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Theory of 2�-kicked quantum rotors
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We examine the quantum dynamics of cold atoms subjected to pairs of closely spaced � kicks from standing
waves of light and find behavior quite unlike the well-studied quantum kicked rotor �QKR�. We show that the
quantum phase space has a periodic, cellular structure arising from a unitary matrix with oscillating bandwidth.
The corresponding eigenstates are exponentially localized, but scale with a fractional power L��−0.75, in
contrast to the QKR for which L��−1. The effect of intercell �and intracell� transport is investigated by
studying the spectral fluctuations with both periodic as well as “open” boundary conditions.
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I. INTRODUCTION

A recent experimental study �1� of cesium atoms sub-
jected to pairs of near � kicks using pulsed optical potentials
showed behavior surprisingly different from the well-studied
single-kick system, the quantum kicked rotor �QKR� or its
classical counterpart, the �-KR.

The QKR is possibly the most studied theoretical para-
digm of Hamiltonian quantum chaos. It has also been well
investigated experimentally, using mainly cesium atoms �2�.
Its classical limit, the �-KR, shows a gradual transition to
chaotic dynamics as a function of a kick strength K �in the
experiments, the kick strength is related to the intensity of
the optical potential�. In the large-K �chaotic� regime, typical
classical trajectories are diffusive; to lowest order, the diffu-
sion is a random walk in momentum, with diffusion constant
D� K2

2 . Hence, for an ensemble of atoms, the average kinetic
energy increases linearly with time, �p2��Dt. Short-ranged
correlations to the classical diffusion do exist, however, and
their effects have also been observed experimentally �3�.

In the corresponding quantum system, the QKR, while the
observed behavior follows the classical dynamics for early
times, the diffusion is arrested on a time scale t*�D /�2.
In experiments and calculations, an initially Gaussian mo-
mentum distribution N�p , t=0� is seen for t� t* to evolve
into an exponentially localized distribution N�p , t� t*�
�exp�−	p 	 /L�, where L� D

� . This quantum suppression of
chaotic diffusion is an important quantum chaos phenom-
enon termed dynamical localization �4�. A formal connection
between dynamical localization and Anderson localization
�the exponential localization of electronic wave functions in
disordered metals� was made in Ref. �5�.

Here we consider instead the quantum 2�-kicked rotor
�2�-QKR�: particles are subjected to pairs of kicks; the kicks
in each pair are separated by �, a small time interval while
the pairs themselves are separated by a much longer time
interval. The recent experimental study �1� showed that the
corresponding classical diffusion involves many additional
corrections from weak, but long-ranged �in time� correla-
tions. The experiment identified periodically spaced
momentum-trapping regions where the atoms absorb little
energy, interspersed by regions where they absorb energy

even more rapidly than the standard QKR system.
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In this work we extend and develop a preliminary study of
this system �6� and investigate its unexpected localization
properties and spectral fluctuations. The 2�-QKR has a novel
dynamical localization regime, with localization lengths
L��−0.75 determined by a fractional exponent �
0.75�, in
contrast to the well-known QKR, for which L��−1. We find
a similar exponent, for some parameter ranges, for the return
probabilities, P�t�= 	���t=0� 	��t��	2� t−0.75. We discuss the
origin of the 0.75 exponents.

A key feature of interest found in �1� is that the classical
momentum space is partitioned into a “cellular” structure,
with momentum regions �“cells”� of width 2	 /� determined
by the small time interval between the kicks in a pair,
bounded by porous phase-space barriers. In this work, the
cellular momentum structure in the classical phase space is
shown to correspond to a quantum time-evolution operator
with a periodically oscillating banded structure; the form of
the bandwidth is obtained analytically here.

The corresponding eigenstates can be well localized
within a single cell defined by this oscillating band; or they
may extend over several cells. Here, we characterize the
spectral behavior by two parameters: a filling parameter R,
which quantifies the fraction of a cell that a typical state
occupies, and another parameter d, which quantifies intercell
transport. We consider two types of distinct �but related� de-
localization transitions: �a� a 0→1 cell transition as eigen-
states fill one cell and �b� a 1→ several cell transition as
states delocalize from a single cell to many.

As the 0→1 cell transition occurs, all states extend into
fractal cantori-filled regions bordering each cell; we identify
a regime with spectral properties �particularly spectral vari-
ances� which, while not identical, may be compared with
“critical statistics.” The latter were first studied near the criti-
cal point of the Anderson metal-insulator transition �MIT�
�7–12�. So-called “critical statistics” are now of much cur-
rent interest in chaotic systems with classical discontinuities
�non-KAM �Kolmogorov-Arnold-Moser� systems� �13–16�;
they have been attributed to the effect of cantori �15,16�;
however, they are not expected in KAM systems, due to their
nongeneric properties. Below, we use the term critical statis-
tics in this broader sense, rather than specifically the critical
point of the MIT.

