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We lay out an experiment to realize time-reversal invariant topological insulators in alkali atomic gases.

We introduce an original method to synthesize a gauge field in the near field of an atom chip, which

effectivelymimics the effects of spin-orbit coupling and produces quantum spin-Hall states.We also propose

a feasible scheme to engineer sharp boundaries where the hallmark edge states are localized. Our multiband

system has a large parameter space exhibiting a variety of quantum phase transitions between topological

and normal insulating phases.Because of their remarkableversatility, cold-atomsystems are ideally suited to

realize topological states of matter and drive the development of topological quantum computing.

DOI: 10.1103/PhysRevLett.105.255302 PACS numbers: 67.85.�d, 37.10.Jk, 81.16.Ta

Topological insulators are a broad class of unconven-
tional materials that are insulating in the interior but
conduct along the edges. The edge transport is topologi-
cally protected and dissipationless. This subject has
emerged as a new frontier, discovering novelties in the
single-particle band theory and providing a new impetus
to the many-body physics of strongly correlated systems.
Until recently, the only known topological insulators—
quantum Hall (QH) states—violated time-reversal (TR)
symmetry. However, the discovery of the quantum spin-
Hall (QSH) effect demonstrated the existence of novel
topological states not rooted in time-reversal violations
[1–3], and has opened the possibility to design new spin-
tronic devices exploiting the spin-dependent currents car-
ried by the edge states.

Realizing topological insulators with cold atoms is par-
ticularly attractive, and setups exploring the TR-breaking
case have been envisaged [4,5]. In this Letter, we propose a
concrete setup using fermionic 6Li subjected to a synthetic
gauge field, which provides an archetypical system for
investigating the QSH phase. There are numerous pro-
posals for engineering gauge fields [6], which generally
depend on laser-induced Raman coupling between internal
atomic states. Such a method was recently implemented [7]
for bosonic 87Rb atoms, but would lead to large sponta-
neous emission rates for the alkali fermions. Here we
describe a setup that combines state-independent optical
potentials with micron-scale state-dependent magnetic po-
tentials in an atom chip. By completely eliminating spon-
taneous emission, this approach makes practical the
realization of gauge fields for all alkali atoms. We demon-
strate that these synthetic fields lead to the purest realiza-
tion of the QSH effect and allow us to explore striking
aspects of this topological state of matter. In particular, the

stability of the topological phases against interactions can
be explored by means of Feschbach resonances.
In condensed-matter systems, the QSH effect originates

from a material’s intrinsic spin-orbit coupling [1,2]. Such
a coupling is analogous to a non-Abelian gauge fieldA ¼
A ��z, where ��x;y;z are the Pauli matrices. This observation

emphasizes that the QSH effect consists of spin-1=2 fer-
mions where the two spin components are described as QH
states at equal but opposite ‘‘magnetic fields.’’ We demon-
strate how to synthesize such a gauge field in an optical
lattice and show how it leads to QSH physics.
Our proposal for realizing a fermionic model with a

SU(2) gauge structure requires four atomic states jg1i¼
jF¼1=2;mF¼1=2i, jg2i¼ j3=2;�1=2i, je1i¼ j3=2;1=2i,
and je2i ¼ j1=2;�1=2i, in a square lattice described by the
Hamiltonian

H ¼ �t
X

m;n

cymþ1;ne
i ��xcm;n þ cym;nþ1e

i ��y cm;n þ H:c:

þ �stag

X

m;n

ð�1Þmcym;ncm;n: (1)

cm;n is a 2-component field operator defined on a lattice site

(x ¼ ma, y ¼ na),a is the lattice spacing,m, n are integers,
and t is the nearest-neighbor hopping. The Peierls phases
��x;y result from a synthetic gauge field [6] that modifies the

hopping along x̂ and ŷ. All the states experience a primary
lattice potential V1ðxÞ ¼ Vxsin

2ðkxÞ along x̂ which gives
rise to a hopping amplitude t � 0:4 kHz. A secondarymuch
weaker lattice V2ðxÞ ¼ 2�stagsin

2ðkx=2Þ slightly staggers

the primary lattice with �stag � t. These lattices, with an

approximate period of a ¼ 2 �m, are produced by two
pairs of � ¼ 1064 nm lasers, detuned from each other, and
incident on the atom chip’s reflective surface [Fig. 1(a)].
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Additionally, these beams create a lattice along ẑ with a
0:55 �m period, confining the fermions to a 2D plane.

