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Abstract
In this work, from a geometric point of view, we analyze the SET model (Schweitzer, Ebeling and

Tilch) of the mobility of a bacterium. Biological systems are out of thermodynamic equilibrium and

they are subject to complex external or internal influences that can be modeled in the form of noise

or fluctuations. In this sense, due to the stochasticity of the variables, we study the probability of

finding a bacteria with a speed v in the interval (v, v+ dv) or, from a population point of view, we

can interpret the probability density function as associated with finding a bacterium with a speed v

in the interval (v, v+ dv). We carry out this study from the stationary probability density solution

of the Fokker-Planck equation and using the structure of the statistical manifold related with the

stationary probability density, we study the curvature tensor in terms of two coordinates associated

with the state of mobility of the bacteria and the environmental conditions. Taking as reference

the geometric interpretations found in the framework of equilibrium thermodynamics, our results

suggest that bacteria have an effective repulsive interaction that increases with mobility. These

results are compatible with the behavior of populations of bacteria that form biofilms when their

mobility decreases.
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I. INTRODUCTION

Nonequilibrium systems arise in a wide range of situations with very different phe-

nomenologies. One of these situations, often called active matter, energy is dissipated at

the microscopic scale in the bulk so that each constituent of the system has an irreversible

dynamic. In particular, a population of bacteria is a system where each element takes energy

from the environment using it in internal processes as well as to move in search of nutrients.

The model that we use in this work and that contemplates these characteristics is the SET

model (Schweitzer, Ebeling and Tilch) [1], which basically consists of three energy contribu-

tions, one takes into account how the bacterium take energy from the environment, a second

term associated with energy invested in internal processes and a third term linked to energy

dissipation due to mobility. This model considers stochastic effects, that is external noise.

It has been successfully used in the study of motions of microscopic biological objects [2],

such as cells or bacteria, which can be adequately described by Lagevin dynamics. In this

work we will focus on the problem of bacterial mobility from a population perspective.

In order to consider the stochastic effects due to fluctuations in the environment, we

consider the Fokker-Plank equation (FP) for the SET model and we focus on the stationary

solution wsv(v) which is the probability density function that the bacterium has a velocity

v in the interval (v, v + dv), or from a population point of view, the probability density

function associated with finding a bacterium with a speed v in the interval (v, v + dv).

Our study is centered on a geometric perspective, fundamentally because this point of

view allows us to link behavior of a population with microscopic aspects such as the exis-

tence of an effective interaction between mobile bacteria. We think that this approach is

particularly interesting because if, on the one hand, we have knowledge of the probability

density function that describes a system out of equilibrium, and on the other hand, we take

as reference the results between the microscopic and macroscopic descriptions of equilibrium,

we can study and analyze the problem out of equilibrium in the context of the theoretical

framework of statistical manifold [3]. For the construction of our geometric approach, we

use the theoretical framework of Amari [4], associating a statistical manifold to the density

function wsv(v). Since wsv(v) can be described in terms of two parameters, the statistical

manifold associated is two-dimensional. Following this idea, we will see that by identifying

a dimensionless velocity, we can write the probability density function in exponential form
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[5] in terms of two parameters (θ1, θ2) so that by analogy with equilibrium densities we iden-

tify a macroscopic potential ψ(θ1, θ2). This identification allows to calculate the geometric

elements as well as being an aid in the physical interpretations of the system.

For physical interpretations we support ourselves on what we know about the geometry of

systems in equilibrium. For classical systems, a non-zero scalar curvature κ is associated with

the existence of an interaction potential between the constituents of the system. For example,

the sign of κ gives us information about the attractive or repulsive nature of the interaction

while the singularities of κ are associated with changes in the collective behavior of the

system. For the two-dimensional case, the curvature tensor R has only one independent

non-zero element namely R1212 and it satisfies the relation κ = (2/ det(gij))R1212 [6, 7],

where gij are the elements of the metric tensor. The method of Riemann geometry has been

fruitful in equilibrium thermodynamics and we expect that differential-geometrical methods

become important in non-equilibrium processes. Bearing in mind this fact, we will focus

on the study of R1212 to analyze the collective behavior of the population of bacteria [8] as

well as the character of their effective interactions. Moreover, in our particular case, the

geometric elements of the two-dimensional manifold can be constructed from a macroscopic

potential ψ(θ1, θ2) due to the exponential form of the probability density function mentioned

above.

Our work has the following structure. In the next section we will present the relevant

aspects of the SET model. Section III will be dedicated to the discussion of the stationary

probability density function as a solution to the FP. In section IV we present the geometric

elements in the context of the SET model as well as the interpretations of the stochastic

variables. Finally, in section V we present a discussion of the results in conjunction with

our conclusions.

