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Abstract. A combination of a semidiscretized scheme and an iterative method is applied to a
free boundary problem. The considered problem is issued from a cavitation model in lubrication
theory and treats on the determination of the cavitation area. Estimates L∞(Ω) which provide
the convergence of the approximated solution is obtained. Finally, some numerical test examples
are presented to illustrate the good performance of the method.
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1. Introduction and mathematical model

In the present paper, we apply a new numerical method to solve a nonlinear free boundary

problem related to the cavitation phenomenon in a journal bearing. The approximate solution

is obtained through a process of successive approximations, where at each step a system of

differential equations is solved. The one-dimensional case, which corresponds to the particular

case of an infinite journal bearing, is treated in [2] where an analysis of the iterative method

and some graphical results are given. In this paper we consider the general case where a two-

dimensional problem must be solved.

To describe the cavitation phenomenon two unknowns are required: The pressure, p, in a thin

film of lubricant contained in the narrow gap between the surface of the bearing and the surface

of the journal in relative motion, and also the fraction of volume occupied by the lubricant,

θ. The geometry of the bearing implies that p and θ are 2π− periodic in the circumferential
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2 NUMERICAL SOLUTION

coordinate x. The film thickness is denoted by

h(x) = 1 + α cos x with α a constant in (0, 1) (1.1)

We consider here the Elrod-Adams model [5] which is considered the most realistic; and leads

to the following strong formulation:

Let Ω be the domain (0, 2π)×(0, 1) which represents the internal bearing surface, Γ its boundary,

let Γ0 and Γ1 be defined by

Γ0 = (0, 2π) × {0}, Γ1 = (0, 2π) × {1}

and let Ω0 be the region of cavitation (see Fig. 1).
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Figure 1: The domain Ω

The problem is to find two functions, p and θ, defined in Ω such that

∂

∂x
(h3 ∂p

∂x
) +

∂

∂y
(h3 ∂p

∂y
) =

dh

dx
p > 0, θ = 1 in Ω \ Ω0 (1.2)

∂(hθ)

∂x
= 0 p = 0, 0 ≤ θ ≤ 1 in Ω0 (1.3)

h3 ∂p

∂n
= (1 − θ)h cos(n, x)p = 0, on Σ = ∂Ω0 ∩ Ω (1.4)

p = 0 on Γ0, p = pa > 0 on Γ1 (1.5)

Where n is the outward normal On Σ.

Let us introduce the sets

V0 = {ξ ∈ H1(Ω), ξ|Γ0∪Γ1 = 0, ξ is 2πx − periodic}

Va = {ξ ∈ H1(Ω), ξ|Γ0 = 0, ξ|Γ1 = pa, ξ is 2πx − periodic}
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The weak formulation of the problem can be deduced ( see [1]) as follows:

Find a pair of functions (p, γ) such that:

(p, γ) ∈ Va × L∞(Ω) (1.6)

p ≥ 0 and H(p) ≤ γ ≤ 1 a.e in Ω (1.7)∫
Ω

h3∇p∇ξ =

∫
Ω

hγξx, for each ξ ∈ V0, (1.8)

where H is the Heaviside graph. Existence and uniqueness of a weak solution of this problem

is well known, and it has been treated in many papers ([1], [3]).

2. Discretization by a method of lines

Let q ∈ V0 be a function satisfying the variational equation:∫
Ω

h3∇q∇ξ =

∫
Ω

hξx, ∀ ξ ∈ V0 (2.1)

It is well known from classical results on variational inequalities that the solution q exists and

is unique. And we have (see [7]) that

q ∈ C1,α(Ω), For some α > 0 (2.2)

being C1,α(Ω) the space of functions on Ω with uniformly Holder continuous first order deriva-

tives.

By other hand, we have

Lemma 2.1. The solution q satisfies

∫ 2π

0

h3(x)q(x, y)dx = 0 for all y ∈ (0, 1).

Proof. For a test function ξ = ξ(y) ∈ D(0, 1) in (2.1) we have∫
Ω

h3 ∂q

∂y
ξ′ = 0.