We study the SU(2) hopping operators

�� x ¼ 2�� ��x; ��y ¼ 2�x� ��z; (2)

where we set a ¼ @ ¼ 1. The hopping operator ��y corre-

sponds to opposite ‘‘magnetic fluxes’’ �� for each spin

component, whereas ��x mixes the spins. Our setup thus
provides a SU(2) generalization of the well-known two-
dimensional electron gas in a magnetic field [8]. In order to
engineer these state-dependent tunnelings, the states jgi and
jei experience oppositely signed lattices along ŷ [Fig. 1(b)].
This can be implemented with the Zeeman shift g�BjBj of
atoms provided that jg1;2i and je1;2i have equal, but opposite
magnetic moments g. Here, the magnetic moments are
correctly signed and differ by less than 1% in magnitude
at a bias field B ¼ 0:25 G. With these states, a state-
dependent lattice potential can be generated by an array of
current-carrying wires with alternatingþI and�I currents,
spaced by a distance a. A modest I ¼ 5 �A current [9]
in wires 3 �m below the chip surface produces a 6EL

Zeeman lattice [EL ¼ h2=8Ma is the lattice recoil energy],
with a negligible 3 Hz hopping matrix element. The
assisted hopping along ŷ, with an x-dependent phase,
can be realized with an additional grid of wires spaced
by a ¼ 2 �m along x̂, with currents Im. This provides
moving Zeeman lattices with wave vector q, where Im ¼
I0 sinðqma�!tÞ, leading to effective ‘‘Raman couplings.’’
The !=2� � 228� 0:23 MHz transitions indicated with
arrows in Fig. 1(b) are independently controllable in phase,
amplitude, and wave vector by commanding concurrent
running waves at the indicated resonant frequencies.
The minimumwavelength d ¼ 2�=q of this moving lattice
is Nyquist limited by d > 2a. In the frame rotating at the

angular frequency !, and after making the rotating wave
approximation, the coupling terms have the desired form
t expðiqmaÞ. A potential gradient along ŷ detunes this
Raman coupling into resonance and is produced by shifting
the center of the harmonic potential. In the model
Hamiltonian (1) and (2), the phase for hopping along ŷ is
� ¼ qa=2� ¼ a=d in terms of physical parameters. Our
scheme also requires a contribution to the hopping along
x̂ that mixes the jei and jgi states. This can be realized using
a Zeeman lattice moving along x̂, but tuned to drive tran-
sitions between jg1i ! jg2i and je1i ! je2i. Note that the
most sensitive parameter is the resonance condition re-
quired for the ‘‘Raman couplings.’’ Its stability relies on
the absolute control of the state-dependent potentials pro-
vided by the rf magnetic fields.
The engineered Hamiltonian (1) and (2) satisfies TR

invariance, since it commutes with the TR-operator defined
asT ¼ i ��yK, whereK is the complex-conjugate operator.

This synthetic, yet robust, TR symmetry enables the real-
ization of Z2-topological insulators in cold-atom laborato-
ries. We stress that the two components of the field
operators correspond in general to a pseudospin 1=2, but
in our proposal refer specifically to spin components of 6Li
in its electronic ground state.
In the absence of the confining trapVconfðx; yÞ, the system

can be solved on an abstract cylinder. We first study the
nature of topological insulators with this partially closed
geometry and then show how they can be detected when the
trap is applied to the realistic open geometry. When � ¼ 0,
Eqs. (1) and (2) describe two uncoupledQH systems and for
generic� ¼ p=q, wherep, q are integers, the fermion band
structure splits into q subbands [8]. Our setup thus provides
amultigap system, where a variety of band insulators can be
reached by varying the atomic filling factor. As discussed
below, some of these insulators are topologically nontrivial
and feature gapless edge states. The latter are localized at
the boundaries of the sample, and correspond to gapless
excitations. When the Fermi energy EF lies inside a bulk
gap, the presence of these states is responsible for the spin
transport along the edges. The topological phases discussed
below are robust against small variations ��� 0:01 and
rely on the existence of bulk gaps, which are continuously
deformed when � is varied [8]. In Fig. 2(a), illustrating the
spectrum for � ¼ 0, the bulk bands are clearly differenti-
ated from the gapless edge states within the bulk gaps. In the
lowest bulk gap, the edge-state channel A, and its
TR conjugate B, correspond to localized excitations which
travel in opposite directions [Fig. 2(b)]. Thus the boundaries
are populated by a single Kramers pair of counterpropagat-
ing states, each corresponding to an opposite spin: this
lowest bulk gap describes a topological QSH phase.
Conversely, the next gap located at E � �t is traversed
by an even number of Kramers pairs: it is hence topologi-
cally equivalent to a normal band insulator (NI) [1].
An alternative approach to the above even-odd criteria