Imposing periodic boundary conditions in momentum

space effectively confines the system’s eigenstates to a single
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cell �with toroidal geometry�. Such a calculation shows a
transition from Poisson to Wigner-Dyson statistics �they are
of similar functional form to Gaussian orthogonal ensemble
�GOE� results, so are referred to as such below, although
strictly they are circular orthogonal ensemble �COE� statis-
tics�, via a new regime of intermediate statistics. We also
calculate eigenstates for the open system �nonperiodic
boundary conditions�. This calculation yields agreement with
the single-cell calculation up to the onset of delocalization,
but beyond shows rather different behavior. The spectral sta-
tistics show a signature of the onset of delocalization of the
eigenstates into multiple cells, characterized by a return to-
wards Poissonian statistics.

While some of the above results were presented in a pre-
vious Letter �6�, here we are able to present a full study of
the spectral properties. Our main new results are the follow-
ing: �1� A study of the cellular form of the unitary operator of
this system. An analytical form for the bandwidth is ob-
tained. �2� A complete numerical study of the spectral signa-
tures of delocalization from one cell to several cells. We
consider both periodic and nonperiodic boundary conditions.
�3� We present an argument that the novel regime of expo-
nential localization determined by the fractional exponent
0.75 may coincide with the dominant scaling exponent ob-
tained in the vicinity of golden-ratio cantori. We show that an
exponent �0.75 also characterizes return probabilities near
the cell boundaries.

In Sec. II, we review the classical basis for the cellular
structure of the 2�-KR. In Sec. III we introduce the time-
evolution operator and obtain an analytical form for its band-
width. In Sec. IV we investigate the dynamical localization
and the fractional exponent 
=0.75. In Sec. V we look at the
delocalization within a single cell by solving the problem
“on a torus” in momentum space and compare with critical
statistics. In Sec. VI we compare the behavior with a calcu-
lation with “open” boundary conditions and the signature for
the onset of delocalization onto many cells. Finally in Sec.
VII we give our conclusions and discussion.

II. THE 2�-KR

We consider a system with a Hamiltonian corresponding
to a sequence of closely spaced pairs of kicks:

H =
p2

2
− K cos x�

n

���t − nT� + ��t − nT + ��� , �2.1�

where ��T is a short time interval and K is the kick
strength. The classical map for the 2�-KR is then a two-kick
map

pj+1 = pj + K sin xj ,

xj+1 = xj + pj+1� ,

pj+2 = pj+1 + K sin xj+1,

xj+2 = xj+1 + pj+2� , �2.2�

where � is the time between kick pairs. It is convenient to

rescale time in units of T, so that �=T−�→1−�; hence, in
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these units, we require ��1. Note that in the experimental
realization with cold cesium atoms in �1�, 0.16���0.04.

Clearly, the limit �=1 or 0 corresponds to the standard
map, which describes the classical dynamics of the QKR:

pi+1 = pi + K sin xi,

xi+1 = xi + pi+1. �2.3�

In the experiments �1�, cold atoms in a narrow momentum
distribution peaked about �p�= p0
�2m+1�	 /� �relative to
the optical lattice� were found to absorb little energy; con-
versely, atoms prepared near p0�=2m	 experience rapid en-
ergy growth up to localization. The experimental results are
shown in Fig. 1. The momentum-trapping regions �where
little energy is absorbed� are clearly seen. The basic mecha-
nism of trapping is fairly intuitive: atoms for which p0�
= �2m+1�	 and m=0,1 , . . . experience an impulse K sin x
followed by another one 
K sin�x+	� which in effect can-
cels the first. Over time, however, there is a gradual dephas-
ing of this classical “antiresonant” process.

In summary, the slow-diffusing, porous trapping regions
provide partial barriers which partition the momentum space
of this system into momentum cells of width 2	 /�. Since �
is arbitrarily small, the cells can be arbitrarily wide. Note that
the limit �→0 corresponds to the cells becoming infinitely
wide, so the ordinary KR behavior is recovered when the
widths of typical momentum distributions are negligible
compared with the cell size.

A theoretical study of the classical diffusion over longer
times than a couple of kicks in �1,17� found long-ranged
corrections to the uncorrelated diffusion rate, D
K2 /2, not
present in the standard map. Here and in �17� we find that the
quantum and classical behaviors are both insensitive to the

FIG. 1. Experimental results from �1� showing effects of mo-
mentum trapping. Each point indicates the energy absorbed by a
cloud of cesium atoms after dynamical localization. The horizontal
axis gives the initial average momenta �p�= P0 of each cloud of
cesium atoms: i.e., each atomic cloud initially has a Gaussian mo-
mentum distribution well centered on P0. The trapping regions cor-
respond to ��p− P0�2�
0. All the data correspond to effective val-
ues of K=3.2 and �=1.
value of � �the time between kick pairs� provided it is long
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enough that consecutive impulses K sin x separated by a time
interval � are approximately uncorrelated. Our numerics be-
low use �
2 or �
1. Note that while ��2 is very close to
the asymptotic �→� behavior, for ��1 there is still some
�nonqualitative though� dependence on �. For the small time
interval �within a kick pair� we use values of �
0.1.

Below we present the corresponding quantum behavior.