II. RELEVANT ASPECTS OF THE SET MODEL

The SET model assumes that a particle can take energy from the environment at a rate

q, which is assumed to be constant. It is stored in an internal deposit E(t) and then it

is converted into kinetic energy at a rate d[v, E(t)], which generally is a function of the

velocity v. The reservoir energy E(t) is dissipated at a rate G[E(t)] which depends on

methabolic processes and takes into account all forms of non-mechanical energy dissipation
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(mainly in cellular methabolic processes). If the distribution of resources in the environment

is inhomogeneous, the rate of absorption of nutrients could depend on the position. The

rate of energy stored is then described by the equation.

dE(t)

dt
= q −G[E(t)]− d[v, E(t)] (1)

The total energy ET (t) of the active particle at time t is given by

ET (t) = E0(t) + E(t), (2)

where E0 is the mechanical energy of the active particle. In this work we consider that the

interaction between bacteria is due only to collisions between them.

The balance equation for the mechanical energy reads

dE0(t)

dt
= d[v, E(t)]− γv2 (3)

where γ is the friction coefficient of the particle.

Considering that E0 = mv2/2, we can rewrite (3) in a more explicit form

mv
dv

dt
− d[v, E(t)] + γv2 = 0, (4)

where v = |v|.

Based on Eq. (4), the stochastic equation of motion for the active Brownian particles

take the form [1]

m
dv

dt
= −γv + d2E(t)v + F(t), (5)

where we have assumed that d[v, E(t)] = d2E(t)v2. F(t) is a stochastic force and it have a

δ-correlated time dependence [9]

〈F(t)〉 = 0; 〈F(t)F(t′)〉 = 2γkBTδ(t− t′). (6)

An important parameter to take into account in our mobility analysis is the mechanical

efficiency σ. For the Brownian particle with an internal energy reservoir, the efficiency ratio

is defined as [1]

σ =
(dEout/dt)

(dEin/dt)
=

〈
d[v, E(t)]

q

〉
, (7)

The input of energy per time interval dEin/dt is given by the take-up q, while the output

energy rate dEout/dt is defined as the amount of mechanical energy available from the
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micromotor d[v, E(t)] = d2E(t)v2. Assuming that the energy store quickly reaches a quasi-

stationary state, we have from (1) q−G(Es)−d(v, Es) = 0. If it is further assumed that the

rate of energy dissipation is proportional to the energy of the deposit we have G(Es) = cEs.

Under these conditions, the stationary efficiency σs is written as

σs =

〈
d2v

2

c+ d2v2

〉
. (8)

σs is a parameter that can vary between 0 and 1. When it takes the value 1 we will say

that the bacterium optimizes the use of energy for mobility.

III. MOBILITY AND THE FOKKER-PLANCK EQUATION

In order to consider the stochastic effects due to fluctuations in the environment, we

construct the Fokker-Plank equation (FP) for active Brownian particles. The solution of

the FP equation allows us to find the probability density function w(v, t) of a bacterium

with a velocity between v and v + dv. To simplify our treatment we consider, from now on,

one-dimensional description. We start the construction of the FP equation by means of the

Langevin equation

v̇ = f(v) + g(v)ξ(t), (9)

where F (t) = g(v)ξ(t) represents the stochastic force.

The general expression of the FP equation for the probability density w(v, t) is

∂w

∂t
= − ∂

∂v
(f(v)w(v, t)) +

∂2

∂v2
(
g2(v)w(v, t)

)
. (10)

The stochastic force F (t) in the SET model satisfies [9]

〈F (t)〉 = 0 y 〈Fi(t)Fj(t)〉 = 2γkBT. (11)

Working in one dimension, the stochastic force verifies 〈F 2(t)〉 = 2γkBT .

The generalized Langevin equation in the SET model has the form

v̇ = −γv
m

+
d [v, E(t)]

mv2
v +

F (t)

m
. (12)

Comparing (9) with the above expression we identify the function

f(v) =

(
− γ
m

+
d [v, E(t)]

mv2

)
v. (13)
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Analogously, using (11) we identify the function

g2(v) =
2γkBT

m2
=

ε

m2
. (14)

Taking into account (10), the equation of FP for the SET model has the following expression

∂w

∂t
= − ∂

∂v

[(
−γ +

d [v, E(t)]

v2

)
v

m
w

]
+

ε

m2

∂2w

∂v2
(15)

In particular we are interested in the stationary solution of this equation, we noted wSv. In

order to do this, we set (∂w/∂t) = 0, this is

∂

∂v

[(
γ − d [v, E]

v2

)
v

m
w +

ε

m2

∂w

∂v

]
= 0. (16)

