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On Combining Support Vector Machines and
Simulated Annealing in Stereovision Matching

Gonzalo Pajares and Jesis M. de la Cruz

Abstract—This paper outlines a method for solving the stereo-
vision matching problem using edge segments as the primitives.
In stereovision matching, the following constraints are commonly
used: epipolar, similarity, smoothness, ordering, and uniqueness.
We propose a new strategy in which such constraints are se-
quentially combined. The goal is to achieve high performance in
terms of correct matches by combining several strategies. The
contributions of this paper are reflected in the development of a
similarity measure through a support vector machines classifica-
tion approach; the transformation of the smoothness, ordering
and epipolar constraints into the form of an energy function,
through an optimization simulated annealing approach, whose
minimum value corresponds to a good matching solution and by
introducing specific conditions to overcome the violation of the
smoothness and ordering constraints. The performance of the
proposed method is illustrated by comparative analysis against
some recent global matching methods.

Index Terms—Epipolar, matching, ordering, similarity, sim-
ulated annealing, smoothness, stereovision, support vector
machines, uniqueness.

1. INTRODUCTION

MAIJOR PORTION of the research efforts of the com-

puter vision community has been directed toward the
study of the three-dimensional (3-D) structure of objects using
machine analysis of images [1]. According to [2], we can view
the problem of stereo analysis as consisting of the following
steps: image acquisition, camera modeling, feature acquisition,
image matching, depth determination, and interpolation. The
key step is that of image matching, that is, the process of
identifying the corresponding points in two images that are cast
by the same physical point in 3-D space. This paper is devoted
solely to this problem.

The basic principle involved in the recovery of depth using
passive imaging is triangulation, which is achieved with the help
of only the existing environmental illumination. Hence, a cor-
respondence needs to be established between features from two
images that correspond to some physical feature in space. Then,
provided that the position of centers of projection, the focal
length, the orientation of the optical axis, and the sampling in-
terval of each camera are known, the depth can be established
by triangulation.
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A. Techniques in Stereovision Matching

A review of the state-of-art in stereovision matching allows
us to distinguish two sorts of techniques broadly used in this
discipline: area-based and feature-based [3], [4]. Area-based
stereo techniques use correlation between brightness (intensity)
patterns in the local neighborhood of a pixel in one image with
brightness patterns in the local neighborhood of the other image
[5]-[7], where the number of possible matches is intrinsically
high, while feature-based methods use sets of pixels with similar
attributes, normally, either pixels belonging to edges [8]-[10],
or the corresponding edges themselves [4], [11]-[17]. These
latter methods lead to a sparse depth map only, leaving the rest
of the surface to be reconstructed by interpolation; but they are
faster than area-based methods as there are a small number of
features to be considered. We select a feature-based method with
edge-segments as features, as they are abundant in the environ-
ment where our mobile robot equipped with the stereovision
system navigates. They have been studied in terms of reliability
[3] and robustness [18].

B. Constraints Applied in Stereovision Matching

Our stereo correspondence problem can be defined in terms
of finding pairs of true matches, namely, pairs of edge segments
in two images that are generated by the same physical edge seg-
ment in space. These true matches generally satisfy some of the
following constraints [6], [8], [10]:

1) epipolar, given two segments one in the left image and a
second in the right one, if we slide one of them along a
parallel direction to the epipolar line, they would intersect
(overlap) (Fig. 1);

2) similarity, matched edge segments have similar local
properties or attributes;

3) smoothness, disparity values in a given neighborhood
change smoothly, except at a few depth discontinuities;

4) ordering, the relative position among two edge-segments
in the left image is preserved in the right one for the cor-
responding matches;

5) uniqueness, each edge-segment in one image should be
matched to a unique edge-segment in the other image.

The similarity and uniqueness constraints are associated to a
local matching process, the smoothness and ordering constraints
to a global matching process, and the epipolar is with both, local
and global processes. The major difficulty of stereo processing
arises due to the need to make global correspondences.
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C. Relaxation in Stereovision

Relaxation is a technique commonly used to find the best
matches globally, and it refers to any computational mechanism
that employs a set of locally interacting parallel processes, one
associated with each image unit, that in an iterative fashion
update each unit’s current state in order to achieve a globally
consistent interpretation of image data [19]. Two main relax-
ation processes can be distinguished in stereo image matching,
i.e., optimization-based and probabilistic/merit-based. In the
optimization-based processes stereo correspondence is carried
out by minimizing an energy function which is formulated from
the applicable constraints. It represents a mechanism for the
propagation of constraints among neighboring match-features
for the removal of ambiguity of multiple stereo matches in
an iterative manner. The optimal solution is ground state, that
is, the state (or states) of the lowest energy. In the proba-
bilistic/merit-based processes, the initial probabilities/merits,
established from a local stereo correspondence process and
computed from similarity in the feature values, are updated
iteratively depending on the matching probabilities/merits of
neighboring features and constraints. The following papers
use a relaxation technique: 1) probabilistic/merit [8], [14],
[20]-[23] and 2) optimization through a Hopfield neural
network [9], [10], [13], [24]. We also use an optimization
approach based on energy minimization through simulated
annealing (SA) where a network of nodes (each one with its
state) is built and the states of the nodes are updated. Such
states are previously obtained through a classification approach
based on the framework of support vector (SV) machines. The
final states determine the correspondences.

D. Motivational Research and Contribution

For a given pair of features the application of the epipolar
constraint during the edge extraction and the similarity con-
straint makes local correspondences, but the smoothness, or-
dering, and epipolar (a second application) constraints make
global correspondences based on neighboring interactions. In
the local process, we propose the mapping of the similarity con-
straint through the SV classification approach and in the global
process the mapping of the smoothness, ordering, and epipolar
constraints through the SA optimization approach for solving
the edge-segment stereovision matching problem. This is based
on the following reasons:

Overlapping concept, edge-segments interactions and neighborhood for the pair (z, 7).