III. TIME-EVOLUTION OPERATOR FOR 2�-QKR

The time evolution operator for this system may be
written

Û� = exp�− i
p̂2�T − ��

2�

exp�i

K

�
cos x


�exp�− i
p2̂�

2�

exp�i

K

�
cos x
 . �3.1�

In a basis of plane waves, Û� has matrix elements

Ulm
� = Ul

freeUlm
2−kick

= exp�− i
l2 � �T − ��

2

il−m�

k

Jl−k�K

�
�

�Jk−m�K

�
�exp�− i

k2 � �

2

 , �3.2�

where the Jn� K
�

� are integer Bessel functions of the first kind.
It is easy to see that Ulm

2−kick is invariant if the products K�

=K� and ��= �� are kept constant, while the free propagator
Ul

free=e−il2��T−��/2 simply contributes a near-random phase.
Provided that l2T� �2	, the results are quite insensitive to
the magnitude of �T−���. Hence we often find it useful to
consider the two scaled parameters K� and ��, rather than to
vary K, �, and � independently.

The result in Eq. �3.2� may be compared with the one-
kick map in Eq. �2.3�:

Ulm
�0� = exp�− i

l2T�

2

Jl−m�K

�
� . �3.3�

The one-kick matrix for the QKR has a well-studied band
structure: since Jl−m�x�
0 for 	l−m 	 �x, we can define a
bandwidth for U�0�—namely, b= K

� �this is, strictly speaking,
a half-bandwidth� which is independent of the angular mo-
menta l and m. However, this is not the case for the matrix of
U�.

It is shown in the Appendix that, assuming 	l−m	 is small,
we can write

Ulm
� � e−i�Jl−m�2K

�
cos�l � �/2�� , �3.4�

where the phase �= �
2 �l2T+�lm+�l2�+	�l−m� /2. Hence

we infer a momentum dependent bandwidth, b�p�
= 2K

� cos�p� /2�. Figure 2 shows the calculated form of both
matrices �white denotes matrix elements less than a small
threshold�. While U�0� has a constant bandwidth, the band-
width for the matrix of U� oscillates with l from a maximum
066202
value bmax= 2K
� , equivalent to twice the bandwidth of U�0�,

down to a minimum value bmin�0. In effect, since bmin�0,
U� is partitioned into submatrices of dimension N= 2	

�� ,
corresponding precisely to the momentum cells of width
�p=N� observed in the experiment.

For the QKR, the localization properties of the eigenstates
have been investigated extensively �see, e.g., �18� for a re-
view�. The eigenstates are exponentially localized, with mo-
mentum probability distributions N�p��exp�−2 	 p 	 /L�,
where the localization length L� K2

4� =b2� /4, in the large-K,
small-� limits.

For the 2�-QKR, in the limit of small bandwidth, 2K
� �N,

we define a “local” localization length for the eigenstates:

L�p� = b2�p� � /4 =
K2

�
cos2�p�/2� . �3.5�

FIG. 2. �Color online� Top: Structure of time-evolution matrix
for a quantum kicked rotor �QKR� in a basis of momentum states,
showing the constant bandwidth structure typical of a band random
matrix �BRM�. Bottom: Form of U� for our system, the 2�-QKR,
showing the oscillating bandwidth structure. Before delocalization,
eigenstates are confined within a single “momentum cell” of dimen-
sion N.
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This corresponds quite well with the oscillations seen in
the experiment in Fig. 1�a�; the energy oscillates sinusoidally
from a maximum value ��p− P0�2�
400�4L2
4K4 for
K=3.2, �=1 �in rescaled units� down to a minimum value
��p− P0�2�
0 for P0
	 /�. In contrast, Fig. 1�b� corre-
sponds to a regime where the eigenstates are tending to fill
each cell—i.e., L�p�→N�.

In �19,18� it was shown that the eigenstates of the QKR
can also be obtained using a U�0� matrix of finite dimension
N. The ratio of the localization length to N was used to
characterize the degree of “filling” of the matrix U�0�. It was
shown that for a ratio R�1 the spectral behavior is Poisso-
nian. With increasing R, a transition to GOE behavior was
observed.

For the 2�-QKR we can also introduce a “filling factor” R
defined by the ratio �19�

R =
K2

N�2 =
K�

2

2	��

. �3.6�

While for the 2�-QKR we have a natural choice of N,
determined by the position of physical boundaries �the trap-
ping regions�, the value of N in the QKR case is quite arbi-
trary. The problem is solved “on a torus” in momentum. The
momentum periodicity of the matrix is adjusted by a choice
of a rational value of the kicking period T� �see Sec. V
below�. We can then compare matrices for both U�0� and U�,
with similar N and R.

The interesting aspect of the 2�-QKR system is that, as
we show below, we can vary the coupling between the cells
independently �with some constraints on allowable param-
eters� from the degree of filling of each individual cell. We
will show that there is a particularly interesting regime where
for most eigenstates L�p��N�, but the states are still largely
trapped within a single cell. We can then “open” the bound-
aries of the cells and investigate the delocalization regime.

In order to investigate the transport between cells, we
examine the surprisingly different �relative to the QKR� pro-
cess of dynamical localization in the 2�-QKR.

