)
found a weakly first-order transition, while here we find a con-
tinuous transition at q* =0.33 for k =6 and q* =0.46 for k =4,
whereas Ward and Lado found no transition (see, however,
main text for important reservations). [To separate the curves,
the p

* scales have been shifted as p ( k =2) p +0.5 ( k =4),
and p +1.5 (k =6).]
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sition but are otherwise comparable to ours it should be
remembered here that these authors have solved numeri-
cally the Percus-Yevick equations for hard ellipses under
the assumption that the system is uniform and isotropic
(hence y=0) but allowing for long-range angular pair
correlations characteristic of the nematic phase. It is not
obvious how this is to be related to our definition of a
nematic as a uniform system with an anisotropic angular
distribution (y&0).

In the limit of very elongated or equivalently of very
thin ellipses (k ~ ac or k ~0) our system should behave
similarly to the hard-needle system considered by Frenkel
and Eppenga. As we have seen above, g* vanishes in
this limit and we may expect the virial expansion of the
free energy (2.8) to be a reasonable approximation. As
discussed already in I such a virial expansion will pro-
duce an Onsager-type theory. ' ' For D=2 the corre-
sponding Onsager theory turns out to be particularly sim-
ple. Indeed, taking the limit k~ ~, g~O and introduc-
ing the Onsager variable c=(2/rr)rjk (which is kept
finite) Eqs. (2.8) and (3.7) reduce simply to

I 1 I I I I I i I I I I I t I I & T~ +CD

p Io(y )
b f = y— —inIo(y)

p o„, Io(y)

dt Io 2yt
1

o

[Io(y )]

J dr Io(2y*(c )r )—p =1+c—c 1—
o . [Io(y*(c))]

(3.8)

(3.9)

0 1 2 4
C

FIG. 8. Reduced pressure p*=ppo.
l

vs the Onsager variable
c =(2/~)gk as obtained from Eqs. (3.8) and (3.9) (solid lines:
stable isotropic and nernatic phases; dashed line: unstable iso-
tropic phase) and compared to the constant-pressure MC-
simulation results (squares) of Frenkel and Eppenga (Ref. 9) for
a system of 200 hard needles of length L =~~~&~/2, so that
both systems will have the same second virial coefticient. The
low-density isotropic branch is well approximated by

p
*=2c( 1+c ), and the high-density nematic branch by p =4c.

The theoretical critical point is c

where Io(y) is the zeroth-order modified Bessel function,
Io(y)=I, (y) its derivative, ' and y*(c) the value of y
obtained by minimization of (3.8). Before attempting a
direct comparison with the hard-needle system one has
to take into account that hard ellipses have always a finite
radius of curvature whereas hard needles (considered as
hard rectangles of zero width) have not. This geometric
difference gives both systems slightly different packing
properties. A meaningful comparison between the el-
lipses and the needles can be made, in the Onsager limit,
if we compare systems with the same second virial
coefficients, Bz =o.~I~/2=L /m, where uI~ is the major di-
ameter of the ellipses and L the length of the needles.
Indeed, as seen from (3.8) and (3.9), the only thing which
matters in the Onsager limit is the rescaled density vari-
able c which can also be written c=B2p. In Fig. 8 we
compare the results of (3.8) and (3.9) to the computer
simulations of Frenkel and Eppenga for hard needles of
length L =cr~~~&rrl2. The agreement between theory and
simulations is quite satisfactory. Both approaches yield a
continuous isotropic-nematic transition with a good
agreement for the critical point c*=

—,'.
IV. RESULTS FOR A CONSTRAINED SYSTEM

OF ELLIPSOIDS

It has become customary in the literature to consider
systems where some of the motions are rigorously con-
strained to a subspace. For example, one has studied