Now by integrating by parts, and separating the integration variables we obtain∫ 1

0

( ∫ 2π

0

h3q
)
ξ′′ = 0

and we deduce that

∫ 2π

0

h3(x)q(x, y)dx = Ay + B.

Since

∫ 2π

0

h3(x)q(x, 0)dx =

∫ 2π

0

h3(x)q(x, 1)dx = 0 we obtain that A = B = 0. �

We will show now, that a method of lines can be used to build a surface which can be related

to the solution q of the variational equation (2.1).
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Let Δy =
1

N + 1
, N > 0, and VN the subspace of V0 of functions on Ω which are linear in the

variable y over each interval (yi, yi+1), where yi = iΔy for i = 0, 1, ..., N + 1:

VN = {ξn ∈ V0 such that ξn|(yi,yi+1) ∈ P1([yi, yi+1]), i = 0, ..., N}
and let us consider the approximated problem:∫

Ω

h3∇qN∇ξn =

∫
Ω

h
∂ξn

∂x
, ∀ ξn ∈ VN (2.3)

Assume that {φj, j = 1, ..., N} is a basis of VN and φj(yi) = δi,j for 1 ≤ i, j ≤ N . For all

function pN ∈ VN we have

pN(x, y) =
N+1∑
i=0

pN(x, yi)φi(y). (2.4)

Theorem 1. The solution qN of the approximated problem (2.3) converges to the solution q of

the continue problem (2.1).

Proof. In order to establish convergence, classical results may be applied (see for example [6]).

We observe that the bilinear form

B(u, v) =

∫
Ω

h3∇u∇v

is bounded and coercive in V0. Hence there exists positive constants c and k such that:

c‖u‖2 ≤ B(u, u); |B(u, v)| ≤ K‖u‖‖v‖,
Where ‖.‖ is the usual norm on H1(Ω). If we define the operator A from V0 into H−1(Ω) by

B(u, v) = (Au, v) for each v ∈ V0

it follows from (2.1) and (2.3) that:

B(q, ξ) = (−h′, ξ) ∀ ξ ∈ V0

B(qN , ξn) = (−h′, ξn) ∀ ξn ∈ VN .

As in [6] we can obtain

‖q − qN‖2 ≤ K2

c2
‖q − vn‖2 +

2

c
‖h′ + Aq‖0

(‖q − vn‖0 + ‖qN − v‖0

)
.

where ‖.‖0 denotes the L2 norm on Ω. Here vn and v are arbitrary in VN and V0, respectively.

If in particular vn is the function which agrees with q on the lines y = yi, i = 0, ..., N + 1, and

from the regularity of the function q it follows immediately that:

‖q − vn‖ ≤ CΔy, ‖q − vn‖0 ≤ CΔy2
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where C depends on the H2(Ω) norm of q. We also may conclude from the smoothness of q

that ‖h′ + Aq‖0 ≤ C.

Since VN ⊂ V0 we may set v = qN and simplify the above inequality to ‖q − qN‖ ≤ CΔy for

some constant C. Hence, we get the convergence of qN to the solution q in H1(Ω). �

Now, by a straightforward calculation, applying summation by parts and some algebraic

rearrangement we show that

∫
Ω

h3∇qN∇ξn =

∫ 2π

0

h3Δy

i=N+1∑
i=1

qi − qi−1

Δy

ξi − ξi−1

Δy

+

∫ 2π

0

h3

i=N+1∑
i=1

∫ yi

yi−1

(
q′iφi + q′i−1φi−1

)(
ξ′iφi + ξ′i−1φi−1

)

=

∫ 2π

0

h3Δy
i=N∑
i=1

−qi−1 + 2qi − qi+1

Δy2
ξi

+

∫ 2π

0

h3Δy
i=N+1∑

i=1

(1

3
q′iξ

′
i +

1

3
q′i−1ξ

′
i−1 +

1

6
q′iξ

′
i−1 +

1

6
q′i−1ξ

′
i

)