IV. DYNAMICAL LOCALIZATION

A set of wave packets �all initially with N�p , t=0�
��p��
were evolved in time, using the time evolution matrix U�, for
a range of K, �, and �. Figure 3 shows typical momentum
distributions N�p� obtained after a long time �beyond the
“break time” t* for the onset of dynamical localization�. They
are modulated by an exponential envelope

N�p� � exp�−
2�p − p�

Lp

 , �4.1�

but with a regular “staircase” structure superposed. There is a
steep drop in probability at each step:

N+�p� = exp�− 2d�N−�p� , �4.2�

where N±�p� denote the probability after and before the step,
respectively. The localization length is
066202
Lp =
2	

d�
. �4.3�

The parameter d controls the transport through the cell
boundaries. It also contains the � dependence of Lp. In Fig.
4, the dependence of d on K� and h�= �� is shown. It may be
seen that to very good accuracy:

d �
����0.75

f�K��
, �4.4�

where f�K�� is some function of K�. A rough fit yields an
estimate, to within 50% or so:

FIG. 3. Typical momentum distributions N�p� found after dy-
namical localization for quantum wave packets of the 2�-QKR.
Here K=20, �=0.0175, and �=1/8 and 1/30, respectively. The
N�p� of the 2�-QKR �slightly smoothed, for both eigenstates and
wave packets� show a long-range tail of “staircase” form which on
average follows the exponential N�p��exp�−2�p−p� /Lp� where
Lp /2=N� /2d; since N� =2	 /�, the � dependence of Lp is deter-
mined by the drop in probability, d, at each cell boundary.

FIG. 4. Shows that ln�2d� plotted against ln���� lies close to
straight lines of invariant K�=K�, with constant slope �0.75. Hence
d� ����0.75 and Lp��−0.75—in contrast to the well-known QKR re-
sult Lp��−1. The dashed line indicates R
1, the one-cell filling
border �i.e., R�1 below the line�. The delocalization border �d

2� is the dot-dashed line �i.e., d�2 below the line and represents
the onset of significant coupling between cells�. Statistics are pre-

sented later, in Fig. 13, for points corresponding to the dotted line.
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d 

3.5����0.75

K�
3 . �4.5�

Hence we obtain the surprising result that for the
2�-QKR, the localization length has an � dependence with a
fractional power, Lp��−0.75. In comparison, for the QKR,
Lp��−1.

It is interesting to consider the origin of the �−0.75 behav-
ior. In fact, the first few steps of the staircase can be seen in
experiments with optical lattices of �1�. An earlier experi-
ment �21� with pairs of broad pulses �as opposed to pulses
short enough in duration to approximate � kicks� also
showed a steep drop in probability over a narrow momentum
region. This was identified as due to the presence of cantori.
The finite pulse system does not have the momentum peri-
odicity �and hence the generic character� of the 2�-kicked
system and is effectively integrable at large p. Nevertheless,
the classical dynamics is similar to the 2�-QKR for p�0.
The QKR shows analogous behavior: for pulses of finite du-
ration, the classical dynamics is similar to the �-kicked sys-
tem for p small.

We can examine the classical behavior in the trapping
regions. Starting from the two-kick map, Eq. �2.2�, and ex-
panding our initial momenta around the trapping momenta
pj 
 Pn+�pj where Pn= �2n+1�	 /�, we can write

pj+2 = pj + K sin xj + K sin�xj + �2n + 1�	 + �pj� + K� sin xj� .

�4.6�

We can expand the trigonometric expressions, making
small-angle approximations, if we assume �pj��2	 and
K��2	. In the trapping regions we then obtain an approxi-
mate one-kick map

pj+2 
 pj − K2 �

2
sin 2xj − K�pj� cos xj ,

xj+2 
 xj + pj+2T . �4.7�

The small-angle assumption �pj��	 constrains �p, the
effective width of the trapping region,

�p � 1/� . �4.8�

A study of the Poincaré surfaces of section �SOS� may be
found in Ref. �17�. To summarize, at the center of the trap-
ping region, where �pj =0, only the sin 2x kick in Eq. �4.7� is
significant, so the classical SOS show structure very similar
to a “period-doubled” standard map with impulse V��x�
=Keff sin 2x where Keff is an effective kick strength, Keff


K2 �
2 . However, farther out within the trapping region, the

SOS show that it is the cos x kick in Eq. �4.7� which is
dominant and the island structure is similar to that of a stan-
dard map with impulse

V��x� 
 K�p� cos x . �4.9�

Given the importance of the K� scaling seen in Fig. 4
�rather than a K2� scaling� we suggest that the Keff cos x form
of Eq. �4.7� determines the quantum behavior. This implies

that regions with
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K�pj� � K2 �

2
�4.10�

dominate transport. This will be the case if �pj is large; from
Eq. �4.8�, we deduce that this implies the criterion K��1.
However, if K� is too small, the phase space will be too
regular. Hence, values of K��0.1–0.3 seem indicated.

In any case, the resonance structure in much of the trap-
ping regions is always locally similar to the standard map,
but with a varying effective kick strength �and phase of the
impulse�. For the standard map the last invariant phase-space
manifolds correspond to p / �2	�
� or 
1−� where � is
the golden ratio. The fractal remnant of this last manifold
plays a role in transport in the standard map for K
1–3.
Here, this would suggest �pK��1–3 and �p�10 �22�.

