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Abstract

Isotopic studies of multi-taxa terrestrial vertebrate assemblages allow determination of pa-
leoclimatic and paleoecological aspects on account of the different information supplied by
each taxon. The late Campanian-early Maastrichtian “Lo Hueco” Fossil-Lagerstétte (central
eastern Spain), located at a subtropical paleolatitude of ~31°N, constitutes an ideal setting
to carry out this task due to its abundant and diverse vertebrate assemblage. Local 6180Po4
values estimated from &'80p4 values of theropods, sauropods, crocodyliforms, and turtles
are close to 5'80,4, values observed at modern subtropical latitudes. Theropod 8'2000
values are lower than those shown by crocodyliforms and turtles, indicating that terrestrial
endothermic taxa record 5'®0y,0 values throughout the year, whereas semiaquatic ecto-
thermic taxa 8'80y.0 values represent local meteoric waters over a shorter time period
when conditions are favorable for bioapatite synthesis (warm season). Temperatures calcu-
lated by combining theropod, crocodyliform, and turtle 5'804,0 values and gar '20po4
have enabled us to estimate seasonal variability as the difference between mean annual
temperature (MAT, yielded by theropods) and temperature of the warmest months (TWMs,
provided by crocodyliforms and turtles). ATWMs-MAT value does not point to a significantly
different seasonal thermal variability when compared to modern coastal subtropical meteo-
rological stations and Late Cretaceous rudists from eastern Tethys. Bioapatite and bulk or-
ganic matter '3C values point to a C3 environment in the “Lo Hueco” area. The estimated
fractionation between sauropod enamel and diet is ~15%.. While waiting for paleoecological
information yielded by the ongoing morphological study of the “Lo Hueco” crocodyliforms,
5'3C and 5'80¢ 3 results point to incorporation of food items with brackish influence, but
preferential ingestion of freshwater. “Lo Hueco” turtles showed the lowest 5'3C and
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5'80¢03 values of the vertebrate assemblage, likely indicating a diet based on a mixture of
aquatic and terrestrial C5 vegetation and/or invertebrates and ingestion of freshwater.

Introduction

The Mid-Cretaceous thermal maximum, which peaked in Turonian times and constituted the
warmest climate warming of the last 144 Ma [1-2] was followed by a long-term cooling trend
beginning at the early Campanian and detected in both the terrestrial and marine realms [3-8].
This trend was characterized by alternating cooling and warming episodes across the Campa-
nian and Maastrichtian [9-11]. In spite of this cooling pattern, overall warmer conditions than
today persisted until the end of the Cretaceous, as suggested by high atmospheric CO, concen-
trations and a lack of permanent ice at the poles [11-14]. During this time, enhanced ocean
heat transport along with the maintainance of a low albedo at high latitudes, due to the pres-
ence of forests, contributed to a reduced latitudinal thermal gradient [15].

Although stable isotope studies on Cretaceous terrestrial vertebrate taxa can help to better
understand continental climatic and environmental conditions, they are not as common as
those performed on Cenozoic vertebrate taxa due to the scarcity of adequate sample sizes of
fossil material, the destructive nature of the stable isotope technique, as well as pervasive diage-
netic effects observed in fossils of this age. Some stable isotope studies on Cretaceous vertebrate
assemblages have focused on the analysis of 8'*0 on the bioapatite with the aim of characteriz-
ing paleoclimate [16-18], faunal behavior and/or paleohydrology [18-20], and metabolism
with special interest on dinosaurian body temperature [21-23]. '°C values have been used to
make inferences on paleoecology and to study the fractionation between diet (vegetation) and
dinosaur enamel [24-26]. Domingo et al. [27] carried out a preliminary stable isotope study on
the “Lo Hueco” vertebrate paleofauna (central eastern Spain) as a first approach to evaluate the
potential, validity and degree of preservation of the bioapatite from this locality and as a first
approach to characterize paleoclimatic (§'*Oyp,0, temperature) and paleoecological-
/palecenvironmental (diet, type of vegetation) variables existing during the late Campanian-
early Maastrichtian in the southeastern area of the Iberian region. Albeit the Late Cretaceous
Iberian geological record shows a good representation of vertebrate localities and outcrops,
there are very scarce stable isotope studies on this area and time period [27-28]. Therefore, the
isotopic investigation of the “Lo Hueco” vertebrate assemblage provide valuable data, which
may shed light on climatic and environmental conditions that occurred in this subtropical set-
ting located in the Tethys realm.

The main objectives of our study are three-fold: 1) to determine seasonal thermal variability
in the Iberian Late Cretaceous, 2) to characterize the isotopic offset between §'*C values of di-
nosaur tooth enamel and their diet (A">Cepamel-diet)> and 3) to unveil dietary and habitat affini-
ties for “Lo Hueco” crocodyliforms and turtles. The richness and diversity of the Late
Cretaceous “Lo Hueco” Fossil-Lagerstitte [29-30] have allowed us to approach the aforemen-
tioned questions by performing multi-taxa stable isotope analyses (8"80po4, 800 and
8'°C) on dinosaurs, crocodyliforms, turtles, gars and bulk organic matter. Most isotopic studies
dealing with Mesozoic vertebrates focused on one or two groups [16-17, 19, 25-26, 31-32], so
the advantage of considering co-existing taxa relies on the fact that they can shed light on dif-
ferences in habitat and resource utilization, informing about climatic, environmental and eco-
logical variables such as hydrology of the area, seasonality, type of vegetation, resource/habitat
overlap and/or partitioning.
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While different paleontological, geochemical and modelling studies offered a good charac-
terization of long-term climatic variability for the Middle and Late Cretaceous (e.g., [1-3, 6, 16,
33], among others), the evaluation of seasonal thermal variability has proven challenging on
account of the lack of proxies capable of recording intra-annual information. Controversy
arises when discerning whether Middle and Late Cretaceous climate was more seasonally ther-
mally equable (low mean annual range of temperatures) [34-39], although, there seems to be
an agreement indicating a higher seasonal thermal variability (i.e., lower equability) during the
colder Late Cretaceous in comparison to the warmer Middle Cretaceous [38].