the smectic ordering of spherocylinders which remain
strictly parallel one to each other, or else the nematic or-
dering of hard rods which are grafted on a plane. Be-
sides being easier to simulate, such systems are also ex-
pected to mimic the behavior of the original system un-
der the infiuence of very strong (in principle, infinite)
external constraints (e.g. , electric or magnetic fields).
Within the present approximate DFT it is fairly easy to
study such constrained systems. This is due to the fact
that within the present approximation the angular and
positional variables are completely factorized. To study
constrained systems it is sufficient then to distinguish the
dimensionality of the spatial variable r, say D, from the
dimensionality of the angular variable u, say d, and
reduce the value of D or d to the dimensionality of the
subspace allowed by the given constraint. For instance,
ellipsoids grafted on a plane would correspond to D =2
and d =3, or else parallel ellipsoids will correspond to
D =3 and d =1. This then immediately raises the ques-
tion of how the phase transitions known to exist in the
original system will be affected by the introduction of
such a constraint. Above we have seen that the orienta-
tional freezing of hard ellipsoids (D =d = 3 ) differs quali-
tatively from the orientational freezing of hard ellipses
(D =d=2) in that the former is first order while the
latter is continuous. From the present discussion we can
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FIG. 9. Same as in Fig. 4 but for a (D =3) system of hard el-

lipsoids ( k =6) whose angular motions are constrained to
remain perpendicular to a given direction. The packing frac-
tions are here g = 0.17, 0.18, 0.19, 0.20, 0.21, and 0.22 (from top
to bottom) and the critical value g* =0.19.

FIG. 10. Critical packing fraction g*, for the continuous
isotropic-nematic transition as a function of the aspect ratio k
for a D =2 system of hard ellipses (dashed line) and a D =3 sys-
tem of constrained hard ellipsoids with two-dimensional angu-
lar motions (solid line).

conjecture that the nature of the orientational freezing
transition (continuous or first order} will be determined
solely by the value of d (d =2 or d )2) whatever the
value of D. It should be clear, however, that the location
of the transition (q' ) may still depend on the value of D.

To illustrate this we now consider a system of hard el-
lipsoids (D = 3) whose symmetry axes (u) are constrained
to remain orthogonal to a given direction, or equivalently
remain parallel to a given plane, reducing thereby the
value of d from 3 to 2. The general theory of Sec. II can
be applied immediately to this constrained system by in-
troducing only minor modifications. For the angular dis-
tribution h(u n) we can still use the parametrization
given by Eq. (2.7) with the understanding that the direc-
tor n has now to be taken perpendicular to the direction
of the constraint. The fact that we are considering ellip-
soids (D=3) instead of ellipses (D=2) enters now
through the fact that the DCF c(~r~/cro;q) used in Eqs.
(2.2) and (2.3} has to describe hard spheres (D =3) in-
stead of hard disks (D =2). This can be achieved, for ex-
ample, by using the well-known' Percus-Yevick hard-
sphere DCF for it. As seen from Fig. 9 and expected
from the above conjecture, the orientational freezing of
the constrained hard ellipsoids proceeds now through a
continuous transition and not through a first-order tran-
sition as found in I for the unconstrained system. The
critical point g* is, however, shifted to considerably
lower values of g (see Fig. 10). From the same conjecture
we also conclude that the orientational freezing of ellip-
soids grafted on a plane (D =2, d =3) will be first order.
This then immediately raises the question of what the

transition should look like for a real nematogen adsorbed
on a real substrate. Indeed, if the molecules stick strong-
ly to the substrate they should behave like the hard el-

lipses, whereas if they have a tendency to "stand up" they
should behave more like the grafted ellipsoids.

V. CONCLUSIONS

We have proposed an approximate density-functional
theory of orientational freezing in D dimensions. The
theoretical results obtained from this theory are, as
shown in I, in good agreement with the computer simula-
tions of the isotropic-nematic transition of hard ellipsoids
(D =3). Here we have presented the corresponding re-
sults for hard ellipses (D=2) for which no extensive
simulation results exist as yet. The most striking
difference between the two systems is the change in na-
ture of the isotropic-nematic transition which proceeds
through a continuous transition for the ellipses while it
proceeds through a first-order transition for the ellip-
soids. We have also shown that, within this theory, the
width of the generally first-order orientational freezing
transition shrinks continuously to zero when the dimen-
sionality of the angular space is reduced continuously to-
wards the marginal value of 2 (from above), whatever the
value of the dimensionality of the positional space. The
latter point has important implications for the study,
within this theory, of the orientational freezing transition
in systems subject to a constraint which restrains the an-
gular motions of the molecules.
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