=

∫ 2π

0

h3Δy
i=N∑
i=1

−qi−1 + 2qi − qi+1

Δy2
ξi

+

∫ 2π

0

h3Δy

i=N+1∑
i=1

(1

3
q′iξ

′
i +

1

3
q′i−1ξ

′
i−1 +

1

6
q′iξ

′
i +

1

6
q′i−1ξ

′
i−1

)

+

∫ 2π

0

h3Δy

i=N+1∑
i=1

(1

6
q′i(ξ

′
i−1 − ξ′i) +

1

6
q′i−1(ξ

′
i − ξ′i−1)

)

=
i=N∑
i=1

Δy
[ ∫ 2π

0

h3−qi−1 + 2qi − qi+1

Δy2
ξi +

∫ 2π

0

h3q′iξ
′
i

]

−
i=N+1∑

i=1

Δy

∫ 2π

0

h3(q′i − q′i−1)(ξ
′
i − ξ′i−1)
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where ξi = ξn(x, yi). Recall that q0 = qN+1 = ξ0 = ξN+1 = 0.

For the right hand side we have

∫
Ω

h
∂ξn

∂x
=

∫ 2π

0

h
i=N+1∑

i=1

∫ yi

yi−1

(
ξ′iφi + ξ′i−1φi−1

)

=

∫ 2π

0

h
Δy

2

i=N+1∑
i=1

(
ξ′i + ξ′i−1

)

=

∫ 2π

0

hΔy
i=N∑
i=1

ξ′i

=
i=N∑
i=1

Δy

∫ 2π

0

hξ′i

Thus, equation (2.3) is equivalent to:

N∑
i=1

Δy
[ ∫ 2π

0

h3−qi−1 + 2qi − qi+1

Δy2
ξi +

∫ 2π

0

h3q′iξ
′
i

]
=

N∑
i=1

Δy

∫ 2π

0

hξ′i + RN (2.5)

where

RN =
N+1∑
i=1

Δy

∫ 2π

0

h3(q′i − q′i−1)(ξ
′
i − ξ′i−1).

and qi an approximation of q(x, yi). Now, from (2.2) we have |q′i − q′i−1| ≤ Δyα for some α > 0,

then we get easily

lim
N→∞

RN = 0.

Finally, equation (2.3) can be reduced to solve the following system of coupled one dimensional

variational equations:

∫ 2π

0

h3q′iξ
′ +

2

Δy2

∫ 2π

0

h3qiξ =

∫ 2π

0

hξ′ +
1

Δy2

∫ 2π

0

h3[qi+1 + qi−1]ξ i = 1, ..., N (2.6)

q0(x) = 0, qN+1(x) = 0 (2.7)

where the test functions ξ now belong to H1(0, 2π) and they are 2π periodic. Taking into

account lemma (2.1), each function qi satisfies

∫ 2π

0

h3qi = 0 (2.8)
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Remark 2.1. Note that to approximate q + pay, the conditions (2.7) and (2.8) must be substi-

tuted respectively by

q0(x) = 0 qN+1(x) = pa (2.9)∫ 2π

0

h3qi = paiΔy

∫ 2π

0

h3 (2.10)

3. Iterative algorithm

To solve system (2.6) with the boundary condition (2.9), we can employ a Gauss-Seidel

iterative algorithm. Thus, for i=1,...,N and k=1,2,... we shall solve∫ 2π

0

h3qk′
i ξ′ +

2

Δy2

∫ 2π

0

h3qk
i ξ =

∫ 2π

0

hξ′ +
1

Δy2

∫ 2π

0

h3[qk−1
i+1 + qk

i−1]ξ (3.1)

qk
0(x) = 0, qk

N+1(x) = pa ∀k (3.2)

where ξ ∈ H1(0, 2π) and is 2π periodic. Taking into account condition (2.10) each solution qk
i

belongs to the set

Wi =
{

vi ∈ H1(0, 2π), vi is 2π − x periodic and

∫ 2π

0

h3vi = paiΔy

∫ 2π

0

h3
}

.