8'%0 values in the phosphate and carbonate fractions of vertebrate bioapatite record the
880 value of their body water (8"®Opy). In the case of terrestrial endothermic species, 8'*Oyy
is a reflection of oxygen uptake (inspired O, and water vapor, drinking water, dietary water, ox-
ygen in food dry matter) and loss (excreted water and solids, expired CO,, and water vapor).
Dinosaur metabolism is a controversial issue that remains under debate [21, 40-45]. Fricke
and Rogers [22] performed 8'®Ope4 analyses on Late Cretaceous theropods and crocodilians
from fossil sites located at different latitudes and found that the reconstructed theropod slope
of the 8'*Opy-latitude relationship was steeper than the one observed for crocodilians (ecto-
therms) and similar to that estimated for present-day endotherms such as mammals and birds.
Amiot et al. [23] used a similar approach to that of Fricke and Rogers [22] on a wider suite of
Cretaceous dinosaurs and obtained body temperatures of 36-38°C for dinosaurs inhabiting
high and low latitudes. Other authors such as O’Connor and Dodson [46] and Gillooly et al.
[47] argued that dinosaur body temperature depended on body mass (inertial homeothermy),
ranging from 25°C at 12 kg to 41°C at 13,000 kg [47]. However, Fricke and Rogers [22] ob-
served similar metabolisms for Late Cretaceous theropods showing different body mass (e.g.,
Albertosaurus: 1.3-1.7 tons; Majungasaurus: 1.5 tons; Saurornitholestes: 10 kg). Amiot et al.
[23] observed a widespread endothermy in different groups of Late Cretaceous dinosaurs (the-
ropods, sauropods, ornithopods, and ceratopsians). Eagle et al. [48] performed clumped iso-
tope analyses on sauropods and estimated body temperatures between 4 and 7°C lower (36 to
38°C) than those proposed by Gillooly et al. [47], arguing that sauropods were able to regulate
their body temperatures, preventing overheating. Ectothermic semi-aquatic taxa, such as croc-
odiles and turtles, form their bioapatite within a narrow thermal window, and their bioapatite
8'%0 is a reflection of the 8'®Oyy,0 value of warm months when conditions are favorable for ap-
atite synthesis [20, 49-50]. In the case of ectothermic aquatic taxa (gars), bioapatite forms in
isotopic equilibrium with ambient water and since they do not thermoregulate, their bioapatite
8'%0 values record both §'*Oyy, and ambient temperature independently of body temperature
[51]. Therefore, it is possible to estimate temperature values from gar 8'®0 values if the
8"80y1,0 value is independently estimated [20, 51-52].

Studies dealing with dinosaur 5'>C values have mainly focused on herbivore taxa (e.g., [24-
26, 53]). These authors obtained relatively high 8'*C values for hadrosaurian and ceratopsian
dinosaurs for a typical C; environment (C, plant expansion took place in the late Miocene-Pli-
ocene). Plants following the C; or Calvin-Benson photosynthetic pathway (trees, shrubs, forbs,
and cool-season grasses) strongly discriminate against '*C during fixation of CO,, yielding tis-
sues with 8'°C values averaging ~ -27.5%o (VPDB) (ranging from -36%o to -22%o). The most
negative 5'>C values of this range (-36%o to -30%o) reflect closed canopy conditions due to re-
cycling of '*C-depleted CO, and low irradiance. The highest values (-25%o to -22%o) corre-
spond to C; plants from high insolated, arid, or water stressed environments [54-56]. When
considering fossil taxa, it is necessary to account for shifts in the 5'°C value of atmospheric
CO; (8"Cyimcon), the source of plant carbon, including anthropogenic modification due to
fossil fuel burning, which has decreased the 8'*C value of atmospheric CO, from a value of
—6.0%o in the Late Cretaceous [57] to a modern value of —8.0%o [58-59]. Accounting for these
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shifts in baseline and assuming the modern fractionation of ~ -19.5%o between 8"%Coimcon
and C; vegetation 8"2C values [60], Late Cretaceous mean 8'>C value for Cs plants would be ~
-25.5%o (ranging from -34%o to -20%o), with the most negative 8"°C values (-34%o to -28%o)
reflecting closed canopy conditions and the highest values (-23%o to -20%o) reflecting high
insolated, arid, or water stressed environments. Studies of 5'>C offsets between terrestrial verte-
brate enamel and diet (A"Cepamel_dier) have been mainly carried out on modern mammalian
taxa, which allows for extrapolation on paleontological studies dealing with mammals, so that
a consistent A">Cpamel.diet Of +12 to +14%o has been observed between herbivore mammalian
tooth enamel and vegetation 8"°C values [61-63], while the difference between mammalian
carnivore and herbivore tooth enamel 8'>C values (A">C,rmivore-herbivore) has been proposed to
be ~ -1.3%o [64]. Johnson et al. [65] and Angst et al. [66] also investigated this tissue-diet frac-
tionation on modern birds by analyzing ostrich eggshells and diet, obtaining a A"*Ceggshell diet
value of +16%o and +13.4%o, respectively. The lack of modern counterparts in the case of dino-
saurs makes it difficult to assess this offset and we can just rely on the fossil record geochemical
imprint to determine tissue-diet fractionation values. In this vein, analyzing herbivore dinosaur
bioapatite and bulk organic matter 8"°C values, Fricke and Pearson [25] and Fricke ef al. [26]
argued that A8"C.pameldiet for ornithischian dinosaurs was ~ +18%o, whereas Tiitken [32] es-
timated a A8">Cepamel-diet Value of ~ +16%o for sauropods.

Geographic and geological setting

The Late Cretaceous “Lo Hueco” Fossil-Lagerstitte is located in the province of Cuenca (cen-
tral eastern Spain: 2° 02’50”W, 39° 57°15”N) (Fig. 1). It was fortuitously discovered in 2007,
while constructing the Madrid-Levante high-speed railway. More than 10,000 macrofossils of
different taxonomic groups of flora and fauna were unearthed. The stratigraphic position and
associated fauna support a late Campanian-early Maastrichtian age [29, 67-68]. The “Lo
Hueco” site outcrops in Garumn facies, which is the informal term that designates marl, clay,
and gypsum, mainly of red color, deposited in shallow marine, coastal, and/or continental envi-
ronments of southwestern Europe during the latest Cretaceous and the earliest Paleogene [69].
It corresponds to the upper part of the Villalba de la Sierra Formation (Fig. 2A), a lithological
unit interpreted as a coastal marsh with distributary channels and sporadic establishment of
sabkhas [29]. Six stratigraphic levels were defined at the “Lo Hueco” outcrop named V, G1, R1,
G2, R2, and M from bottom to top [29] (Fig. 2B). This succession appears slightly modified lat-
erally by a lower sulphate interval (S1) that cuts the V level in the eastern area of the outcrop,
by a sandy channel structure (C) that interrupts V, G1, and R1 levels in the southern area, and
by an upper sulphate interval (S2) that cuts part of G2 in the northeastern area (Fig. 2B). Four
bonebeds have yielded the majority of fossils: the C structure, the G1 and G2 levels and the
lower part of the R2 level (Fig. 2B) [29, 68]. The G1 level is interpreted as a proximal muddy
floodplain (close to the distributary channels) and vertebrate fossils usually appear complete
and associated. More than 14 partially articulated sauropod skeletons were recovered from this
level [28, 68]. Exceptionally well-preserved plant remains have been also described from this
lithosome [30]. The G2 level corresponds to the distal part of a poorly drained muddy flood-
plain (distal from the distributary channels) and points to a relatively calm aquatic environ-
ment (i.e., marsh/swamp) exposed to partial or total desiccation, although there is a low degree
of articulation of preserved skeletons [29, 68]. Recent fluid inclusion and geochemical analyses
on the sulphates from S1 and S2 have pointed to a near coast playa-lake environment with
mainly brackish and freshwater influence in the area, while not totally ruling out some extent
of marine influence [70]. During the late Campanian-early Maastrichtian, the “Lo Hueco” lo-
cality was placed at a subtropical paleolatitude of ~ 31°N.
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Villar de
Olalla