The scaling properties of the phase space around the
golden-ratio cantori were investigated in Ref. �23�. A char-
acteristic exponent �s�0.75 was found in directions domi-
nated by elliptic fixed points. We term this the stable or
dominant exponent. On the other hand, �u�0.66 was found
in directions dominated by hyperbolic fixed points. We term
this the unstable or subdominant exponent.

Previous studies of the QKR �24� found a L��+� scaling,
with �
�u
0.66, for momenta near the range 1−�
� pT / �2	���. In �25�, a L��+�u scaling was associated
with a tunneling-type process �termed “retunneling”�. An
abrupt change to a regime with L��−�, with ��0.5, was
also observed and was attributed to a localization process
which dominates when transport through the fractal cantoral
regions is more “open.” In that work, it was argued that the
process has similarities with dynamical localization.

The 2�-QKR results, with a negative sign on the exponent
L��−0.75, correspond to a localization regime and are con-
sistent with quantum probability “sticking” mostly to direc-
tions where there are �or were, at lower K� elliptic fixed
points. One might speculate why no previous studies uncov-
ered a regime dominated by �s; we note that in �24,25� the
L��+0.66 scaling refers to a local region. These are regimes
where there are many stable islands and overall diffusion in
each phase-space manifold is either absent or rather slow.
Here, in contrast, part of phase space is taken by very cha-
otic, fast-diffusing regions, with trajectories which roam
freely over large areas of phase space; the only appreciable
localization occurs at the stabler parts of Cantoral remnants.

We also calculated return probabilities P�t� of the quan-
tum wave packets with time, averaged over 100 initial start-
ing conditions close to the center of the trapping region,

P�t� = �1/100��
l1

l2

�Pl�t�� , �4.11�

where Pl�t�= 	���t� 	�l�t=0��	2. The initial condition was
taken to be an angular momentum eigenstate �l�t=0�= 	l�.
The results were averaged from l1=	 /�� to l2= l1+100. Fig-
ure 5 shows plots of P�t�, which show that P�t� decays as
t−0.75 up to the break time. For the lowest values of K�, the
t−0.75 decay is not apparent since the wave packet localizes

almost immediately.
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A well-known relation between power-law return prob-
abilities and the spectral statistics �variances� has been inves-
tigated for “critical statistics” in non-KAM billiards or the
Anderson transition �8,10,12,16�. While the present systems
has important differences �it is a smooth KAM system; it has
a cellular structure and an oscillating band unitary matrix�,
the preeminence of the single fractional exponent motivates
an investigation of the spectral properties. A mixed phase-
space regime �with a mixture of a chaotic regions and stable
islands� can indeed exhibit fractional return probabilities
�26�, but it will typically have many competing exponents,
characterizing only local regions of phase space. The quan-
tum localization properties are thus not generic and depend
sensitively on the detailed phase-space structure. To our
knowledge, there is no similar study of a KAM system so
globally characterized by a single fractional exponent.

We investigate the statistics as a function of the filling
factor R and the intercell transport parameter d. Calculations
were done for two types of boundary conditions: periodic
boundary conditions and “open” �nonperiodic� boundary
conditions. These are discussed in turn below.

V. EIGENSTATES: PERIODIC BOUNDARY CONDITIONS

We may keep the dimension of the unitary matrix U to a
finite value N by making the momentum periodic with period
N�, following the approach in �19,20,18�. In order to pre-
serve unitarity we must use a resonant value of ��. We take

FIG. 5. Return probabilities for wave packets prepared near the
center of the trapping regions indicating a P�t�� t−0.75 decay, before
localization. The dashed straight lines indicate a slope of −0.75.
Note that at the lowest value of K�=0.25, wave packets prepared at
the center of the trapping region do not spread in momentum. �a�
�=1/8 and �b� �=1/16.
066202
�� =
2	

N
�5.1�

and then

�� = � �T − �� = M � � , �5.2�

where M is the closest integer to �T−�� /�. We then construct
a unitary matrix with elements:

Uln�� j� =
1

N
exp�− i� j�l + �x�2/2�

� �
k=−N1

N1

exp�i
K

�
cos

2	

N
�k + �p�


�exp�2	i

N
�k + �p��l − n�
 . �5.3�

We may have �1= �� or �2=m�1. Here N1= �N−1� /2. We
construct the full two-kick matrix of dimension N:

U��N� = U��1�U��2� , �5.4�

which is then diagonalized to obtain N eigenvalues and
eigenstates. We may compare the results with the QKR
equivalent

U0�N� = U�T � � . �5.5�

Here �=2M	 /N, where M is an integer �noncommensurate
with N� which determines the momentum width of the
matrix—i.e., N� =2M	. Unlike the 2�-QKR, there is no un-
derlying physical cellular phase-space structure to justify the
choice of a particular M ,N.

Note the dependence of the matrix elements on two Bloch
phases: �p is a Bloch phase in the p direction while �x, the
Bloch phase in the x direction, is the quasimomentum. If
�p�0,	, parity is not a good quantum number and we may
use all eigenvalues in the statistics, regardless of parity. It is
customary �e.g., �26,16�� to calculate spectra for several �p to
improve significance. In practice, we found that for the
2�-QKR, even for sizable K, there are very localized states
which are too removed from the boundaries and generate
pairs of parity-related pairs of near degeneracies. The parity
conservation effects is more effectively eliminated by, in ad-
dition to �p�0,	, also having �x�0,0.5. The cantori effects
we investigate are not affected by a nonzero quasimomen-
tum, and thus we average over several quasimomenta.

