
The Problems of Selecting Problems ?

Alberto de la Encina, Natalia López, Ismael Rodrı́guez, Fernando Rubio,

Dpto. Sistemas Informáticos y Computación.
Facultad Informática. Universidad Complutense de Madrid.

28040 Madrid, Spain
{albertoe,natalia,isrodrig,fernando}@sip.ucm.es

Abstract. We face several teaching problems where a set of exercises has to be
selected based on their capability to make students discover typical misconcep-
tions or their capability to evaluate the knowledge of the students. We consider
four different optimization problems, developed from two basic decision prob-
lems. The first two optimization problems consist in selecting a set of exercises
reaching some required levels of coverage for each topic. In the first problem we
minimize the total time required to present the selected exercises, whereas the
surplus coverage of topics is maximized in the second problem. The other two
optimization problems consist in composing an exam in such a way that each
student misconception reduces the overall mark of the exam to some specific re-
quired extent. In particular, we consider the problem of minimizing the size of the
exam fulfilling these mark reduction constraints, and the problem of minimizing
the differences between the required marks losses due to each misconception and
the actual ones in the composed exam. For each optimization problem, we for-
mally identify its approximation hardness and we heuristically solve it by using a
genetic algorithm. We report experimental results for a case study based on a set
of real exercises of Discrete Mathematics, a Computer Science degree subject.

Keywords: Computational Complexity, Optimization, Education, Genetic Algo-
rithms.

1 Introduction

Every time a new topic has to be taught to the students of any subject from any aca-
demic level, several examples are usually presented to help understanding the general
description. However, selecting an appropriate set of examples is not a trivial task (see
e.g. [9,10]). Notice that the teacher has to take into account the most common miscon-
ceptions the students may have. For instance, 6-year old students may think the number
that is carried over in additions is always 1, and novice programming students may
think the variable controlling a while loop is always incremented by one unit every
iteration. Thus, in order to cover all possible misconceptions, a good set of examples

? This work has been partially supported by Spanish project TIN2015-67522-C3-3-R, the UCM
project PIMCD 2016 176, and by Comunidad de Madrid as part of the programs S2013/ICE-
2731 (NGREENS-CM), and S2018/TCS-4339 (BLOQUES-CM) co-funded by EIE Funds of
the European Union.

has to be selected: For each possible misconception, there should be at least one exam-
ple that cannot be solved successfully in case the misconception is present. By doing
so, students having any misconceptions will notice them, as examples will make any
contradiction between their view and the correct view arise.

Given a set of examples covering misconceptions on a given topic, we tackle the
teaching problem of finding a subset of examples that covers all the possible miscon-
ceptions a given number of times. For instance, let us assume we have 5 possible mis-
conceptions (A, B, C, D, and E) and 5 possible examples where Example 1 covers errors
A, B, C, and E; Example 2 covers C and D; Example 3 covers B and C; Example 4 cov-
ers A, B, and D; and Example 5 covers C, D, and E. Besides, suppose we want to cover
each misconception at least twice. Then, it is not necessary to present all the examples
(although they would obviously cover each misconception at least twice), it is enough
to present examples 1, 4, and 5.

Going one step forward, we will also apply those notions to a related teaching activ-
ity. When we want to evaluate the knowledge of the students with an exam, we should
be able to detect and assess the misconceptions of the students. Thus, the exam should
include exercises whose elaboration is sensitive to the main misconceptions (i.e. exer-
cises which will be failed if some misconceptions are present), and each misconception
should minor the score of the exam appropriately, in some desired extent. Let us sup-
pose each misconception is assigned a given desired grade penalty. Then, designing a
suitable exam does not consist just in covering all misconceptions a minimum number
of times (as we can do when teaching the topic in the classroom), as this would wrongly
increase the relative penalty of all misconceptions which are covered by a proportion
of exercises higher than desired. For instance, in the example presented before, in case
an exam includes the five examples 1-5 (in this case, exam exercises), a student with a
misconception of type C will fail 4 out of 5 exercises, while a student with a miscon-
ception of type A will only fail 2 out of 5 exercises. Given how many points should
ideally be penalized by each misconception, the second teaching problem tackled in
this paper will be selecting the appropriate set of exercises to cover each misconception
the specified number of times, or to minimize the distance to such optimal distribution
in case it is not possible to obtain the exact solution required.