Villar del ™
Saz de Arcas

Fig 1. Geographic setting of the “Lo Hueco” fossil site. Satellite images of A) Europe, and B) Iberian Peninsula; the star shows the situation of the “Lo
Hueco” fossil site. C) Close-up view of “Lo Hueco” near the town of Fuentes showing other towns, and the main and secondary roads. Europe and Iberian
Peninsula satellite images from USGS EROS (Earth Resources Observatory and Science (EROS) Center) http://eros.usgs.gov/#.

doi:10.1371/journal.pone.0119968.9001

Materials and Methods

The rich and diverse vertebrate assemblage of the “Lo Hueco” fossil site allowed us to collect
multi-taxa samples including dinosaur (theropods: n = 11, sauropods: n = 4) and crocodyli-
form (n = 36) tooth enamel, turtle shell (n = 9) and gar ganoine (n = 19) from levels G1 and
G2. Paleontological prospection and excavation undertaken at the “Lo Hueco” fossil site were
authorized by the Direccién General de Patrimonio y Museos of the Junta de Comunidades de
Castilla-La Mancha (Spain) (permit number: 04-0392-P11). “Lo Hueco” vertebrate remains
are housed at Museo de las Ciencias de Castilla-La Mancha (Cuenca, Spain). Complete reposi-
tory information including specimen number, stratigraphic situation and geographic location
are given in S1 Dataset. Dinosaurs, crocodyliforms and turtles were analyzed for their §'*Opos,
8"% 003 and 8"°C values, whereas gars were analyzed for their 8'"80po4 values. Dinosaur den-
tine was also analyzed in order to check for diagenetic effects. Although three major groups of
dinosaurs (theropods, sauropods and ornithopods) are represented in “Lo Hueco”, in this
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Fig 2. Stratigraphic context of the “Lo Hueco” fossil site. A) The Villalba de |la Sierra Formation. B) Detailed stratigraphic section of “Lo Hueco” showing
the studied levels G1 and G2.

doi:10.1371/journal.pone.0119968.g002

study we had access to theropods belonging to Dromaeosaurinae and Velociraptorinae Euma-
niraptora and to sauropods, which are presumably representing two titanosaurian species, one
of them close to the genus Ampelosaurus [71-73]. Eusuchian crocodile remains are very abun-
dant at this locality, although the record is monotonous and seems to be represented by two
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genera close to Allodaposuchus [74]. Most of the turtle material probably belongs to two forms
of Pleurodira, specifically to members of Bothremydidae [29, 75-76]. Finally, actinopterygians
from “Lo Hueco” are mainly represented by lepisosteids, commonly known as gars [29]. We

also performed §'°C analyses on bulk organic matter from the “Lo Hueco” G1 (n = 10) and G2
(n = 8) levels with the aim of characterizing the type of vegetation that was present in the area.

The carbon and oxygen isotope results are reported in the d-notation. SHXsample =
[(Rsample—Rstandard)/Rstandara] % 1000, where X is the element, H is the mass of the rare, heavy
isotope, and R = 13C/12C or '80/'°0. Vienna Pee Dee Belemnite (VPDB) is the standard for
8"C values, whereas §'®0 values for both bioapatite carbonate and phosphate are reported rel-
ative to Vienna Standard Mean Ocean Water (VSMOW).

Sample chemical treatments followed those described in Bassett ef al. [77] for phosphate in
bioapatite, Koch et al. [78] for carbonate in bioapatite and Domingo et al. [79] for bulk organic
matter. All samples were analyzed at the Stable Isotope Laboratory of the University of Califor-
nia Santa Cruz (USA). Bioapatite §'®Opo, values were measured using a Thermo Finnigan
Delta plus XP isotope ratio mass spectrometer coupled via continuous flow to a high tempera-
ture conversion elemental analyzer (TCEA). Bioapatite 8"°C and 8"*0co; analyses were con-
ducted on a Thermo MAT253 dual-inlet isotope-ratio mass spectrometer coupled to a Kiel IV
carbonate device. Bulk organic matter 8'>C analyses were performed using a Carlo Erba 1108
elemental analyzer interfaced to a ThermoFinningan Delta Plus XP isotope ratio mass spec-
trometer. The standards used in the case of phosphates were Fisher Standard (5'°0 = 8.4%o),
UCSC Low standard (8*®0 = 11.3%o), UCSC High standard (8"80 =19.0%o) and Kodak stan-
dard (5'®0 = 18.1%o) (all of them are silver phosphate). Standard deviations for repeated mea-
surements of Fisher (n = 52), UCSC Low (n = 13), UCSC High (n = 16), and Kodak (n = 7)
standards were 0.51%o, 0.55%o, 0.21%o, and 0.36%o for 8'*Opp4. As suggested by Suarez et al.
[20], we used NIST 120c as a quality control standard and not as a calibration standard since
its value is highly dependent on both pretreatment and analysis methods. NIST 120c value
(n = 8) was 21.5+0.4. Replicate 8'*Opc, analyses were carried out in ~80% of the samples. The
average absolute difference for 8"80po4 was 0.02%o and the standard deviation of this average
difference was 0.20%o. The standards used in the case of carbonates were Carrara Marble (CM,
8"°C =2.05%o0 and §'°0 = -1.91%o, both VPDB), NBS-18 (3"°C = -5.03%o and §'°0 =
-23.01%o0, VPDB) and NBS-19 (8"°C = 1.95%o and §'°O = -2.20%o, VPDB). The standard devi-
ations for repeated measurements of CM (n = 16), NBS-18 (n = 19), and NBS-19 (n = 10) were
0.03%o, 0.33%o, and 0.04%o for 8'°C, respectively, and 0.08%o, 0.07%o, and 0.09%o for §'°0, re-
spectively. Duplicate analyses were performed for ~50% of the samples. The average absolute
difference for §'>C and 8'®*0¢o; was 0.03%o and 0.14%o, respectively, and the standard devia-
tions of these average differences were 0.02%o and 0.05%o for 8"*C and 8"%0co3, respectively.
The standards used in the case of bulk organic matter analyses were Pugel (8'>C = -12.60%o)
and Acetanilide (8"°C = -29.53%0). The standard deviations for repeated measurements of
Pugel (n = 11) and Acetanilide (n = 3) were 0.15%o and 0.02%eo, respectively. Statistical tests
were performed using the program SPSS PASW Statistics 18.0 software.