Effects of cantori in 0\1 cell transition:
QKR versus 2�-QKR

We have calculated eigenvalues of the unitary matrix for a
range of values of M, N, and K. Below we compare nearest-
neighbor �P�S�� distributions and spectral variances �2�L�
= �L2�− �L�2, of the 2�-QKR with those of the QKR as a
function of the filling factor R=K2 /N�2. We present results
for M =25 �i.e., �=0.04� and values close to N=625,1250,
and 2500 �one cannot have N ,M commensurate�.

In Fig. 6 we show typical nearest-neighbor spacings
�NNS� distributions for R�1, R�1, and R�1. For both
-6
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single- and double-kicked systems, the behavior evolves
from Poissonian to GOE, via an intermediate distribution at
R�1. While the 2�-QKR does not exactly show the inter-
mediate semi-Poisson form, it can get quite close, and so a
comparison is helpful. Here we quantify the deviation of
P�S� from PP�S� and PGOE�S�, its Poisson and GOE limits,
respectively, with a quantity Q�27�:

1 − Q =

�
0

S0

�P�S�� − PGOE�S���dS�

�
0

S0

�PP�S�� − PGOE�S���dS�

. �5.6�

Hence Q=0 indicates a Poisson distribution, while Q=1 sig-
nals a GOE distribution. We take S0=0.3. In Fig. 7 we plot Q
as a function of R. We find that while the QKR moves rap-
idly from Poisson to GOE for R�1, the 2�-QKR curve
abruptly changes slope and the distribution evolves much
more slowly towards the GOE. We identify this as the regime
where delocalization of the eigenstates over the whole cell is
constrained by the cantori regions bordering the cells. A fit to
alternative functions such as the Berry-Robnik function�28�
gives a qualitatively similar picture.

In Fig. 8 we show that the variances are close to Poisso-
nian �2�L�
L for small R and are close to the GOE for large
R. However, for R�1 there is a regime with nearly linear
slope, �2�L�
�L, for 1�L�N. We fitted the slopes of the
�2�L� to the best straight line in the range L=7→37. We

FIG. 6. Typical nearest-neighbor distributions P�s�, for periodic
boundary conditions, for the 2�-QKR as a function of the filling
factor R. The distributions are Poissonian for small R, intermediate
for R�1, and GOE for sufficiently large R. Although the interme-
diate case never exactly follows the semi-Poisson distribution
�P�s�=4se−2s�, a comparison is useful, so is shown in the middle
figure.
note that the graphs are not necessarily very linear every-
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where: in certain regimes there is a pronounced curvature.
Nevertheless, the procedure does give an indication of the
average slope. While the N=2500 results may remain linear
out to L�100, the N=625 results saturate at much lower L;
hence, the L=7–37 range is a compromise, good for all three
cell sizes.

In Fig. 9 we plot the slopes � �the level compressibilities�
for the 2�-KR. We see that above R
1 there is, relative to
the QKR, a plateau in the level compressibility, where �
�0.125. This behavior is completely absent in the QKR: for
R
1, the values of � evolve rapidly towards the GOE limit.

We recall the results �8� for the level compressibilities of
the Anderson MIT. It is predicted that asymptotically the
variances have a linear form, for L�1:

FIG. 7. Comparison of the transition from Poissonian �Q=0� to
GOE �Q=1� NNS statistics for the QKR relative to the 2�-QKR, as
a function of the filling factor R=K2 /N�2. While the QKR makes a
rapid transition from Poisson to GOE for R
1, the 2�-QKR, on the
other hand, shows a clear change in slope where delocalization of
the quantum eigenstates is hindered by the fractal cell borders. Here
M =25; the values shown in brackets are approximate values of �
=2	M /N; to avoid commensurability of M and N, actual values of
N used were 2513, 1259, and 629.

FIG. 8. Typical number variances �2�L� as a function of R for
the 2�-QKR. We use the best fit to the slope to estimate the level
compressibility �. For R small, we have Poissonian statistics and
�2�L�
�L
L. For sufficiently large L, �2�L�� ln�L� is far from
linear; in this case, the value ��0.05 is simply an indication that
�2�L� is close to the GOE limit. We identify an intermediate regime
where �2�L���L for 1�L�N �here N=2513� with ��0.13, cor-

responding to a similar range of R as the regime seen in Fig. 7.
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�2�L� � �L , �5.7�

where

� � �1 − D2/D�/2 � 1 �5.8�

and D is the spatial dimension. D2 is a multifractal exponent
related to the inverse participation ratio. This behavior cor-
responds �8�, in the MIT, to return probabilities which decay
as P�t�� t−D2 and is considered a “fingerprint” of critical
systems, even in systems without disorder such as the non-
KAM billiards �16�.

Here we calculate the return probabilities using the eigen-
states 	�� and eigenvalues ei�� of the N-dimensional matrix.
We calculate

Pl�t� = �
�

	ei��	�l	��	2	2 �5.9�

and average Pl�t� over different starting conditions in the
trapping regions 	l�, exactly as in Eq. �4.11�.

