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Abstract

We use stock market data to analyze the quality of alternative models and procedures for fore-
casting expected shortfall (ES) at different significance levels. We compute ES forecasts from
conditional models applied to the full distribution of returns as well as from models that focus on
tail events using extreme value theory (EVT). We also apply the semiparametric filtered historical
simulation (FHS) approach to ES forecasting to obtain 10-day ES forecasts. At the 10-day hori-
zon we also combine FHS with EVT. The performance of the different models is assessed using
six different ES backtests recently proposed in the literature. Our results suggest that conditional
EVT-based models produce more accurate 1-day and 10-day ES forecasts than do non-EVT based
models. Under either approach, asymmetric probability distributions for return innovations tend
to produce better forecasts. Incorporating EVT in parametric or semiparametric approaches also
improves ES forecasting performance. These qualitative results are also valid for the recent crisis
period, even though all models then underestimate the level of risk. FHS narrows the range of
numerical forecasts obtained from alternative models, thereby reducing model risk. Combining
EVT and FHS seems to be best approach for obtaining accurate ES forecasts.
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1 Introduction

The Basel Committee on Banking Supervision has recently chosen expected shortfall (ES) as the
market risk measure to be used for banking regulation purposes, replacing value at risk (VaR). The
change is motivated by the superior properties of ES as a measure of risk, since it is based on in-
formation taken from the full tail of the distribution of returns. However, in spite of its advantages
as a measure of risk, ES is still less used than VaR. The main drawback with the use of ES for risk
regulation is the unavailability of simple tools for the evaluation of ES forecasts. The reason is that
backtesting ES is much harder than backtesting VaR, which is usually done by comparing whether
the observed percentage of outcomes covered by the risk measure is consistent with the intended
level of coverage. That difficulty led the Basel Committee to reconsider requiring the backtesting
of ES, and its consultative document Basel Committee (2016) proposed calculating risk and cap-
ital using ES, but conducting backtesting only on VaR. However, it is important that the capital
reserves indicated by the VaR calculation can be tested, and the adequacy of the level of reserves
should be subject to a valid statistical test. The current emphasis of the Basel Committee on ES
makes clear that ES backtesting certainly will be on the future agenda for capital requirements at
financial institutions. The goal of this paper is precisely to advance in the application of alternative
approaches to ES backtesting under different modeling choices and comparing the performance of
the different out-of-sample ES forecasts.

There is not much work evaluating and comparing the performance of ES forecasting models.
Taylor (2007) proposes exponentially weighted quantile regression (EWQR) to estimate VaR and
ES. He considered 1-day forecasting of conditional quantiles and their associated ES at different
significance levels. ES estimates are evaluated employing an approach similar to that of McNeil
and Frey (2000) to conclude that the best performance for ES estimation was achieved by the
EWQR. Alexander and Sheedy (2008) develop a two-stage methodology for conducting stress
tests in which an initial shock event is linked to the probability of its occurrence. Working with
three pairs of major currencies they found their results compared favorably with the traditional
historical scenario stress testing approach. Jalal and Rockinger (2008) use a circular block boot-
strap to take adequately into account the possible dependencies among exceedances. Applying
the two-step procedure of McNeil and Frey (2000), they found that ES forecasts captured actual
shortfalls satisfactorily. Ergün and Jun (2010) show that the autoregressive conditional density
model of Hansen (1994) with a time-varying conditional skewness parameter seems to provide
better ES forecasts, beating forecasts based on other GARCH-based models as well as those based
on the EVT approach. Kourouma et al. (2011) introduce a validation test for ES that they employ
to compare unconditional and conditional ES forecasting models at 1-day, 5-day and 10-day hori-
zons using as the conditional model a GJR-GARCH with normal distributed return innovations.
Wong et al. (2012) compare conditional models with GARCH and APARCH volatility specifica-
tions and normal, Student-t, and skew Student-t distributions with an EVT model under normality
using the saddlepoint backtest proposed by Wong (2008, 2010). Gerlach and Chen (2014) extend
the standard daily return-based conditional autorregresive expectile model class to incorporate the
intraday range as an explanatory variable, in several model specifications. The 1-day ES forecasts
are assessed with the ESRate criterion, defined as the proportion of observations for which the
actual return is greater than the predicted ES level. Righi and Ceretta (2015) evaluate uncondi-
tional, conditional, and quantile/expectile regression-based models for ES forecasting using the
ES backtest proposed by McNeil and Frey (2000) as well as the Righi and Ceretta (2013) test,
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which is based on the truncated distribution of returns beyond VaR. Clift, Costanzino, and Curran
(2016) apply the three approaches to ES backtesting recently proposed by Wong (2008), Acerbi
and Szekely (2014), and Costanzino and Curran (2015). For ES forecasting they only consider
a constant volatility model and a GARCH volatility specification under normality. These papers
provide evidence of the gains that can be achieved by using asymmetric probability distributions
and EVT for ES forecasting.1

Risk analysis has rarely been implemented beyond a 1-day horizon when forecasting the ES
of financial assets, even though risk horizons longer than one day are particularly important for
risk liquidity management, for long term strategic asset allocation as well as to compute capital
requirements. Moreover, the Basel Committee obliges banks to compute their risk levels at a 10-
day horizon. The difficulty in doing this is obtaining enough homogeneous data on 10-day returns
over non-overlapping periods. This explains the extended use of the scaling law, whose use is
also proposed in the Basel Committee supervision documents, even though it is known that it may
lead to severe biases in many realistic situations. We get around this limitation by using filtered
historical simulation (FHS) to obtain time series for 10-day returns. From them, we estimate
10-day VaR and ES by applying the same methodologies as for 1-day ES forecasting.

We want to make some progress in the comparison of different relevant approaches to VaR and
ES forecasting. Using stock market data, we take into account volatility clustering and leverage
effects in return volatility by using the APARCH model [Ding, Granger, and Engle (1993)] under
different probability distributions for the standardized innovations: Gaussian, Student-t, skewed
Student-t [Fernandez and Steel(1998)], skewed generalized error [Fernandez and Steel (1998)],
and Johnson SU [Johnson (1949)]. Some existing methodologies for ES validation [McNeil and
Frey (2000), Berkowitz (2001), Kerkhof and Melenberg (2004), and Wong (2008)] have been
shown to be subject to a variety of limitations, so we apply some recently proposed approaches
to ES backtesting that overcome such limitations: the tests of Righi and Ceretta (2013), the first
two tests of Acerbi and Szekely (2014), the test of Graham and Pál (2014), the quantile-space
unconditional coverage test of Costanzino and Curran (2015), and the conditional test of Du and
Escanciano (2016). We provide a detailed description of these ES backtests in Section 4.2.

We use standard parametric methods for the full distribution of returns and also methods that
focus on the tail of this distribution. We generate 1-day VaR and ES forecasts following two
approaches. On the one hand, we use parametric expressions that are well-known in the risk
literature. Alternatively, we employ the semiparametric FHS approach that combines Monte Carlo
simulation and bootstrapping techniques. In both cases we apply these methods by themselves but
we also combine them with an extreme value theory (EVT) approach for modeling the tail of the
distribution of returns. To apply a parametric version of EVT we follow the approach by McNeil
and Frey (2000), whereas under the semiparametric approach we implement EVT following the
proposal of Danı́elsson and de Vries (2000) that we describe below. For 10-day forecasts, we
use the FHS approach by itself, but also combine it with EVT modeling of the tail of the return
distribution.

Some alternatives have been recently proposed to estimate multi-period value at risk and ex-
pected shortfall in a GARCH framework with leverage and asymmetric probability distributions.

1In other studies VaR is the primary measure of interest, with ES left as a secondary consideration. Examples
are Zhou (2012), Degiannakis, Floros, and Dent (2013), and Tolikas (2014), where not much focus is placed on ES
forecasting patterns.
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So and Wong (2012) propose analytical estimates with a better performance than alternatives like
RiskMetrics or the application of the square root rule for the variance. Degiannakis et al. (2014)
show the interest of considering integrated variance models to estimate multi-period risk mea-
sures. Lönnbark (2016) has proposed a Monte Carlo simulation approach to estimate multiple
period value at risk and expected shortfall that compares favorably with analytical approximation
alternatives to the distribution of multi-period returns. Comparing the performance of such alter-
native approaches with the one we follow remains as an interesting question for future research.

We contribute to the literature in four ways:

1. First, we evaluate the improvement that can be achieved by incorporating FHS in standard
parametric forecasting. We compare the performance of the parametric approach to ES fore-
casting with the semiparametric filtered historical simulation approach. This is especially
important for VaR and ES forecasting at horizons more distant than 1 day. In both anal-
yses we compare the performance of VaR and ES estimates obtained under normality or
Student-t assumptions with those obtained under some asymmetric probability distributions
for return innovations that are relatively new to the financial literature.

2. Second, in the parametric and semiparametric analysis we apply the five different approaches
for ES backtesting described above.2

3. Third, we estimate and test VaR and ES forecasting models at a 10-day horizon, an analysis
that has seldom been considered in the financial literature.

4. Fourth, we examine the accuracy of risk models for VaR and ES forecasting at 1-day and
10-day horizons during the pre-crisis and crisis periods for different significance levels.

To the best of our knowledge, this is the first time that a systematic test of ES forecasting models
has been made that considers a variety of probability distributions and two alternatives to the
standard parametric approach, such as EVT and the semiparametric FHS, with a detailed attention
to 1-day and 10-day VaR and ES forecasts as well as to the results pre-crisis and during the crisis.

The remainder of the paper is organized as follows. In Section 2 we describe the standard
risk measures and their mathematical properties. In Section 3 we show the data and estimation
models. We describe the parametric and semiparametric procedures we have followed to estimate
the different models and generate VaR and ES forecasts. In Section 4 we review the VaR and
ES backtesting approaches we follow in this paper. In Section 5 we report the results of the out-
of-sample 1-day ES forecasting exercise in terms of the tests available for ES performance. In
Section 6 we describe a robustness analysis examining two issues: the different results obtained
for pre-crisis and crisis periods separately, and an assessment of 10-day ES forecasting. Section
7 describes our view on the use of VaR and ES for capital adequacy, and Section 7 concludes the
paper.

2An overview of ES backtesting procedures used in recent literature can be seen in Table A1 in the online appendix.
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2 Background: Standard Risk Measures and their properties

Value at risk (VaR) is a simple risk indicator that measures what loss will be exceeded only a
small percentage of times in the next k trading days (100α%). We define VaR as a quantile of
the profit/loss distribution for a given horizon and a given shortfall probability, reporting VaR
as a negative number. Thus, given the log-return rt,t+k of a portfolio between t and t + k, VaR
at a level α is defined by Pr(rt,t+k < VaRα

t+k) = α . For simplicity, we assume that we are pre-
dicting the VaR at some level α for 1-day returns, rt,t+1 = µt+1 + σt+1zt+1, where µt+1 is the
conditional mean return in period t + 1, σ2

t+1 is the conditional variance, and zt+1 represents the
white noise time series of return innovations, which will follow a given probability distribution F .
From the VaRα

t+1 definition we have, Pr(zt+1 < (VaRα
t+1− µt+1)/σt+1) = α , which amounts to,

F((VaRα
t+1−µt+1)/σt+1) = α , or

VaRα
t+1 = µt+1 +σt+1F−1(α). (1)

Given the drawbacks of VaR as a risk measure, it is convenient to compute the ES, which
accounts for the magnitudes of large losses as well as the probabilities that they occur. The ES
is defined from VaR as ESα

t+k = Et+k[rt,t+k|rt,t+k < VaRα
t+k] and tells us the expected value of

the loss k days ahead, conditional on it being worse than the VaR. As in the case of VaR, we
define ES in terms of low quantile values of profit/loss distribution, leading to a negative ES
estimate for low α values. For the 1-day ES we have, ESα

t+1 = Et+1[rt,t+1|rt,t+1 < VaRα
t+1] =

µt+1 +σt+1Et+1[zt+1|zt+1 < (VaRα
t+1−µt+1)/σt+1]. Finally, using (1) we get

ESα
t+1 = µt+1 +σt+1Et+1[zt+1|zt+1 < F−1(α)]. (2)

If we assume the existence of an absolutely continuous cdf F , ES is defined as

Et+1[zt+1|zt+1 < F−1(α)] =
1
α

∫
α

0
F−1(s)ds =

1
α

∫ F−1(α)

−∞

r f (r)dr.

The subadditivity property fails to hold for VaR in general, so VaR is not a coherent measure.3

Indeed, examples [see e.g. Embrechts et al. (2009)] can be given where VaR is superadditive, i.e.
VaRα(∑n

i=1Yi) < ∑
n
i=1VaRα(Yi). Whether or not VaR is subadditive depends on the properties of

the joint loss distributions. The lack of subadditivity contradicts the notion that there should be a
diversification benefit associated with merging portfolios. As a consequence, a decentralization of
risk management using VaR is difficult since we cannot be sure that by aggregating VaR numbers
for different portfolios or business units we will obtain a bound for the overall risk of the enter-
prise. Subadditivity of VaR requires strong assumptions like a joint elliptical distribution among
returns or an Archimedean survival dependence structure, which are often inconsistent with the
properties of actual data [Embrechts et al. (2002, 2009)]. Using majorization theory, Ibragimov
and Walden (2007), Ibragimov (2009) demonstrated that the VaR measure is subadditive for the
infinite variance stable distributions provided the mean return is finite, and Garcia et al. (2007)
extended the result to general Pareto distributions. Danı́elsson et al. (2005), Ibragimov (2005) and

3Artzner et al. (1999) state four axioms which any risk measure used for effective risk regulation and management
should satisfy: i) homogeneity, ii) subadditivity, iii) monotonicity, and iv) translation invariance. Such risk measures
are said to be coherent.
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Garcia et al. (2007) also discuss cases of VaR subadditivity for distributions with Pareto type tails
when the variance is finite. Danı́elsson et al. (2013) identify sufficient conditions for VaR to be
subadditive in the relevant tail region for fat-tailed and dependent distributions.4

An additional limitation is that VaR at the level α gives no information about the severity of tail
losses which occur with a probability less than α , in contrast to ES at the same confidence level.
When looking at aggregated risks ∑

n
i=1Yi, it is well known [Acerbi and Tasche (2002)] that ES is

a coherent risk measure. In particular, in contrast to VaR, ES is generally subadditive. A potential
deficiency of ES when compared with the VaR approach to risk measurement refers to forecasting
and backtesting ES. Gneiting (2011) showed that ES is not elicitable. He proved that the existence
of convex level sets is a necessary condition for the elicitability of a risk measure and disproved
their existence for ES. That means that it is not possible to find a scoring function s(x,y) such
that the ES forecast x of the true ES y can be obtained as the x that minimizes s(x,y) (see Gneiting
(2011) and Emmer et al. (2015) among others). Many authors have interpreted Gneiting’s findings
as evidence that it is not possible to backtest ES at all [see, for instance, Carver (2013)], in spite
of the fact that successful attempts of backtesting ES had been made before 2011.5 The paper by
Gneiting changed the focus of the discussion from how ES could be backtested to the question
of whether it was even possible to do so. Not everybody has interpreted Gneiting’s findings as
evidence that ES is not backtestable. Following Gneiting’s findings, Emmer et al. (2013), showed
that ES is conditionally elicitable for continuous distributions with finite means. In the same
paper, these authors also made a careful comparison of different measures and their mathematical
properties. They concluded that ES is the most appropriate risk measure even though it is not
elicitable. A similar discussion of the implications of different risk measures and their effect on
regulation can be found in Chen (2014).