1) we incorporate the recent advances and the power of the
SV machines for classification, where the similarity con-
straint can be easily mapped;

2) we use the well-known optimization SA strategy, al-
lowing the direct mapping of the smoothness, ordering
and epipolar constraints;

3) we have used successfully classification approaches for
local correspondences based on the similarity constraint
[15] among others and also global matching relaxation
(optimization and probabilistic) approaches mapping the
smoothness and ordering constraints [13], [14];

4) in the literature relaxation matching approaches have
been also successfully used (see previous section).

The main contribution of the paper is the combination of both
SV and SA strategies and the exploitation of their properties for
solving the stereovision matching problem in order to achieve
high performance in terms of correct matches. The performance
for real time applications is left open for parallel implementa-
tions. We have modified appropriately the SV and SA frame-
works in order to fit them to our stereovision matching problem,
and we have found a better performance of the proposed ap-
proach with respect the above mentioned strategies. Each pair
of edge-segments to be matched is a node in a network and each
node has its own state, which determines the strength of the cor-
respondence. Through the SV, the nodes are loaded with an ini-
tial matching estimation, which is updated through the SA opti-
mization process. The correspondences are established based on
the final nodes’ states. We consider the possible smoothness and
ordering constraints violations due to occlusions, camera geom-
etry, objects near the cameras, etc. Such considerations make
up another contribution to the stereovision matching problem.
We have designed our sequential approach (SV followed by
SA) based on the assumption that in relaxation methods (la-
beling/optimization) the final solution depends heavily on the
starting point and tend to relax in local optima [25]. So, a good
performance in SV will contribute positively to the overall per-
formance. Therefore, our method integrates several strategies.
The performance of the SV and SA local and global matching
strategies, respectively, and the coupling for the final matching
process, as well as the results obtained against other existing
strategies justify the choice.

E. Paper Organization

The paper is organized as follows. In Section II the sequential
processing is described. The performance of the method is il-
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lustrated in Section III, where a comparative study against other
existing global optimization/probabilistic matching methods is
carried out. Finally in Section IV there is a discussion of some
related topics.

II. SEQUENTIAL PROCESSING

The two cameras have equal focal lengths and are aligned so
that their viewing direction is parallel. The plane formed by the
viewed point and the two focal points intersects the image plane
along a horizontal line known as the epipolar line. A grid pat-
tern of parallel horizontal lines is used for camera alignment.
The cameras are adjusted so that the images of these lines co-
incide. Thus each point in an edge segment lies along the same
horizontal (epipolar) line crossing both images. This is part of
the system calibration process.

This paper proposes a sequential combination of four
methods for solving the stereovision matching problem. Each
method is implemented by a module. The system receives as
inputs a pair of stereo images left (LI) and right (R[). This pair
is processed in order to extract features and attributes in the FA
module, each pair of extracted features (¢, j) is to be matched,
the features ¢+ and j come from LI and RI, respectively. For
each pair (¢, 7) an attribute difference vector x is computed. All
extracted z vectors are supplied to the support vector module
(SV), which computes a matching state s;; for each pair of
features. This module uses the similarity constraint and requires
a previous training process in order to achieve each current
matching state. Until this stage, only a local matching process
has been carried out. Once all matching states are obtained,
they are supplied to the simulated annealing (SA) module,
which updates the states s;; by the optimization process. The
SA module implements the global matching process. After this
stage, perhaps there are still ambiguous matches which are
solved by the unambiguous (UA) module based on the strength
of each state. The output of the system is a set of matches. We
give details about the behavior of each module.

A. Feature and Attribute Extraction (FA)

The contour edges in both images are extracted using
the Laplacian of Gaussian filter in accordance with the
zero-crossing criterion [26]. For each zero-crossing in a given
image, its gradient vector (magnitude and direction) [27],
Laplacian [28], and variance [29] values are computed from the
gray levels of a central pixel and its eight immediate neighbors.
The edges are obtained by joining adjacent zero-crossings fol-
lowing the algorithm of [30], where 1) a margin of deviation of
+20% in gradient magnitude and of +45° in gradient direction
is allowed, and 2) each detected contour is approximated by a
series of piecewise linear line segments [31]. Finally, for every
segment, an average value of the four attributes is obtained
from all computed values of its zero-crossings. All average
attribute values are normalized in the same range.

Each pair of features has two associated four-dimensional
(4-D) vectors x; and ;, where the components are the attribute
values, and the sub-indices ¢ and j denote features belonging to
the left and right images, respectively. A 4-D difference mea-
surement vector z is then also obtained from the above x; and
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x; vectors, £ = &; — £; = {Zu,, T4, 1, T, }. The components
of x are the corresponding differences for module and direction
gradient, Laplacian and variance values. Only those pairs veri-
fying the following three initial conditions will be processed:

1) their absolute value of the difference in the gradient di-
rection is below a specific threshold, fixed to 25°;

2) their absolute value in the gradient magnitude is also
below a fixed threshold, set to 15;

3) their overlap rate surpasses a certain value, fixed to 0.5.
The remaining pairs that do not meet such conditions are
directly considered as false correspondences.

The overlap is a concept introduced in [4], two segments » and
z, overlap if by sliding one of them in a direction parallel to the
epipolar line, they would intersect. In our approach, the over-
lapping is a first implementation of the epipolar constraint in
the local matching process. Then, the epipolar constraint will
be also mapped as an energy function to be minimized in the
global SA approach.

Fig. 1 clarifies the overlapping concept. Indeed, segment « in
the left image overlaps with segment s in the right image, but
segment v does not overlap with s. The overlap rate between
edge segments (u, 2), o, is defined as the percentage of coinci-
dence, ranging in [0,1], when two segments « and z overlap, and
it is computed taken into account the common overlap length /..
defined by c and the two lengths for the involved edge segments
l, and [, respectively. All lengths are measured in pixels

21,
uz — 77, 7\ 1
e = L) W

Taking into account the above initial conditions 1) and 3) and
the parallel optical axis geometry of the stereovision system,
we compute the disparity between two edge-segments (u and
z in Fig. 1) as follows: trace epipolar lines (four) crossing the
common overlapping segment (c), for each line compute z,, and
T, so the disparity is (z,, — x.). Then the disparity for edge
segments u and z is the averaged disparity for the four pairs of
points z,, and .