We note that in Eq. �4.11�, the P�t� are obtained indepen-
dently of the eigenstates by direct time evolution of a wave
packet in the unbounded system. The behavior in Fig. 10 is
very similar to that in Fig. 5, and again a decay rate P�t�
� t−0.75 is apparent. However, P�t� in Fig. 10 saturates to a
larger value than for Fig. 5, where the wave packets are not
restricted to a finite cell. For the finite-N case P�t�→2/N as

FIG. 9. The slopes ��� of the variances �2�L� as a function of
the filling factor R=K2 /N�2. This figure compares the transition
from Poissonian ��=1� to GOE ���0.05� for the QKR with that of
the 2�-QKR. Parameters are similar to Fig. 7. The QKR makes a
rapid transition to GOE at R
1 �with the exception of the small
minimum seen at R
1 and N=2500 which corresponds to a clas-
sical antiresonance K
	�. The 2�-QKR, on the other hand, shows
an approximate plateau near �
0.125, the value that would be
expected from the “critical” statistics relation �
1/2�1−D2� if
D2
0.75.
t→� �the factor of 2 is attributed to weak localization �29��.
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We also observe that for R
1, in the regime with �
�0.125, wave packets started in the trapping regions localize
too rapidly to demonstrate the power-law decay.

We see here that ��0.125= �1−
� /2 would imply 

�0.75, close to the exponent we obtained previously. It is
tempting to suggest that here 
, the dominant exponent near
the golden-ratio cantori, may play a role equivalent to the
multifractal exponent D2 in the Anderson MIT. Nonetheless,
it should be noted that this purely numerical observation is
not conclusive.

Unlike the billiard systems, here phase space is not homo-
geneously filled with cantori. However, underlying classical
trajectories may spend considerable time trapped within the
fractal trapping regions which border the cell. The corre-
sponding typical quantum states for R�1 also sample the
cantori region, but localize inhomogeneously in the fractal
regions. As R increases, however, the distribution delocalizes
into a more typically ergodic regime and the variances
evolve towards the GOE ��2�L�� ln L� limit.

VI. OPEN BOUNDARY CONDITIONS: DELOCALIZATION
FROM SINGLE TO MULTIPLE CELLS

We diagonalize the matrix of U�, with elements given by
Eq. �3.2�, in a basis of a given parity and dimension Ntot
=10 000�N, for various K, �, and �, and obtain all eigen-
values and eigenvectors. For our calculations the cell dimen-
sions are in the range N
600–2500 and hence each diago-
nalization spans Ntot /N cells �fewer are kept since states in
the cells at the edges of the matrix are discarded�.

For instance, results presented below have �=0.04 and
�=1/8. Hence each cell contains N=2	 / ����
1257 states,
and so each diagonalization yields up to seven complete
cells. Each full spectrum of length N =10 000 is now split

FIG. 10. Return probabilities for the finite-dimensional problem,
for similar parameters to Fig. 5. The P�t� still decay as t−0.75 for t
� t*; but P�t�→2/N for t→�.
tot
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into eight single-cell subspectra. We assign the ith eigen-
value to the mth cell if

�2m − 1�
	

�

 pi � �2m + 1�

	

�
. �6.1�

We calculate P�S� and variances separately for each of these
subspectra of length N=1257. We then average the statistical
distributions of 10–40 cells to obtain smoother distributions.
We diagonalize U� for basis states between l=10 000 and
20 000 as easily as states between 70 000 and 80 000, for
example, so as large a number of sets of seven subspectra
may be obtained as required. For the most delocalized spec-
tra �with K=14� only a single central cell of about 1250
states was sufficiently well converged to be used for statis-
tics.

Figure 11 investigates how much of the momentum prob-
ability for each eigenstate is contained in the cell it was
assigned to: for R
1 and d�2 the eigenstates are essen-
tially fully contained within the cells they are assigned to.
However, at the onset of delocalization, this procedure be-
gins to fail; the expectation value pi of an eigenstate may
assign it to the mth cell; however, most of its probability may
in fact be trapped in neighboring cells. This means that in-
creasingly, the eigenvalues of the subspectra become uncor-
related and we can expect to see a return towards Poissonian
statistics.

The apparent “failure” of this procedure, in fact, provides
a good marker of delocalization from one to several cells. In

FIG. 11. The effect of delocalization onto multiple cells: each
point indicates the total probability of finding a given eigenstate in
the cell which contains its average momentum �p�. Well below the
delocalization border �d�2�, all states are fully contained in their
assigned cell �barring a few edge states at the boundary of each
cell�. But at the “delocalization border” �d
2�, a proportion of
states have appreciable probability in neighboring cells—in fact,
about 2% of states have less than half of their probability in their
assigned cell. Results correspond to �=0.04, �=1/8, and K=3 �up-

per figure� or K=7 �lower figure�.
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contrast, the periodic boundary conditions presented in the
previous section could indicate only the degree of “filling” of
each single cell. Finally, we compare the spectral fluctuations
for the two different types of boundary conditions �periodic
versus open� in Figs. 12–14. In Figs. 12 and 13 we show that
the spectral variances are insensitive to the boundary condi-
tions for d�2. However, for d�2 the variances with peri-
odic boundary conditions gradually make a transition to
GOE behavior, while the variances for the “open” system
begin to return back to Poissonian statistics. Figure 14 shows
that the NNS distributions closely follow the same trends.