We used the following equations to calculate 8"804120 values from “Lo Hueco” vertebrates:

Dinosaurs: SISOHZO =1.1 18180P04—26.44 [16] (1)

Crocodyliforms: 8'*0yp0 = 0.825'*0po,-19.13 [80] (2)

Turtles: 8020 = 1.065'%0p0,—-21.6 [81] (3)

Equation (1) was calculated by Amiot et al. [16] constructing a database with modern mam-
malian 8"®*0pg,4 values and the 8'®0 value of meteoric water from IAEA stations. Since most of
dinosaur samples from “Lo Hueco” belong to theropods, we considered them as endotherms
following most authors [22-23, 45], and therefore we applied equation (1) as Amiot et al. [16]
suggested in their study. Equation (2) was experimentally determined by Amiot et al. [80]
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analyzing modern crocodilian 8'*Ope,4 values and the 8'%0 value of the water in which they
live. Equation (3) was determined by Coulson et al. [81] for freshwater and marine extant turtle
datasets combining experimental and literature results. This equation was adjusted to correct
for the difference in NIST 120c value obtained by Coulson et al. [81] (22.6%o) and in our study
(21.5+0.4).

Once dinosaur, crocodyliform and turtle 8'*0yy,0 values were estimated, we used gar
ganoine 8'®Opo, values as an independent proxy to calculate temperature values and to even-
tually determine temperature offsets related to seasonal patterns (see Discussion). Following
Domingo et al. [82], we selected lepisosteid middle flank scales since they record the greatest
number of layers of ganoine per unit of time and grow all year round. In the case of dinosaurs,
we have only used theropod 8"80poy4 values on account of 1) the low number of sauropod sam-
ples, and 2) the uncertainty about whether sauropods obtained water mainly from drinking
(i.e., obligate drinkers) or from vegetation (i.e., non-obligate drinkers).

Different phosphate-water oxygen isotope fractionation equations have been proposed as
paleothermometers based mainly on studies carried out on extinct and extant fish and inverte-
brate phosphates. The utilization of a given equation may yield significant differences in calcu-
lated temperature values when compared to other equations, which can be as large as 8-9°C
[83-84]. Here, we applied three different equations in order to check whether they can be used
to calculate temperature offsets related to seasonal patterns independently of the absolute tem-
perature values yielded by each of them (see Discussion). We considered the following
equations:

T(°C) = 119.3 (+12.9)- 4.38 (+0.54) ('°Opo4 -8'*Orp20) [51] (4)

This equation was rescaled for a NBS 120b value of 21.4%o (see [84])

T(°C) = 118.7 (+4.9)- 4.22 (+0.20) (8"*0po4 6" 0s0) [85] (5)

T(°C) = 117.4 (£9.5)- 4.50 (+0.43) (8"*0po4 —8"%0m,0) [84] (6)

Results

Table 1 shows dinosaur, crocodyliform, turtle and gar mean 8'*Opg4, 8'°C, §'*0¢03, and
88020 values. Individual values per sample and statistical tests are given in S1 and S2
Datasets, respectively.

5'80p, results

Fig. 3 shows mean 8'®Ope, values for theropods, sauropods, crocodyliforms, turtles and gars.
Mean §'*Opo,4 value for theropods is 20.8+0.9%o, with a non-significant increase of ~ 0.5%o
between G1 and G2 (t = -1.146, p = 0.276). Mean 8"®0poy value for sauropods is 20.9 + 0.4%o
and there is also an increase of ~0.5%o in 8'*Op4 between G1 and G2, although in this case
no statistical tests were done since only one sauropod per level could be sampled. Mean
8"®0po4 value for crocodyliforms is 19.4 + 0.9%o with a significant increase of ~ 1.0%o between
G1 and G2 (t=-3.491, p = 0.002). Turtles show a mean 8" 0poy4 value of 18.3%o + 0.7%o, with
a non-significant increase of ~0.8%o between G1 and G2 (t = -2.208, p = 0.063). Crocodyli-
forms and turtles show statistically consistent lower 8" 0poy values than dinosaurs for the total
dataset (Table 1 and S2 Dataset). Mean 8'*Opg, value for gars is 19.8 + 1.0%o, with a non-sig-
nificant decrease of ~0.2%o between G1 and G2 (t = 0.475, p = 0.641). ANOVA tests show sig-
nificant differences for §'*Op, values when comparing all taxa for the total dataset and for G1
and G2 independently (S2 Dataset).
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Table 1. Mean and standard deviation (SD) §'80po4 (%0 VSMOW), 5'80,4,0 (% VSMOW), 5'3C (%. VPDB), and 5'30¢o3 (% VSMOW) values of “Lo

Hueco” theropods, sauropods, crocodyliforms, turtles and gars for the total dataset (TOTAL) and independently for G1 and G2 levels.

TOTAL
Theropods
Sauropods
Crocodyliforms
Turtles

Gars

G1

Theropods
Sauropods
Crocodyliforms
Turtles

Gars

G2

Theropods
Sauropods
Crocodyliforms
Turtles

Gars

(%0 VSMOW)

Mean

20,8
20,9
19,4
18,3
19,8

20,2
20,6
19,0
17,9
19,1

20,7
21,1
20,0
18,7
19,7

doi:10.1371/journal.pone.0119968.t001

5'%0u20
(%o VSMOW)
SD Mean
0,9 -3,5
0,4 -
0,9 -3,2
0,7 -2,2
1,0
1,2 -4,1
0,7 -3,6
0,6 -2,7
1,5
0,5 -3,5
0,7 -2,7
0,5 -1,8
0,9 -

58000 results

SD

1,0

0,7

0,7

1,4

0,6

0,6

0,5

0,6
0,5

Mean

-10,7
-10,5
-10,4
11,8

-10,7
-10,6
-10,3
-12,5

-10,9
-10,3
-10,6
11,3

513c
(%o VPDB)

SD

0,8
0,8
1,9
0,6

1,2
1,0
2,1
0,1

0,6
0,9
1,8
0,2

(% VSMOW)
Mean SD
30,0 1,1
29,0 0,1
28,2 1,0
27,1 0,3
31,2 0,2
29,0 0,02
28,1 1,1
27,0 0,3
29,7 1,1
29,0 0,1
28,2 1,1
27,2 0,2

Mean calculated 8'®*Oyy,0 value for theropods is -3.5 + 1.0%o, with a non-significant increase of
~0.6%o between G1 and G2 (t = -0.670, p = 0.566). Mean 8"804,0 value for crocodyliforms is
-3.2 + 0.7%o, with a significant increase of ~0.9%o between G1 and G2 (t = -2.541, p = 0.019).
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Fig 3. 5'®0po4 (% VSMOW) values of “Lo Hueco” vertebrates. Theropods (triangles), sauropods