relies on the computation of the Z2-topological invariant

1 µm

4 µm

1064 nm beams

Gold
surface

Fermi gas

Substrate

“Raman”wires
State dependent

lattice wires

Bias field

θ2 θ1

).bra( ygren
E

Y

0

h×230 kHzh×
22

8 
M

H
z

h×50 kHz

-8 -4 0 4 8

1e

2e

1g

2g

+
1,2

1,2

B0z

z

x

a b

FIG. 1 (color online). (a) Experimental layout showing the
origin of optical (state independent) andmagnetic (state dependent)
potentials and coupling fields. A state-independent, staggered,
lattice along x̂ is formed by the separate interference of two pairs
of � ¼ 1064 nm laser beams slightly detuned from each other to
eliminate cross interference. The intersection angles are chosen so
the lattice perioddiffers by a factor of 2.Both beams reflect from the
chip surface and form vertically aligned lattices, trapping the
degenerate Fermi gas about 5 �m above the surface. Inset: chip
geometry [from top to bottom, a reflective chip surface, gold wires
aligned along ŷ placed every2 �m along x̂ (producing the jgi � jei
coupling), and finally gold wires aligned along x̂ with a 2 �m
spacing (producing the state-dependent lattice)]. (b) Atomic poten-
tials and radio-frequency (rf) driven Raman transitions.
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	 that characterizes the bulk gaps [1,3]: 	ðQSHÞ ¼ 1 and
	ðNIÞ ¼ 0. When � ¼ 0, spin is conserved and the spin
conductivity is quantized as �s ¼ e	=2� [1,2]. We verified
that the four gaps depicted in Fig. 2(a) are indeed associated
to the sequence 	 ¼ f1; 0; 0; 1g.

In our multiband system, the lattice-potential distortions
can drive direct transitions between normal and topological
insulating states. Figure 2(c) shows the bulk gaps and edge
states for successive values of the experimentally control-
lable staggered potential �stag. We demonstrate that �stag

induces a quantum phase transition (QPT) from a NI
to a QSH phase even in the uncoupled case � ¼ 0. This
transition occurs within the bulk gaps around E � �t at
the critical value �stag ¼ t. The Z2-index analysis provides

an efficient tool to obtain the full phase diagram in the
(�, �stag) plane. The phase diagram represented in Fig. 2(d)

has been obtained numerically by evaluating the index 	
inside the gap at E � �t, for small spin-mixing � < 0:1.
We observe three distinct phases: metallic, QSH, and NI.
These three phases coexist at a tricritical point situated at
� ¼ 0 and �stag ¼ t. The QSH phase occurs for a wide

range of �, indicating the robustness of this topological
phase under small spin-mixing perturbations.

The possibilities offered by cold-atom experiments enable
us to consider the strong coupling regime corresponding to
� ¼ 0:25. In this limit, the previously independent QH

subsystems (� ¼ 0) become maximally coupled, drastically
modifying the topological phase transitions presented above.
In Fig. 3(a), we illustrate the bulk bands and edge states for
�stag ¼ 0:5t and 1:5t, and the gaps are labeled according to

the even-odd number of TR pairs. In this strong-coupled
regime, a radically different scenario emerges: opposite
phase transitions occur successively in the neighboring
gaps. First, gap closings around E � �t occur and trigger
NI to QSH phase transitions at �stag ¼ t. Then, for �stag ¼
1:25t, the opposite transition QSH-NI occurs at half-filling
(E ¼ 0). To fully capture the richness of this phenomenon,
we numerically compute the index 	 for a wide range of the
parameters around � ¼ 0:25. At half-filling, the phase dia-
gram features tricritical points, and the QSH-NI phase tran-
sitions occur along a well-defined curve [Fig. 3(b)]. On the
other hand, in the neighboring gaps, the NI to QSH phase
transition is separated by an intermediate metallic region
[Fig. 3(c)]. Therefore, by manipulating �stag, EF, and the

coupling �, it is possible to explore different topological
phase transitions within the several bulk gaps. These novel
features endow the topological phase diagramwith an intrin-
sic richness and complexity, not present in other condensed-
matter realizations of the QSH effect.
We now describe a new feasible scheme to engineer a

sharp interface where edge states can be localized. This is
essential for detecting topological states in optical lattices,
where the indispensable harmonic trap used to confine
atoms destroys the edge states when VconfðedgeÞ � �, �
being the bulk gap’s width [5]. The key aspect of our
proposal exploits the fact that the hopping along the
y direction, ty, is controlled by spatially periodic rf tran-

sitions and hence can be tuned. Since the harmonic trap
has a minimal effect at the center of the trap, we divide the
chip into three regions: the central region is characterized

FIG. 2 (color online). (a) Energy spectrum of the uncoupled
system (� ¼ �stag ¼ 0 and � ¼ 1=6) computed in a cylindrical

geometry: the bulk energy bands (thick blue bands) are traversed
by edge states (thin purple lines). (b) Schematic representation of
the two edge states that lie inside the first bulk energy gap depicted
in (a). The spins traveling around the edges are, respectively,
represented by red and green arrows. (c) Energy bands EðkyÞ for
� ¼ 0 and � ¼ 1=6, with an external staggered potential �stag ¼
0:5t and1:5t. The topological phases associatedwith the open bulk
gaps are indicated. The purple rectangles highlight a NI to QSH
phase transition. (d) Phase diagram in the (�, �stag) plane in the

vicinity of the uncoupled case � ¼ 0 for EF ¼ �t.