These two teaching tasks motivate the definition of the four optimization problems
faced in this paper. On one hand, for the task of selecting a set of exercises reaching
some target coverage levels for each misconception, we will consider the problem of
minimizing the time required to teach them and the problem of maximizing the surplus
coverage of misconceptions beyond their minimum required levels. On the other hand,
for the task of composing exams where each misconception yields its corresponding
required mark reduction, we will consider the problem of minimizing the time required
to complete the exam and the problem of minimizing the differences between the re-
quired mark losses due to the misconceptions and the actual losses in the composed
exam. As we will see, all four optimization problems are NP-hard, meaning that no
algorithm can find optimal solutions for them in reasonable time when the size of the
problem is not trivial. Moreover, the approximability (see e.g. [4,18,1]) of these four
problems is not good either, as all of them are Log-APX-hard (some even worse). Be-
ing Log-APX-hard means that it is not possible to find good approximations to their

optimal solutions: If P 6= NP, then it is not possible to find polynomial-time algorithms
guaranteeing that their solutions will be a given fix percentage worse than the optimal
ones in the worst case.

In order to heuristically solve these problems, we will use genetic algorithms [15,6,23],
as they have proven to be successful solving many different types of optimization prob-
lems (see e.g. [14,3,5,16,22,21,17]). Given a set of misconceptions, a set of examples
(exercises), the time required to present (and solve) each example in the classroom, the
list of misconceptions covered by each example, the maximum total time available to
present all examples, and the number of times each misconception has to be presented
by means of examples (or the expected mark loss each misconception should produce
in an exam), the algorithms will face the aforementioned optimization problems.

In order to test our algorithms, we consider a concrete subject: Discrete Mathemat-
ics. This subject is taught to first-year students of the Computing Engineering Degree,
and it covers many different concepts, including probability, graph theory, recursion,
induction, number theory, etc. Although most of the concepts are independent, a single
exercise usually combines several of them. The teachers of the subject have created a
list of 261 exercises covering 55 possible misconceptions. For each exercise, we know
the time required to present it, the time required to solve it in an exam, and the miscon-
ceptions covered by it. Given this information, our algorithms are used to both design
exams and select a list of exercises to be presented in the classroom to introduce a
given topic (or to summarize the main topics of the subject during the last lessons).
Experimental results are reported.

The rest of the paper is structured as follows. In the next section we formally define
the problems considered in our work. Then, in Section 3 we present algorithms solving
the problems and we present the results obtained when using them to deal with the set
of exercises of a concrete subject. Finally, in Section 4 we present our conclusions and
lines for future work.

2 Formal Description of the Problems

In this section we formally present our problems. The first problem under considera-
tion, that is, the problem of selecting the exercises to be taught in the classroom so that
they cover all required misconceptions some numbers of times, is introduced next. The
most basic version of the problem will be its decision version: given the coverage level
of each misconception provided by each exercise (i.e. the capability of the solution of
the exercise to make students with the corresponding misconception realize their view
is wrong), the required levels of coverage of all misconceptions, and the maximum time
to be spent presenting exercises in the classroom, it asks whether there exists a set of
exercises meeting all these requirements. We also consider two associated optimization
problems. In the first one, we select the set of exercises meeting the required minimum
misconception coverage conditions which also minimizes the total time required to in-
troduce the chosen set of exercises. This is the goal of a teacher interested in minimizing
the time needed to present a set of problems covering all target errors, in order to max-
imize the productivity of the teaching time. Alternatively, it could be the case that we
have a fix amount of time available to present exercises. In such situation, we do not

need to minimize the total required time, but to select a set of problems fitting into the
available time. In this case, we may be interested in taking profit of all the available time
to cover the misconceptions as much as possible (as long as all misconceptions reach
their corresponding minimum required coverage levels). The corresponding problem is
the following: for all solutions fitting into the maximum time and reaching all minimum
coverage levels for each error, we want to maximize the total coverage surplus (i.e. the
excess of coverage over the required minimums) of all misconceptions. In this case,
the teacher can define the relative contribution of the surplus coverage of each miscon-
ception, in such a way that exceeding the required coverage of some misconceptions is
more valuable than exceeding the required coverage of others.

Hereafter we consider that, given a vector v, vT denotes the transpose of v.