(squares), crocodyliforms (circles), turtles (diamonds), and gars (crosses). Large black symbols represent

mean 5'®0po4 values.

doi:10.1371/journal.pone.0119968.9003

PLOS ONE | DOI:10.1371/journal.pone.0119968 March 25, 2015

9/25



@' PLOS ‘ ONE

Seasonality and Paleoecology at the "Lo Hueco" Vertebrate Assemblage

32-
A ,!
31 -
= 0
2 %0
= T‘ O "I~
> i i
3_8‘ 29 l‘j\ O ‘
9 281 T
le]
27 &
26 T T T L 1
13 12 11 10 9 -8

5'°C (%o VPDB)

Fig 4. Mean £ 1 SD 5'3C (%. VPDB) and 5'30¢03 (%> VSMOW) values of the “Lo Hueco” vertebrates.
Theropods (triangles), sauropods (squares), crocodyliforms (circles), and turtles (diamonds).

doi:10.1371/journal.pone.0119968.9004

Turtle mean §'%04,0 value is -2.2 + 0.7%o, with a non-significant increase of ~0.9%o between
Gl and G2 (t=-2.215, p = 0.062). ANOVA test perfomed for the total dataset and for levels G1
and G2 showed significant differences in 8'*Oyy,0 value among theropods, crocodyliforms and
turtles (S2 Dataset).

5'3C and §'80¢ o3 results

Fig. 4 shows a biplot 8'°C- 8'®*0¢;3 graph for the “Lo Hueco” vertebrate assemblage. Theropod
mean 8"°C and 8"®0o; values are -10.7 + 0.8%o and 30.0 + 1.1%o, respectively, with a decrease
in both values between G1 and G2, although only significant in the case of §'*O¢o; (t = 2.603,
p = 0.022). Sauropod mean §"°C and §'%0; values are -10.5 + 0.8%o and 29.0 + 0.1%s, re-
spectively, with a non-significant increase in 5'*C between G1 and G2 (t = -0.334, p = 0.770)
and with the same 8'®*O¢oj; value in both levels. Crocodyliform mean 8"°C and 8"*0¢o; values
are -10.4 + 1.9%o and 28.2 + 1.0%o, respectively, with a non-significant decrease in 813C be-
tween G1 and G2 (t = 0.214, p = 0.834) and a non-significant increase in '*O¢o; between G1
and G2 (t = -0.204, p = 0.842). Finally, turtle mean 8"C and 8'®0¢o; values are -11.8 + 0.6%o
and 27.1 + 0.3%o, respectively, with increases in both values between G1 and G2, although only
significant in the case of 8'°C (t = -14.300, p <0.001). 8">C values do not show statistically sig-
nificant differences among taxa for the total dataset, G1 and G2, whereas 8" 003 values do
show significant differences in all cases (S2 Dataset).

Bulk organic matter mean §'"°C value is -25.1%1.4%o, with a non-significant increase of
~0.2%o between G1 and G2 (t = -0.302, p = 0.767).

Diagenesis

Several lines of evidence point to a low degree of diagenetic alteration for the “Lo Hueco” fossil
vertebrates:

1) Tooth enamel was the selected tissue for dinosaurs, crocodyliforms, whereas ganoine was
analyzed in the case of gars. Relative to dentine, bone and isopedine, tooth enamel and ganoine

PLOS ONE | DOI:10.1371/journal.pone.0119968 March 25, 2015 10/25



. ®
@ * PLOS ‘ ONE Seasonality and Paleoecology at the "Lo Hueco" Vertebrate Assemblage

T ‘« —AN— —— 91 +1.7% —> —h—

‘ —<>— «— 8.8+0.5% ——> @

I T T T T T T T 1

16 18 20 22 24 26 28 30 32
550 (%0 VSMOW)

Fig 5. A'®0co3.r04 Values for dinosaurs (theropods and sauropods) and turtles. Both values are within the range of the expected equilibrium difference
for modern bioapatites (~ 8.6-9.1%) [87—88]. Open symbols represent 5'®0pc, values and solid symbols correspond to 5'80¢s.

doi:10.1371/journal.pone.0119968.g005

have larger apatite crystals, a lower content of organic matter, and a low porosity, making them
the least prone tissues to undergo diagenetic alteration [86].

2) Several studies of living organisms point to a difference between bioapatite 5"%0c03 and
8" 0po4 values (A" Oco3.pos) Of ~8.6-9.1%0 [87-88]. Obtaining a A8"®0c03.poa value near
this range in fossil bioapatite has been viewed as an indication that both phases retain pristine
isotopic values [87, 89-91]. The mean A'®*O¢o3_pos value for “Lo Hueco” dinosaurs is
9.1 £ 1.7%o and thus, it is in the range of the expected equilibrium difference supporting a low
degree of diagenetic alteration (Fig. 5). Although this relationship was established for endo-
therms, “Lo Hueco” turtle A'®*Oco3.po4 value is also in that range (8.8 + 0.5%o) (Fig. 5), proba-
bly reflecting sustained and constant body temperature during mineral growth (preferentially
during summer months: [49-50]). The fact that we only sampled compact bone from the out-
ermost part of turtle shells reduces the possibility of diagenetic alteration. A'"®*Oco3.pos Value
could not be calculated for crocodyliforms since 8"0c03 and 8'®0pp, values did not come
from the same samples.

3) Dinosaur enamel and dentine §'®Op, analyses were performed in order to evaluate the
response of these tissues against postburial alteration. Several authors have observed higher iso-
topic values in dinosaur dentine compared to enamel (e.g., [24-26]). Fricke and Pearson [25] ar-
gued that this difference was due to a variable exposure of dentine to diagenetic fluids, as well as
more isotopic exchange and/or secondary mineral formation in dentine compared to enamel. In
the case of the “Lo Hueco” dinosaurs, we also observed higher isotopic values in dentine with
theropods showing A'®Oposdentine-enamet = 1.04, and sauropods showing A'*Opoudentine-enamel =
1.34. Significant differences have been detected between both tissues when considering the total
dataset (t = -2.983, p = 0.007).

4) An additional line of evidence to assess the preservation of original 8"80po4 values was
outlined by Fricke and Rogers [22] when trying to determine the type of metabolism of dino-
saurs. According to these authors, differences in body temperatures between ectotherms and
endotherms give rise to differences in 8"80po, values as a function of latitude in such a way
that at high latitudes, ectotherms have higher 8'80p0,4 values than endotherms (due to lower
body temperature for ectotherms). Conversely, at low latitudes, endotherms show higher
8"80po4 values than ectotherms. Amiot et al. [16] stated that diagenetic processes would bring
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about the homogenization of isotopic values and therefore, the aforementioned differences
would not be observable. The “Lo Hueco” fossil site was situated at a low paleolatitude
(~31°N) during the Late Cretaceous [92]. Theropod dinosaurs, which have been proposed to
be endotherms [22-23, 93], show consistently higher 8'®0poy4 values in comparison to croco-
dyliforms and turtles (ectotherms) at the “Lo Hueco” fossil site when considering the total
dataset as well as G1 and G2 levels separately (Table 1), in agreement with the results observed
by Fricke and Rogers [22] and Amiot et al. [16]. In addition to the difference observed in

8" 0po, values between endotherms and ectotherms, lower 8'*0pg,4 values for aquatic gars
and semi-aquatic crocodyliforms and turtles, and higher 8"80poy4 values for terrestrial thero-
pods constitute another line of evidence pointing to the preservation of the original isotopic
signal, as previously stated by other authors [19-20].