B. Support Vector (SV) Machines: Local Matching Strategy

The stereovision matching problem is viewed as a two clas-
sification problem, where a pair of edge-segments is classified
as a true or false match (true and false classes). This method re-
quires a previous training process, where the goal is to obtain a
decision function from the training patterns. This function will
be used during the current matching process for computing the
states s;; from the pairs of features supplied by the FA module.

1) Training Process: The SV is based on the observation of
a set X of n pattern samples. The outputs are two symbolic
values y € {+1,—1}, y = +1 corresponds the class of true
matches [32]-[34]. The finite sample (training) set is denoted
by (x;,v1), ! = 1,...,n, where each x; vector is a training ele-
ment and y; € {+1, —1} the class it belongs to. In our stereovi-
sion matching problem ; is a 4-D difference vector, computed
as specified in the above Section II-A. The goal of SV is to find,



PAJARES AND DE LA CRUZ: ON COMBINING SUPPORT VECTOR MACHINES

from the training sample set, a decision function capable of sep-
arating the data into two groups. Such SV decision function has
the general form

x) =Y cugH (x,%). 2

Equation (2) establishes a representation of the decision func-
tion f(x) as a linear combination of kernels centered in each
data point. In this paper, we have used Gaussian Radial Basis
functions H(x,y) = exp{—|x — y|?>/c?} where o defines the
width of the kernel set to 3.0 after different experiments. The
parameters oy, [ = 1,...,n, in (2) are the solution for the
following quadratic optimization problem. Maximize the func-
tional

E az—— E a0, Y1Ym H (X1, X0,
lm 1

subject to Zylal =0, 0< <
=1

Cl=1,...,n 3)
n

and given the training data (x;,y;), [ = 1,...,n, the inner
product kernel H, and the regularization parameter c. As stated
in [33], at present, there is not a well-developed theory on how
to select the best ¢, although in several applications it is set to
a large fixed constant value, set to 2000 in this paper. The data
points z; associated with the nonzero «; are called support vec-
tors.

2) Local Matching Process: Once the system has been
trained, we have available the decision function f(x) generated
by the SV module. In our matching classification problem the
f(x) polarity, sign of f(x), determines the class membership
for a node (z,j) with a difference vector . We interpret the
magnitude of f(x) as a measure of certainty in the decision
made. But for each node we need its state s;;, which is
computed by a warping function (4) that modifies the sigmoid
function in [9], ranging in [—1,+1]. In order to avoid severe
bias in the distances for the training data, the parameter a is
estimated experimentally and set to 0.2 in our experiments

2
1+exp(—

sij(%) = -1 @

af(z))

C. Simulated Annealing (SA): Global Matching Strategy

The SA receives the network with each node initialized ac-
cording to (4). The goal of the optimization process is to in-
crease the consistency of a given pair of edge segments among
three constraints (smoothness, ordering, and epipolar) so that
the state of a node representing a correct match can be increased
and the state of any incorrect match can be decreased during the
optimization process. Suppose a network has N nodes. The sim-
ulated annealing optimization problem is to modify the values
of the s;; so as to minimize the energy

- Z Z W(ij)(hk)SijShk (5)

17=1 hk=1

l\D
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where w(;jynk) 18 @ symmetric weight interconnecting two
nodes (z,7) and (h, k). We require the self-feedback terms to
vanish (i.e., wg ;) = 0) because the nonzero merely add
an unimportant constant to £, independent of the s;;. The
optimization task is to find the states with the most stable
configuration, the one with lowest energy. The energy function
is built so that it represents three stereovision constraints, i.e.,
smoothness, ordering, and epipolar. Therefore, we look for a
compatibility coefficient, which must be able to represent the
consistency between the current pair of edge segments under
correspondence and the pairs of edge segments in a given
neighborhood. The compatibility coefficient makes global
consistency between neighbors pairs of edge segments based
on such constraints.

D. Mapping the Smoothness Constraint

The smoothness constraint assumes that neighboring edge
segments have similar disparities, except at a few depth dis-
continuities [4]. Generally, when the smoothness constraint is
applied, it is assumed there is a bound on the disparity range
allowed for any given segment. We denote this limit as maxd,
fixed at 15 pixels in this paper (see Fig. 1). According to the
procedure described in [4] for example, for each edge segment
“4” in the left image we define a window w(%) in the right image
in which corresponding segments from the right image must lie
and, similarly, for each segment ““j” in the right image, we de-
fine a window w(j) in the left image in which corresponding
edge segments from the left image must lie. It is said that “a
segment h must lie in w(j)” if at least the 30% of the length of
the segment “h” is contained in the w(j) window. The shape of
this window is a parallelogram; one side is “z,” for left to right
match, and the other a horizontal vector of length 2-maxd. The
smoothness constraint implies that “z”
w(7).