Thus, to start the algorithm we take

q0
i (x) = paiΔy i = 0, 1, ..., N + 1

and at each step we solve (3.1)-(3.2).

In Fig.2 we give the result obtained after k = 40 iterations.

0
1

2
3

4
5

6
7 0

0.2

0.4

0.6

0.8

1

−4

−3

−2

−1

0

1

2

3

4

Fig. 2: Function q
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3.1. A modified iterative Gauss-Seidel algorithm. Now, we take q0
i (x) = q(x, yi),

i = 1, ..., N being q the function of Fig. 2; and we apply a variation of the Gauss-Seidel iterative

algorithm applied in (3.1)-(3.2). Thus, for i=1,...,N and k=1,2,... we shall solve∫ 2π

0

h3qk′
i ξ′ +

2

Δy2

∫ 2π

0

h3qk
i ξ =

∫ 2π

0

hk−1ξ
′ +

1

Δy2

∫ 2π

0

h3[qk−1
i+1 + qk

i−1]ξ (3.3)

qk
0(x) = 0, qk

N+1(x) = pa ∀k (3.4)

being

hk−1(x) = h(x) + (h(ak−1 − h(x))χ([ak−1, bk−1]),

where ak−1 ∈ (π, 2π) and bk−1 > ak−1 (modulus 2π) satisfying:

(qk−1
i )′(ak−1) = 0 and qk−1

i (bk−1) = 0

and qk−1
i is an increasing function in the interval (ak−1, bk−1). χ([ak−1, bk−1]) is the characteristic

function of the interval [ak−1, bk−1].

3.2. Weak convergence of the solutions. It will be convenient to renorm Wi with

‖ξ‖i = [< ξ, ξ > +(ξ, ξ)]1/2

where

< ξ, ψ >= (1 − α)3

∫ 2π

0

ξ′ψ′dx

and

(ξ, ψ) =
2

Δy2

∫ 2π

0

h3ξψdx

And let us introduce the Banach space W = W1 × ... × WN with elements

U = (U1, ..., UN ), Ui ∈ Wi and norm

‖U‖ = max
1≤i≤N

‖Ui‖i

Proposition 3.1. The sequence (qk)k≥0 is bounded in the space W .

Proof. It is straightforward to establish that for given qk
i−1 and qk−1

i+1 , problem (3.3)-(3.4) has a

unique weak solution qk
i ∈ H1(0, 2π).

Without lose of generality, we will suppose that

qk
i (x0) = 0 for some x0 ∈ (0, 2π). (3.5)
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Otherwise, if m = max
1≤i≤N

min
[0,2π])

(qk
i ), we can consider the function qk

i −m which solve the equation:

∫ 2π

0

h3(qk
i −m)′ξ′ +

2

Δy2

∫ 2π

0

h3(qk
i −m)ξ =

∫ 2π

0

hk−1ξ
′ +

1

Δy2

∫ 2π

0

h3[(qk−1
i+1 −m)+(qk

i−1−m)]ξ

If we take ξ = qk
i in (3.3) we get:

∫ 2π

0

h3qk′
i qk′

i +
2

Δy2

∫ 2π

0

h3qk
i q

k
i =

∫ 2π

0

hk−1q
k′
i +

1

Δy2

∫ 2π

0

h3[qk−1
i+1 + qk

i−1]q
k
i

That implies by applying the Holder inequality:

‖qk
i ‖2

i ≤
∫ 2π

0

h3qk′
i qk′

i +
2

Δy2

∫ 2π

0

h3qk
i q

k
i

=

∫ 2π

0

h′
k−1q

k
i +

1

Δy2

∫ 2π

0

h3[qk−1
i+1 + qk

i−1]q
k
i

= −Δy2

2

(h′
k−1

h3
, qk

i

)
+

1

2

(
qk−1
i+1 , qk

i

)
+

1

2

(
qk
i−1, q

k
i

)
(3.6)