Discussion
Seasonal thermal variability in the Iberian Late Cretaceous

Controversy arises when discerning whether Middle and Late Cretaceous climate witnessed

a lower mean annual range of temperatures (i.e., seasonal thermal equability) than today
[34-39], although it seems that during the colder Late Cretaceous there was a higher seasonal
thermal variability (ie., lower equability) in comparison to the warmer Middle Cretaceous [38].
Multi-taxa studies as the one carried out here allow us to investigate this issue on account of
differences in the timing of bioapatite growth, thus tracking different moments throughout the
year. While in general, 8'®0yy,o values calculated for theropods, crocodyliforms and turtles
from “Lo Hueco” correspond to typical precipitation waters in subtropical locations [94], the-
ropods recorded consistently lower 8'®0y120 and temperature values than crocodyliforms and
turtles in G1 and G2 levels as well as in the total dataset (Table 1). Lower 8'%Oyp,0 values of ter-
restrial endothermic taxa such as theropods would correspond to ingested water probably con-
sumed during the whole year and hence, recording all seasons. In contrast, 5'*Oyy,0 data of
semiaquatic ectothermic taxa such as crocodyliforms and turtles would represent local meteor-
ic waters over a shorter time scale when the conditions are favorable for apatite synthesis (i.e.,
growth during the warm season and higher 8'%0p,0 values) [21, 49, 80]. Temperature values
calculated from theropod 8'®Oyy,( values would track mean annual temperature (MAT),
whereas temperature values estimated from crocodyliform and turtle 8'*Oy, values would re-
cord temperature of the warmest months (TWMs), when apatite synthesis is more likely to
occur. Albeit the seasonal thermal amplitude is usually calculated as the difference between
temperature of the warmest months (TWMs) minus temperature of the coldest months
(TCMs), in our approach it is not feasible to work out this latter value with the available proxies.
We opted to infer the semi-seasonal thermal variability characterized as the difference between
TWMs and MAT (ATWMs-MAT). Since the “Lo Hueco” site was located in a coastal subtropical
setting, we created a database with modern meteorological information from coastal stations sit-
uated within the subtropics in both hemispheres (25°-35°) compiling MAT and TWMs (i.e.,
July, August, September) data and calculating ATWMs-MAT (S3 Dataset). We also considered
seasonal data provided by Tethyan Cretaceous rudists [36, 38]. These authors argued that during
the colder Early Cretaceous (late Barremian-middle Albian), seasonal thermal variability was
more intense than during warmer Cretaceous episodes (late Albian-early Campanian). Fig. 6
shows ATWMs-MAT vs subtropical latitude range (25°-35°) for data calculated from vertebrate
taxa from “Lo Hueco”, modern subtropical stations, and Santonian-Campanian eastern Tethyan
rudists (Greece and Turkey: [36, 38]). ATWMS crocodyliforms-MA Ttheropods Values from “Lo
Hueco” are 2.240.1°C, 3.5+0.1°C, and 2.7+0.1°C for G1, G2, and the total dataset, respectively
(54 Dataset), whereas ATWMS (yrites-MATiheropods yielded higher values of 6.1+0.2°C, 7.4
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doi:10.1371/journal.pone.0119968.g006

+0.20°C, and 6.7+0.2°C for G1, G2, and the total dataset, respectively (S4 Dataset). Similar
ATWMS crocodyliforms-MA Theropods ad ATWMS gyres- MAT heropods Values were obtained when
using equations (4), (5) and (6) (54 Dataset). ATWMs-MAT values from modern data vary be-
tween minimum values of ~ 2.8+0.4°C (Easter Island, Chile, 27.17°S) and maximum values

of ~8.140.3°C (Fuzhou, China, 26.08°N). Finally, the mean sea-surface ATWMs-MAT value
from Late Cretaceous Tethyan rudists is ~5.0+2.6°C (Greece and Turkey, ~30°N). No signifi-
cant statistical differences have been found between the “Lo Hueco” ATWMs-MAT values and
those shown by modern meteorological stations and Cretaceous rudists (S5 Dataset) indicating
that the climatic conditions in the subtropical western area of the Tethys during the late Cam-
panian-early Maastrichtian were not more significantly equable than those observed today.
Previous studies have suggested that during mid-Cretaceous greenhouse conditions the latitu-
dinal thermal gradient was weaker than the one observed today, whereas during the cooler
late-Cretaceous, the latitudinal thermal gradient has been proposed to be either weaker or simi-
lar to that observed today [6, 95-96]. Cool greenhouse periods, as Huber et al. [6] refer to mid-
Campanian-Maastrichtian, showed warm temperatures in high latitudes and cool temperatures
in the subtropics and tropics (e.g., [95]). Cooler conditions have been traditionally associated
to a lower thermal equability and vice versa [37, 97] and in this vein, Steuber et al. [38], study-
ing seasonal thermal variability on Tethyan rudists, observed a lower thermal seasonality dur-
ing the warmer Cretaceous episodes, whereas cooler Cretaceous episodes show a higher
thermal seasonality. “Lo Hueco” temperature data do not show a significant different seasonal
thermal variability when compared to modern data pointing to a similar seasonal thermal
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amplitude between central eastern Iberia during the late Campanian-early Maastrichtian and
today (S3 and S5 Datasets). The determination of past seasonality remains a difficult issue to
determine due to the limitation of the seasonal information yielded by paleoproxies and the
shortage of these indicators in terrestrial settings. Isotopic studies of multi-taxa vertebrate as-
semblages as the one from the “Lo Hueco” locality help to characterize past seasonality. Future
clumped isotope analyses on soil carbonate and invertebrate carbonate from the “Lo Hueco”
locality may allow us to double-check TWMs values and compare them with those provided by
crocodyliforms and turtles.