Now, given “s” and “h” in w(j) and “;” and “k” in w(%)
where “4” matches with “5” and “h” with “k,” the differential
dlsparlty | d;j—dpr |, measures how close the disparity between
edge segments “2” and “j” denoted as d;; is to the disparity
dp 1. between edge segments “h” and “k”. The disparity between
edge segments is the average of the disparity between the two
edge segments along the length they overlap. This differential
disparity criterion is used in [4], [10], [13], [14], and [24] among
others. We define a compatibility coefficient derived from [10]
and [24] given by

9

in w(y) implies “j” in

2
c(igyniy (D) = -1 (6

1+ exp [’y (% —1)}

where D = |d;; — dpi|, m(D) denotes the average of all values
D in the pair of stereo images (LI and LR) under processing.
The slope of the compatibility coefficient in (6) is expressed
by ~ and varies for each pair of stereo images. To determine
7, it is assumed that the probability distribution function of D is
Gaussian with average m(D) and standard deviation o(D), i.e.,
p(D) = [1+ exp[y(Dijy(nr)/m(D) — 1)]] 1. Under this as-
sumption and following [35], [36], to set the possibility value to
0.1 when the value of cumulative distribution function is 0.9, ~
value is calculated by v = In9((m(D))/(1.2820(D))). In our
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experiments, typical values of v, m(D), and o (D) are about 6,
9, and 2, respectively. So, values of D near 0 should give high
values in the compatibility coefficient c(;;) ) (-) = +1, but
near 25 they give low values, c(;jynk)(-) = —1 and interme-
diate values should give values near 0, as expected. Note that
c(ij)(hk)(-) ranges in [—1,1). So, a compatibility coefficient of
+1 is obtained for a good consistency between nodes (z, 7) and
(h, k) (D = 0) and a compatibility of —1 for a bad consistency
(D > 0). The energy function embedding the smoothness con-
straint must be minimum when D = 0 (i.e., high compatibility
coefficient) and high states values. We define an energy func-
tion assuming this as follows:

PR
Es = 5 Z Z C(i5)(hk)SijShk (7N
17=1 hk=1

where A is a positive constant to be defined later.

E. Mapping the Ordering Constraint

We define the ordering coefficient 5@ 7)(hk) Tor the edge-seg-
ments according to (8), which measures the relative average po-
sition of edge segments “2” and “h” in the left image with re-

spect to “5”” and “k” in the right image, it ranges from O to 1:

_ 1
Oligy k) = 3 D_ O (k)
N

where o(;jy(nk) = |S(wi — xp) — S(wj — 1)

1, ifr>0

and §(r) = {07 otherwise. ®)

We trace S scanlines (four) along the common overlapping
length, each scanline produces a set of four intersection points
(is and hg in LI and js and kg in the RI) with the four edge-seg-
ments. Hence, the lower-case o0, can computed as in [10]
considering the above four edge points, and it takes 0 and 1
as two discrete values. As c(;j)nk)(-) ranges in [—1,41], in
order to achieve similar contributions, we re-scale the O ;) (nx)
values to [—1, 41] as follows: O;jynry = 20ij)nk) — 1.

To satisfy the ordering constraint, the energy function should
have its minimum value when the nodes constituting each pair
of nodes, for which the corresponding edges do not satisfy the
ordering constraint, have low states values simultaneously. The
energy could be written as

B X
Eo = 2 Z Z O(ij)(hk)sijshk )

ij=1 hk=1

where B is a positive constant to be defined later.

F. Mapping the Epipolar Constraint (Overlapping Concept)

The epipolar constraint is mapped through the overlapping
concept in [4], by the overlapping coefficient

AGijy(nk) = 0.5 (@ij + ang) (10

where « is the overlap rate defined in (1). Under the epipolar
constraint we can assume that correct matches should have high
overlap rates and X(i j)(nk) for neighborhoods should be high in-
creasing the consistency. The overlapping criterion is justified
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by the fact that the edge segments are reconstructed by piece-
wise linear line segments as described in Section II-A. As be-
fore, we re-scale the A(;j)(nx) values to the interval [—1,+1] as
follows: A¢ijy(nk) = 2X(ij)(hk) — 1. The energy function should
have its minimum value when the nodes constituting each pair
of nodes, for which the corresponding edges satisfy the overlap-
ping concept, have high A(;;yx) (= 1) and high states values
simultaneously. The energy could be written as

C N N
E. = 5 Z Z A(i5)(hk)SijShk-

ij=1 hk=1

(11)

G. Considering Smoothness and Ordering Constraints
Violations

There are complex images in which the ordering and smooth-
ness constraints can be violated. In systems with parallel geom-
etry, objects close to the cameras, occlusions and also the defi-
nition of a neighborhood (disparity limit) could lead to such vi-
olations. So, some excellent neighborhoods could be excluded.

When can we say whether or not there are violations? The
ordering constraint is not violated if O(; jy(nry > Uop, with Uy set
to 0.85 in this paper. The smoothness constraint is not violated
when: 1) the pairs (¢, ) and (h, k) are to be matched, being h a
neighborhood of 7 in w(j) and k a neighborhood of j in w(z),
Fig. 1, according to the fixed disparity limit (minimum disparity
criterion [4]); 2) spx has a high positive value although it is not
the maximum of all matches (h, ') where h is involved. This is
formally expressed as follows: spr > H*(Spr )maxVk' € RI
with (shk’)max = max{shk/ s VE' € RI}, H is set to 0.85 in this
paper. The compatibility coefficient is maximum if the matching
states are maximum (minimum differential disparity) and vice
versa. When no violations occur, the compatibility and ordering
coefficients are computed through (6) and (8), respectively.

Depending on which of the above conditions is not fulfilled,
we say that the ordering, smoothness or both are violated. When
this occurs, global consistency is not applicable, and we must
fall back on local consistency. This is to avoid that true pairs of
edge segments are not penalized during the relaxation process
due to the violation of such constraints. Depending on which
constraint is violated, the corresponding coefficient is

V(ij)(hk) = 0.5 (sij + spi)  wherev =¢,0.  (12)

H. Total Energy Function

The total energy function can be obtained as £ = F; + E, +
E.. By comparison of expressions (7), (9), and (11) and (5),
by multiplying the constant term by —1, it is easy to derive the
connection weights

w(ij)(nky = (AcGiynr) — BOGj mry + CAgynr) — 5<ij><fgflc>3))

where the delta function d(;jy(nky = 1 for (i,5) = (h, k) and
0 otherwise. To ensure the convergence to stable state, sym-
metrical inter-connection weights and no self-feedback are re-
quired, i.e., we see that by setting A = B = C = 1 both condi-
tions are fulfilled.
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I. Deterministic Simulated Annealing

Originally developed in [37] and [38], in this paper we have
implemented the approach described in [39], [40]. According
to [39], we have chosen deterministic simulated annealing be-
cause the stochastic one is slow. We have verified this assertion
by implementing both versions (deterministic and stochastic)
obtaining very similar solutions and identical performance in
terms of percentage of correct matches. Nevertheless, the de-
terministic version has been faster than the stochastic, by two
orders of magnitude. This agrees with [39]. Moreover, we have
not found problems to reach the global minima under the deter-
ministic version; this is because the SA is initially guided (not
randomly) by the SV procedure.