That point was settled recently by Fissler, Ziegel, and Gneiting (2015) and by Acerbi and
Szekely (2014), who demonstrated that lack of elicitability is not an impediment to backtesting
ES. ES cannot be backtested through any scoring function but there is no reason why this could
not be done using another method that does not exploit the property of elicitability.

3 Data and Estimation Models

We work with daily percentage returns on assets over the sample period 10/2/2000 - 9/30/2016
(4175 sample observations). Daily returns are computed as 100 times the difference of log prices,
i.e. 100[ln(Pt+1)− ln(Pt)]%. The financial assets considered are International Business Machines
[IBM] ($), Banco Santander [SAN] (e), AXA [AXA] (e), and BP [BP] (£). The data were ex-
tracted from Datastream. Table 1 reports descriptive statistics for the daily percentage return series.
All of them have a mean close to zero. Median returns are zero. SAN has the largest total range
(max−min) and BP has the smallest range. The unconditional standard deviation (S.D.) is around
2, with AXA having the highest and IBM the lowest S.D. All assets have negative skewness, ex-
cept AXA. For all assets considered, the kurtosis is high, implying that the distributions of these
returns have tails much thicker than does the normal distribution. Accordingly, the Jarque-Bera
statistic (J-B) is statistically significant, rejecting the assumption of normality in all cases.

4Specifically, they show that VaR is subadditive in the relevant tail region when asset returns exhibit multivariate
regular variation, for both independent and cross sectionally dependent returns, provided the mean is finite.

5For example, Kerkhof and Melenberg (2004) found methods that performed better than comparable VaR backtests.
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Along the paper we work with conditional models for forecasting VaR and ES. We will con-
sider an APARCH specification for volatility [Ding, Granger, and Engle (1993)], which is not
too restrictive since it includes as special cases some of the most standard conditional volatility
models. Garcia-Jorcano and Novales (2017) show that APARCH volatility fits the data for a va-
riety of assets better than alternative models nested in APARCH. The success in capturing the
heteroscedasticity exhibited by the data may be due to the increased flexibility of the APARCH
model in dealing with the power on the conditional standard deviation as a free parameter. These
authors also present evidence suggesting that estimates of risk measures are much more sensitive
to the choice of probability distribution than to the choice of volatility model. An AR(1) model
was considered for the conditional mean return, which was enough to produce serially uncorre-
lated innovations.

For a given return series r1, ...,rT , we estimate the AR(1)-APARCH(1,1) model

rt = φ0 +φ1rt−1 + εt , εt = σtzt , t = 1,2, ...T,

σ
δ
t = ω +α1(|εt−i|− γ1εt−i)

δ +β1(σt− j)
δ ,

where ω , αi, γi, β j, and δ are parameters of the volatility model to be estimated. The parameter γi

reflects the leverage effect (−1 < γi < 1). A positive (resp. negative) value of γi means that past
negative (resp. positive) shocks have a deeper impact on current conditional volatility than past
positive (resp. negative) shocks. The parameter δ plays the role of a Box-Cox transformation of
σt(δ > 0).

We jointly estimate by maximum likelihood the parameters in the mean return equation, the
equation for the conditional standard deviation, and the probability distribution for return inno-
vations. As distributions, we alternatively consider the Gaussian, Student-t, skewed Student-
t, skewed generalized error, and Johnson SU distributions and work with the residuals of the
model.6 In addition, through the usual diagnostics performed on the standardized residuals and
their squared values, we assessed that returns are properly filtered.7

3.1 A parametric approach to VaR and ES estimation

Under a conditional volatility model like the one above, the risk measures become

VaRα
t = µt +σtF−1(α),

ESα
t = µt +σt

(
1
α

∫
α

0
F−1(s)ds

)
,

6We provide a description of asymmetric probability distributions in Appendices I.1 - I.3. All computations were
performed with the R software (version 3.1.1) package rugarch (version 1.3-4) designed for the estimation and forecast
of various univariate ARCH-type models.

7An alternative leptokurtic and asymmetric distribution that has been considered in this context is the skewed
generalized-t (SGT) distribution proposed by Theodossiou (1998). The SGT distribution has the attractive feature
of encompassing most of the distributions that are usually assumed for standardized returns, such as the Gaussian, gen-
eralized error distribution (GED), Student-t and skewed Student-t distributions. Recently, Ergen (2015) has considered
the skewed-t distribution proposed by Azzalini and Capitanio (2003) and Aas and Haff (2006) propose the use of the
generalized hyperbolic skew Student-t distribution for unconditional and conditional VaR forecasting.
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SDα
t =

[
σ

2
t

1
α

∫
α

0

(
F−1(s)−

(
1
α

∫
α

0
F−1(s)ds

))2

ds

]1/2

.

The SD measure in the last expression is the dispersion around the expected value truncated by
the VaR. It will play an important role in the ES backtesting approach of Righi and Ceretta that we
describe below.

Another possibility is to estimate the conditional quantile using the EVT approach. EVT is
concerned with the distribution of the smallest order statistics and it considers only the tail of
the distribution of returns without making any specific assumption concerning the center of the
distribution [Rocco (2014)]. For more details, see Longin (2005). Although EVT is interesting
for risk modeling, the stylized facts make the i.i.d. assumption inappropriate for most financial
data. To address this issue, Danı́elsson and de Vries (2000) and McNeil and Frey (2000) suggest
applying the EVT analysis to the filtered standardized residuals zt from a previously estimated
model, as proposed by Diebold, Schuermann, and Stroughair (2000). This is possible because
under a correct specification of the conditional mean and variance, the filtered residuals will be
approximately i.i.d., an assumption of EVT modeling.

The tail index parameter in EVT can be estimated nonparametrically without assuming any
particular model for the tail with the Hill estimator [Hill (1975)] and Pickands estimator [Pickands
(1975)]. Tail parameters in EVT can also be estimated from two parametric approaches based on
classical methods such as maximum likelihood. In one, block maxima (BM), the sample is split
into m subsamples of n observations. The maximum values of each subsample, when properly
normalized, converge to a generalized extreme value (GEV) distribution [see for example Longin
(2005) and Diebold, Schuermann, and Stroughair (2000)]. In the paper we use an alternative
EVT parametric approach, peaks-over-threshold (POT), which is based on the generalized Pareto
distribution (GPD). The GPD distribution can be seen as the limiting tail distribution for a wide
variety of commonly studied continuous distributions. Under this method, any observations that
exceed a given high threshold, u, are modeled separately from non-extreme observations. McNeil
and Frey (2000) show that the EVT method based on the GPD yields quantile estimates that are
more stable than those obtained using the Hill estimator. The weakness of this approach is the
lack of objective information for the choice of threshold, which affects the numerical values and
the properties of the implied quantile estimates.

POT is the typical approach used in finance for parametric EVT estimation. It essentially
consists in fitting a GPD to the innovations obtained from filtering returns using an estimated
conditional volatility model. Under the i.i.d. assumption, we consider the distribution function of
excesses Y = u−Z over a high, fixed threshold u, Fu(y) =P(Y = u−Z≤ y|Z < u) = [F(u)−F(u−
y)]/[F(u)], y ≥ 0.8 Pickands (1975) shows that the generalized Pareto distribution (GPD) arises
naturally as the limit distribution of the scaled excesses of identical and independently distributed
(i.i.d.) random variables over high thresholds. We say that excesses from a given threshold follow
a generalized Pareto distribution Y = u−Z ∼ GPD(ξ ,β ) if

Fu(y)≈ GPDξ ,β (y) =


1−
(

1+
ξ y
β

)−1/ξ

, ξ 6= 0,

1− exp
(
− y

β

)
, ξ = 0.

8Note that we focus on the lower tail of the data, and we have adapted all the formulations accordingly.
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GPDξ ,β (y) has support y ≥ 0 if ξ ≥ 0 and 0 ≤ y ≤ −β/ξ if ξ < 0, where β > 0 is a scale pa-
rameter and ξ is the tail shape parameter, which is crucial because it governs the tail behavior of
GPDξ ,β (y). The case ξ > 0 corresponds with heavy-tailed distributions whose tails decay like
power functions, such as the Pareto, Student-t, Cauchy, Burr, log-gamma and Fréchet distribu-
tions. For example, in this case, the tail index parameter equal to 1/ξ corresponds to the degrees
of freedom of the Student-t distribution. The case ξ = 0 corresponds with distributions such as
the normal, exponential, gamma, and lognormal distributions, whose tails essentially decay expo-
nentially. The final group of distributions are short-tailed distributions (ξ < 0) with a finite right
endpoint, such as the uniform and beta distributions.9

Consider now the following equality for points z < u in the left tail of F :

F(z) = F(u)−Fu(u− z)F(u) = F(u)(1−Fu(u− z)).

If we estimate the first term on the right-hand side of the equation using the proportion of tail
data Tu/T , and if we estimate the second term by approximating the excess distribution with a
generalized Pareto distribution fitted by maximum likelihood, we get the tail estimator

F̂(z) =
Tu

T

(
1+ ξ̂

u− z

β̂

)−1/ξ̂

.

It is very important to note that the distribution F of the conditional model and the distribu-
tion GPDξ ,β for the excesses over threshold, {y}, are not linked. Thus, it is possible to use any
conditional model to filter the data before applying EVT to z. In our analysis we assume a variety
of asymmetric distributions for F that give rise to different conditional EVT estimates. Under the
EVT approach, the risk measures obtained are

VaRα
t = µt +σtF−1

z (α) = µt +σt

(
u+

β

ξ

[
1−
(

α

Tu/T

)−ξ
])

,

ESα
t = µt +σt

(
1
α

∫
α

0
F−1

z (s)ds
)
= µt +σt

(
VaRα

t

1−ξ
−
(

β +ξ u
1−ξ

))
,

SDα
t =

[
σ

2
t

1
α

∫
α

0

(
F−1

z (s)−
(

1
α

∫
α

0
F−1

z (s)ds
))2

ds

]1/2

.

To summarize, McNeil and Frey proceed as follows. In the first step, they filter the dependence
in the time series of returns by computing the residuals of a GARCH-type model, which should be
i.i.d. if the GARCH-type model correctly fits the data. In the second step, they model the extreme
behavior of the residuals using the tail approach explained above. Finally, in order to produce a
VaR forecast of original returns, they trace back the steps by first producing the α-quantile forecast

9The implied assumption is that the tail of the underlying distribution begins at the threshold u. From our sample
of T data a random number of observations, Tu, will exceed this threshold. If we assume that the Tu excesses over the
threshold are i.i.d. with an exact GPD distribution, Smith (1987) has shown that the maximum likelihood estimates
ξ̂ = ξ̂N and β̂ = β̂N of the GPD parameters ξ and β are consistent and asymptotically normal as Tu → ∞, provided
ξ >−1/2. Under the weaker assumption that the excesses are i.i.d. from a Fu(y) which is only approximately GPD he
also obtains asymptotic normality results for ξ and β .
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for the GARCH-type filtered residuals and transforming the α-quantile forecast for the original
returns using the conditional forecast at the required horizon.

It is worth emphasizing that the GARCH-EVT approach incorporates the two ingredients re-
quired for an accurate evaluation of the conditional VaR, i.e. a model for the dynamics of the first
and second return moments, and an appropriate model for the conditional distribution of returns.
An obvious improvement of this approach as compared to the unconditional EVT is that it incor-
porates in VaR forecasting changes in expected return and volatility. For instance, if we assume
a change in volatility over the recent period, the GARCH-EVT is able to incorporate this new
feature in its VaR evaluation, whereas the unconditional EVT would remain stuck at the average
level of volatility over the estimation sample.

Chan and Gray (2006) describe the conditional EVT and its application to the forecasting of
VaR of daily electricity prices. McNeil and Frey (2000) propose filtering returns by estimating a
GARCH model, then applying EVT to the tails of the empirical distribution of innovations while
bootstrapping from the central part of the distribution. They verify that the generalized Pareto
distribution of EVT results in better estimates for ES than does unconditional EVT, suggesting
that the ability to capture changes in volatility is crucial for VaR computation. Jalal and Rockinger
(2008) show that this procedure appears to perform a remarkable job when combined with a well-
chosen threshold estimation, such as that in Gonzalo and Olmo (2004). Kourouma et al. (2011)
conclude that the conditional EVT model is more accurate and reliable for VaR forecasting, ac-
cording to the rate of violations as well as by application of the Wald, Kupiec, and Christoffersen
tests. They also consider EVT a better model for ES forecasting according to an ES test they
introduce, based on the average difference between realized returns and the predicted ES.

To implement EVT in practice the analyst needs to choose a threshold that will define the tail
of the distribution of returns. The selection of a threshold involves a trade-off between bias and
variance. The lower the threshold, the greater the estimation bias, while the higher the threshold,
the greater the variance of the estimators, and therefore the greater the degree of uncertainty about
the true parameter values. The literature about threshold selection is still scarce for practical cases
in which the condition of i.i.d. observations is not reasonable. For instance, Chavez-Demoulin and
McGill (2012) determine that a quantile between 0.08 and 0.05 would be an appropriate threshold
for a set of high-frequency data from a stock market, using the sample mean excess plot (SMEP)
introduced by Davison and Smith (1990). Herrera (2013) performs a sensitivity analysis of VaR
estimates for a set of stock market indices, concluding that a quantile between 0.10 and 0.08 could
be justified.

To select the threshold we follow the approach used by Chavez-Demoulin and McGill (2012):
if the tail of a given variable, defined by the values to the left of the u0 threshold, follows a GPD,
then the excess distribution over higher thresholds u, u > u0, remains a GPD with the same ξ

parameter but with a scaling (βu) that grows linearly with the threshold u. Provided ξ < 1, the
mean excess function is given by e(u) = E[z− u|z > u] = βu

1−ξ
=

βu0+ξ u
1−ξ

. Hence, the generalized
Pareto distribution should also be suitable for the excesses over any thresholds u > u0, subject
to the appropriate change of the scale parameter to βu. The sample mean of the excesses of

the threshold u, eTu(u) =
∑

Tu
i=1(zi−u)Izi>u

Tu
, where Tu is the number of observations that exceed u,

provides an empirical estimate of E[z− u|z > u]. Therefore, we should expect the sample mean
excess to change linearly with u on the range of values of the threshold u for which the GPD
model is appropriate. Figure A1 in the online appendix is a sample mean excess plot (SMEP)
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for the four stocks for quantile thresholds from 0.80 to 0.99.10 The horizontal axis is labeled by
standardized innovations, not probabilities. We work with the distribution of losses, which is why
the x-axis shows positive values relative to quantiles. The variance of the excesses increases with
the threshold, leading to wider confidence intervals. According to Figure A1, a good compromise
for the choice of the threshold u seems to be between the 0.85 and 0.97 quantiles, corresponding
in the GPD to standardized losses between 1% and 2%, depending on the asset. Gray rectangles in
Figure A1 indicate pieces of the the SMEP that are approximately straight lines. Visual inspection
suggests that if the mean excess plot becomes linear then we might select as our threshold u0 a
value around 1%. To simplify the discussion we decided to use the 0.90 quantile for the four
assets, which amounts to using the 0.10 quantile for standardized innovations.

3.2 Parameter estimates

Tables A2a - A2e in the online appendix display maximum likelihood estimates for the EVT
models for the four stocks under the five probability distributions, for a given threshold u. In all
cases, we use 10% of the data to determine the threshold, for the reasons given in the previous
paragraph. The autoregressive effect in volatility specification is strong, with β1 around 0.93,
suggesting strong memory effects. The estimated γ1 coefficient is positive and statistically signif-
icant at 10% in most cases,11 indicating the existence of a leverage effect for negative returns in
conditional volatility. It is also important that the skewness parameter for the SKST and SGED
distributions is less than 1 and for the Johnson SU distribution it is less than 0 for the four stocks,
suggesting the utility of incorporating negative asymmetry to model innovations appropriately.12

The shape parameter is low, implying high kurtosis. The parameter δ takes values between 1.04
and 1.22, and differs significantly from 2. This result suggests that more attention should be paid to
modeling the dynamics of the conditional standard deviation rather than the conditional variance,
as has been pointed out for a variety of assets by Garcia-Jorcano and Novales (2017).