“Lo Hueco” vertebrate isotopic paleoecology

Carbon isotope data have not been widely investigated in Cretaceous multi-taxa assemblages
and studies have mainly focused on herbivore terrestrial taxa (e.g., [24-26]). We have analyzed
8"C values of sauropods, theropods, crocodyliforms and turtles as well as 5'*C values of the
bulk organic matter from the “Lo Hueco” sediments. Sauropod mean &'>C value is -10.5+0.8%o
and bulk organic matter mean §'°C value is -25.1%1.4%o (Fig. 7). While we are aware that the
low number of “Lo Hueco” sauropod tooth enamel samples may prevent us from attaining
conclusive results, we still believe that it is worth discussing them in the context of other isoto-
pic studies focused on herbivore dinosaurs. The “Lo Hueco” bulk organic matter mean 8'>C
value is almost identical to the estimated Late Cretaceous C; vegetation mean §'*C value
(-25.5%0), assuming a 8"Cumcon value of ~ -6%o for the late Campanian-early Maastrichtian
[57] and the modern fractionation value of ~ -19.5%o between 8'°C,mco» and Cs vegetation
8"C values [60]. This suggests a pure C; environment for the “Lo Hueco” locality for that time
period. Assuming that the “Lo Hueco” bulk organic matter mean §'°C value is representative
of the 8'°C value of the vegetation present in the area, then the fractionation between the “Lo
Hueco” sauropod enamel and diet (A Cepamel-die) would be ~ 15%o. This offset lies between
the one estimated for mammals and ostriches (12 to 14%o: [61-63, 66]) and the one estimated
for sauropod dinosaurs and ostriches ( ~ 16%o: [32, 65], respectively), and it is narrower when
compared to the one estimated for ornithischian dinosaurs (i.e., 18%o: [25-26]). Stanton-
Thomas and Carlson [24], Fricke and Pearson [25] and Fricke et al. [26] obtained higher 8"°C
values for hadrosaur and ceratopsian tooth enamel (-4%o to -5.9%o) from different Late Creta-
ceous North American localities located in the vicinity of the Western Interior Seaway when
compared to “Lo Hueco” sauropod &'*C values. Since bioapatite 8'*C values of terrestrial verte-
brates are ultimately controlled by 8'2C values of diet giving rise to consistent APCenamel_diet
values [63, 86], the difference between the fractionation values obtained in our study and those
from Stanton-Thomas and Carlson [24], Fricke and Pearson [25] and Fricke et al. [26] might
be likely associated to metabolic differences among taxonomic groups (sauropods vs. ceratop-
sians and hadrosaurs) (Fig. 8) [22-23, 46-48]. Bulk organic matter mean 8">C values showed
by Fricke and Pearson [25] are ~ -24.0%o, just 1%o higher than our bulk organic matter mean
8"°C values, supporting differences in dinosaur metabolism in a scenario with similar isotopic
values of vegetation (Fig. 7). Fricke and Pearson [25] pointed out that differences in the meth-
ane production in herbivore dinosaur stomachs during digestion along with different utiliza-
tion of plant organic compounds (e.g., carbohydrates, proteins, lipids) and/or plant parts (e.g.,
leaves, seeds, wood) may also explain the differences observed in APCenamel-dier. The larger cer-
atopsian and hadrosaur A">Cpamel.aiec May be due to their ability to incorporate low quality, fi-
brous vegetation [25], whereas the smaller sauropod A'>Cepameldiet value may be indicative of
consumption of more digestible food items (e.g., soft leaves), fact also supported by the dental
morphology of “Lo Hueco” titanosaur sauropods (i.e., chisel-like teeth) more adapted to leave
behind the least digestible tissues [98-99]. The 3%o difference observed in ABC o pamel-diet values
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doi:10.1371/journal.pone.0119968.g007

for ornithischians from Fricke and Pearson [25] and Fricke et al. [26] and sauropods from our
study is statiscally significant (t = -4.481, p = 0.003), and therefore, even considering the vari-
ability yielded by dinosaur and bulk organic matter 8'*C values, these two sets of data do not
significantly overlap. Stanton-Thomas and Carlson [24] stated that higher 8'*C values ob-
served in hadrosaurs might be related to ingestion of vegetation subject to high salinity levels
and/or consumption of gymnosperms (which show an enrichment of ~ 1.1 to 2%o compared
to mean C; 8'°C values). “Lo Hueco” sauropods may have relied heavily on angiosperms as re-
vealed by the palynological content of the “Lo Hueco” sediments showing pollen assemblages
dominated by angiosperms (93%: [100]). Specifically, the palynological assemblage from “Lo
Hueco” is dominated by freshwater palynomorphs, spores and pollen grains related to swamp
or local wetland vegetation [100]. The preferential incorporation of angiosperms by “Lo
Hueco” sauropods may also lie behind the difference observed between our APCenamel-diet
value and the one estimated by Tiitken [32]. Interestingly, in the compilation of sauropod 8'°C
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values carried out by this author, Ampelosaurus showed the lowest 8'>C values, and according
to Knoll et al. [73], one of the “Lo Hueco” sauropod taxa remains close to this genus. These un-
certainties regarding herbivore dinosaur isotopic paleoecology open up new lines of investiga-
tion dealing with the question of the type of dietary behavior and physiology of different
genera giving rise to different A">Cepamel.dict Offsets.

“Lo Hueco” theropod mean §'*C value is -10.7+0.8%o, statistically indistinguishable from
the sauropod mean 8'*C value (-10.5+0.8%o) (Fig. 4, S2 Dataset). To the best of our knowledge,
there are no isotopic studies dealing with herbivore and carnivore dinosaur feeding
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paleoecology from the same locality. Isotopic studies on ancient vertebrate predator-prey sys-
tems have mainly focused on Quaternary mammals [64, 101-103] and to a lesser extent on
Miocene mammals [104]. Clementz et al. [64] observed a §'°C offset between predators
(wolves) and their prey (moose and elks) (APCamivore-herbivore) Of ~ -1.3%o. These authors ar-
gued that lower tooth enamel §'°C values for carnivores might be due to differences in their di-
gestive physiology in comparison to herbivores. The lack of significant differences between “Lo
Hueco” carnivore and herbivore dinosaur tooth enamel §"*C values (A"C urmivore-herbivore = -
0.2%o, S2 Dataset) may be due to differences in metabolic and/or physiological mechanisms be-
tween dinosaurs and mammals, however a more plausible explanation is that titanosaur sauro-
pods were not likely prey for theropods belonging to Dromaeosaurinae and Velociraptorinae
subfamilies on account of body mass differences. Interestingly, the lack of significant differ-
ences in §"°C values between both theropod subfamilies (t = 0.516, p = 0.618), along with the
similarity in their body masses and likely hunting strategies point to some degree of resource
overlap. Also, the lack of significant differences in variance of 8'°C values between these sub-
families of theropods (Levene test; F = 1.582, p = 0.240) suggests that none was more versatile
than the other in resource utilization.