In the original SA algorithm, the forces exerted by the other
nodes are summed to find an analogue value s;; without the in-
tervention of the state of the node which is being updated. We
modify this in order to include the contribution of its own state,
so that the power of the similarity constraint is considered. The
temperature (7") also plays a very important role in the optimiza-
tion process.

Let F;;) = Z(hk) W(ij)(hk)Shk be the force exerted on node
(¢, 7) by the other nodes (h, k), then the new state s;;(t) is ob-
tained by adding the fraction f(-, -) to the previous one

sij(t) = f(Fij (1), T(t)) + sij(t — 1)

— tanh <F(TJ(;(;)> +si(t—1)

(14)

where ¢ represents the iteration index. The fraction f(-,-) de-
pends upon the temperature. At high 7', the value of f(-,-) is
lower for a given value of the forces F'. Details about the be-
havior of 7" are given in [39]. We have verified that this fraction
must be small as compared to s;;(t— 1) in order to avoid that the
updating is controlled by this fraction exclusively and that the
similarity constraint is cancelled. Under the above considera-
tions and based on [17], [41], the following annealing schedule
suffices to obtain a global minimum: 7'(¢t) = Ty/log(t + 1),
with T being a sufficiently high initial temperature. We have
computed Tj as follows [42]:

1) we select four stereo images, previously the SV has been
trained and the support vectors obtained; now we compute
the initial energy;

2) we choose an initial temperature, that permits about 80%
of all transitions to be accepted (i.e., transitions that
decrease the energy function), and this value is changed
until this percentage is achieved (in [42], a two-fold
change is proposed);

3) we compute the M transitions AF; and we look for a
value for T for which 1/M 25\; exp(—AE;/T) = 0.8,
after rejecting the higher order terms of the Taylor expan-
sion of the exponential, 7' = 5(AE;), where (-) is the
mean value.

In our experiments, we have obtained (AFE;) = 6.10, giving
To = 30.5 (with a similar order of magnitude as the reported
in [17], [41]). We have also verified that a value of ¢,,., =
100 suffices, although the expected condition T'(¢) = 0, t —
+o0 in the original algorithm is not fully fulfilled. This last re-
quirement and a possible overly rapid cooling, only occur when
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simulated annealing is applied for achieving the solid thermal
equilibrium but not in our approach in which there is not a solid.
Moreover, the above cooling scheduling is justified by the fact
that our initial state has reached a certain equilibrium as a result
of the SV local matching process and it is unnecessary to heat
at high temperature, hence we have a prior knowledge about the
system before it is relaxed by SA.

The proposed deterministic SA algorithm derived from [39]
including the modifications mentioned is

1. Initialization: t = 0, T(0) = To, wij (k)
as given by (14), s;;i5 = 1,...,N the state
values received from the SV module

2. SA process: sett = t+ 1 and np = 0;
for each node (i,j) update s;j(t) according
to (14) and if |s;;(t) — s;(t —1)] > ¢ then
np = mnp + 1; when all (¢,j) nodes are up-
dated, if mp # 0 or t < tmax then go to step
2, else stop.

3. Output: s;; updated

where, np is the number of nodes for which the matching states
are modified by the updating procedure, N is the number of
nodes, 7'(t) is the annealing schedule, ¢ is a constant to accel-
erate the convergence, set to 0.01.

J. Unambiguous Module (UA): Uniqueness Constraint

This stage represents the mapping of the uniqueness con-
straint, which completes the set of matching constraints used
for solving our stereovision matching problem.

A left edge segment can be assigned to a unique right edge
segment (unambiguous pair) or several right edge segments
(ambiguous pairs). The decision about whether a match is
correct is made by choosing the greater state value (in the
unambiguous case there is only one) whenever it surpasses a
previous fixed threshold Uy (= 0), intermediate value for s;;
ranging in [—1, 4+1]. A true match should have s;; = +1.

The ambiguities produced by broken edge segments are al-
lowed. Therefore, we make a provision for broken segments re-
sulting in possible multiple correct matches. The following ped-
agogical example from Fig. 1 clarifies this. The edge segment u
in LI matches with the broken segment represented by s and ¢ in
RI, but under the condition that s and ¢ do not overlap, that the
s and t orientations do not differ by more than Us(310°) and
both sy, Syt are greater than Uj .

III. VALIDATION, COMPARATIVE ANALYSIS
AND PERFORMANCE EVALUATION

A. Design of a Test Strategy

In order to assess the validity and performance of the
proposed method, we have selected 82 stereo pairs of realistic
stereo images from an indoor environment. Each pair consists
of two left and right original images and two left and right im-
ages of labeled edge segments. All tested images are 512 x 512
pixels in size, with 256 gray levels. The 82 stereo pairs are
classified into three groups: SP1, SP2, and SP3 with 28, 31, and
23 pairs of stereo images, respectively. Previously, we used an
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additional set of 15 stereo images to obtain the support vectors
which are to be used in the decision function, (2), required by
the SV. Then, during the current stereo matching process and
after the processing of each stereo pair of images, the set of
support vectors is updated according to the procedure described
in Section II-B1. Group SP1 consists of stereo images without
apparent complexity.