≤ Δy2

2

(h′
k−1

h3
,
h′

k−1

h3

)1/2(
qk
i , q

k
i

)1/2
+

1

2

(
qk−1
i+1 , qk−1

i+1

)1/2(
qk
i , q

k
i

)1/2
+

1

2

(
qk
i−1, q

k
i−1

)1/2(
qk
i , q

k
i

)1/2

By other hand, from consideration (3.5) we can use the Poincaré inequality and get:

(
qk
i , q

k
i

)
=

2

Δy2

∫ 2π

0

h3qk2

i

≤ 2(1 + α)3

Δy2

∫ 2π

0

qk2

i

≤ 2(1 + α)3

Δy2
2π2

∫ 2π

0

qk′2
i

=
4π2(1 + α)3

Δy2(1 − α)3

〈
qk
i , q

k
i

〉

whence

‖qk
i ‖2

i =
〈
qk
i , q

k
i

〉
+

(
qk
i , q

k
i

)

≥ Δy2(1 − α)3

4π2(1 + α)3

(
qk
i , q

k
i

)
+

(
qk
i , q

k
i

)

=
(
1 +

Δy2(1 − α)3

4π2(1 + α)3

)(
qk
i , q

k
i

We shall write γ =
(
1 +

Δy2(1 − α)3

4π2(1 + α)3

)1/2
> 1 and then we have

‖qk
i ‖i ≥ γ

(
qk
i , q

k
i

)1/2
.
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Now, by substitying the above inequality in (3.6) we get:

‖qk
i ‖2

i ≤
αΔy2

2(1 − α)3
(2π)1/2‖qk

i ‖i

γ
+

‖qk−1
i+1 ‖i+1‖qk

i ‖i

2γ2
+

‖qk
i−1‖i−1‖qk

i ‖i

2γ2
(3.7)

This inequality holds for all i=1,...,N, then it holds for the maximum component, so that

‖qk‖2 ≤ αΔy2

2(1 − α)3
(2π)1/2‖qk‖

γ
+

‖qk−1‖.‖qk‖
2γ2

+
‖qk‖2

2γ2
.

Then

(
1 − 1

2γ2

)‖qk‖ ≤ αΔy2

2(1 − α)3

(2π)1/2

γ
+

‖qk−1‖
2γ2

and

‖qk‖ ≤ αΔy2

2(1 − α)3

γ(2π)1/2

2γ2 − 1
+

‖qk−1‖
2γ2 − 1

For Δy small enough
(αγ(2π)1/2

(1 − α)3
Δy2 < 1

)
we obtain:

‖qk‖ ≤ 1

2γ2 − 1
+

1

2γ2 − 1
‖qk−1‖

and then

‖qk‖ ≤ 1 − βk

1 − β
+ βk‖q0‖

where β =
1

2γ2 − 1
< 1. Finally we get

‖qk‖ ≤ 1

1 − β
+ ‖q0‖

�

Proposition 3.2. There exit q∗ = (q∗1, ..., q
∗
N) ∈ W and h∗ = (h∗

1, ..., h
∗
N) ∈ (L∞(0, 2π))N

such that

qk ⇁ q∗ weakly in W (3.8)

hk → h∗ weak-* in (L∞(0, 2π))N (3.9)

Proof. Convergence (3.8) is a consequence of proposition 3.1.

For all k ≥ 1 we have hk(x) ≤ 1 + α where α is the constant introduced in (1.1). Thus (3.9)

holds. �
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4. Numerical solution

We present in this section some numerical results obtained by applying the above algorithm.

In this example the gap function is h(x) = 1 + 0.9 cos(x) and the alimentation pressure is

pa = 0.1. In the figure 3 we present the evolution of the pressure along the algorithm (3.3)-

(3.4). And in the figure 4 we represent the relative error in the algorithm, that is, at each

iteration k we give the error ‖qk−qk−1‖
‖qk‖ being ‖.‖ the L2(Ω) norm.
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Fig. 3: Evolution of the pressure
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