FIG. 3 (color online). (a) Energy bands EðkyÞ for � ¼ 0:25 and
� ¼ 1=6, with an external staggered potential �stag ¼ 0:5t and

1:5t. The topological phases associated to the bulk gaps are
indicated. (b),(c) Phase diagrams in the (�, �stag) plane in the

vicinity of the maximally coupled case � ¼ 0:25 for (b) EF ¼ 0
and (c) EF ¼ �t.
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by a large hopping t0y, while the two surrounding regions

feature small hoppings ty � t0y. This can be realized by

abruptly changing the current in the ‘‘Raman’’ wires to a
much smaller value, thereby reducing the coupling matrix
element on the single lattice site scale [Fig. 4(a)]. The
resulting highly anisotropic hopping creates a sharp inter-
face where the edge states of the central region—a topo-
logical insulator—localize. By controlling the strength of
the Raman coupling, we squeeze the energy bands describ-
ing the outer parts so that they do not interfere with the bulk
gaps of the central topological phase. Since the topological
phases are confined in the center of the trap, one verifies
that the phase diagrams discussed above are valid for a
much wider range of the harmonic potential’s strength.
Figure 4(b) illustrates the discrete energy spectrum and
the typical wave functions marking three distinct regimes.
When the Fermi energy lies in the edge-state regime, the
edge states are robustly localized within the designed inter-
face. These edge states are composed of counterpropagat-
ing spin textures, in direct analogy to the spin-polarized
chiral edges states of integer QH systems. That these edge
states are chiral was unambiguously measured by detecting
a ‘‘pulse’’ of electrons as they propagated around the
sample [10]. It is simple to revisit this measurement in

cold-atom systems by using a focused laser beam to launch
edge excitations, followed by spin-sensitive imaging. To
confirm the topological insulating state, this excitation
must travel along the edge with the two spin components
traveling in opposite directions. Further evidence of these
edge states could be probed through light Bragg scattering
[5,11]. When � ¼ 0, the spin-Hall conductivity is given by
�s ¼ eðN"mod2Þ=2�, where N" is a Chern number, which

can be evaluated through the Streda formula applied to the
spin-up density [12]. The anisotropy t0y > t leads to bulk

gaps of the order �� t, requiring cold, though realistic,
temperatures T � 10 nK to detect the QSH phase.
We have described a concrete and realistic proposal of

synthetic gauge fields in optical lattices that overcomes the
severe drawbacks affecting earlier schemes. We showed
how such gauge fields are ideally suited to experimentally
realize the most transparent QSH phase and hence allow us
to explore the validity of the Z2 classification against
interaction and disorder [1,3]. In our multiband system, a
staggered potential is shown to drive gap-dependent QPT’s
which constitute a unique and rich feature. The cold-atom
realization of topological band insulators and helical met-
als proposed in this Letter will pave the way for engineer-
ing correlated topological superfluids and insulators.
Considering atoms with more internal states, it is possible
to envisage situations where the edge states present a richer
spin structure, and thus offer the opportunity to explore
new avenues and exotic topological phases.
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FIG. 4 (color online). (a) The shaded blue region displays the
position dependent coupling strength averaged over one period of
oscillation of the rf fields. The black trace depicts the Zeeman shift
from the computed magnetic field along x̂ which produces the rf
coupling (at a representative time). (b) Discrete energy spectrum
(blue dots) and typical amplitudes jc "ðx; yÞj2 in the presence of a
harmonic potential and anisotropic hopping. The open lattice has
42� 42 sites, � ¼ �stag ¼ 0 and � ¼ 1=6. The harmonic poten-

tial Vconfðx; yÞ / x2 þ y2 is such that Vconfð42; 42Þ ¼ 0:5t and the
hopping parameters of the inner and outer regions are, respec-
tively, t0y ¼ 2t and ty ¼ 0:1t. The amplitudes jc "ðx; yÞj2 mark

three distinct regimes in the associated spectrum: the outer, the
inner, and the edge-state regimes.
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