Group SP2 corresponds to scenes where a repetitive structure
(vertical books) has been captured, Fig. 2 show a stereo pair
representative of SP2. Finally, group SP3 contains objects close
to the cameras, that produce a high range of disparity violating
the smoothness and ordering constraints. Fig. 3 is a stereo pair
representative of SP3, where we can see the object labeled as
9, 10 in left image and 11, 12 in right image as a characteristic
example of an object close to the cameras occluding the edge
segment 19 in the right image. Although this last type of images
is unusual, its treatment is very important as they could produce
fatal errors in navigation systems for example, where the nearest
objects must be processed immediately. The SP2 and SP3 are
of special interest as they are complex images containing struc-
tures that appear with a high degree of difficulty. This kind of
images have been studied in depth in [13], [14] where similar
considerations have been also introduced to deal with the viola-
tion of the smoothness and ordering constraints. Therefore, we
compare the support vector and simulated annealing (SVSA) we
propose in this paper with the method described in [14] which
is a relaxation labeling (RELB) approach and the method de-
scribed in [13], which is an optimization approach based on the
Hopfiel neural network (HNNB1).

Both, RELB and HNNBI1 apply the similarity constraint by
computing a matching probability based on the estimation of
a probability density function through the Bayes’s theory. The
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(a) Group SP2 and (b) original left and right stereo images; (c) and (d) labeled edge segments in left and right images.
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(a) Group SP3 and (b) original left and right stereo images; (c) and (d) labeled edge segments in left and right images.

matching probabilities are used as the inputs for the relaxation
and optimization processes, respectively. From these processes,
RELB performs an iteration procedure by applying smoothness,
ordering and uniqueness constraints. HNNB 1 performs the opti-
mization process by mapping the smoothness and uniqueness in
an energy function which is to be minimized. From HNNBI1, we
have implemented a new version HNNB2, by mapping the or-
dering constraint as an energy function to be minimized and ap-
plying the similarity constraint as the 4-D difference null vector
. HNNB2 can be considered a very close approach to the de-
scribed in [10], although this work uses edge pixels as features,
we have modified the original method in [10] to use edge-seg-
ments as in SVSA. A variant of the HNNB1 is the mapping of
the similarity constraint by estimating the probability density
function through the Parzen’s window as described in [15].

We have also compared our approach with the stochastic
stereovision matching method (SSVM) in [43], also used in
[44]. This method uses the regularization criterion proposed
in [45], where an energy functional is minimized based on a
penalty functional which measures the dissimilarity between
corresponding features (similarity constraint) and a stabilizing
functional by which the smoothness constraint is imposed (see
also [46]). The energy minimization is carried out through the
simulated annealing algorithm, we have used a value of 50 as in
[43] for the regularization parameter A (this works well for im-
ages quantized in eight-bit values) and the same neighborhood
criteria as that used in this paper. Two differences are consid-
ered in this implementation with respect to our implementation.
1) The edge-segments disparities are the outputs obtained in
SSVM, which are used to obtain the correspondences and 2)
the hierarchical coarse-to-fine control structure with reheating
in [44] is not used in our implementation.
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TABLE 1

SUMMARY OF STEREOVISION MATCHING METHODS AND CONSTRAINTS

Stereovision matching constraints constraints violation
Similarity Smoothness Ordering Epipolar Uniqueness Smoothness  Ordering
Support Vector mapped as an energy ~ mapped as an energy ~ mapped as an energy  applied by selecting
SVSA Machines minimized by minimized by minimized by the highest state Yes Yes
Simulated Annealing  Simulated Annealing  Simulated Annealing values
RELB Bayes probability Probabilistic Probabilistic mapped under the applied by selecting
density estimation relaxation relaxation overlapping concept the highest Yes Yes
probabilities
Bayes probability mapped as an energy mapped under the mapped as an energy
HNNBI1 density estimation minimized by No overlapping concept minimized by Yes No
Hopfield Hopfield
Euclidean distance mapped as an energy ~ mapped as an energy mapped under the mapped as an energy
HNNRB?2 without estimation minimized by minimized by overlapping concept minimized by No No
Hopfield Hopfield Hopfield
Parzen’s window mapped as an energy mapped under the mapped as an energy
HNNP probability density minimized by No overlapping concept minimized by Yes No
estimation Hopfield Hopfield
mapped as an energy ~ mapped as an energy implicit application by
SSVM minimized by minimized by No image registration No No No
regularization regularization
MDDA qualitative boolean merit function No implicit application by  applied by selecting No No
function relaxation image registration the highest merits
TABLE 1I
TRAINING PATTERNS AND SUPPORT VECTORS
Initially SP1 Sp2 SP3
# Training patterns | 125 180 | 643 | 781 1227 1435 1701 1921
# Support Vectors 18 31 32 49 51 73 66 85

Finally we have chosen the minimum differential disparity
algorithm [4] (MDDA) for comparative purposes for the fol-
lowing reasons:

1) it is a merit relaxation approach;

2) it applies the commonly used constraints (similarity,
smoothness and uniqueness);

3) it uses edge segments as features and the contrast and
orientation of the features as attributes;

4) some concepts of MDDA, such as minimum differential
disparity, overlapping concept, disparity limit or average
disparity are used in our SVSA approach.

Table I summarizes the main differences between the six
methods compared. All methods use edge-segments as features
and the same four attributes.

We have used the same set of training patterns for estimating
the decision function in (2) for SVSA and the probabilities den-
sities in RELB, HNNB1, and HNNB2. Once each set SP1, SP2,
and SP3 is processed, we use the matches as new training pat-
terns, which are added to the old ones, for new estimations.

Table II displays the number of pairs of edge-segments used
as training patterns and the number of support vectors obtained.
Two columns are shown for each group: the left with the thresh-
olds and settings of the Section II-A and the right when such
settings are relaxed to allow a greater number of pairs (next sec-
tion).