When applying EVT, we generate the residuals obtained by filtering stock returns using the
estimated AR(1)-APARCH(1,1) model, and estimate the parameters of the generalized Pareto
distribution from the standardized residuals. For all asset returns, the estimated tail index ξ of
the generalized Pareto distribution is positive. The left tail of the GPD distribution is fat and the
probability of occurrence of extreme losses is higher than predicted using the normal distribution.
The estimated tail indices of IBM and SAN are higher than those of AXA and BP, reflecting the
thicker left tails of their return distributions.13

As an illustration, we now examine the estimation results for IBM in more detail. The
maximum likelihood estimates of the generalized Pareto distribution parameters for IBM are
(ξ̂ , β̂ ) = (0.39,0.51), with standard errors of 0.12 and 0.07, respectively. Figure A2 in the online
appendix shows a well-defined likelihood profile for this asset with a maximum log-likelihood of
-91.877 reached for ξ̂ = 0.39. Thus, the model we have fitted has very heavy tails with finite vari-
ance. We consider the tail of the IBM return distribution as defined by the threshold u = 1.0533.
That leaves us with 126 exceedances (10% of 1260 data points). Figure 1 shows the fitted GPD

10Confidence bands are constructed applying the delta method, assuming that the sample mean follows a normal
distribution

11Except for IBM under fat-tailed distributions.
12Although the Johnson SU skew parameter is not significant at 5% for IBM and at 10% for BP.
13In the estimation of EVT models, we use the R packages ismev (version 1.41) and evir (version 1.7-3).
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model for the excess return distribution, Fu(y), where y = z−u, superimposed on points plotted at
empirical estimates of excess probabilities for each loss (126 losses).14 Note the close correspon-
dence between the empirical estimates and the GPD curve. Under the EVT approach the filtered
residuals from all models considered fit the GPD curve very similarly, especially when the filtered
residuals come from asymmetric distributions. Figure 2 shows the estimated tail probabilities. The
points in the graph show the empirical tail probabilities for the 126 threshold exceedances. The
smooth curve running through the points is the tail estimator, defined for the right tail by

1− F̂(z) =
Tu

T

(
1+ ξ̂

z−u

β̂

)−1/ξ̂

.

3.3 Estimating risk by a semiparametric approach: filtered historical simulation

The standard historical approach is often limited to the 1-day horizon because of the lack of
enough historical data to use non-overlapping h-day returns. Using overlapping h-day returns
would distort the tail behavior of the return distributions leading to significant error in VaR and
ES forecasts at extreme quantiles. A way out of this difficulty is to estimate innovation quantiles
non-parametrically using bootstrapping, which does not need to assume any particular probability
distribution [Ruiz and Pascual (2002)]. Bootstrap procedures have the advantage that they allow
for the construction of confidence intervals for VaR estimates. Pascual, Ruiz, and Romo (2006)
propose a bootstrap procedure that allows for the incorporation of parameter uncertainty. Barone-
Adesi (1998), Giannopoulus (1999), and Vosper (2002) propose the filtered historical simulation
(FHS) method that extends the idea of volatility adjustment to multi-step historical simulation,
using overlapping data in a way that does not create blunt tails for the h-day portfolio return dis-
tribution. The method consists in applying a statistical bootstrap to the standardized residuals
of a parametric dynamic model of returns, to simulate log returns each day over the desired risk
horizon. Typically, the model used for FHS incorporates a specification of the GARCH family
for volatility dynamics. The filtering involved in FHS allows for h-day return distributions to
be generated from overlapping samples, since the bootstrap allows for increasing the number of
observations used for building the h-day return distribution.

FHS is in fact a hybrid method combining some attractive features of both historical and Monte
Carlo VaR models. The advantages of FHS approach are 1) it captures current market conditions
by means of the volatility dynamics, 2) no assumptions need to be made on the distribution of
the return innovations, and 3) the method allows for the computation of any risk measure at any
investment horizon of interest because one can generate as many h-day returns as one likes.

Suppose that at a time s, we want to simulate returns for the next h days. We select {z∗s+1,z
∗
s+2,

...,z∗s+h} at random with replacement (statistical bootstrap) from the set of standardized innova-
tions from our model {ẑ1, ẑ2, ..., ẑs} after filtering out using the APARCH and AR models. We use
the APARCH model to simulate future returns for dates t = s+1,s+2, ...,s+h :

σ
∗
t = (ω̂ + α̂1(|ε∗t−1|− γ̂1ε

∗
t−1)

δ̂ + β̂1(σ
∗
t−1)

δ̂ )1/δ̂ , (3)

ε
∗
t = z∗t σ

∗
t , (4)

14Figures 1 and 2 show the right tail, considering losses as positive numbers.
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r∗t = φ̂0 + φ̂1r∗t−1 + ε
∗
t . (5)

The algorithm contains the following steps:

1. Select {z∗s+1,z
∗
s+2, ...,z

∗
s+h}, drawn randomly with replacement from {ẑ1, ẑ2, ..., ẑs}.

2. Take as initial values the estimates from the previous iteration: σ∗s = σ̂s, ε∗s = ε̂s, r∗t = rt .

3. For t = s+1,s+2, ...,s+h:

• Plug σ∗t−1 and ε∗t−1 into equation (3) to get σ∗t .

• Plug z∗t (from step 1) and σ∗t into equation (4) to get ε∗t .

• Plug r∗t−1 and ε∗t into equation (5) to get r∗t .

• The simulated log return over h days (r∗s,s+h) is the sum r∗s,s+1+r∗s+1,s+2+...+r∗s+h−1,s+h.

4. Repeating this procedure N times yields N simulated h-day returns, r∗i,s,s+h, i = 1,2, ...,N.

Once we have these trajectories, we compute h-day VaR and ES forecasts by

VaRα
s+h = Percentile

{
r∗i,s,s+h, i = 1, ...,N;100α

}
, i = 1,2, ...,N,

ESα
s+h = (Nα)−1

N

∑
i=1

(r∗i,s,s+h1{r∗i,s,s+h<VaRα
s+h}),

where 1 is the indicator function equal to 1 if the h-day return r∗i,s,s+h is lower than VaR and equal
to 0 otherwise. Thus, the ES is just the mean of the simulated returns below VaR. Finally,

SDα
s+h =

{
(Nα)−1

N

∑
i=1

[(r∗i,s,s+h1{r∗i,s,s+h<VaRα
s+h
})−ESα

s+h]

}1/2

,

and, thus SD is just the standard deviation around the ES, considering only the values below VaR.
We use an expanding window to estimate the model, starting with the 2915 observations from

the 10/2/2000-12/2/2011 period. Each day we add a new observation, estimate the models and ap-
ply the algorithm to generate N = 5000 h-day return simulations from which we compute forecasts
for VaR and ES. The forecasting exercise extends over 1260 days, the last five years in our sample,
12/5/2011-9/30/2016, obtaining daily h-day forecasts of the VaR, ES, and SD risk measures.

To combine FHS with EVT we generate N = 5000 simulations for the h-day returns using a
combination of bootstrapping in-sample residuals from the fitted models (i.e. FHS) and GPD sim-
ulation. We apply the following algorithm, which was also proposed independently by Danı́elsson
and de Vries (2000):

1. Use bootstrapping to randomly sample from the standardized innovations for each future
period and for each of the N trajectories.

2. If a selected innovation z∗ is below the threshold (u), we draw a realization y from the
previously estimated GPD(ξ̂ , β̂ ). The value y is taken as the excess below the threshold u,
i.e. the numerical value of the innovation to be used in simulation will be: z∗ = u− y.
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3. Otherwise, return the standardized innovations themselves.

4. Finally, we trace back from simulated standardized innovations to recover the returns and we
end up with N sequences of hypothetical daily returns for day s+1 through day s+h. From
these, we calculate the hypothetical h-day returns as r∗s,s+h = ∑

h
j=1 ri,s+ j for i = 1,2, ...,N,

and we can calculate the h-day VaR, h-day ES, and h-day SD as described above.

5. We repeat this procedure for s+1,s+2,s+3, ...,s+1259, to cover the out-of-sample period.

4 Alternative approaches to backtesting value at risk and expected
shortfall

In spite of having better properties as a measure of risk, ES is still less used than VaR, essentially
because backtesting ES is much harder than backtesting VaR. Recently, some ES backtesting
procedures have been developed, such as the residual approach introduced by McNeil and Frey
(2000), the censored Gaussian approach proposed by Berkowitz (2001), and the functional delta
approach of Kerkhof and Melenberg (2004). However, these approaches have some drawbacks.
They rely on asymptotic test statistics that might be inaccurate when the sample size is small, and
this could penalize financial institutions because of an incorrect forecasting of ES. Further, these
tests compute the required p-value based on the full sample size rather than conditioning on the
number of exceptions. The saddlepoint techniques introduced by Wong (2008) are accurate and
yield reasonable test power even for a small sample size. They allow for detecting the deficiency of
a risk model based on just one or two exceptions before any more data is observed. Nonetheless,
they still have the limitations of relying on a Gaussian distribution and using a full distribution
conditional standard deviation as the dispersion measure.

Some tests have recently been proposed to backtest ES that overcome these limitations. Em-
mer, Kratz, and Tasche (2015) proposed a new ES backtest based on a simple linear approximation.
The ES forecast is obtained as the average of quantiles at different VaR levels, and it is considered
acceptable if all the VaR forecasts pass the Kupiec test. The test by Righi and Ceretta (2013)
verifies whether the average observed deviation from ES is zero, using the distribution of returns
truncated to the left of VaR. Later, Acerbi and Szekely (2014) introduced three model-free, non-
parametric backtesting methodologies for ES showing them to be more powerful than the Basel
VaR test. Their tests are straightforward to apply but require simulation analysis (as does the
Righi and Ceretta test) to compute critical values and p-values. Graham and Pál (2014) proposed
a tractable and intuitive extension of the Lugannani-Rice approach of Wong (2008). Costanzino
and Curran (2015) developed a methodology that can be used to backtest any spectral risk mea-
sure, such as ES, exploiting the fact that ES is an average of a continuum of VaR levels. They
introduced an unconditional ES backtest similar to the unconditional VaR backtest of Kupiec, to
test whether the average cumulative violation is equal to α/2. Later, Du and Escanciano (2016)
proposed backtesting for ES based on cumulative violations, which is the natural analogue of the
commonly used conditional backtest for VaR, extending the results obtained by Costanzino and
Curran (2015). The tests by Costanzino and Curran and Du and Escanciano can be thought of as
the continuous limit of the Emmer, Kratz, and Tasche (2015) idea in that they are joint tests of a
continuum of VaR levels. These are the tests we apply in the following sections for validating ES
forecasts.
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The following sections review the VaR and ES backtesting approaches we use in the paper.

4.1 VaR backtesting

The unconditional coverage test introduced by Kupiec (1995) is based on the number of violations,
i.e. the number of times (T1) that returns exceed the predicted VaR over a period of time T for a
given significance level. If the VaR model is correctly specified, the failure rate (π̂ = T1

T ) should be
equal to the α quantile used in the estimation of VaR. The null hypothesis H0 : π = α is evaluated
using the likelihood ratio test

LRuc =−2ln

(
L(Πα)

L(Π̂)

)
=−2ln

(
(1−α)T0αT1

(1− π̂)T0 π̂T1

)
T→∞−→ χ

2
1 ,

where T0 = T −T1.
Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.

We consider two states of nature for each period: state 0 if the return does not fall below VaR,
rt < VaRα , and state 1 if rt < VaRα . For the alternative hypothesis of VaR inefficiency, it is
assumed that the process of violations It(α), where It(α) = 1 if rt < VaRα and It(α) = 0 oth-
erwise, can be modeled as a Markov chain with πi j = Pr[It(α) = j|It−1(α) = i]. We denote by
Ti j the number of observations in state j after having been in state i in the previous period, and
define T0 = T00 + T10 and T1 = T11 + T01. The two probabilities of a VaR excess (state 1), con-
ditional on the state of the previous period, π01 and π11, are estimated by π̂01 = T01/(T00 +T01)
and π̂11 = T11/(T10 +T11). Under the null hypothesis of the independence of VaR exceedances,
π01 = π11 = π = (T11+T01)/T , the likelihood function is L(Π̂) = (1− π̂)T0 π̂T1 . The likelihood un-
der the alternative hypothesis is L(Π̂1)= (1− π̂01)

T00 π̂
T01
01 (1− π̂11)

T10 π̂
T11
11 . The independence test of

Christoffersen (1998) is a test of the hypothesis of serial independence in VaR exceedances against
a first-order Markov dependence. The likelihood ratio statistic is LRind = −2ln(L(Π̂)/L(Π̂1))
with a χ2

1 distribution. The second test is a conditional coverage test, based on the likelihood ratio
statistic, LRcc =−2ln(L(Πα)/L(Π̂1)) = LRuc +LRind , which is asymptotically χ2

2 distributed.
While the conditional coverage test is easy to use, it is rather limited for two main reasons:

i) the independence is tested against a very particular form of alternative dependence structure
that does not take into account dependence of order higher than one, and ii) the use of a Markov
chain takes into account only the influence of past violations It(α) and not the influence of any
other exogenous variable. The dynamic quantile test proposed by Engle and Manganelli (2004)
overcomes these two drawbacks of the conditional coverage test. These authors suggest using a
linear regression model that links current violations to past violations. We define the auxiliary
variable Hitt(α) = It(α)−α , so that Hitt(α) = 1−α if rt <VaRα

t and Hitt(α) =−α otherwise.
The null hypothesis for this test is that the sequence of hits (Hitt) is uncorrelated with any variable
that belongs to the information set Ωt−1 available when the VaR was calculated and it has a mean
value of zero, which implies, in particular, that the hits are not autocorrelated. The dynamic
quantile test is a Wald test of the null hypothesis that all slopes in the regression model

Hitt(α) = δ0 +
p

∑
i=1

δiHitt−i +
q

∑
j=1

δp+ jX jt + εt
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are zero, where X j are explanatory variables contained in Ωt−1. The test statistic has an asymptotic
χ2

p+q+1 distribution. In our implementation of the test, we use p= 5 and q= 1 (where X1t =VaRα
t )

as proposed by Engle and Manganelli (2004). By doing so, we are testing whether the probability
of an exception depends on the level of the VaR.

4.2 Backtesting ES

4.2.1 The Righi and Ceretta approach

The ES backtest approach of Righi and Ceretta (2013) extends and improves those previously
introduced in the literature in three main ways. First, they use the dispersion of the truncated
distribution by the estimated VaR upper limit, instead of the whole probability function. They
refer to this dispersion as the shortfall deviation (SD). Second, they do not limit the approach
to the Gaussian case. They permit other probability distribution functions and even an empirical
distribution, making this approach more flexible. Finally, their approach allows testing separately
whether each VaR violation differs significantly from the ES, and this facilitates using a faster
model for error verification, which is extremely useful since prompt action is often required in
order to avert extreme financial losses due to market risk.

The SD is the square root of the truncated variance for some quantile conditional on the prob-
ability α . We obtain the 1-day SD as SDα

t+k = (VARt+k[rt,t+k|rt,t+k < VaRα
t+k])

1/2, and since
rt,t+1 = µt+1+σt+1zt+1, by standardization we get SDα

t+1 =(σ2
t+1VARt+1[zt+1|zt+1 <F−1(α)])1/2.