The result (16) leads us to(
γ − d [v, E]

v2

)
v

m
w +

ε

m2

∂w

∂v
= Constant. (17)

Taking into account (3) we have that the first term of (17) can be written as(
γ − d [v, E]

v2

)
v

m
w = − 1

vm

dE0

dt
w. (18)

From the result (18) we can interpret the first term of (17) as a fluctuation of the inverted

mechanical energy in the mobility of the bacteria. On the other hand, the second term of

(17) represents the fluctuation of the stochastic force F (t). In the steady state, these two

terms are balanced, that is Constant = 0 in equation (17). Concluding that(
γ − d [v, E]

v2

)
v

m
wSv +

ε

m2

∂wSv

∂v
= 0, (19)

where wSv(v) is the probability density function with respect to of the velocity v.

Likewise for the steady state we have (1)

dE

dt
= q − d [v, E]−G[E(t)] = 0, (20)

that together with the conditions d [v, E] = d2Ev
2 and G[E] = cE, leads us to(

γ − d [v, E]

v2

)
=

(
γ − d2q

c+ d2v2

)
. (21)

Returning to the equation (19) we obtained

∂ lnwSv(v)

∂v
=

(
d2q

c+ d2v2
− γ
)
mv

ε
. (22)
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Integrating the above expression respect to v

wsv(v) = w0 exp

(
−mγv

2

2ε

)(
1 +

d2
c
v2
)mq

2ε
. (23)

Remembering that d[v, E] represents the rate of energy that is converted into kinetic

energy used in the mobility of the bacteria, and G(Es) represents the dissipation of energy

in a non-mechanical way, we can distinguish two regimes. The first regimen is when d/G =

[(d2v
2) /c] > 1, we have that more energy is dissipated by the translation of the bacteria

(mobility) than in methabolic processes. The second regime is given by d/G = [(d2v
2) /c] <

1, more energy is dissipated by methabolic processes than by the mobility of the bacteria.

The recognition of these two regimes suggests us to choose as stochastic variable for the

description of the population behavior of the bacteria to

x =

√
d2
c
v, (24)

where the variable x represents a dimensionless velocity.

In terms of the dimensionless velocity x we can be described more simply the two schemes

displayed above. The first regime where the kinetic part dominates is written as x2 > 1,

and the second regime where methabolic processes dominate is written as x2 < 1. Likewise,

using the stochastic variable x, the normalized probability density (23) can be written as an

exponential family [5, 10]

wsx(x) = exp
[
−θ1x2 + θ2 ln

(
1 + x2

)
− ψ (θ1, θ2)

]
, (25)

where

θ1 =
mγc

2εd2
=

m

4kBT

c

d2
, θ2 =

mq

2ε
=

m

4kBT

q

γ
, (26)

and

ψ (θ1, θ2) = ψ(θ) = ln

 ∞̂

−∞

exp
[
−θ1x2 + θ2 ln

(
1 + x2

)]
dx

 . (27)

The exponential form of the probability density function is the characteristic way in

which the equilibrium densities are presented. In this sense, and making an analogy with

equilibrium, we identify the function ψ (θ1, θ2) as a non-equilibrium macroscopic potential

[5].
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Figure 1: In this figure we show the behavior of
〈
x2
〉
as a function of (θ1, θ2) in conjunction with

the constant function
〈
x2
〉
= 1.

Taking into account the relationships (26) that indicate how the parameters θ1 and θ2

are defined in terms of the model variables, we can interpret that the parameter θ1 is

associated with internal processes of the bacteria and the parameter θ2 is associated with

the relationship of the bacteria with the environment.

Moreover, keeping in mind the stochastic effects and considering that the diffusion coef-

ficient is proportional to 〈v2〉 [8], we can study the bacterial mobility through the diffusion

coefficient using (24). In this sense, the analysis of bacterial mobility as a function of θ1 and

θ2 can be carried out based on the behavior of 〈x2〉 due to (24). On the other hand, taking

advantage of the fact that the probability density function (25) belongs to the exponential

family, we can easily calculate the mean value 〈x2〉 through the macroscopic potential ψ

using the relation [11] 〈
x2
〉

= −∂ψ(θ)

∂θ1
. (28)

The analysis of 〈x2〉 in terms of θ1 and θ2 can be carried out by observing Figure 1

where we have represented 〈x2〉 depending on the parameters (θ1, θ2) and the plane 〈x2〉 =
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Figure 2: Stationary efficiency σs in terms of the parameters θ1 and θ2