An important reduction is achieved in the number of support
vectors with respect to the training patterns. This is an impor-

tant improvement because we only need to store and handle the
support vectors in SVSA.

B. Comparative Analysis

The system processes the SP1, SP2, and SP3 groups. Of
all the possible combinations of pairs of matches formed by
segments of left and right images only 643, 584, and 474 pairs
are considered for SP1, SP2, and SP3, respectively, under the
thresholds and settings given in Section II-A. These are the
incremental training patterns shown in the most left column
in Table II for each group. The computed results with the
thresholds and settings given in Section II-A are summarized in
Table III. It shows the percentage of successes for each group
(SP1, SP2, and SP3) and for each method (SVSA, RELB,
HNNB1, HNNB2, HNNP, SSVM, and MDDA) as a function
of the number of iterations. Iteration O corresponds with results
for the local matching process (SV in this paper), the starting
point for the optimization/relaxation process (SA in this paper).

1) Decision Process: When the optimization/relaxation
processes have finished, there are still both unambiguous pairs
of segments and ambiguous ones, depending on either one,
and only one, or several right image segments corresponding
to a given left image segment. In any case, the decision about
whether a match is correct or not is made by choosing the
result of greater state in SVSA, greater probability in RELB,
HNNB1, HNNB2, and HNNP, and the best merit value for
MDDA. The results in SSVM are directly obtained from the
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TABLE 1II
PERCENTAGE OF SUCCESSES FOR THE GROUPS OF STEREO-PAIRS SP1, SP2, AND SP3
Iteration # 0 30 65
SP# SP1 SP2 SP3 SP1 SP2 SP3 SP1 SP2 SP3
SVSA 83.9 67.6 78.3 88.4 82.5 86.3 97.5 94.3 95.8
RELB 77.1 65.9 62.6 86.1 82.6 87.9 95.3 93.1 94.3
HNNB1 77.1 65.9 62.6 85.9 80.7 86.8 93.8 92.3 94.0
HNNB2 73.1 58.5 57.8 84.8 70.1 66.1 92.5 75.9 70.3
HNNP 82.0 67.6 66.3 87.2 83.0 86.9 95.6 93.9 95.0
SSVM 0 0 0 68.2 55.2 37.2 80.1 79.1 58.1
MDDA 72.1 57.1 56.9 80.4 69.9 61.9 86.1 76.8 59.5
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Fig. 4. (a) Number of pairs (np) of edge segments for which the matching states are modified by SA as a function of the iteration number. (b) Energy values as

a function of the iteration number averaged for all SA processes.

disparity values. In the unambiguous case there is only one.
The values must be greater than the corresponding intermediate
value: 0.5 for the probabilities in RELB, HNNB1, HNNB2,
and HNNP and O for the states in SVSA.

According to values from Table III, the following conclusions
may be inferred.

2) Local Matching Process: Iteration 0 (the optimiza-
tion/relaxation has not started), the best performance is achieved
with SVSA. This means that the SV approach appears as a
good local matching method. The results obtained by HNNP
are also good. The methods without estimation (HNNB2 and
MDDA) obtain the worst results at this phase.

3) Global Matching Process:

Group SPI1: The best performance is achieved with
SVSA. The probabilistic/optimization process improves the
local matching results. The ordering constraint is not decisive:
HNNB2 (with ordering) obtains worse results than HNNB1
and HNNP (without ordering). There are no violations in the
smoothness and ordering constraints. As shown in Fig. 4,
SVSA reaches its equilibrium with an average of 65 iterations
(this number is used for the remainder methods) under the
thresholds and settings of this paper. SSVM only reaches the
96.0 in percentage with 400 iterations, as reported in [43].
MDDA obtains the worst results.

Group SP2 (Containing Repetitive Structures): SVSA
achieves the best results. The ordering constraint, once again,
is not relevant (HNNP achieves better results than RELB). The
consideration of the smoothness constraint violation is decisive

(HNNB2 achieves poor results as compared to SVSA, RELB,
HNNBI1, or HNNB2) and the ordering constraint violation has
low relevance (HNNP obtains better results than RELB). The
behavior of SSVM is similar to that of group SP1. MDDA
obtains the worst results.

Group SP3 (Structures Violating the Smoothness and
Ordering Constraints): The best performance is achieved with
SVSA. As expected, the methods that take into account the
smoothness and the ordering violation (SVSA and RELB)
achieve better results than HNNB1 and HNNP (only smooth-
ness) and of course better than HNNB2 or SSVM (without any
consideration). The results obtained with the MDDA decrease
as the number of iterations increases, because the merit of false
matches increases (pairs (3,3) or (2,2) in Fig. 3).

C. Experimental Results and Thresholds Settings

Table IV summarizes the set of thresholds and settings with
a description, their values (used in this paper for obtaining the
above results), relevance (high, medium or low) and comments.

We have carried out some additional experiments in order to
determine the influence of the thresholds. Fig. 4(a) shows the
number of pairs (np) of edge segments for which the matching
states are modified during all SA processes as a function of the
iteration number. Fig. 4(b) shows the average energy values for
all SA processes as a function of the iteration number, and they
are computed according to (5), (7), (9), and (11). Each figure
shows three lines labeled as a, b, and c. The continuous line a
corresponds to the settings used in this paper (Table IV). The
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TABLE 1V
THRESHOLDS AND SETTINGS USED IN THIS PAPER

Module Description Value(s) Relevance Comments
Gradient edge pixel joining (magnitude, +20%, +45° | Low Could range in + 30% and +90°
direction)

FA Gradient edge segment difference for 15, 25° Medium Could range between [0,30] and [0°,45°] respectively. If the values
matching (magnitude, direction) increase, the number of pairs to be matched increases.
Overlap rate 0.5 Medium Ranges in [0,1]. High values decreases the number of pairs and do

not allow broken edge segments

Width kernel, 6 in the Gaussian Radial Basis [ 3.0 Low More data less value, could range in [0.5,10]

sv Regularization parameter, ¢ in equation (3) 2000 Low Large values ranging in [1000, 5000], from reference [33]
a in equation (5) 0.2 Low Could range in [0.05, 0.5]
Disparity limit, maxd 15 High Depends on the baseline in the optics system geometry. In our
Determines the neighborhood system the baseline is 20cms. Could range in [5,25]