The SD is a better estimate than the whole sample standard deviation because, when extreme
negative returns occur it is the risk in the left tail that concerns risk managers and financial institu-
tions. Furthermore, to quantify precisely how far a loss was from its expected value, one needs to
use some dispersion measure intrinsic to this expectation rather than one linked with the absolute
distribution expectation.

Righi and Ceretta propose to backtest if the day k violation is significantly worse from that
expected for certain α VaR quantile, BTt+k = (rt,t+k−ESα

t+k)/SDα
t+k, where how far the occurred

loss is from its expected value is computed in units of the dispersion measure. This test has as null
hypothesis H0 : BTt+k = 0 against the alternative that H1 : BTt+k < 0. We use the test in Righi and
Ceretta (2015) and we focus on performing a single test all the out-of-sample observations, i.e.
H0 : E[BTt ] = 0 against H1 : E[BTt ] < 0. This is in contrast to Righi and Ceretta (2013) who test
for each day of the out-of-sample period.

As rt,t+k = µt+k +σt+kzt+k, we can write the expression for the test statistic in a form ready to
use with sample return data,

BTt+k =
zt+k−Et+k[zt+k|zt+k < F−1(α)]

(VARt+k[zt+k|zt+k < F−1(α)])1/2 ,

where zt+k denotes the standardized innovations once the µt and σt models have been estimated
under some specific assumptions.

This is a one-tailed test with the alternative hypothesis that the observed loss is worse than
the expected one. To robustly obtain the statistical probability linked with the calculated value of
BTt+k, i.e. with no need to rely on any assumption about the distribution of this ratio, Monte Carlo
simulations are needed (see Righi and Ceretta (2013)).
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4.2.2 The Acerbi and Szekely approaches

We use the first two of the three tests introduced in Acerbi and Szekely (2014), each under slightly
different assumptions, and with somewhat different null and alternative hypotheses. The intuition
underlying the design of the test statistics Zi, i ∈ 1,2, is the same in both tests. These tests are
non-parametric and free from distributional assumptions. They depend neither on the form nor
on the parameters of the parent distribution, although they need the assumption of continuity of
the distribution function and the probability density function of returns, together with the indepen-
dence of the sample observations.15 Acerbi and Szekely (2014) propose an algorithm based on
Monte Carlo simulations to estimate the critical values and the p-values of the test statistics. We
use it here, as well as for the Righi and Ceretta tests, simulating 10000 processes of length 1000.

The two test statistics are as follows:16

Statistic Z1: Testing ES after VaR.

Z1 =
1

NT

T

∑
t=1

Itrt

ESα
t
−1,

where NT = ∑
T
t=1 It > 0 with It = 1{rt<VaRα

t } being the indicator of VaR breaches and T being
the length of the out-of-sample period. The null hypothesis is H0 : Pα

t = Fα
t ∀t where Fα

t is
the tail of cumulative distribution of forecasts at time t when rt < VaRα,F

t and Pα
t represents the

tail of the unknown distribution from which the realized events, rt , are drawn. The VaR and
expected shortfall under the theoretical and the empirical distributions are denoted by VaRα,P

t ,
ESα,P

t , VaRα,F
t , and ESα,F

t . The alternative hypothesis is

H1 : ESα,P
t ≤ ESα,F

t ∀t and < for some t,

VaRα,P
t =VaRα,F

t ∀t.

We see that the predicted VaRα is still correct given H1, in line with the idea that this test is
subordinate to a preliminary VaR test. This test is in fact completely insensitive to an excessive
number of exceptions as it is an average taken over exceptions themselves.

Under these conditions EH0 [Z1|NT > 0] = 0 and EH1 [Z1|NT > 0]> 0. Hence, the realized value
Z1 is expected to be zero, and its positivity signals a problem.

Statistic Z2: Testing ES directly.

Z2 =
1

T α

T

∑
t=1

Itrt

ESα
t
−1,

provided that NT > 0. H0 is as in the previous test and the alternative hypothesis is

H1 : ESα,P
t ≤ ESα,F

t ∀t and < for some t,

VaRα,P
t ≤VaRα,F

t ∀t.

15Continuity and strict monotonicity allow for expected shortfall to be expressed as the expected value of returns
below the value at risk.

16We have adapted the test statistics to apply to negative values of VaRα and ESα . Acerbi and Szekely (2014) define
them for positive ES values.
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We note that EH0 [NT ] = T α . We have again EH0 [Z2] = 0 and EH1 [Z2]> 0.

Unlike the Z1 statistic, the sum of the VaR breach event returns is now divided by the expected
value. The Z2 statistic will tend to reject a large number of VaR breach events of small magnitude.
This leads to the difference in H1 between the two statistics. Rejecting the H0 of Z2 includes
rejecting VaRα,F

t as being correctly specified.
Under the null hypothesis the number of theoretical VaR breaches is EH0 [NT ] = T α . The

relationship between the two test statistics of Acerbi and Szekely is Z2 = (1+ Z1)NT/T α − 1.
This shows that while Z1, being just an average taken over excesses, is insensitive to an excessive
number of exceptions, Z2 depends on that number through the ratio NT/T α . This is why, when
the number of violations exceeds the theoretical level, p-values for the Z2-test are lower than for
the Z1 test. Therefore, an ES model will pass the Z2 test when not only the magnitude but also the
frequency of the excesses is statistically equal to the expected one.17

4.2.3 The Graham and Pál Approach

The goal of the Graham and Pál (2014) test is to quantify how extreme each VaR violation is
in relation to its forecast distribution. The approach can be intuitively described as an extension
of the “hit” time series concept, wherein each of the “1” values (when VaR violation occurs) is
modified so as to measure the distance between a violation and its corresponding VaR threshold.
We obtain a time series with negative values consisting of the differences between each percentile
smaller than the VaR threshold percentile and the VaR threshold percentile itself. If there is no
VaR violation on a specific observation date, then a value of zero is still recorded. We expect this
series to be uniformly distributed within the tail region if the distribution of the series of forecasts
accurately represents the portfolio/asset’s P&L.

The central risk concept employed in this backtest is that of tail risk, as defined by Wong
(2010). The tail risk at significance level α (T Rα ) is related to VaR and ES in each period by

T Rα =
∫ q(α)

−∞

(r−q(α)) f (r)dr = α(ESα −VaRα),

where VaRα = q(α) = F−1(α). The tail risk will always be negative, and we can consider α−1T R
as the difference between the ES and the VaR.

Given a sample of T returns r1,r2, ...,rT , the sample unbiased estimator for the tail risk at
confidence level (1−α) can be calculated by

T̂ Rα = X̄ =
1
T

T

∑
t=1

(rt −qt(α))1{rt<qt(α)} =
1
T

T

∑
t=1

Xt ,

where Xt = (rt −qt(α))1{rt<qt(α)}. We note that the range of X is range(X) = (−∞,0].
To proceed, we simply transform the realized losses and forecast distributions through the

probability integral transform (PIT) to the exponential context to ensure that our sample estimator

17Acerbi and Szekely (2014) show that the Z2 test is more powerful than the Z1 test when the null and alternative
hypothesis differ in volatility, while Z1 is more powerful than Z2 in the case of different tail indices.
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for the average tail risk is created through identically distributed sample values.18 The exact
transformation is simple. We only need to locate each VaR violation as a percentile value within
its forecast distribution. For a return rt exceeding the VaR the random variable X is redefined as

Xt = (lnFt(rt)− lnFt(qt(α)))1{rt<qt(α)} = (ln pt − lnα)1{Ft(rt)<α} = (ln pt − lnα)1{ln pt<lnα},

where pt = Ft(rt), and the transformations within the indicator function are possible by mono-
tonicity.

If the forecast CDFs Ft(·) are correct estimates of the real and unobservable P&L distributions,
then the series pt is distributed uniformly U(0,1). Moreover, if the sequence of forecast CDFs is
correctly conditionally calibrated, then the corresponding pt sequence is i.i.d. U(0,1).19 Now we
need to determine the exact distribution of {Xt}. Knowing its CDF and PDF allows us to determine
its moments and cumulants, and both of these are used in determining its theoretical average value
and in calculating the sample value of the test statistic using the small-sample asymptotic technique
described next [details can be found in Graham and Pál (2014)].

Under the assumption that the sequence of forecast P&L distributions is correctly conditionally
calibrated, we know that {rt} := {ln pt} is i.i.d. Exp(−∞,0) with PDF φE(·) and CDF ΦE(·) both
equal to er for −∞ < r < 0. The moment-generating and cumulant-generating functions of X can
be used in the Lugannani-Rice formula to calculate the tail probability of exceeding the sample
mean X̄ by a saddlepoint technique. These functions are

M(t) = E[etX ] =
∫ 0

−∞

etxdFX(x) =
α

t +1
+1−α,

K(t) = lnM(t).


Omitting the remaining details,20 to approximate the tail of the cumulative distribution func-

tion of the sample mean of the X-variable defined above we proceed as follows: first, we analyti-
cally solve the saddle-point equation K′(s) = M′(s)

M(s) =−
α

(s+1)[s(1−α)+1] = x̄ for x̄ < 0, where s is

the unique solution in the interval (−1,∞). Second, we define, for readability, η = s
√

T K′′(s) and
ς = sgn(s)

√
2T (sx̄−K(s)), where sgn(s) denotes the sign of s. Finally, according to Lugannani

and Rice, we have that the tail probability of exceeding the sample mean x̄ 6= µX is given by

P[X̄ > x̄] = 1−Φ(ς)+φ(ς)

(
1
η
− 1

ς
+O(T−3/2)

)
,

where Φ(·) and φ(·) represent the standard normal CDF and PDF, respectively.
We now formulate the hypothesis test explicitly. Although the tail loss T Rα =α(ESα−VaRα)

could be used as the test statistic, Graham and Pál follow Wong (2010) and take as the test statistic
the standardized variable

z = α
−1T Rα = ESα −VaRα .

18Rosenblatt (1952), Crnkovic and Drachman (1996), Diebold et al. (1998), and Berkowitz (2001) are often cred-
ited with introducing PIT into the financial risk management backtesting literature. Graham and Pál apply a further
transformation to the exponential context because it allows to solve for the saddle point analytically. This solution is,
moreover, well defined over the complete interval of interest for tail losses.

19Another necessary condition for the series to be i.i.d. is that the P&L time horizons do not overlap; otherwise,
serial interdependencies may occur within the data.

20For more details, Lugannani and Rice (1980), Daniels (1987), and Wong (2010).
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Therefore, under the exponential tail distribution null hypothesis, we have VaR0 = lnα and
ES0 = 1

α

∫ lnα

−∞
rφE(r)dr = 1

α

∫ lnα

−∞
rerdr = 1

α
(rer−er)|lnα

−∞ = lnα−1, so that T R0 =α(ES0−VaR0)=
−α . For instance, with α = 0.01, we have

z0 = α
−1T R0 = ES0−VaR0 =−1, i.e. T R0 =−0.01.

Accordingly, a one-tailed regulatory backtest to check whether the risk model provides suf-
ficient risk coverage may be formulated in terms of z, with the null and alternative hypotheses
defined by

H0 : z = z0, i.e. T Rα = T R0,

H1 : z < z0, i.e. T Rα < T R0.

The p-value of the hypothesis test can obtained using the Lugannani-Rice formula above as

p− value = P[X̄ ≤ x̄] = 1−P[X̄ > x̄].

The null hypothesis is rejected if the realized value of the sample statistic T̂ Rα is significantly
lower than the theoretical level of tail risk T R0. If we obtain T Rα > T R0, we will say that the risk
model captures tail risk sufficiently, or that it provides sufficient risk coverage, although risk may
then be overestimated. When that happens, the logarithmic difference between the probability
of an excess and the significance level for VaRα

t follows a distribution with thicker tails than the
exponential distribution. Alternatively, when the forecast CDF is a correct estimate of the real and
unobservable P&L distribution, such probability differences follow an exponential distribution.21

4.2.4 The Costanzino and Curran and Du and Escanciano approaches

It is well known that for each coverage level, violations should be unpredictable if the risk model
is appropriate, i.e. they should be a martingale difference sequence (mds). Indeed, rather than just
one mds, violations form a class of mds indexed by the coverage level. The cumulative violation
process accumulates all violations in its left tail, just like the ES accumulates the VaR in its left tail.
Du and Escanciano (2016) suggest a Box-Pierce test to check for the mds property. Their Box-
Pierce test is the analogue for ES of the conditional backtest proposed by Christoffersen (1998)
and Berkowitz, Christoffersen and Pelletier (2011) for VaR.

This approach is developed from Costanzino and Curran (2015). It is based on the idea that
ES is an average of a continuum of VaR levels and it can be thought of as the continuous limit of
the Emmer, Kratz, and Tasche idea in that it is a joint test of a continuum of VaR levels. Unlike
the test proposed by Du and Escanciano, the test proposed by Costanzino and Curran does not test
independence, but it is the first proposed coverage test for spectral risk measures. It essentially
amounts to a joint test of a continuum of weighted VaR quantiles to give a single decision at a
fixed confidence level. The key of the method is to show that the spectral measure failure rate is
asymptotically normal under the null hypothesis and therefore admits a formal Z-test.

The cumulative violation process is defined by

Ht(α) =
1
α

∫
α

0
ht(u)du,

21That amounts to return violations, in probability terms, following a uniform (0,1) distribution.
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where ht(u) = 1(rt≤VaRt(u)) is the u-violation or hit at time t. Since ht(u) has mean u, by the Fubini
Theorem Ht(α) has mean 1/α

∫
α

0 udu = α/2. Moreover, again by the Fubini Theorem, the mds
property of the class {ht(α)−α : α ∈ [0,1]}∞

t=1 is preserved by integration, which means that
{Ht(α)−α/2}∞

t=1 is also mds.
For computational purposes, it is convenient to define ut = F(rt ,Ωt−1) where F(·,Ωt−1) de-

notes the conditional cumulative distribution function of rt given Ωt−1. Using the fact that ht(u) =
1(rt≤VaRt(u)) = 1(ut≤u), we obtain,22

Ht(α) =
1
α

∫
α

0
1(ut≤u)du =

1
α
(α−ut)1(ut≤α).

As for violations, cumulative violations are distribution-free, since {ut}∞
t=1 comprises a sample

of i.i.d. U(0,1) variables. Working with violations avoids approximations, as the previous integral
can be computed exactly. Unlike violations, cumulative violations contain information on the tail
risk. When violations are zero, cumulative violations are also zero, but when a violation occurs,
the cumulative violation measures how far the actual value of rt is from its quantile.

The variables {ut}∞
t=1 necessary to construct {Ht(α)}∞

t=1 are generally unknown, since the dis-
tribution of the data F is unknown. In practice, researchers and risk managers specify a parametric
conditional distribution F(·,Ωt−1,θ0), where θ0 is some unknown parameter in Θ⊂ Rp, and pro-
ceed to estimate θ0 before producing VaR and ES forecasts. With the parametric model, we can
define the “generalized errors”, ut(θ0) = F(rt ,Ωt−1,θ0) and the associated cumulative violations,
Ht(α,θ0) =

1
α
(α−ut(θ0))1(ut≤α).

Very much like for VaRs, the arguments above provide a theoretical justification for back-
testing ES by checking whether {Ht(α,θ0)−α/2}∞

t=1 has zero mean (unconditional ES backtest)
and it is serially uncorrelated (conditional ES backtest). The unconditional backtest for ES is a
standard t-test for the null hypothesis

H0u = E[Ht(α,θ0)] = α/2.