Definition 1. Let us consider that we have n questions or problems available (P1, . . . ,Pn)
and m misconceptions to be covered (M1, . . . ,Mm). Let c ∈ INn be a vector of naturals
where each value ci ∈ IN denotes the time needed to present and solve problem Pi,
A ∈ IRm·n be a matrix where each value ai j ∈ IR denotes the coverage level of the mis-
conception Mi provided by problem Pj, and b∈ IRm be a vector where each value b j ∈ IR
denotes the minimum coverage we want to reach for each misconception M j. Finally, let
w∈ IRm be a vector where each w j ∈ IR denotes the contribution of the surplus coverage
of misconception M j. Then,

– Given k ∈ IN, the Misconception Coverage problem, denoted by MC, is the decision
problem of finding out whether there exists x ∈ {0,1}n such that cT · x ≤ k and
A · x≥ b.

– The Misconception Coverage Time Optimization problem, denoted by MCTO, is the
problem of minimizing cT · x subject to x ∈ {0,1}n and A · x≥ b.

– Given k ∈ IN, the Misconception Coverage Surplus Optimization problem, denoted
by MCSO, is the problem of maximizing ∑i wi ·((∑ j ai j ·x j)−bi) subject to cT ·x≤ k,
x ∈ {0,1}n, and A · x≥ b.

ut

We have the following properties.

Theorem 1. We have

(a) MC ∈ NP-complete.
(b) MCTO ∈ Log-APX-complete.
(c) MCSO ∈ NPO-complete.

Proof. Let us start proving (b). In order to do it, we have to provide a Log-APX-
hardness preserving polynomial reduction from a Log-APX-hard problem into MCTO.
We consider an S-reduction (see e.g. [4]) from Minimum Set Cover, MSC [8]. Given a
collection C of sets C = {S1, . . . ,Sk} with

⋃
S∈C S = {e1, . . . ,ep}, MSC consists in pick-

ing a subset C ′ of C such that
⋃

S∈C ′ S = {e1, . . . ,ep} in such a way that |C ′| (i.e., the
number of sets of C ′) is minimized. The construction of an S-reduction from MSC into
MCTO can be done as follows. From a MSC instance C , we define an MCTO instance in the
same terms as in Definition 1 where

– n = k, m = p,
– c = 1n, b = 1m,
– For all 1≤ i≤ m and 1≤ j ≤ n,

ai j =

{
1 if ei ∈ S j
0 otherwise

We can see that there exists a solution to this MCTO instance with cost q ∈ IN iff
there exists a solution to the original MSC instance with the same cost q. Note that each
linear inequality ai1 · x1 + . . .+ain · xm ≥ 1 imposed by the matrix constraint A · x ≥ 1m

requires that at least one of the sets containing element ei is picked (in particular, picking
x j = 1 in MCTO represents picking the set S j in MSC). Since all costs in c are set to 1,
the cost of any solution for the MCTO instance is the number of variables x j which are
set to 1, which equals the cost of picking the corresponding sets as a solution for the
corresponding MSC instance. Therefore, the optimal solution for the MSC solution has
cost o ∈ IN iff the optimal solution for the MCTO solution has cost o. We conclude that
there is an S-reduction from MSC into MCTO, which proves MCTO ∈ Log-APX-hard.

Besides, it is easy to see that problem CIP [11] generalizes MCTO. Since CIP admits
a logarithmic approximation, MCTO does too, so MCTO ∈ Log-APX. We conclude that
MCTO ∈ Log-APX-complete.

In order to prove (a), we can trivially adapt the previous S-reduction to polynomially
reduce Set Cover (the decision version of MSC) into MC, which implies the NP-hardness
of MC. Since MC ∈ NP (as we can check A · x≥ b and cT · x≤ k in polynomial time), we
conclude MC ∈ NP-complete.

In order to prove (c), we S-reduce the NPO-complete problem Max Ones [12] (that
is, the problem of satisfying all the clauses of a 3-CNF formula while maximizing
the number of propositional symbols that are set to True) to MCSO as follows. For each
disjunctive clause Ci = yi

1∨yi
2∨yi

3 of the original Max Ones instance (where each yi
j is a

literal, i.e. it is p or ¬p for some propositional symbol p), we create a misconception Mi
which represents the clause Ci to be covered. Moreover, for each propositional symbol
p, we also create two misconceptions Mp and M′p, whose coverage will represent that
p has been assigned some value (True or False) and that p has been assigned a True
value in particular, respectively. This completes the set of misconceptions, and problems
(questions) are defined as follows. For each propositional symbol p, we create two
problems PTp and PFp representing that symbol p is set to True or False, respectively.
Each problem PTp covers misconceptions Mp, M′p, and all misconceptions Mi such that
some literal yi