VII. CONCLUSIONS AND DISCUSSION

In conclusion, we have investigated the quantum behavior
of atoms exposed to pairs of � kicks and shown that the
cellular structure arises from a novel oscillatory band struc-
ture of the corresponding unitary matrix. One consequence is
a new type of localization-delocalization transition not seen
in the QKR, where states delocalize from a single cell to
many, associated with a characteristic spectral signature �the
return to Poissonian statistics�.

We have also found certain scalings L��−0.75 and P�t�
� t−0.75 which we argue result from the bands of cantori
present on the borders of each cell. We argue also that the
0.75 exponent may be identified with the dominant stability
exponent obtained previously near golden-ratio cantori. We
show that the spectral fluctuations �both the NNS and spec-
tral variances� show important differences with the QKR in
regimes where the delocalization of eigenstates is hindered
by cantori.

By implication, the study shows that the behavior of cold
atoms in double-pulsed standing waves of light is quite dif-

FIG. 12. The effects of delocalization onto multiple cells on the
spectral variances. Variances obtained with periodic boundary con-
ditions �N�1250� are compared with “open” boundary conditions
�BC’s� �Ntot=10 000, N�1250, M =51�. For d�2, the eigenstates
are well confined within a single cell and there is no significant
difference between “open” and “closed” BC’s. When d�2, the re-
sults are sensitive to the BC’s. While the “closed” �periodic� BC’s
results tend to the GOE, the “open” results revert towards Poisso-
nian statistics.
ferent from the single-pulsed systems. Some aspects were
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already identified in the experiments of �1� and may have
applications in atom optics and atom chips, possibly as a
mechanism for selecting atoms according to their momen-
tum.
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APPENDIX: DERIVATION OF THE APPROXIMATION
[Eq. (3.4)] FOR Ulm

�

In this appendix Eq. �3.4� will be derived for small �. The
crucial point in this derivation is that contributions to the
sum in Eq. �3.2� of terms where

	k − l	 � K/ � , 	k − m	 � K/� �A1�

are negligible. This implies that for terms that contribute
appreciably, k is close to l and m. Therefore the correspond-

ing operator k̂= p̂ /� can be written in the form

FIG. 13. Upper figure: the variances ��2 statistics� for open
BC’s can pass close to the so-called “critical” regime of near-linear
variances, with a slope close to ��0.125. Lower figure: compari-
son of values of � for “open” BC’s �a unitary matrix of dimension
Ntot=10 000 is diagonalized to obtain cells of dimension N�1250�
with “closed” BC’s �a finite matrix of dimension N�1250, M =51
is diagonalized, with periodic BC’s to retain unitarity�. The results
are in excellent agreement before delocalization d�2. After delo-
calization d�2, the “closed” BC’s tend to GOE, the “open” BC’s
tend to Poissonian behavior, providing a clear signature of delocal-
ization into multiple cells.
066202-
k̂ = k0 + k̂1, �A2�

where k0 is a number close to l and m. Appreciable contri-
butions to the sum are found only for

	k1	 
 K/ � . �A3�

If ���K / � �2�1, as is the case for small �, the condition
��k1

2�1 is satisfied, justifying the approximation

exp�− i
p̂2�

2�

 = exp�− i

��k̂2

2



� exp�− i
��k0

2

2

exp�− i � �k0k̂1� . �A4�

Substitution in Eq. �3.1� with k̂1=−i� /�x and making use of
the fact that exp�−i��k0

�
�x

� is the shift operator, one finds

Ulm
� � e−i��/2���T−��l2+�k0

2��l	e−i�K/���cos x+cos�x−��k0��e−i��k0k̂1	m� ,

�A5�

FIG. 14. Behavior of NNS distributions equivalent to the results
in Figs. 12 and 13. The results are insensitive to BC’s before the
onset of delocalization onto multiple cells d�2. After delocaliza-
tion d�2, the “closed” BC’s yield the GOE and the “open” BC’s
tend to more Poissonian behavior.
which reduces to
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Ulm
� � e−i��/2���T−��l2+�k0

2+2�k0m�

��l	e−i�2K/���cos�x−��k0/2�cos���k0/2��	m� . �A6�

The matrix element is calculated with the help of the identity

1

2	
�

−	

	

dxe−i� cos�x−��eimx = eim��−	/2�Jm��� , �A7�
resulting in

�12� F. Evers and A. D. Mirlin, Phys. Rev. Lett. 84, 3690 �2000�;

066202-
Ulm
� � e−i��/2���T−��l2+�k0

2+�k0m+�k0l�ei�	/2��l−m�

�Jm−l�2K

�
cos�1

2
� �k0�
 . �A8�

Indeed appreciable contributions are found only for 	m− l 	
�2K /�, in agreement with �A1�. Since k0 is close to l and m,
within the approximation of this appendix , it can be replaced
by one of these. The substitution k = l results in Eq. �3.4�.
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