Note that a simple calculations show that E[H2
t (α,θ0)] = α/3, and hence, Var(Ht(α)) =

α(1/3−α/4). Therefore, a simple t-test statistic is

UES =

√
T (H̄(α)−α/2)√
α(1/3−α/4)

d→ N(0,1),

where T is the size of the out-of-sample period which is used to evaluate (backtest) the ES model
and H̄(α) denotes the sample mean of {Ĥt(α)}T

t=1. The UES statistic has a standard normal limit
distribution when the estimation period is much larger than the evaluation period.

Next, the conditional backtest has the null hypothesis

H0c : E[Ht(α,θ0)−α/2|Ωt−1] = 0,

which is the analogue of the null hypothesis of the conditional backtest for VaR.23 Define the lag-j

22Ht(α) = 1
α

∫
α

0 1(ut≤u)du = 1
α
1(ut≤α)

∫
α

0 1(ut≤u)du = 1
α
1(ut≤α)

∫
α

ut
1du = 1

α
1(ut≤α)(α−ut).

23Note that we use the conditional mean restriction in the definition of autocorrelations. As a result, tests based on
γT j are expected to have power against deviations from H0c, where Ht(α) are uncorrelated but have mean different
from α/2.
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autocovariance and autocorrelation of {Ht(α)}T
t=1 for j ≥ 0 by

γT j =
1

T − j

T

∑
t= j+1

(Ht(α)−α/2)(Ht− j(α)−α/2) and ρn j =
γT j

γT 0
.

Simple conditional tests can be constructed using ρ̂n j, for example the Box-Pierce test statistic

CES(m) = n
m

∑
j=1

ρ̂
2
n j

d→ χ
2
m.

The CES statistic has a chi-square distribution with m degrees of freedom when the estimation
period is much larger than the evaluation period.

5 Evaluating 1-day ES forecasts

5.1 ES forecasts under the parametric approach

In this section we show the results from VaR and ES forecasts following a standard time-varying
parametric approach. We restrict our attention to the left tail of the distribution and the 1%, 2.5%
and 5% significance levels, and we compute recursive VaR and ES forecasts from an expand-
ing window. First, each model is estimated using 2915 daily observations from the 10/2/2000-
12/2/2011 sample period. After that, we increase the initial sample by one data point each day
until the end of 2016, to compute 1-day ahead VaR and ES forecasts over five years: 2012-2016
(1260 data observations). Over this forecasting period, models are estimated every 50 days, a
choice intended to reduce the computational cost while avoiding frequent parameter variation that
might be due to pure noise.

We follow other authors like Giot and Laurent (2003a, 2003b), McMillan and Speight (2004)
and McMillan and Kambouroudis (2009), who use an expanding window. They usually start the
estimation process by excluding from the complete sample for which data is available, generally
5 to 10 years, the observations chosen as out of the sample period, over which one-step (day)
forecasts are obtained. However, Alexander and Sheedy (2008) conclude that the estimation win-
dow is an important source of model risk. Considering a range of possible estimation windows
(250, 500, 1000, and 2000 days) their results show that large windows should be preferred to
smaller estimation windows for VaR risk estimation, especially in conditional models. Righi and
Ceretta (2015) also use estimation windows of different sizes to forecast VaR and ES with a va-
riety of unconditional and conditional models. They conclude that the larger the window, the
more conservative risk predictions tend to be. Conditional models exhibit more homogeneity than
unconditional models concerning these estimation windows because conditional models rely on
parametric filtering and not only on the empirical data, which is sensitive to the bandwidth used
in the estimation. With a starting window of 2,915 observations that is increased every day, we
seem to be on the safe side, according to the papers mentioned. However, the sensitivity of VaR
and ES estimates to the size of the estimation window is clearly a question that deserves further
exploration.

Table A3 in the online appendix displays descriptive statistics for returns for the in-sample
(10/2/2000-12/2/2011) and out-of-sample (12/5/2011-9/30/2016) periods. Skewness is negative,
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except for SAN and AXA in the in-sample period. Kurtosis is higher than 3 for the four stocks in
both periods. We are thus confronted with fat tail distributions and the Jarque-Bera statistic clearly
rejects the null hypothesis of a normal distribution. VaR and ES forecasts based on the assumption
of a normal distribution of returns are therefore inappropriate, so we forecast both risk measures,
not only using the information provided by the full distribution but also using the information from
extreme events, as explained in subsection 3.1. Applying EVT to these leptokurtic distributions
seems justified as it should allow for a better estimation of extreme variations in financial returns.

Figure 3 shows IBM daily percentage returns (1260 data) together with out-of-sample VaR1%
and VaR5% forecasts from an AR(1) model for returns with a JSU-APARCH(1,1) model for return
innovations. Such forecasts are compared with those obtained by applying extreme value theory
(EVT), fitting a GPD density to the tail of the distribution. The differences in VaR calculated with
the two models are small for the 5% quantile but they become more important for the 1% quantile.
VaR forecasts under EVT indicate higher losses than are indicated by the VaR estimated without
the use of EVT. Figure 4 shows ES1% and ES5% forecasts obtained with EVT and without EVT.
We can see that the forecast of average losses exceeding VaR under the GPD distribution in the
EVT approach is greater than that obtained from a JSU distribution in the non-EVT approach,
especially for the more extreme quantiles.24

Assuming that ξ < 1, the ratio of the two risk measures predicted under the EVT approach,
behaves for small values of the quantile probability α as,

lim
α→0

ESα

VaRα

=

{
(1−ξ )−1, ξ ≥ 0,

1, ξ < 0.

It is essentially determined by the shape parameter ξ of the GPD distribution when we go far
enough out into the tail. Figure A3 in the online appendix shows the evolution of the ratio for
the model AR(1)-JSU-APARCH(1,1) for IBM, with the estimated parameter ξ = 0.392. When
α → 0, this ratio tends to (1−ξ )−1 = 1.644.

We now examine our forecasts for the complete out-of-sample period (5 years, 1260 data).
Since we generate time series of VaR and ES forecasts, we just summarize the results for the 5-year
period. Tables 2 - 5 show the average of out-of-sample 1-day VaR and ES forecasts (VaR, ES), and
the violation ratio (Viol) of the underlying VaR and the backtesting results for the different models.
Our discussion here focuses on the general patterns that appear in these forecasting results. As is
expected for leptokurtic distributions, average VaR forecasts are larger in absolute value at extreme
significance levels when using EVT, the opposite being the case for α = 0.05. The average ES
forecasts from conditional EVT-based models can be seen to be “more negative” than forecasts
from conditional models not based on EVT. As shown in Figure 4, differences on ES forecasts at
the 1% significance level are larger than those at the 5% significance level.

It seems desirable that a good ES model have a violation ratio close to the theoretical one.
Indeed, as we have already seen, some validation tests for ES are based on this comparison. Con-
ditional EVT-based models tend to yield a violation ratio very close to the theoretical one. De-
partures from the theoretical violation ratio are larger for models not using EVT, especially when
assuming the normal and Student-t distributions for return innovations. In general, the violations

24Figures 3 and 4 show only the negative returns so as to maintain a clear perspective on the different VaR and ES
estimates.
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ratio suggests that conditional EVT-based models forecast the VaR quantile correctly, corroborat-
ing Kuester, Mittnik, and Paolella (2006), who attest the superiority of this approach. Furthermore,
we will show below that EVT-based models not only yield an accurate violation ratio but they also
perform well at ES backtesting. On the other hand, conditional ES models not based on EVT have
a violation ratio higher than expected, although they improve under heavy-tailed distributions,
corroborating Mabrouk and Saadi (2012). They forecast ES worse than EVT-based models.

To save space we just show in the tables p-values for the different tests, omitting the numerical
values of the test statistics. The Acerbi and Szekely tests and the Graham and Pál tests yield
significant evidence against models not based on EVT. For these three tests we observe large
differences in p-values between conditional models based on EVT and non-EVT based conditional
models in favor of the former, which seem to produce better risk forecasts. This is even clearer
at lower significance levels, revealing the fact that without close attention to extreme returns it is
hard to capture tail risk with precision. Furthermore, at the 1% significance level, p-values for
the Acerbi and Szekely and Graham and Pál tests for the conditional models not based on EVT
theory are very close to 0, with positive realized values for Z1 and Z2 (not shown in the tables).
Hence, these tests reject H0 because of significant evidence of risk underestimation. The rejection
is still more apparent assuming normally distributed return innovations. In models without EVT,
the Graham and Pál test discriminates against the normal and Student-t distribution for almost all
significance levels for the four stocks. This is also often the case with the unconditional coverage
test, LRuc. On the other hand, in EVT-based models the tests do not discriminate among the results
for VaR and ES validation obtained under the alternative probability distributions. It seems that
when EVT is applied, the choice of probability distribution for non-extreme returns is not a critical
issue. The two-sided tests of Costanzino and Curran and Du and Escanciano do not yield evidence
against models that do not incorporate EVT. With the only exception of SAN at 1% significance,
they do not even reject non-EVT based models. This suggests that the problem with such models
is not the clustering of VaR exceedances but, rather, their size.

We indicate in boldface the p-values of the Righi and Ceretta, Acerbi and Szekely, and Graham
and Pál tests when the test statistics have the sign opposite to the one supposed in the alternative
hypothesis. This situation arises for EVT-based models for the four stocks, which means that
we are overestimating risk. Being one-sided tests, the null hypothesis cannot be rejected in these
settings. We review the structure of the tests. The Righi and Ceretta test considers H0 : E(BTt) = 0
against H1 : E[BTt ]< 0, but with some models we obtain E[BTt ]> 0, reflecting that most excesses
fall between VaR and ES, not beyond ES, especially under the EVT approach. The first test by
Acerbi and Szekely specifies H0 :E[Z1] = 0 against H1 :E[Z1]> 0 and the second one, H0 :E[Z2] =
0 against H1 : E[Z2]> 0. However, with some models, especially models based on EVT, we obtain
E[Z1] < 0 and E[Z2] < 0. In the first test, this means that the average of realized excesses is
lower in absolute value than the predicted ES. In the second test, it may indicate that both the
average excess and the number of excesses are lower than expected. The one-sided Graham and
Pál test considers H0 : T Rα = T R0 against H1 : T Rα < T R0 where T R0 is equal to −α under
the exponential assumption. However, the test statistic obtained with EVT-based models has the
wrong sign for AXA, indicating that the actual, unobserved tail risk is lower than what these
models detect. There is also a suggestion of risk overestimation for BP under normality at 2.5%
and 5% significance.

In short, bold figures in the tables signal frequent overestimation of risk for EVT-based ES
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models that is not detected by one-sided tests. In these cases the number of violations does not
differ much from the theoretical value, reflecting good VaR forecasts. However, the sign of the test
statistic is contrary to that in the null hypothesis, showing an overestimation of ES that implies the
level of capital required is too high. On the other hand, we have checked that the absolute value
of the statistic is generally very small, suggesting that the estimation error may be statistically ac-
ceptable and the excess in the cost of capital is generally small. The possible overvaluation of risk
can be seen in Figure 8, that shows the tail probability distributions estimated for IBM. The results
for other assets are similar. Colored lines show the estimated tail probabilities and the rectangles
display observed relative frequencies. Estimated parameters for each distribution are shown in
parenthesis in the footnote to the figure. We observe that most probability distributions other than
GPD tend to undervalue the weight of extreme returns. Such undervaluation is especially obvious
for the normal distribution. On the contrary, the GPD is well suited to capturing tail risk appropri-
ately, and it avoids underestimating extreme risks, although at the price of slight overvaluation of
the risk of medium range losses.

The tests by Costanzino and Curran and Du and Escanciano are two-tailed and hence both
risk undervaluation and overvaluation can lead to a rejection of the null hypothesis. These tests
are based on the cumulative violation process. Unlike violations, cumulative violations Ht con-
tain information on tail risk and, therefore, they provide a more complete description of the risk
involved in a given distribution of returns. Their main advantage is that the distribution of the
test statistic is available for finite out-of-sample sizes, which leads to size and power properties
better than for other tests. The p-values for these tests shown in Tables 2 - 5 generally lead to
not rejecting the null hypothesis. The lack of rejection is an indication that the overestimation
of risk by EVT-based models is not very important. Evidence against the ES models considered
arises from the unconditional Costanzino and Curran test, which often rejects non-EVT based
models under normal and Student-t distributions, especially in the more extreme 1% and 2.5%
tails. The two conditional tests do not discriminate among models or among probability distri-
butions. The only exception is the rejection of non-EVT based models for SAN by the CES(5)
test because of the autocorrelation of cumulative violations over the first five lags at the 1% sig-
nificance level. To help understand these results, Figures 6 and 7 show the cumulative violations
{Ĥt(0.05)}, {Ĥt(0.025)}, and {Ĥt(0.01)} of IBM and SAN in the out-of-sample period for the
JSU-APARCH and JSU-EVT-APARCH models. We do not observe large values of {Ĥt(α)}, but
we observe some clusters of cumulative violations, which suggest deviations from the martingale
difference sequence hypothesis that would be implied by an appropriate ES forecast. In fact, we
reject the null hypothesis of the unconditional test, E[Ĥt(α)] 6= α/2, for the JSU-APARCH, at the
1% significance level for IBM, but not for SAN. To complete the picture, Figures 8 and 9 show
non-significant autocorrelations in the hit sequence over the first twelve lags for IBM returns, e.g.
Cov(Ht(α),Ht− j(α)) = 0. On the contrary, there are some significant autocorrelations for SAN
with both approaches, especially at 1% significance. In fact, with other distributions, at the 1%
significance level, the p-values of the CES(5) statistic are also equal to 0 for this stock. The number
of extreme losses and the average losses are not very large but they are highly correlated.

Table 6 reports the expected value of violations (nα), the number of violations (V (α) =

∑
N
t=1 ĥt(α)), and the cumulative violations

(
CV (α) = ∑

N
t=1 Ĥt(α)

)
for all assets in the out-of-

sample period with the JSU-APARCH and JSU-EVT-APARCH models. The number of observed
violations is closer to the theoretical level under the EVT approach, except for SAN and BP at
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the 5% and 1% significance levels, respectively. This is additional evidence that VaR forecasts are
more accurate using the EVT approach. The mean absolute deviation in the number of violations
with respect to the theoretical level in Table 6 is 4.8 for the non-EVT models and 2.4 for the EVT-
based models. Furthermore, at the more extreme 2.5% and 1% confidence levels, the number of
violations by non-EVT models is above the theoretical level, suggesting an undervaluation of risk.
An even more relevant result concerns cumulative violations since they exploit information on tail
risk. Table 6 shows that in 11 of the 12 comparisons cumulative violations, measured by CV (α),
show larger losses for non-EVT based models. Mean cumulative violations are 19 and 17 under
non-EVT based and EVT-based ES forecasting models, respectively.

Generally speaking, we have obtained that, for our sample of stocks, conditional EVT-based
models produce better VaR forecasts and yield the best results for ES forecasts according to dif-
ferent ES backtests. In many cases, we obtain p-values close to 1 with EVT-based models. The
success of EVT models for ES forecasting corroborates findings of Marinelli et al. (2007), Jalal
and Rockinger (2008), and Wong et al. (2012). However, we must bear in mind that the Righi and
Ceretta, Acerbi and Szekely, and Graham and Pál tests are one-sided by nature and are focused on
risk undervaluation. Consequently, in these tests risk overestimation does not lead to a rejection of
the null hypothesis, and this seems to occur frequently in ES forecasting with EVT-based models.

As a preliminary test to check the robustness with respect to the choice of threshold of our
findings on the overestimation of risk, we also used the 0.08 and 0.15 thresholds for the conditional
model under a JSU distribution for IBM and AXA. The evidence for the overestimation of risk by
EVT models did not change significantly. This result is in line with Kourouma et al. (2011), who
observe a strong overestimation of ES based on the conditional EVT model, although they only
use their own ES backtest, which we described in the introduction.