1, yi
2 or yi

3 is of the form p, whereas problem PFp covers the misconception
Mp and all misconceptions Mi such that some literal yi

1, yi
2 or yi

3 is of the form ¬p.
The idea of the transformation is that if we choose problem PTp then the proposi-

tional symbol p will be True, whereas if we choose problem PFp then the propositional
symbol p will be False. Notice that if a problem of the form PTp or PFp is chosen and
that problem covers the misconception M j, then clause C j will be satisfied.

Regarding the required coverage of each misconception in the constructed instance
of MCSO (vector b), we require to cover each misconception Mi and Mp at least once
(as clauses must be satisfied and proposition symbols must be given some value, re-
spectively), and the extra contribution for being covered more than needed (vector w)

will be 0 for both kinds of misconceptions. As we want to maximize the number of
propositional symbols set to True, for all propositional symbols p we need to reward
the problems PTp. We do it by giving some contribution to covering each misconcep-
tion M′p, but we do not force to cover them because they are not needed to satisfy the
original 3-CNF instance. So, the required coverage for misconceptions M′p in vector b
will be 0, whereas the weight of their contribution for covering them more than needed,
defined in vector w, will be 1. Notice that, as M′p is only covered by problem PTp (not
by PFp), valuations where propositional symbols p are set to True in the original Max
Ones instance are preferred.

The cost of all problems will be 1, and the maximum total cost allowed for the
whole MCSO instance (i.e. k) will be the number of propositional symbols. Recall that,
for each propositional symbol p, we need to cover Mp at least once. Thus, we need to
choose at least one of the problems PTp or PFp. However, as the maximum total cost
allowed is the number of propositional symbols, it is not possible to take at the same
time PTq and PFq for some propositional symbol q (which would mean that the symbol
q is True and False at the same time in the Max Ones solution), because in that case the
total cost would be greater than the number of propositional symbols. Since every valid
solution of MCSO requires that the total cost due to the cost of problems is lower than
or equal to the number of propositional symbols, all MCSO solutions denote a correct
valuation of the propositional symbols.

Any valid solution of MCSO covers all misconceptions Mi, which means it satisfies
all clauses Ci of the original Max Ones problem. Moreover, it also provides a correct
valuation of all the propositional symbols (that is, a symbol and the negation of the same
symbol cannot hold at the same time). Regarding the total value to be maximized in the
MCSO problem, it corresponds to the contribution due to the coverage of the M′p miscon-
ceptions. That is, it equals the number of problems PTp that have been selected, which
equals the number of propositional symbols p that are set to True in Max Ones. Thus,
in case we have a solution to MCSO with value x, the corresponding solution to Max
Ones has exactly the same value x. This means that we have not only a PTAS-reduction
from Max Ones to MCSO, but also an S, strict, and AP-reduction. So, we conclude that
MCSO ∈ NPO-hard. Moreover, as we can trivially prove MCSO ∈ NPO (because its con-
straints can be checked in polynomial time), we conclude that MCSO ∈ NPO-complete.

The Log-APX and NPO completeness of problems MCTO and MCSO implies, in par-
ticular, that both are Log-APX-hard. This means that if P 6= NP then these problems
cannot belong to APX, which in turn implies that no polynomial-time algorithm can
guarantee that the ratio between the optimal solutions and the solutions found by the al-
gorithm will be bound by some constant in the worst case. Thus, rather than seeking for
specific-purpose approximation algorithms for these problems, using generic-purpose
algorithms like Genetic Algorithms (which do not guarantee any performance ratio in
the worst case but are known to provide good results on average) is a suitable choice in
this case.

Next we introduce our second kind of problems, where we want to design an exam
(set of exercises) where the total weight of each misconception is exactly that required

by the teacher. Again, a decision problem and two optimization problems are defined. In
the decision problem, we check whether there exists an exam with the desired coverage
of misconceptions which also takes, to be completed, less time than some maximum
allowed time. Two related optimization problems are considered too. In the first one,
we minimize the time needed to complete the exam. In the second problem, the exact
coverage is relaxed, though we wish to minimize the cumulated differences between the
expected coverage of each misconception and the coverage reached by the composed
exam.