1. We observe that for the parameters (θ1, θ2) there is a region where 〈x2〉 < 1 and another

where 〈x2〉 > 1. In particular and roughly, we observe that for θ1 values smaller than 0.5

(θ1 . 0.5) and a weak dependence on θ2, the mean value 〈x2〉 grows abruptly. We associate

this behavior of 〈x2〉 with the fact that for low values of θ1, the mobility of the bacteria is

high. In this analysis we do not consider that there must be a balance between the energy

q taken from the medium and the energy dissipated due to the methabolic processes G and

the mobility d. One way to consider this balance is to study the stationary efficiency σs

given by the relation (8)

σs =

〈
d2v

2

c+ d2v2

〉
=

〈
d2v

2/c

1 + d2v2/c

〉
=

〈
x2

1 + x2

〉
. (29)

To understand the behavior of σs we use the density function wsx (25), so that

σs =

〈
x2

1 + x2

〉
=

∞̂

−∞

(
x2

1 + x2

)
wsx(x)dx. (30)

In Figure 2 we show the stationary efficiency σs in terms of the parameters θ1 and θ2.

When θ2 grows and for small values of θ1, we can see that the efficiency is close to unity.
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Interpreting this behavior through expressions (26) we can say that the efficiency σs increases

with the rate of energy q taken from the environment and the conversion of energy from the

deposit into kinetic energy d2. This behavior is compatible with what we observe in the 〈x2〉

function, that is, the region of the domain (θ1, θ2) of high mobility (〈x2〉 > 1) is compatible

with the region of high efficiency σs.

IV. GEOMETRIC PERSPECTIVE

In this section, we use the Amari geometric approach [4] to study a family of probability

density functions (PDF) and its applications to nonequilibrium processes. Let p (x, θ) a

PDF described by a random variable x and parameters θ = (θ1, θ2, ..., θn) that characterize

a system. A set of PDFs

S = {p (x, θ) , θ ∈ Ω ⊂ Rn} , (31)

becomes an n-dimensional statistical manifold having θi coordinates. According to informa-

tion geometrical theory, we define a metric tensor gik(θ):

gik(θ) = E [∂il(x, θ)∂kl(x, θ)] = −E [∂i∂kl(x, θ)] , (32)

where l(x, θ) = ln p(x, θ) and E[ . ] is the expectation operation with respect to p(x, θ). The

Christoffel connection coefficients are given by:

Γijk(θ) =
1

2
(∂kgij(θ) + ∂jgik(θ)− ∂igjk(θ)) . (33)

The curvature tensor R gives a measure of the curvature of the manifold. In the case

R = 0, the manifold is said to be flat. In this sense the covariant component Rijkl plays an

important role in the analysis of the curvature of the manifold:

Rijkl = gimR
m
jkl =

= ∂kΓijl − ∂lΓijk − ΓmikΓm
jl + ΓmilΓ

m
jk (34)

with

Γi
jk =

1

2
gli (∂kglj + ∂jglk − ∂lgjk) (35)

and

Γl
ij = Γijkg

lk (36)
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where gij denotes the inverse of the metric tensor gij.

An alternative calculation structure appears if the probability density function p(x, θ)

belongs to the exponential family, that is, when it has the form

p(x, θ) = exp

(
C(x) +

m∑
i

θiFi(x)− ψ(θ)

)
, (37)

where C(x) and Fi(x) are arbitrary functions of x, and ψ(θ) is a function of θi coordi-

nates. In this case, the metric tensor gij(θ) defined in (32) and the covariant coefficients are

straightforwardly obtained from equation [4, 12]

gij(θ) =
∂2ψ(θ)

∂θi∂θj
, (38)

Γijk (θ) =
1

2
∂i∂j∂kψ(θ). (39)

In our case, it should be noted that the parameters θ1 and θ2 will now be the coordinates

of the statistical manifold associated with the stationary probability density (25) and the

mascroscopical potential (27). As we commented in the introduction, in our geometric

perspective we take the equilibrium results as a reference [14]. In particular we will focus on

the study of the curvature tensor because for a two-dimensional manifold the information

contained in the curvature tensor is equivalent to that contained in the scalar curvature.

In this sense, the tensor R1212 gives us information about the macroscopic behavior of the

system so that we interpret the singularities of the tensor as a change in bacterial mobility

[8].

It is worth noting that, if we consider the equilibrium density functions, this formal-

ism reproduces the geometric structure found by Ruppeiner for the space of equilibrium

states[15]. In Ruppeiner formalism the metric elements are obtained as the second deriva-

tives of the corresponding thermodynamic potential. The method of Riemann geometry

has been fruitful in equilibrium thermodynamics and we expect that differential-geometrical

methods become important in non-equilibrium processes.