5.2 ES forecasts under filtered historical simulation

As an alternative, we evaluate the performance of 1-day out-of-sample ES forecasts from semi-
parametric FHS using the test of Righi and Ceretta and the two tests of Acerbi and Szekely because
they are suitable for non-parametric VaR and ES forecasts. We observed in Tables 2-5 an under-
estimation of risk under non-EVT based models. EVT-based models increase the numerical risk
estimates, although at the cost of frequent slight overestimation of risk. Tables A4 - A7 in the
online appendix show average VaR ES forecasts (VaR, ES), the violation ratio of the underlying
VaR, and backtesting results. Comparing with Tables 2 - 5 leads to several observations suggesting
that the overestimation of risk by EVT-based models can be corrected by the use of FHS: i) condi-
tional EVT-based models do not always yield ”more negative” average ES values than conditional
models not based on EVT; ii) unlike Tables 2 - 5, EVT based models do not yield a lower violation
rate than non-EVT based models; iii) using FHS, average VaR and ES forecasts are closer to those
obtained under the parametric approach for non EVT-based models than for EVT-based models;
and iv) VaR violation rates are better than those obtained under the parametric approach. These
four observations suggest that application of FHS avoids the overestimation of risk to a great ex-
tent. As a matter of fact, v) the overvaluation of risk as signaled by a test statistic having a sign
opposite to H1 in the one-tailed tests is much less frequent than under the parametric approach in
Tables 2 - 5. Two additional relevant results are: vi) Models that do not incorporate EVT seem
again unsuitable in terms of ES forecasts, being rejected often by the Acerbi and Szekely Z1 and Z2
tests for ES1% and ES2.5%. Less discrimination is obtained at 5% significance level. For instance,
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at this level, all models display good ES performance for BP at 10% significance, although the Z2
test suggests that ES is possibly overvalued. vii ) Average ES values over the out-of-sample period
(5 years, 1260 data) are now more similar among models than under the parametric approach in
Tables 2 - 5. This observation is important because it amounts to a reduction in model risk, i.e. a
reduction in the uncertainty that arises about the true value of VaR and ES due to the availability
of forecasts coming from a variety of alternative models.

The conclusions obtained when applying ES backtests under the parametric and FHS ap-
proaches are similar, which is reassuring. Differences between conditional models based on EVT
and those not based on EVT are more evident under the parametric approach, because the power
and flexibility of conditional volatility models is diluted by historical simulation. The dilution
depends on the number of realizations generated for FHS estimation.

6 Robustness analysis

In this section we report on the results obtained from two different tests for robustness. First,
we split the sample into pre-crisis and post-crisis subperiods to analyze the performance of ES
forecasts in stable and stressed times. Second, we consider a 10-day risk horizon for ES forecasts.

6.1 Pre-crisis and crisis periods

The pre-crisis period is defined so as to have the same number of observations as the crisis period
(1239 data points). For the pre-crisis period we used the sample 10/2/2000-6/30/2005 to compute
1-day forecasts over 7/1/2005-6/29/2007. For the crisis period, we used 10/1/2002-6/29/2007 as
the in-sample period and 7/2/2007-6/29/2009 as the out-sample period. To save space, we just
summarize the conclusions, but detailed results for both periods are available from the authors
upon request. We observe that models not based on EVT with asymmetric distributions and all
EVT-based models are preferred because they have more flexibility for capturing the risk in both
pre-crisis and crisis periods.

We summarize the results: i) asymmetric distributions perform slightly better in ES forecasting
than symmetric distributions (with or without EVT) in both periods (pre-crisis and crisis); ii)
during the pre-crisis period the ratio of violations is close to the expected ratio (α) for most
models, but the performance according to this criterion is much better for EVT-based models;
iii) both classes of models undervalue risk during the crisis systematically, exhibiting numbers
of violations above the theoretical one, suggesting that these models do not fully adapt to the
occurrence of tail events; iv) cumulative violations display significant autocorrelation during the
crisis period, especially when forecasting ES1% and ES2.5%; v) in general, p-values obtained in
all tests during the pre-crisis period are higher than those obtained in the crisis period, suggesting
that the utility of the models for ES forecasting in the crisis period is more questionable; and v)
EVT-based models are preferred in terms of ES backtesting in both periods.
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6.2 10-day ES forecasting

It is well known that the variance of a Gaussian variable follows a simple scaling law. Indeed, the
Basel Committee, in its 1996 Amendment (Basel II), states that it will accept a simple

√
h scaling

of 1-day VaR for deriving the 10-day VaR required in calculating market risk and the related risk
capital, and the Basel Committee proposed in 2016 (Basel III) to use the square root of the time
scaling rule to calculate ES for risk horizons longer than one-day. However, the stylized facts
on financial market volatility and research findings have repeatedly shown that the scaling rule
is inappropriate, most likely because financial returns do not follow an i.i.d. stable distribution.
Furthermore, this type of scaling for volatility adjustment is incompatible with a mean reversion
volatility model because it assumes that volatility remains constant or fluctuates around a local
mean over the risk horizon and does not revert to mean at all. Obviously, under the scaling rule,
the longer the risk horizon, the higher the error in VaR forecasting.

The standard historical approach is usually limited to the 1-day horizon because we simply
do not have enough relevant historical data to use non-overlapping h-day returns when h is 10
or more. On the other hand, using overlapping h-day returns would distort the tail behavior of
return distributions, leading to significant error in VaR and ES forecasts at extreme quantiles.
We use filtered historical simulation, which allows us to generate a 10-day return distribution
from overlapping samples by increasing the number of observations used through a bootstrapping
procedure. The drawback is that we can only apply to these multi-period returns the unconditional
coverage test, the Righi and Ceretta test, and the two tests by Acerbi and Szekely. Tables A8 -
A11 in the online appendix show the average values of VaR and ES forecasts, the violation ratios
of the underlying VaR, and backtesting results for the distinct models for 10-day VaR and ES
forecasting. Since the out-of-sample period comprises 1260 observations, we have 1250 10-day
ES observations that we can compare to the realized 10-day returns.

The results we obtain for 10-day ES prediction can be summarized as follows: i) VaR violation
rates tend to be below their theoretical values; ii) the unconditional coverage test often rejects VaR
forecasts, although the rejection only applies to non-EVT based models; iii) the filtered historical
simulation yields similar 1-day VaR and ES forecasts from the different models, significantly
reducing model risk and suggesting the convenience of using this semiparametric approach; iv)
among conditional models not based on EVT, models with symmetric and models with asymmetric
distributions perform similarly at VaR and ES forecasting, and the same observation applies to
EVT-based conditional models; v) unfortunately, ES backtests again indicate risk overestimation
for EVT and non-EVT based models.

7 Value at risk and expected shortfall as indicators for capital ade-
quacy

The January 2016 Basel Committee decision to use expected shortfall as the criterion to evaluate
capital adequacy brought up a natural discussion on the preference for value at risk versus expected
shortfall as a more appropriate risk measure. Most research on this issue suggests better theoretical
properties for expected shortfall (see, among others, Yamai and Yoshiba, 2005). There is also
evidence on its superior performance in quiet times, especially at low significance levels, although
the evidence seems to indicate that both risk measures show failures in stressed market times.
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It is by now clear that the lack of elicitability of ES does not preclude backtesting, as we have
seen in this paper and in many others cited in the list of references. Our analysis of expected short-
fall backtesting suggests a general overestimation of risk. That may be safe from the regulators’
point of view, but it increases costs for financial institutions. In fact, the results we have shown
suggest that both value at risk and expected shortfall tend to overestimate risk in tranquil times
while having a serious difficulty in estimating the right level of risk in stressed times. To avoid
that bias, the large shocks at the start of a crisis starts ¿está bien puesto aquı́ starts? should feed
into the volatility model for market returns to have an effect on value at risk and expected short-
fall estimates, since parameter estimates and estimates for the probability distribution of returns
change slowly with new information. It may be in that specific situation when we need a good
volatility model that can make volatility forecasts adjust quickly to large market shocks.

Analyzing hypotheses of this type in different historical periods and markets seems as an
interesting research area. A good estimate of expected shortfall will usually require a good value
at risk estimate, but model validation should increasingly rely on backtesting expected shortfall,
more so than on backtesting value at risk, since expected shortfall is the basis to determine the
level of regulatory capital. Maybe the point is that neither measure should be used by itself. Both
provide specific but complementary information, even though a full picture of the risk faced by a
particular portfolio investment will usually need a more complete analysis.

An even more important issue refers to the level of precision that can be attained in their esti-
mation, especially in the case of expected shortfall, for which a larger amount of data is needed. As
in any statistical estimation, achieving a given level of confidence would require accepting some
range of numerical values for value at risk and expected shortfall, and explicitly acknowledging
this would have significant consequences for risk regulation and management. More research is
needed to find methods to establish such confidence intervals, given the substantive implications
that the level of regulatory capital has for financial institutions as well as the need to guarantee the
safety of any investment portfolio during stressed times.

8 Conclusions

In spite of the substantial theoretical evidence documenting the superiority of expected shortfall
(ES) over VaR as a measure of risk, financial institutions and regulators have only recently em-
braced ES as an alternative to VaR for financial risk management. One of the major obstacles
in this transition has been the unavailability of simple tools for the evaluation of ES forecasts.
While the Basel rules for VaR tests are based on counting the number of exceptions, assessing
the adequacy of a ES model requires the consideration of the size of tail losses beyond the VaR
boundary. In recent years various different approaches have been proposed in the literature for ES
backtesting, but, to the best of our knowledge, this paper makes the first extensive comparison of
a variety of alternative ES backtesting procedures.

We use the daily market closing prices for IBM, Santander, AXA, and BP from 10/2/2000 to
9/30/2016, and we consider some flexible families of asymmetric distributions for asset returns
that include more standard probability distributions as special cases. The normal and Student-t
distributions are used as benchmarks. We use an APARCH volatility specification for all assets,
because it has the flexibility to deal with the power in the conditional deviation variable as a free
parameter, and it includes a number of well-known models as special cases. Once we estimate the
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dynamics of returns and the parameters of the probability distribution for return innovations, we
forecast returns and volatility applying the standard parametric approach as well as the semipara-
metric filtered historical simulation (FHS) approach to forecast VaR and ES. Finally, we analyze
the performance of 1-day and 10-day ES forecasts obtained from both methods under the different
probability distributions.

As the true temporal dependency of financial returns is a complex issue, the standard approach
to risk management can be improved by considering a two-step procedure proposed by McNeil
and Frey (2000) that applies extreme value theory (EVT). First, return data is filtered with an
estimated conditional model for sample returns and their volatility under a given probability dis-
tribution and, second, a generalized Pareto distribution for return innovations is estimated after
filtering to remove autocorrelation and GARCH effects. If the estimated model is well speci-
fied, standardized innovations will have an i.i.d. structure. This two-step procedure leads to a
significant improvement in performance, since VaR and ES forecasts then incorporate changes in
expected returns and volatility over time. As in the standard approach, we then forecast VaR and
ES at different significance levels at 1-day and 10-day horizons and compare the results with those
obtained under the standard parametric approach.

In standard conditional models fitted to the full distribution of return innovations, we ob-
serve that asymmetric distributions play an important role in capturing tail risk. This is because
some stylized facts of financial returns such as volatility clusters, heavy tails, and asymmetry
are reflected suitably by these asymmetric distributions. When we apply EVT to return innova-
tions by modeling the tail with a GPD we obtain good ES forecasts regardless of the probability
distribution used for returns. It seems that considering the return innovations in the tail of the
distribution is more important than discriminating among probability distributions when forecast-
ing ES. Moreover, each combination of APARCH volatility and probability distribution under the
EVT approach dominates the similar specification under the standard approach fitted to the full
distribution. Conditional EVT models turn out to be more accurate and reliable than standard con-
ditional models not based on EVT both for forecasting VaR as well as for predicting losses beyond
VaR.

Except for the Costanzino and Curran and Du and Escanciano tests, which are two-tailed tests,
the ES tests we consider focus on a possible undervaluation of risk. We have pointed out that
in some cases backtesting does not reject the model specification because the sample evidence
is contrary to both the null hypothesis and the alternative hypothesis. In other words, some ES
models are not rejected in spite of the fact that they overvalue risk, although the rejection fails by
a small amount in most cases. When using ES to build an institution’s reserves to cover potential
losses in times of crisis, risk undervaluation may be fatal, but overvaluation will lead to inefficient
use of capital. This is a relevant consideration that should be taken into account for ES model
validation.

We have also shown that using FHS can be very useful. First, qualitative results under FHS
are very similar to those obtained under the parametric approach, which is reassuring. EVT-based
models dominate non-EVT based models for forecasting both VaR and ES, and asymmetric proba-
bility distributions yield more accurate ES forecasts. Second, ES forecasts are much more similar
for different probability distributions, and also between forecasts from EVT-based models and
non-EVT based models. This implies considerable reduction in model risk, i.e. the uncertainty in
ES forecasting because of having alternative model specifications. Given the extreme importance
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of these forecasts for capital requirements at financial institutions, reducing model risk is a cen-
tral issue in tail risk estimation. Furthermore, the evidence on overestimation of risk essentially
disappears at the 1-day horizon when we use FHS, but not when forecasting at 10-day horizons.

Other than showing a clear preference for an EVT approach as well as rejecting symmetric
probability distributions for modeling return innovations, none of the tests we have considered
discriminates much among alternative probability distributions. It seems that once we use EVT,
the choice of probability distribution for the non-extreme observations does not seriously condition
VaR and ES estimates. However, the recommendation to use FHS under an EVT specification for
VaR and ES forecasting and the possibility of exploiting its potential for risk estimation at longer
horizons are clear conclusions of this research.
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I APPENDICES

I.1 Skewed Student-t distribution

To account for the excess skewness and kurtosis typical of financial data, the parametric volatility
models presented in the previous section can be combined with skewed and leptokurtic distri-
butions for return innovations. The skewed Student-t distribution of Fernandez and Steel and
Lambert and Laurent (2001)25 is

f (z|ξ ,ν) = 2
ξ + 1

ξ

s{g[ξ (sz+m)|ν ]I(−∞,0)(z+m/s)+g[(sz+m)/ξ |ν ]I[0,∞)(z+m/s)},

where g(·|ν) is the symmetric (unit variance) Student-t density and ξ is the skewness parameter;26

m and s2 are, respectively the mean and the variance of the non-standardized skewed Student-t and
are defined by

E(ε|ξ ) = M1(ξ −ξ
−1)≡ m,

V(ε|ξ ) = (M2−M2
1)(ξ

2 +ξ
−2)+2M2

1 −M2 ≡ s2,

where Mr = 2
∫

∞

0 srg(s)ds is the absolute moment generating function. Note that when ξ = 1 and
ν =+∞ we get the skewness and the kurtosis of the Gaussian density. When ξ = 1 and ν > 2 we
have the skewness and the kurtosis of the (standardized) Student-t distribution.

I.2 Skewed generalized error distribution

An alternative distribution for return innovations which can capture skewness and kurtosis can
be based on the generalized error distribution (GED) of Nelson (1991). According to Lambert
and Laurent the innovation process zt is said to follow a (standardized) skewed generalized error
distribution, SGED(0,1,ξ ,κ), if

f (z|ξ ,κ) = 2
ξ + 1

ξ

s{g[ξ (sz+m)|κ]I(−∞,0)(z+m/s)+g[(sz+m)/ξ |κ]I[0,∞)(z+m/s)},

where g(·|κ) is the symmetric (unit variance) generalized error distribution, ξ is the skewness
parameter, κ represents the shape parameter, and Γ(·) is the gamma function. The mean (m) and
standard deviation (s) are calculated in the same way as for the skewed Student-t distribution. As
κ increases the density gets flatter and flatter while in the limit, as κ → ∞, the distribution tends
toward the uniform distribution. Special cases are the normal distribution, when κ = 2, and the
Laplace distribution, when κ = 1. For κ > 2 the distribution is platykurtic and for κ < 2 it is
leptokurtic.