Definition 2. Let us consider that we have n questions or problems available (P1, . . . ,Pn)
and m misconceptions to be covered (M1, . . . ,Mm). Let c ∈ INn be a vector of naturals
where each value ci ∈ IN denotes the time needed to deal with problem Pi, A ∈ IRm·n

be a matrix where each value ai j ∈ IR denotes the coverage of the misconception Mi
provided by problem Pj, and b ∈ IRm be a vector where each value b j ∈ IR denotes the
exact coverage we want to reach for each misconception M j. Then,

– Given k ∈ IN, the Exact Exam Coverage problem, denoted by EEC, is the problem
of finding out whether there exists x ∈ {0,1}n such that cT · x≤ k and A · x = b.

– The Exact Exam Coverage Optimization problem, denoted by EECO, is the problem
of minimizing cT · x subject to x ∈ {0,1}n and A · x = b.

– Given k ∈ IN, the Approximate Exam Coverage Optimization problem, denoted by
AECO, is the problem of minimizing ∑i |(∑ j ai j · x j)− bi| subject to cT · x ≤ k and
x ∈ {0,1}n.

ut

We have the following properties.

Theorem 2. We have

(a) EEC ∈ NP-complete.
(b) EECO ∈ NPO-complete.
(c) AECO ∈ Log-APX-hard.

Proof. Let us start proving (c). We can AP-reduce Minimum Set Cover (defined in the
proof of Theorem 1) to AECO as follows.

Given a collection C of sets C = {S1, . . . ,Sk} with
⋃

S∈C S = {e1, . . . ,ep}, we con-
struct an instance of AECO as follows. We consider the elements {e1, . . . ,ep} as miscon-
ceptions and we add an extra misconception e0 that we do not want to cover (i.e. we
want to cover it 0 times). We create a problem for each set Si that we call ProblemSi ,
and we consider that this problem covers k2 + 1 times each misconception e j ∈ Si,
whereas it covers only once the misconception e0. Besides, for each i ∈ {1, . . . , p} and
j ∈ {1, . . . ,k− 1} we define an additional problem Problemi j that covers the miscon-
ception ei exactly k2 + 1 times (and it does not cover e0). Our coverage goals will be
covering each misconception ei with i ∈ {1, . . . , p} exactly k · (k2 + 1) times, and cov-
ering each misconception e0 exactly 0 times. The cost of each problem will be 0, so we
will not need to define any total cost limit k in the constructed AECO instance (it could be
assigned any arbitrary value). There exist two different solutions to the AECO instance:

1. Solutions where the accumulated distance to the desired misconception coverage
is at least k2 +1. In this case, the approximation ratio of this solution in AECO (i.e.
the ratio between the value of the solution and the optimal solution) is (k2 + 1)/k
or worse (i.e. bigger). In order to prove it, let us reason about the optimal solu-
tion. Note that, if we construct an exam using all problems of type ProblemSi , these
problems alone will make each misconception be covered at least k2 + 1 times
and at most k(k2 + 1) times (depending on the number of problems covering the
misconception). The remaining coverage until reaching the desired k(k2 + 1) cov-
erage for each misconception can be obtained by selecting as many problems of
type Problemi j as needed (notice that, for each misconception, there are k− 1 of
them, so if problems of the form ProblemSi cover it at least once, then the k(k2+1)
desired coverage can be reached by taking the appropriate number of Problemi j
problems). Hence, the distance from the optimal exam to the exact desired cover-
age can only be due to the number of times misconception e0 is covered, which is
a value in 1, . . . ,k. That is, the cost of the optimal exam is lower than or equal to k.
Hence, for a solution whose cost is greater than or equal to k2+1, its approximation
ratio is greater than or equal to (k2 +1)/k.

2. Solutions whose accumulated distance to the desired coverage is in the 1, . . . ,k
range. This situation can only happen if, for each misconception, we have chosen k
problems covering it. Since there are k−1 problems of the form Problemi j covering
it, at least one of them is of the form ProblemSi , so the MSC element represented by
this misconception is actually covered. We conclude that all elements of the original
MSC instances are covered by the corresponding AECO solution. Note that the cost
of the AECO solution is the number of times e0 is covered, which equals the number
of taken problems of the form ProblemSi . In turn, this is the number of sets taken
in the MSC instance. Thus, a solution to AECO has value x iff the corresponding
solution to MSC has x value. This applies to optimal solutions too. Thus, in this case
the approximation ratios of solutions is exactly the same in both problems, MSC and
AECO.