The study of the behavior of theR1212 component as a function of θ1 and θ2 was carried out

numerically. The strategy used was to take advantage of knowing the macroscopic potential

ψ given by the relationship (27) and to calculate numerically the relationships (34), (38) and

(39). In Figure 3 we graph the results of our calculations. In order to carry out a geometric

study of bacterial mobility, we observe that Figure 3 has two important characteristics on
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Figure 3: Element R1212 of the curvature tensor as a function of θ1 and θ2 coordinates

the behavior of the component of the curvature tensor. The first is associated with the

fact that R1212 is always negative and close to zero for large values of θ1 (θ1 > 0.5). The

second characteristic is the singular behavior of R1212 for small values of θ1 (θ1 . 0.5). It

is interesting to remark that the region of the domain (θ1, θ2) where R1212 has a singular

behavior is compatible with the region of greater mobility characterized with 〈x2〉 > 1 and

with an efficiency σs close to one.

From the perspective of the mobility of bacteria and in accordance with the results

presented in the previous section, the singular behavior of R1212 can be interpreted as a

change in the collective behavior of the bacterial population [8]. In other words, bacteria

becoming more mobile in the region for which R1212 becomes more negative.

For a classical system, the information about the repulsive or attractive character of the

interaction of its constituents is found in the sign of the scalar curvature κ [14]. If κ = 0

the interaction is zero (ideal system), if κ > 0 the interaction is attractive and if κ < 0 the

interaction is repulsive [14]. For the particular case of a two-dimensional manifold and when

the geometric elements can be constructed from a macroscopic potential ψ(θ1, θ2), the scalar

curvature κ is related to the curvature tensorR through the expression κ = (2/ det(gij))R1212
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[6]. Since det(gij) > 0, the information about the attractive or repulsive character of the

interaction will be contained in the sign of R1212.

We associate the stationary probability density function wsv(x) with the probability of

encountering a bacterium with a speed v in the interval (v; v + dv). But nevertheless, from

a population point of view, the presence of other bacteria can be visualized in the model

parameters. For example the presence of neighboring bacteria will modify the rate of en-

ergy q taken from the environment. Although in our representation bacteria are thought

of as elements that interact only through collisions between them, within the population

perspective, the sign of R1212 gives us information about an effective interaction between

bacteria. As we mentioned previously, in classical terms, a null curvature means that there

is no interaction between the constituents of the system (in our case bacteria), the positive

sign is associated with an attractive effective interaction and the negative sign with a repul-

sive interaction. In this sense, from Figure 3 we can interpret that the interaction between

bacteria is always repulsive and this interaction increases as θ1 becomes smaller.

Related the behavior of R1212 with 〈x2〉 we can say that the increase in mobility in the

population is correlated with by an increase of the effective repulsion between bacteria.

V. SUMMARY AND CONCLUSIONS

In this work we have addressed some characteristic aspects of a population of bacteria.

With this target we have used the SET model (Schweitzer, Ebeling and Tilch), which allows

us to think the bacterium as an energy bag that it takes from the environment and that can

dissipate in two different ways, transformed into kinetic energy or by internal methabolic

processes.

We have constructed the Fokker Planck equation for the SET model and have found its

stationary solution wsv . Through the definition of a dimensionless velocity x we have written

the probability density function wsx in exponential form and from there we have identified

the macroscopic potential ψ (θ1, θ2). Using ψ (θ1, θ2) we have built the geometric structure.

In particular we focus on the study of the curvature tensor R and, since our problem is

reduced to a two-dimensional manifold, we only study the component R1212.

Our geometric approach allows us to analyze the macroscopic responses of the system.

In the first place we have found that the region of greatest mobility of bacteria corresponds

14



to the region of the domain (θ1, θ2) where R1212 has a singular behavior. This behavior of

R1212 can be understood as a phase transition of the system [8], where it passes from a state

of low mobility to another state of high mobility.

On the other hand, we observe that R1212 is negative and its absolute value is arbitrarily

large when θ1 . 0.5. From a population point of view, we interpret the negative sign as

the presence of an attractive effective interaction between the bacteria. If we take into

consideration that R1212 = 0 means that the interaction is null, we can conclude that in

the region where R1212 becomes singular, the effective interaction between bacteria becomes

large in correlation with the increase in bacterial mobility.

As a final conclusion we can say that our geometric point of view allows us to conjecture

the existence of an interaction between bacteria associated with the state of bacterial mo-

bility. In summary, in a state of low mobility the effective interaction is small and in a state

of high mobility the effective interaction is large.
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