25Lambert and Laurent (2001) and Giot and Laurent (2003a) have shown that for various financial daily returns, it is
realistic to assume that the standardized innovations ẑt follow a skewed Student-t distribution.

26The skewness parameter ξ > 0 is defined so that the ratio of probability masses above and below the mean is

Prob(z≥ 0|ξ )
Prob(z < 0|ξ )

= ξ
2.

38



I.3 Johnson SU distribution

Another alternative is the Johnson SU distribution. It was one of the distributions derived by John-
son (1949) based on translating the normal distribution by certain functions. Letting Y ∼ N(0,1),
the standard normal distribution, the random variable Z has the Johnson system of frequency
curves if it is a transformation of Y of the form Y = γ + δg((Z− ξ )/λ ). The form of the result-
ing distribution depends on the choice of function g. When g(u) = sinh−1(u), the distribution is
unbounded, and is called the Johnson SU distribution. The parameters of the distribution are ξ ,
λ > 0, γ , and δ > 0.

We use a parametrization27 of the original Johnson SU distribution, so that the parameters ξ

and λ are the mean and the standard deviation of the distribution. The parameter γ determines the
skewness of the distribution, with γ > 0 indicating positive skewness and γ < 0 negative skewness.
The parameter δ determines the kurtosis of the distribution. The parameter δ must be positive and
is usually greater than 1.

The pdf of the Johnson SU , denoted here by JSU(ξ ,λ ,γ,δ ), is defined by

fZ(z) =
δ

cλ

1√
(r2 +1)

1√
2π

exp
[
−1

2
y2
]
,

where
y =−γ +δ sinh−1(r) =−γ +δ log

[
r+(r2 +1)1/2

]
,

r =
z− (ξ + cλω1/2sinhΩ)

cλ
,

c =
{

1
2
(ω−1)[ωcosh2Ω+1]

}−1/2

,

where ω = exp(δ−2) and Ω =−γ/δ . Note that Y ∼ N(0,1). Here E(Z) = ξ and V(Z) = λ 2.

27This parametrization is used by R package rugarch, which we use for estimating the parameters of our models.
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II TABLES

II.1 DESCRIPTIVE STATISTICS

Mean (bps.)Median (bps.) Max Min S.D. Skewness Kurtosis J-B

IBM 0.83 0 11.35 -16.89 1.58 -0.22 12.33 15194.87

SAN 1.56 0 20.88 -22.17 2.26 -0.07 10.50 9793.17

AXA 1.47 0 19.78 -20.35 2.69 0.19 10.24 9155.81

BP -0.69 0 10.58 -14.04 1.69 -0.19 8.01 4390.88

Table 1: Descriptive statistics for daily percent returns. Sample: 10/2/2000 - 9/30/2016 (4175
daily observations). Mean and median returns in basis points. S.D. is the standard deviation. J-B
is the Jarque-Bera test statistic.
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II.2 BACKTESTING 1-DAY VaR AND ES

IBM 111% significance level

VVV aaaRRR EEESSS Viol LLLRRRuuuccc LLLRRRiiinnnddd LLLRRRcccccc DDDQQQTTT BBBTTT TTT ZZZ111 ZZZ222 TTT RRR UUUEEESSS CCCEEESSS(((111))) CCCEEESSS(((555)))

N -2.83 -3.25 0.014 0.15 - - 0.32 0.00 0.01 0.01 0.00 0.00 0.65 0.97
ST -3.15 -4.20 0.010 0.91 - - 0.95 0.07 0.00 0.00 0.00 0.01 0.72 0.99
SKST -3.19 -4.27 0.010 0.91 - - 0.95 0.07 0.00 0.00 0.00 0.02 0.73 0.99
SGED -3.20 -3.92 0.010 0.91 - - 0.95 0.02 0.00 0.00 0.00 0.01 0.72 0.99
JSU -3.23 -4.21 0.010 0.91 - - 0.95 0.06 0.00 0.00 0.00 0.02 0.73 0.99
N-EVT -3.52 -5.93 0.010 0.91 - - 0.96 0.38 0.96 1.00 0.30 0.26 0.76 0.99
ST-EVT -3.59 -6.06 0.010 0.91 - - 0.94 0.35 0.92 0.99 0.30 0.26 0.77 0.99
SKST-EVT -3.58 -6.05 0.010 0.91 - - 0.94 0.35 0.93 1.00 0.30 0.26 0.77 0.99
SGED-EVT -3.56 -5.92 0.010 0.91 - - 0.95 0.34 0.89 0.98 0.29 0.25 0.77 0.99
JSU-EVT -3.58 -6.05 0.010 0.91 - - 0.94 0.34 0.90 1.00 0.30 0.26 0.76 0.99

IBM 222...555% significance level

VVV aaaRRR EEESSS Viol LLLRRRuuuccc LLLRRRiiinnnddd LLLRRRcccccc DDDQQQTTT BBBTTT TTT ZZZ111 ZZZ222 TTT RRR UUUEEESSS CCCEEESSS(((111))) CCCEEESSS(((555)))

N -2.38 -2.85 0.022 0.52 0.15 0.28 0.34 0.01 0.01 0.03 0.00 0.13 0.79 0.84
ST -2.39 -3.30 0.024 0.79 0.19 0.41 0.31 0.13 0.03 0.05 0.01 0.29 0.86 0.89
SKST -2.42 -3.35 0.021 0.41 0.58 0.61 0.24 0.12 0.01 0.08 0.03 0.39 1.00 0.91
SGED -2.52 -3.25 0.018 0.11 0.42 0.20 0.30 0.05 0.01 0.32 0.00 0.48 0.63 0.91
JSU -2.46 -3.35 0.019 0.16 0.46 0.28 0.28 0.10 0.01 0.32 0.02 0.46 0.81 0.92
N-EVT -2.37 -4.04 0.022 0.52 0.15 0.28 0.34 0.36 0.79 0.95 0.49 0.35 0.70 0.91
ST-EVT -2.41 -4.12 0.022 0.52 0.62 0.72 0.35 0.31 0.68 0.94 0.47 0.38 1.00 0.93
SKST-EVT -2.41 -4.12 0.024 0.79 0.19 0.41 0.31 0.34 0.73 0.96 0.47 0.38 0.99 0.93
SGED-EVT -2.40 -4.06 0.022 0.52 0.62 0.72 0.61 0.32 0.66 0.92 0.48 0.35 0.69 0.91
JSU-EVT -2.40 -4.12 0.023 0.65 0.66 0.82 0.54 0.32 0.68 0.99 0.47 0.38 1.00 0.93

IBM 555% significance level

VVV aaaRRR EEESSS Viol LLLRRRuuuccc LLLRRRiiinnnddd LLLRRRcccccc DDDQQQTTT BBBTTT TTT ZZZ111 ZZZ222 TTT RRR UUUEEESSS CCCEEESSS(((111))) CCCEEESSS(((555)))

N -2.00 -2.51 0.037 0.03 0.35 0.06 0.35 0.05 0.04 0.49 0.00 0.17 0.37 0.55
ST -1.86 -2.70 0.044 0.29 0.30 0.33 0.54 0.18 0.13 0.40 0.09 0.33 0.11 0.41
SKST -1.88 -2.73 0.044 0.29 0.30 0.33 0.54 0.20 0.11 0.39 0.16 0.22 0.11 0.40
SGED -1.98 -2.74 0.037 0.03 0.35 0.06 0.24 0.15 0.07 0.75 0.02 0.06 0.36 0.58
JSU -1.91 -2.75 0.040 0.11 0.20 0.12 0.32 0.18 0.11 0.67 0.15 0.14 0.13 0.42
N-EVT -1.74 -3.00 0.053 0.61 0.19 0.38 0.36 0.48 0.69 0.90 0.52 0.41 0.41 0.67
ST-EVT -1.76 -3.05 0.049 0.90 0.53 0.81 0.66 0.40 0.73 0.97 0.54 0.37 0.13 0.46
SKST-EVT -1.76 -3.05 0.050 1.00 0.29 0.57 0.56 0.41 0.76 0.96 0.54 0.37 0.13 0.46
SGED-EVT -1.75 -3.01 0.053 0.61 0.41 0.62 0.56 0.44 0.69 0.96 0.54 0.36 0.23 0.59
JSU-EVT -1.75 -3.05 0.051 0.90 0.31 0.60 0.55 0.41 0.63 0.93 0.54 0.37 0.13 0.45

Table 2: Mean VaR forecasts (VaR), mean ES forecasts (ES), violation ratio (Viol), and backtest-
ing results (p-values) for VaR and ES forecasts for IBM. LRuc is the unconditional coverage test
of Kupiec (1995), LRind and LRcc are the independence and conditional coverage tests of Christof-
fersen (1998), DQT is the dynamic quantile test of Engle and Manganelli (2004), BTT is the test
of Righi and Ceretta (2015), Z1 and Z2 are the tests of Acerbi and Szekely (2014), T R is the test
of Graham and Pál (2014), and UES, CES(1), and CES(5) are the unconditional and the conditional
(lags = 1 and lags = 5) tests of Costanzino and Curran (2015) and Du and Escanciano (2016). A
p-value in bold indicates that the statistic obtained in this test has a sign opposite to that specified
for the alternative hypothesis. Hyphens indicate that the independence and conditional coverage
tests cannot be applied.
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SAN 111% significance level

VVV aaaRRR EEESSS Viol LLLRRRuuuccc LLLRRRiiinnnddd LLLRRRcccccc DDDQQQTTT BBBTTT TTT ZZZ111 ZZZ222 TTT RRR UUUEEESSS CCCEEESSS(((111))) CCCEEESSS(((555)))

N -4.64 -5.32 0.021 0.00 - - 0.00 0.05 0.01 0.00 0.00 0.00 0.58 0.06
ST -4.98 -6.14 0.015 0.09 - - 0.01 0.14 0.01 0.00 0.01 0.06 0.70 0.00
SKST -5.17 -6.40 0.014 0.15 - - 0.01 0.16 0.01 0.00 0.03 0.28 0.77 0.00
SGED -5.17 -6.17 0.014 0.15 - - 0.01 0.11 0.01 0.01 0.00 0.22 0.77 0.00
JSU -5.24 -6.47 0.013 0.24 - - 0.02 0.17 0.01 0.00 0.02 0.35 0.79 0.00
N-EVT -5.67 -7.76 0.009 0.64 - - 0.01 0.96 0.99 1.00 0.52 0.24 0.84 0.09
ST-EVT -5.73 -7.81 0.009 0.64 - - 0.02 0.96 0.99 1.00 0.52 0.22 0.85 0.07
SKST-EVT -5.73 -7.77 0.009 0.64 - - 0.02 0.96 0.97 0.99 0.52 0.22 0.85 0.06
SGED-EVT -5.72 -7.72 0.009 0.64 - - 0.02 0.97 1.00 1.00 0.52 0.22 0.85 0.08
JSU-EVT -5.73 -7.77 0.009 0.64 - - 0.02 0.96 0.99 0.99 0.52 0.22 0.85 0.07

SAN 222...555% significance level

VVV aaaRRR EEESSS Viol LLLRRRuuuccc LLLRRRiiinnnddd LLLRRRcccccc DDDQQQTTT BBBTTT TTT ZZZ111 ZZZ222 TTT RRR UUUEEESSS CCCEEESSS(((111))) CCCEEESSS(((555)))

N -3.91 -4.67 0.033 0.10 0.69 0.24 0.00 0.08 0.02 0.02 0.00 0.00 0.44 0.52
ST -3.97 -5.10 0.033 0.10 0.54 0.22 0.00 0.20 0.06 0.01 0.01 0.04 0.43 0.35
SKST -4.11 -5.29 0.028 0.53 0.81 0.80 0.03 0.19 0.09 0.07 0.04 0.20 0.44 0.24
SGED -4.17 -5.23 0.027 0.66 0.80 0.88 0.02 0.17 0.04 0.03 0.00 0.27 0.46 0.20
JSU -4.14 -5.35 0.027 0.66 0.80 0.88 0.02 0.20 0.03 0.03 0.05 0.28 0.45 0.20
N-EVT -4.19 -5.80 0.028 0.53 0.81 0.80 0.03 0.96 0.96 0.99 0.53 0.43 0.48 0.17
ST-EVT -4.23 -5.84 0.026 0.79 - - 0.01 0.94 0.95 0.99 0.53 0.42 0.48 0.14
SKST-EVT -4.22 -5.81 0.026 0.79 - - 0.01 0.94 0.93 0.95 0.54 0.41 0.48 0.14
SGED-EVT -4.22 -5.79 0.026 0.79 - - 0.01 0.95 0.94 0.97 0.54 0.41 0.48 0.15
JSU-EVT -4.22 -5.82 0.026 0.79 - - 0.01 0.94 0.96 0.99 0.54 0.41 0.48 0.14

SAN 555% significance level

VVV aaaRRR EEESSS Viol LLLRRRuuuccc LLLRRRiiinnnddd LLLRRRcccccc DDDQQQTTT BBBTTT TTT ZZZ111 ZZZ222 TTT RRR UUUEEESSS CCCEEESSS(((111))) CCCEEESSS(((555)))

N -3.29 -4.12 0.052 0.70 0.34 0.59 0.08 0.14 0.06 0.06 0.00 0.07 0.70 0.52
ST -3.21 -4.32 0.056 0.31 0.54 0.50 0.03 0.23 0.15 0.06 0.01 0.09 0.99 0.48
SKST -3.30 -4.48 0.050 1.00 0.43 0.73 0.13 0.23 0.06 0.05 0.09 0.34 0.82 0.52
SGED -3.36 -4.48 0.050 1.00 0.43 0.73 0.13 0.24 0.12 0.16 0.01 0.47 0.60 0.52
JSU -3.31 -4.52 0.050 1.00 0.43 0.73 0.13 0.24 0.12 0.13 0.11 0.43 0.77 0.53
N-EVT -3.26 -4.59 0.053 0.61 0.32 0.53 0.08 0.93 0.95 0.97 0.50 0.49 0.72 0.60
ST-EVT -3.29 -4.61 0.052 0.70 0.34 0.59 0.08 0.91 0.92 0.97 0.51 0.50 0.82 0.53
SKST-EVT -3.28 -4.59 0.052 0.70 0.34 0.59 0.08 0.92 0.90 0.94 0.51 0.50 0.86 0.55
SGED-EVT -3.27 -4.57 0.052 0.70 0.34 0.59 0.08 0.92 0.98 0.99 0.51 0.49 0.77 0.57
JSU-EVT -3.28 -4.59 0.052 0.70 0.34 0.59 0.08 0.91 0.93 0.96 0.51 0.50 0.84 0.55

Table 3: Mean VaR forecasts (VaR), mean ES forecasts (ES), violation ratio (Viol), and backtest-
ing results (p-values) for VaR and ES forecasts for SAN. LRuc is the unconditional coverage test
of Kupiec (1995), LRind and LRcc are the independence and conditional coverage tests of Christof-
fersen (1998), DQT is the dynamic quantile test of Engle and Manganelli (2004), BTT is the test
of Righi and Ceretta (2015), Z1 and Z2 are the tests of Acerbi and Szekely (2014), T R is the test
of Graham and Pál (2014), and UES, CES(1), and CES(5) are the unconditional and the conditional
(lags = 1 and lags = 5) tests of Costanzino and Curran (2015) and Du and Escanciano (2016). A
p-value in bold indicates that the statistic obtained in this test has a sign opposite to that specified
for the alternative hypothesis. Hyphens indicate that the independence and conditional coverage
tests cannot be applied.