The AP-reduction between both problems will map approximation ratios as follows.
AP-reductions require that, if the approximation ratio for the second problem is ≤ r,
then the approximation ratio for the first problem is ≤ 1+α · (r−1) for some constant
α . Let us use α = 1. Then, if the approximation ratio of AECO is≤ r, the approximation
ratio of MSC must also be≤ r. Let us describe the function mapping AECO solutions back
into MSC solutions. If we have an AECO solution of type (1) (that is, the deviation from
the desired coverage is at least k2 + 1, so the approximation ratio for AECO is greater
than or equal to (k2 + 1)/k), then we return the MSC solution which selects all subsets
Si (whose approximation ratio in MSC is ≤ k, as any set cover needs to select at least
one subset). Thus, in this case the approximation ratio of the returned MSC solutions
is at least as good as the ratio of the original AECO solution, as required by the AP-
reduction. On the contrary, when we have a solution of type (2), the approximation
ratios are equal in both problems. Thus, we have an AP-reduction in both cases. Thus,
AECO ∈ Log-APX-hard.

In order to prove (a), we can trivially adapt the previous AP-reduction to polyno-
mially reduce Set Cover (the decision version of MSC) into EEC, which implies the NP-

hardness of EEC. Since EEC ∈ NP (as we can check A ·x = b and cT ·x≤ k in polynomial
time), we conclude EEC ∈ NP-complete.

In order to prove (b), we S-reduce (see e.g. [4]) the NPO-complete problem Min
Ones [13] (that is, the problem of satisfying all clauses of a 3-CNF formula while mini-
mizing the number of propositional symbols which are set to True) to EECO as follows.
For each clause Ci of the original Min Ones instance, we define a misconception Mi.
Besides, for each propositional symbol p, we define two problems PTp and PFp, repre-
senting setting the propositional symbol p to True or False, respectively. Each problem
PTp covers all misconceptions Mi such that setting p= True satisfies clause Ci, whereas
problem PFp covers all misconceptions Mi such that p = False satisfies Ci.

In addition to that, for each propositional symbol p we create a new misconception
MPp such that both PTp and PFp cover misconception MPp. Finally, for each clause Ci
we create two additional problems PD1i and PD2i such that they cover misconception
Mi. Problems of the form PTp have cost 1, whereas the rest of the problems have cost 0.

We require to cover each misconception Mi exactly three times, and each miscon-
ception MPp exactly once (so that p and ¬p cannot be true at the same time). If the
selected problems of the form PTp and PFp satisfy some clause Ci, then the correspond-
ing misconception Mi will be covered once, two times, or three times by these problems
(depending on the number of literals of Ci satisfied by the valuation represented by the
selected problems of the form PTp and PFp). In this case, covering misconception Mi
exactly three times (as required in the EECO instance) just requires taking zero, one,
or two problems of the form PD1i and PD2i, whose cost is 0. We conclude that any
solution for the EECO instance represents a valuation of the propositional symbols such
that all clauses Ci are satisfied, and the goal of EECO is minimizing the number of sym-
bols set to 1 (because only PTp problems have a cost greater than zero, in particular 1).
Thus, the cost of a solution for the EECO instance is exactly the same as the cost of the
corresponding solution of the Min Ones instance, and this applies to optimal solutions
too. Hence, we have an S-reduction between both problems, so EECO ∈ NPO-hard.

Moreover, as we can trivially prove that EECO ∈ NPO (because its constraints can be
checked in polynomial time), we conclude that EECO ∈ NPO-complete.

Again, since both optimization problems are Log-APX-hard (note that the hard-
ness in NPO implies it), using Genetic Algorithms rather than tailored specific-purpose
algorithms for these problems is a suitable choice.