SA Compatibility coefficient slope, y in eq. (7) 6 High Derived from references [35, 36]. Could range in [2,15]
Constraint violations, Up, H 0.85 Medium High values are required for states of matched edge segments
Initial schedule temperature, Ty 30.5 High Computed from reference [42]. Its effect is minimized, as the

initial states are loaded by the SV module. Could range [20,50]

Maximum number of iterations, fmax 100 High Must be sufficient to ensure the convergence, greater than 65
Constant to accelerate the convergence, € 0.01 High Near the equilibrium the states change very slowly
Disambiguation, U; 0 Low This is the intermediate state value. It ranges in [-1,1]

UA Difference in segments orientations, U +10° Low The system geometry limits such difference. It could reach + 20°

dotted line b represents the results obtained by setting € to 0
in SA, i.e., the convergence is not accelerated, leaving the re-
mainder of thresholds and parameters as above (unchanged).
The dotted line ¢ represents the results obtained by changing
the thresholds in the module FA and leaving the remainder un-
changed, also € which is set to 0.01 as in the Table I'V. The modi-
fication in this last case has been oriented to increase the number
of edge segments to be matched, namely: gradient edge pixel
joining magnitude and direction to £30% and +90°; gradient
edge segment difference for matching in magnitude and direc-
tion to 30° and 45° and the overlap rate to 0.3.

In all experiments the critical parameters v and 7j have been
set to their values in Table IV, they are computed as described
in Sections II-D and II-J, respectively according to [35], [36]
and [42]. We have varied their values inside of their ranges
in Table IV, leaving the remainder values unchanged. The re-
sults are slightly worse than those obtained with their values in
Table I'V. This means that the methods used for their computa-
tions are robust enough. We have assigned different values in its
range (Table IV) for the also critical parameter mazd (defining
the neighborhood). Leaving the remainder unchanged.

The results are once again similar to the obtained with its
value in Table IV. This means that this parameter is well con-
trolled under the consideration of the smoothness constraint vio-
lation, so that its possible negative effect is minimized under the
prevision of smoothness violation. The above reflection is appli-
cable for the parameters Uy and H. The parameters involved in
the module SV have little relevance, their values vary within the
ranges in Table IV, and so the results are always similar to the
obtained with their fixed values. This is also applicable for the
thresholds in UA, this is explained because the SA relaxation
process achieves a stable equilibrium and the parameters in UA
have small relevance and a great number of decisions are made
without ambiguity. From the above experiments, the following
general conclusions can be inferred:

1) Experiments under the settings of this paper: We can see
from Fig. 4(b) that there are not local minima in the averaged

energy. The stopping criterion is achieved before the maximum
number of iterations is reached ({,,.x = 100). The absence of
local minima in the energy is also reported in [13] and [43].
From Fig. 4, the number of pairs that change their states and the
energy drop in a relatively smooth fashion. This means that the
number of correct matches grows slowly during the SA global
matching process. This is because initially (iteration 0) there is
a relatively high percentage of true matches established by the
SV module, this is also reported in [23]. From iteration number
33, np and the energy vary slowly achieving a high degree of
performance.

2) Effect of the € threshold: By setting ¢ = 0, the max-
imum number of iterations (¢,,.x = 100) is reached. This means
that the equilibrium is not achieved before such a limit. From
Fig. 4(a) (dotted line b), we can see that the number of pairs
changing varies slowly as compared with the continuous line
a. Nevertheless, the energy remains practically unchanged from
the iteration 65, Fig. 4(b) (dotted line »). No improvement is
achieved with this setting, justifying its value in this paper.

3) Effect of the thresholds in the module FA: Once again the
maximum number of iterations is achieved, there are a greater
number of pairs of edge segments involved. The slope of the
dotted line ¢ in Fig. 4(a) is similar to the dotted line b. The en-
ergy in figure Fig. 4(b) (dotted line c) is greater than before. This
means that the states, on average, have values smaller than in the
previous cases. Hence, the final decision is more complicated,
resulting in a worse performance in percentage of successes.

IV. CONCLUDING REMARKS

The stereo correspondence problem is formulated as two
linked processes: local (classification) and global (optimiza-
tion). A global process after a local process improves the results
substantially. In global strategies, the consideration of the
smoothness and ordering violations also improves the results
when violations occur. The proposed SVSA approach performs
better than the remainder methods, although it obtains results
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very close to other techniques where violations are considered.
The ordering constraint is less relevant than the smoothness,
perhaps this is the reason by why ordering is not applied in
classical stereovision approaches [4], [8], and [24], although it
is useful in structural matching methods [11].

Although the number of thresholds is high we have carried
out different experiments achieving a control over them. So, in
the SV method they have little relevance and in the SA the values
for the critical coefficients are selected based on robust existing
procedures or its risk is minimized (maxd). This means that the
values in this approach can be used in other applications under
perhaps slight modifications. This fact and the performance of
the proposed SVSA approach make an important contribution
for solving the stereovision matching problem. Any sequential
implementation of relaxation approaches is computational in-
tensive. Although the time for each iteration depends on the
number of edge segments to be matched, on average, each it-
eration takes about 1.2 s under an Intel Pentium IV at 2.5 GHz.
The machine dependence is high and the recommendation is: its
implementation under a parallel architecture.

Since in the SA the current state of a system that has expe-
rienced a transition depends only on the previous state, it fol-
lows that SA has the Markov property [40]. Hence, the Markov
random fields could be considered in the future as a potential
mathematical theory, where the sum of clique potentials is the
energy function to be minimized as in [47].
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