In the case of aquatic ectotherms (crocodyliforms and turtles), 8'3C values are a reflection
of food oxidation (respiration) and ambient water (e.g., disolved inorganic carbon or DIC can
constitute an additional source of carbon) [105-106]. “Lo Hueco” crocodyliforms belong to
forms close to the genus Allodaposuchus [74]. Since it is not possible to determine physiological
tolerance to salinity from the morphological standpoint in the basal Eusuchia from “Lo
Hueco”, (J.L. Sanz and F. Ortega, personal communication), the information supplied by stable
isotopes may shed light about salt tolerance, dietary behavior and habitat occupancy. We have
compared the isotopic values of “Lo Hueco” crocodyliforms to those provided by Wheatley
et al. [107] for Louisiana and Florida modern crocodylians. We are aware that extrapolation be-
tween extinct and extant organisms is not straightforward due to unknown physiological
mechanisms in ancient taxa as well as different environmental conditions. However, we still be-
lieve that a comparison can be made since 1) the marine-freshwater isotopic threshold values
are well established not only in modern studies, but also in the past, 2) the marine §'0 value
has remained fairly constant throughout the geological time and 3) the Wheatley et al. [107] s
study considered modern crocodylians from Louisiana and Florida with a similar latitude to
the one suggested for “Lo Hueco” (25-30°N for Louisiana and Florida vs 31°N for “Lo
Hueco”). “Lo Hueco” crocodyliforms show a mean §'°C value, which is statistically indistin-
guishable from the value observed by Wheatley et al. [107] for Louisiana and Florida modern
coastal Alligator mississippiensis (p = 0.999) and Florida modern coastal Crocodylus acutus
(p = 0.868), while it is significantly different from Florida modern inland A. mississippiensis
(p < 0.001), whereas “Lo Hueco” crocodyliforms show a significantly lower mean §'*0¢os
value, when compared to coastal and inland A. mississippiensis (p = 0.019 and p = 0.001, re-
spectively) and coastal C. acutus (p < 0.001) (Fig. 9A). These results pose interesting issues
concerning the salinity discrimination and osmoregulation capacity of the “Lo Hueco” eusu-
chian crocodyliforms. Jackson et al. [108] in a study of salinity tolerance and osmoregulation
mechanisms by modern crocodilians argued that reptiles inhabiting marine and estuarine wa-
ters keep a constant plasma osmolality by behavioral modifications (avoiding drinking seawa-
ter) and/or morphological adaptation (salt-secreting glands and reduced integumental
permeability). Crocodyliforms from “Lo Hueco” are under study and with the current informa-
tion we cannot determine their physiological tolerance to salinity from a morphological stand-
point (e.g., presence or absence of salt-secreting glands) (JL Sanz and F Ortega, personal
communication, 2014). While waiting for these morphological studies, isotopic results suggest
that the “Lo Hueco” crocodyliforms may have incorporated food items from brackish waters as
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doi:10.1371/journal.pone.0119968.g009

shown by their §'°C values, whereas they avoided ingesting this water and consumed preferen-
tially freshwater, as suggested by their 8'*0Oco; values. Clementz and Koch [109] and Wheatley
et al. [107] argued that animals incorporating marine food items and drinking seawater show a
lower variability in their 8'*0co; values. Even though “Lo Hueco” crocodyliforms likely drank
freshwater, its 8'*0co3 variability (1.0%o) is not as high as that shown by either inland (2.2%o)
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and coastal (1.8%o) A. mississippiensis, and it is more similar to the one shown by saltwater tol-
erant C. acutus (0.8%o) (Fig. 9B). This might indicate that 880 values of the water ingested by
the “Lo Hueco” crocodyliforms may have remained homogeneous during the time window in
which bioapatite mineralized (i.e., warmest months of the year).

“Lo Hueco” turtle mean 8'>C and 8'®0¢q; values are the lowest when compared to dino-
saurs and crocodyliforms (Fig. 4) (although significant differences are only observed between
turtles and dinosaur 8'®0cq; values, S2 Dataset). “Lo Hueco” turtles belong to two forms of
Pleurodira, specifically to members of Bothremydidae [29, 75-76]. They are omnivore freshwa-
ter turtles, so low 8'°C values may be indicative of a diet based on a mixture of aquatic and ter-
restrial C; vegetation and/or invertebrates, whereas low §'*0 values may indicate ingestion of
water with an inland source. Unlike crocodyliforms, there are not isotopic studies dealing with
bone carbonate of freshwater turtles from the subtropics and they focused on marine turtles
[105-106]. As observed in the case of “Lo Hueco” crocodyliforms, “Lo Hueco” turtles show a
low variability in their mean 8'*O¢q3 value, in spite of inhabiting freshwater environments,
when compared to modern marine loggerhead turtles reported by Wheatley et al. [107] (0.3%o
vs. 0.6%o, for “Lo Hueco” and marine loggerhead turtles, respectively) pointing to a low vari-
ability of 8'*O¢o3 values and presumably of the 8'*0 values of the ingested water for the time
of bioapatite mineralization (i.e., warmest months of the year).

Conclusions

Isotopic analyses on the multi-taxa terrestrial vertebrate assemblage of the “Lo Hueco” locality
(central eastern Spain) provides valuable information about climatic and environmental condi-
tions existing in southeastern Iberia during the late Campanian-early Maastrichtian (Late Cre-
taceous). Seasonal thermal varibility has been inferred as the difference between temperature of
the warmest months (TWMs), supplied by crocodyliforms and turtles (whose bioapatite min-
eralizes during the warm season) and mean annual temperature (MAT), provided by thero-
pods (that record ingested water throughout the year). “Lo Hueco” ATWMs-MAT results do
not point to a significant different seasonal thermal variability to that observed today. From the
paleoecological standpoint, 8'°C values of the “Lo Hueco” taxa point to consumption of pure
C; vegetation, fact that agrees well with bulk organic matter 8'>C values from the “Lo Hueco”
sediments. The estimated fractionation between sauropod enamel and diet (A">Cpamel_diet) is
~ 15%o, lower than other fractionation values calculated for sauropods ( ~ 16%o) and ornithis-
chians ( ~ 18%o), and likely indicating differences in metabolic and/or physiological processes
or different utilization of plant organic compounds and/or plant parts. Since “Lo Hueco” tita-
nosaur sauropods may have not been likely prey for theropods belonging to Dromaeosaurinae
and Velociraptorinae subfamilies on account of differences in their body mass, no conclusive
information concerning dinosaurian predator-prey 8'°C offset could be attained. Although “Lo
Hueco” crocodyliform material remains under study and no paleoecological conclusions have
been drawn from a morphological standpoint, isotopic results indicate that they may have in-
corporated food items from brackish waters as shown by their §'°C values, whereas they
avoided ingesting saline water and consumed preferentially freshwater, as suggested by their
8'80¢0; values, when compared with isotopic values of modern crocodilians inhabiting sub-
tropical regions. “Lo Hueco” turtles show the lowest 813C and 8'%0¢0; values of the vertebrate
assemblage likely indicating a diet based on a mixture of aquatic and terrestrial C; vegetation
and/or invertebrates and ingestion of water with an inland source, a fact that agrees well with
their taxonomic designation.
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