3 Algorithms

For each of the four optimization problems described in the previous section (MCTO,
MCSO, EECO, and AECO) we have implemented a genetic algorithm. The basic represen-
tation in all cases is the same. Each individual in the population (i.e., each chromosome)
is the bit vector x = (x1, . . . ,xn) to be set, where n is the number of questions available
in the system. Each bit denotes whether the corresponding question is to be included
or not in the solution. That is, a bit vector (1,0,0,1) represents a solution where only

the first and the last question are included in the solution. In addition to the representa-
tion of chromosomes, we need to deal with the representation of all the information of
the problem. In particular, we need to handle a vector representing the time needed to
present and to solve each problem (i.e. its cost), a matrix indicating the coverage level
of each question for each misconception, and a vector denoting the minimum coverage
required for each misconception (in the case of MCTO and MCSO) or the exact desired
coverage for each misconception (in the case of EECO and AECO).

The difference among the four problems is the fitness function to be optimized. In
the case of MCTO, we minimize the cost of the time vector (i.e., the sum of costs due
to all values ck such that xk is set to 1) if all constraints hold (i.e., A · x ≥ b). If the
constraints do not hold, then the fitness function returns a value bigger than the sum of
costs of all questions. Moreover, in this case the returned value is also proportional to
the distance to fulfilling all constraints.

In the case of MCSO, we maximize the extra coverage of the questions, that is, the
sum of additional coverage for each of the misconceptions

∑
i

wi · ((∑
j

ai j · x j)−bi)

if all constraints hold (i.e, the minimum coverage is satisfied for each misconception,
that is, A · x ≥ b, and the total time required to deal with all the questions is small
enough, i.e. cT · x ≤ k). When the constraints do not hold, the fitness function returns
a value smaller than the minimum possible value, and proportional to the distance to
fulfilling all constraints.

In the case of EECO we minimize the same time cost as in MCTO, but subject to a
stronger constraint (A ·x = b). If the constraints do not hold we proceed in the same way
as in MCTO. In the case of AECO the constraints are the same as in MCSO, but we have
to minimize a function, not to maximize. In particular, the fitness function computes
the distance to the optimal coverage distribution, that is, we want to minimize |A · x -
b|. If the constraints do not hold, the fitness function returns a value bigger than the
maximum possible distance, and this value is proportional to the distance to fulfilling
the constraints.

Note that, given any three variables xi, x j, xk represented at different positions of
the chromosome, there is no (a priori) reason to believe that the suitability of the value
given to xi will depend more on the value given to x j than on the value given to xk.
Consequently, the crossover function just randomly picks which genes (i.e., bits xi) are
inherited from each parent, that is, no specific crossover point is considered.

Regarding other aspects of the algorithm, we use elitist selection, so that the qual-
ity of the best solution of each generation increases monotonically. In order to fix the
parameters configuration of the algorithm, we have performed a wide range of experi-
ments over a set of randomly generated instances of the problems. After analyzing the
results, we have set the population size to 100, the mutation probability to 0.01, and
the number of iterations to 1000. In order to avoid over-tunning [2,19,20], we clearly
separate this training phase from the evaluation phase. Thus, we have provided such fix
Genetic Algorithm configuration to the teachers of the subject Discrete Mathematics,
and they have used it to generate both exams and sets of exercises to be presented dur-
ing the course. Their satisfaction with the tool was very high. First, they acknowledged

that the selection of exercises to be presented in the last sessions of the course improved
a little bit, as they could maximize the coverage of misconceptions. However, the main
improvement they acknowledged appears in the selection of exercises to create exams.
Adjusting an exam so that each misconception minors the marks of the students the
desired amount of points is a really difficult task. In fact, in many situations it is im-
possible to do that, and we can only approximate the desired weights for each error.
By using our tool, the task of creating exams is simplified. This is particularly useful
when several similar exams have to be created to evaluate different students of the same
subject in different days.

4 Conclusions and Future Work

In this work we have considered the problem of selecting a set of exercises fulfilling
different conditions. By doing so, we can use it to select exercises covering a list of
misconceptions a given amount of times and minimizing the time needed to present
them; or to cover these misconceptions with a given amount of time while maximizing
the extra coverage; or to select a set of exercises to create an exam where each miscon-
ception minors the marks of the student an exact amount of points (while minimizing
the time needed to solve the exam); or to design an exam which can be solved in a given
amount of time, while minimizing the distance between the desired mark reductions due
to misconceptions and the actual ones.

We have proved the approximability complexity of these problems. Moreover, we
have provided genetic algorithms solving them. The usefulness of such algorithms has
been proved by applying them in the context of a specific subject of our university. The
teachers of this subject (Discrete Mathematics) have used these algorithms for generat-
ing both exams and lists of exercises to be presented to students, obtaining satisfactory
results.