42



AXA 111% significance level

VVV aaaRRR EEESSS Viol LLLRRRuuuccc LLLRRRiiinnnddd LLLRRRcccccc DDDQQQTTT BBBTTT TTT ZZZ111 ZZZ222 TTT RRR UUUEEESSS CCCEEESSS(((111))) CCCEEESSS(((555)))

N -4.40 -5.04 0.021 0.00 0.11 0.00 0.00 0.13 0.03 0.00 0.00 0.00 0.68 0.84
ST -4.65 -5.62 0.017 0.03 - - 0.01 0.25 0.06 0.01 0.03 0.08 0.70 0.99
SKST -4.75 -5.77 0.013 0.36 - - 0.13 0.19 0.01 0.00 0.09 0.25 0.75 0.99
SGED -4.76 -5.61 0.014 0.15 - - 0.06 0.18 0.00 0.00 0.00 0.21 0.76 0.99
JSU -4.79 -5.81 0.012 0.51 - - 0.66 0.20 0.02 0.01 0.09 0.32 0.76 0.99
N-EVT -5.43 -6.40 0.009 0.64 - - 0.95 1.00 1.00 1.00 0.66 0.12 0.84 1.00
ST-EVT -5.45 -6.46 0.009 0.64 - - 0.95 1.00 1.00 1.00 0.66 0.13 0.84 1.00
SKST-EVT -5.45 -6.45 0.009 0.64 - - 0.95 1.00 0.99 0.99 0.66 0.13 0.84 1.00
SGED-EVT -5.43 -6.43 0.009 0.64 - - 0.95 1.00 0.99 1.00 0.66 0.12 0.84 1.00
JSU-EVT -5.44 -6.45 0.009 0.64 - - 0.95 1.00 1.00 1.00 0.66 0.13 0.84 1.00

AXA 222...555% significance level

VVV aaaRRR EEESSS Viol LLLRRRuuuccc LLLRRRiiinnnddd LLLRRRcccccc DDDQQQTTT BBBTTT TTT ZZZ111 ZZZ222 TTT RRR UUUEEESSS CCCEEESSS(((111))) CCCEEESSS(((555)))

N -3.71 -4.42 0.034 0.05 0.61 0.13 0.13 0.15 0.05 0.03 0.00 0.00 0.41 0.55
ST -3.75 -4.73 0.033 0.07 0.58 0.17 0.16 0.24 0.08 0.03 0.01 0.01 0.33 0.55
SKST -3.83 -4.85 0.032 0.14 0.50 0.27 0.28 0.26 0.09 0.02 0.06 0.06 0.29 0.58
SGED -3.89 -4.80 0.032 0.14 0.50 0.27 0.29 0.26 0.04 0.99 0.01 0.11 0.35 0.64
JSU -3.86 -4.88 0.032 0.14 0.50 0.27 0.28 0.28 0.11 0.00 0.07 0.10 0.29 0.60
N-EVT -4.09 -4.99 0.027 0.66 0.30 0.53 0.49 1.00 0.99 1.00 0.70 0.27 0.57 0.82
ST-EVT -4.11 -5.03 0.027 0.66 0.30 0.53 0.54 1.00 1.00 1.00 0.68 0.31 0.31 0.73
SKST-EVT -4.10 -5.02 0.027 0.66 0.30 0.53 0.54 1.00 0.97 0.99 0.69 0.30 0.29 0.72
SGED-EVT -4.09 -5.01 0.026 0.79 0.27 0.52 0.56 1.00 0.97 1.00 0.69 0.29 0.37 0.75
JSU-EVT -4.10 -5.02 0.027 0.66 0.30 0.53 0.54 1.00 0.95 1.00 0.69 0.30 0.30 0.72

AXA 555% significance level

VVV aaaRRR EEESSS Viol LLLRRRuuuccc LLLRRRiiinnnddd LLLRRRcccccc DDDQQQTTT BBBTTT TTT ZZZ111 ZZZ222 TTT RRR UUUEEESSS CCCEEESSS(((111))) CCCEEESSS(((555)))

N -3.12 -3.91 0.056 0.37 0.73 0.63 0.72 0.20 0.13 0.07 0.00 0.01 0.66 0.52
ST -3.06 -4.05 0.057 0.25 0.73 0.49 0.74 0.26 0.24 0.10 0.01 0.02 0.70 0.59
SKST -3.12 -4.14 0.056 0.31 0.73 0.56 0.76 0.29 0.12 0.07 0.07 0.13 0.61 0.56
SGED -3.17 -4.15 0.052 0.70 0.66 0.84 0.70 0.27 0.08 0.04 0.02 0.24 0.55 0.55
JSU -3.13 -4.16 0.056 0.37 0.73 0.63 0.82 0.29 0.17 0.08 0.09 0.17 0.59 0.56
N-EVT -3.11 -3.96 0.056 0.37 0.73 0.63 0.72 1.00 0.96 1.00 0.57 0.45 0.58 0.51
ST-EVT -3.14 -4.01 0.055 0.44 0.72 0.70 0.95 1.00 0.95 0.98 0.56 0.44 0.55 0.55
SKST-EVT -3.13 -3.99 0.056 0.37 0.73 0.63 0.82 1.00 0.95 0.98 0.56 0.45 0.55 0.55
SGED-EVT -3.12 -3.98 0.056 0.37 0.73 0.63 0.72 1.00 0.96 0.99 0.56 0.45 0.55 0.52
JSU-EVT -3.13 -3.99 0.056 0.37 0.73 0.63 0.82 1.00 0.95 0.95 0.57 0.45 0.55 0.55

Table 4: Mean VaR forecasts (VaR), mean ES forecasts (ES), violation ratio (Viol), and backtest-
ing results (p-values) for VaR and ES forecasts for AXA. LRuc is the unconditional coverage test
of Kupiec (1995), LRind and LRcc are the independence and conditional coverage tests of Christof-
fersen (1998), DQT is the dynamic quantile test of Engle and Manganelli (2004), BTT is the test
of Righi and Ceretta (2015), Z1 and Z2 are the tests of Acerbi and Szekely (2014), T R is the test
of Graham and Pál (2014), and UES, CES(1), and CES(5) are the unconditional and the conditional
(lags = 1 and lags = 5) tests of Costanzino and Curran (2015) and Du and Escanciano (2016). A
p-value in bold indicates that the statistic obtained in this test has a sign opposite to that specified
for the alternative hypothesis. Hyphens indicate that the independence and conditional coverage
tests cannot be applied.
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BP 111% significance level

VVV aaaRRR EEESSS Viol LLLRRRuuuccc LLLRRRiiinnnddd LLLRRRcccccc DDDQQQTTT BBBTTT TTT ZZZ111 ZZZ222 TTT RRR UUUEEESSS CCCEEESSS(((111))) CCCEEESSS(((555)))

N -3.23 -3.70 0.031 0.15 - - 0.34 0.06 0.03 0.02 0.00 0.00 0.69 0.98
ST -3.46 -4.28 0.012 0.51 - - 0.83 0.20 0.01 0.00 0.06 0.12 0.74 0.99
SKST -3.53 -4.37 0.012 0.51 - - 0.83 0.22 0.00 0.01 0.11 0.20 0.76 0.99
SGED -3.54 -4.21 0.011 0.70 - - 0.94 0.16 0.02 0.04 0.02 0.19 0.78 1.00
JSU -3.56 -4.38 0.012 0.51 - - 0.83 0.24 0.02 0.01 0.10 0.24 0.77 0.99
N-EVT -3.75 -4.58 0.007 0.28 - - 0.99 0.64 0.99 1.00 0.39 0.45 0.82 1.00
ST-EVT -3.81 -4.70 0.007 0.28 - - 0.99 0.55 0.98 0.99 0.41 0.47 0.81 1.00
SKST-EVT -3.80 -4.70 0.007 0.28 - - 0.99 0.56 0.99 1.00 0.41 0.47 0.81 1.00
SGED-EVT -3.77 -4.65 0.007 0.28 - - 0.99 0.58 0.98 1.00 0.41 0.45 0.82 1.00
JSU-EVT -3.80 -4.69 0.007 0.28 - - 0.99 0.56 0.99 1.00 0.41 0.46 0.81 1.00

BP 222...555% significance level

VVV aaaRRR EEESSS Viol LLLRRRuuuccc LLLRRRiiinnnddd LLLRRRcccccc DDDQQQTTT BBBTTT TTT ZZZ111 ZZZ222 TTT RRR UUUEEESSS CCCEEESSS(((111))) CCCEEESSS(((555)))

N -2.72 -3.24 0.031 0.19 0.75 0.40 0.38 0.18 0.07 0.03 0.00 0.05 1.00 0.89
ST -2.76 -3.55 0.029 0.33 0.80 0.61 0.61 0.29 0.13 0.04 0.10 0.23 0.83 0.92
SKST -2.81 -3.62 0.028 0.53 0.81 0.80 0.76 0.30 0.18 0.06 0.20 0.42 0.78 0.94
SGED -2.86 -3.58 0.025 0.93 0.73 0.94 0.93 0.26 0.07 0.25 0.09 0.44 0.77 0.94
JSU -2.83 -3.64 0.028 0.53 0.81 0.80 0.76 0.31 0.20 0.11 0.22 0.50 0.77 0.94
N-EVT -2.85 -3.63 0.024 0.79 0.69 0.89 0.93 0.90 0.97 0.99 0.59 0.25 0.88 0.94
ST-EVT -2.89 -3.70 0.025 0.93 0.76 0.95 0.86 0.80 0.96 0.99 0.58 0.27 0.69 0.95
SKST-EVT -2.88 -3.70 0.026 0.79 0.79 0.93 0.81 0.81 0.95 1.00 0.58 0.28 0.70 0.94
SGED-EVT -2.86 -3.67 0.025 0.93 0.76 0.95 0.91 0.84 0.98 0.99 0.58 0.27 0.80 0.95
JSU-EVT -2.88 -3.70 0.025 0.93 0.76 0.95 0.87 0.81 0.99 1.00 0.58 0.28 0.71 0.95

BP 555% significance level

VVV aaaRRR EEESSS Viol LLLRRRuuuccc LLLRRRiiinnnddd LLLRRRcccccc DDDQQQTTT BBBTTT TTT ZZZ111 ZZZ222 TTT RRR UUUEEESSS CCCEEESSS(((111))) CCCEEESSS(((555)))

N -2.28 -2.86 0.044 0.29 0.27 0.31 0.62 0.17 0.11 0.49 0.00 0.24 0.69 0.66
ST -2.23 -3.01 0.047 0.60 0.19 0.37 0.52 0.26 0.12 0.39 0.13 0.28 0.79 0.60
SKST -2.27 -3.06 0.044 0.36 0.25 0.34 0.61 0.26 0.11 0.63 0.24 0.43 0.79 0.64
SGED -2.31 -3.07 0.043 0.23 0.29 0.28 0.63 0.27 0.16 0.81 0.18 0.40 0.75 0.68
JSU -2.27 -3.08 0.044 0.36 0.25 0.34 0.61 0.27 0.13 0.74 0.27 0.49 0.79 0.65
N-EVT -2.20 -2.94 0.049 0.90 0.46 0.75 0.54 0.81 0.90 0.96 0.55 0.43 0.74 0.64
ST-EVT -2.23 -3.00 0.048 0.79 0.49 0.76 0.79 0.70 0.90 0.97 0.53 0.44 0.82 0.63
SKST-EVT -2.22 -2.99 0.048 0.70 0.18 0.37 0.70 0.71 0.90 0.99 0.52 0.45 0.81 0.63
SGED-EVT -2.21 -2.97 0.048 0.79 0.49 0.76 0.57 0.73 0.88 0.97 0.53 0.45 0.79 0.64
JSU-EVT -2.22 -2.99 0.047 0.60 0.19 0.37 0.52 0.70 0.93 0.98 0.53 0.45 0.81 0.63

Table 5: Mean VaR forecasts (VaR), mean ES forecasts (ES), violation ratio (Viol), and backtest-
ing results (p-values) for VaR and ES forecasts for BP. LRuc is the unconditional coverage test of
Kupiec (1995), LRind and LRcc are the independence and conditional coverage tests of Christof-
fersen (1998), DQT is the dynamic quantile test of Engle and Manganelli (2004), BTT is the test
of Righi and Ceretta (2015), Z1 and Z2 are the tests of Acerbi and Szekely (2014), T R is the test
of Graham and Pál (2014), and UES, CES(1), and CES(5) are the unconditional and the conditional
(lags = 1 and lags = 5) tests of Costanzino and Curran (2015) and Du and Escanciano (2016). A
p-value in bold indicates that the statistic obtained in this test has a sign opposite to that specified
for the alternative hypothesis. Hyphens indicate that the independence and conditional coverage
tests cannot be applied.
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II.3 DESCRIPTIVE ANALYSIS OF VIOLATIONS

IBM SAN AXA BP

JSU JSU-EVT JSU JSU-EVT JSU JSU-EVT JSU JSU-EVT

nα 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6
V(0.01) 13 13 17 11 15 11 15 9
CV(0.01) 10.41 7.63 7.06 4.73 7.28 3.96 7.74 6.11

nα 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5
V(0.025) 24 29 34 33 40 34 35 32
CV(0.025) 16.05 14.72 17.63 15.04 19.78 14.04 15.73 13.83

nα 63 63 63 63 63 63 63 63
V(0.05) 51 64 63 66 70 70 56 59
CV(0.05) 26.56 30.03 32.32 31.48 35.77 32.02 31.65 30.93

Table 6: Descriptive analysis of violations under the AR(1)-APARCH(1,1)-JSU and EVT-AR(1)-
APARCH(1,1)-JSU models. V and CV denote the number of violations and cumulative violations,
respectively.
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Figure 1: Empirical distribution of threshold excesses for IBM filtered residuals under the EVT-
AR(1)-APARCH(1,1)-JSU model versus the fitted GPD.
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Figure 2: The smooth curve through the points shows the estimated tail of filtered residuals for
IBM under the AR(1)-APARCH(1,1)-JSU model using the tail estimator. Points are plotted at
empirical tail probabilities calculated from the empirical distribution function.
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Figure 3: IBM daily percent returns and VaR1% and VaR5% forecasts with the full sample as well as
using only extreme values. We only show the negative returns so as to maintain a clear perspective
on the different VaR estimates.
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Figure 4: IBM daily percent returns and ES1% and ES5% forecasts with the full sample as well as
using only extreme values. We only show the negative returns so as to maintain a clear perspective
on the different ES estimates.
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Figure 5: Estimated tail-distributions for IBM. N is the normal, ST is the Student-t (4.67), SKST
is the skewed Student-t (0.97, 4.69), SGED is the skewed generalized error (0.99, 1.15), and JSU
is the Johnson SU (-0.092, 1.53) distribution. Numerical estimates for the parameters are enclosed
in brackets.
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Figure 6: Cumulative hits (violations) of IBM under the JSU-APARCH and JSU-EVT-APARCH
models for different α .
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Figure 7: Cumulative hits (violations) of SAN under the JSU-APARCH and JSU-EVT-APARCH
models for different α .
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Figure 8: Sample autocorrelations of cumulative hits (violations) of IBM under the JSU-APARCH
and JSU-EVT-APARCH models for different values of α .
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Figure 9: Sample autocorrelations of cumulative hits (violations) of SAN under the JSU-APARCH
and JSU-EVT-APARCH models for different values of α .
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