As future work we plan to perform two independent extensions. First, our aim is
to apply our algorithms with other repertories of exercises from other subjects. Sec-
ond, in order to speedup the computations, we plan to provide a parallel version of our
implementations by using the parallel library described in [7].

References

1. Giorgio Ausiello and Vangelis Th Paschos. Reductions that preserve approximability. Hand-
book of Approximation Algorithms and Metaheuristics: Methologies and Traditional Appli-
cations, 1, 2018.

2. Mauro Birattari. Tuning metaheuristics: a machine learning perspective, volume 197.
Springer, 2009.

3. Shu-Heng Chen. Genetic algorithms and genetic programming in computational finance.
Springer Science & Business Media, 2012.

4. Pierluigi Crescenzi. A short guide to approximation preserving reductions. In Proc. 12th
IEEE Conf. on Computational Complexity, pages 262–273. IEEE, 1997.

5. Dipankar Dasgupta and Zbigniew Michalewicz. Evolutionary algorithms in engineering
applications. Springer Science & Business Media, 2013.

6. K. de Jong. Evolutionary computation: a unified approach. MIT, 2006.

7. A. de la Encina, M. Hidalgo-Herrero, P. Rabanal, and F. Rubio. A parallel skeleton for
genetic algorithms. In Int. Work-Conference on Artificial Neural Networks, IWANN 2011,
volume 6692 of LNCS, pages 388–395. Springer, 2011.

8. Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

9. Mercedes Hidalgo-Herrero, Ismael Rodrı́guez, and Fernando Rubio. Testing learning strate-
gies. In Fourth IEEE Conference on Cognitive Informatics, 2005.(ICCI 2005)., pages 212–
221. IEEE, 2005.

10. Mercedes Hidalgo-Herrero, Ismael Rodrı́guez, and Fernando Rubio. Comparing learning
methods. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI),
3(3):12–26, 2009.

11. S.G. Kolliopoulos and N.E. Young. Approximation algorithms for covering/packing integer
programs. Journal of Computer and System Sciences, 71:495–505, 2005.

12. Stefan Kratsch, Dániel Marx, and Magnus Wahlström. Parameterized complexity and kernel-
izability of max ones and exact ones problems. In International Symposium on Mathematical
Foundations of Computer Science, pages 489–500. Springer, 2010.

13. Stefan Kratsch and Magnus Wahlström. Preprocessing of min ones problems: A dichotomy.
In International Colloquium on Automata, Languages, and Programming, ICALP 2010,
pages 653–665. Springer, 2010.

14. Kim F Man, Kit Sang Tang, and Sam Kwong. Genetic algorithms for control and signal
processing. Springer Science & Business Media, 2012.

15. M. Mitchell. An introduction to genetic algorithms. MIT press, 1998.
16. Stjepan Oreski and Goran Oreski. Genetic algorithm-based heuristic for feature selection in

credit risk assessment. Expert systems with applications, 41(4):2052–2064, 2014.
17. Sankar K Pal and Paul P Wang. Genetic algorithms for pattern recognition. CRC press,

2017.
18. V.Th. Paschos. An overview on polynomial approximation of np-hard problems. Yugoslav

Journal of Operations Research, 19(1):3–40, 2009.
19. Pablo Rabanal, Ismael Rodrı́guez, and Fernando Rubio. On the uselessness of finite bench-

marks to assess evolutionary and swarm methods. In Proc. Comp. Genetic and Evolutionary
Computation Conference, GECCO 2015, pages 1461–1462. ACM, 2015.

20. Pablo Rabanal, Ismael Rodrı́guez, and Fernando Rubio. Assessing metaheuristics by means
of random benchmarks. Procedia Computer Science, 80:289–300, 2016.

21. Ismael Rodrı́guez, Pablo Rabanal, and Fernando Rubio. How to make a best-seller: Optimal
product design problems. Applied Soft Computing, 55(C):178–196, 2017.

22. Ismael Rodrı́guez, Fernando Rubio, and Pablo Rabanal. Automatic media planning: Optimal
advertisement placement problems. In 2016 IEEE Congress on Evolutionary Computation
(CEC), pages 5170–5177. IEEE, 2016.

23. Kumara Sastry, David E Goldberg, and Graham Kendall. Genetic algorithms. In Search
methodologies, pages 93–117. Springer, 2014.

