
 

UNIVERSIDAD COMPLUTENSE DE MADRID 
 

FACULTAD DE FILOSOFÍA 
Departamento de Lógica y Filosofía de la Ciencia 

 
 

 
 
 

QUANTUM CONDITIONAL PROBABILITY: 
IMPLICATIONS FOR CONCEPTUAL CHANGE OF 

SCIENCE. 
 
 

MEMORIA PARA OPTAR AL GRADO DE DOCTOR 

PRESENTADA POR 

 
Isabel Guerra Bobo 

 
 

Bajo la dirección del doctor 
 

Mauricio Suárez 
 

 
  

Madrid, 2010 
 
 

• ISBN: 978-84-693-3483-6                                                                                                                                                   
                                                                                                                                                                   
                                                                                                                                                                    



��������	
�����
��

��
����
���

�����������������	���������
	 ��!�����"������

�"��#
�$�#�����
�

���������%�������&���'����������"����(

� %�� ����)��*����+,,-



Quantum Conditional Probability

Implications for Conceptual Change in Science

A Thesis submitted in partial fulfillment of the requirements for

the Degree of Doctor por la Universidad Complutense de Madrid .

Isabel Guerra Bobo

Supervisor: Mauricio Suárez, Universidad Complutense de Madrid .





Isabel Guerra Bobo, 2009. ‘Quantum Conditional Probability: Implications for Con-

ceptual Change in Science.’

I hereby declare that this submission is my own original work and that, to the best of

my knowledge, it contains no material previously published or written by another person,

except where due acknowledgment has been made in the text. Research toward this thesis

has been carried out thanks to an FPI Scholarship of the Spanish Ministry of Science and

Education (MEC) associated to the Research Project Causation, Propensities and Causal

Inference in Quantum Physics within the DGICYT Research Network HUM2005-01787:

2005- 2008 Classical and Causal Concepts in Science, and to the Complutense Research

Group MECISR.

Munich, June 2009





To Arthur Fine,

for making quantum mechanics &

philosophy become alive for me.

Y a Jose.





Acknowledgments

Giving birth and life to this dissertation has mostly occurred during the past five years.

The story begins on the morning of Thursday July 1st 2004, in which I met Mauricio Suárez

at a cafe in Madrid. I had decided at that time that this was the last meeting I would

have in the search for a PhD, for I was not finding anything I really wanted to pursue. At

that meeting, I heard the name ‘Philosophy of Physics’ and ‘London School of Economics’

for the first time. Interestingly enough, these two words, were soon part of my everyday

vocabulary. With the incredible help of Mauricio, whom, at that time, I hardly knew, on

Friday July 2nd I decided I would apply for a one-year Masters program at LSE. I am

really thankful to Mauricio for having opened the door for me into this world.

The year in London was a very special year. Eneritz, Stefania, Giacomo y Clara: life

is a miracle! At the intellectual level, it was an incredible, but, at the same time, a very

demanding and difficult experience. I remember reading Hume’s essay ‘An enquiry con-

cerning human understanding’ – my first philosophical reading ever! – and having no clue

whatsoever as to what ‘this guy’ was trying to say. Stephan Hartmann was my anchor point

during the first term at LSE. To him I am very grateful for his understanding and listening;

I still remember sitting at his office in November and shedding some tears. In the Lent

term, I interacted a lot with Roman Frigg, who later became my (master’s) dissertation

supervisor. Since then, we have kept in touch and I have received very helpful feedback from

him at many stages. Thank you very much, Roman. Finally, I thank Jon Williamson for

encouraging me with my difficulty in writing essays and for introducing me to philosophy

of probability, albeit with some reluctance on my part – after feeling frustrated in many

classes, I finally allowed myself ask: ‘but why are we considering seriously that probability

is the degree of belief of a person? It just doesn’t make any sense!’.

After the year at LSE I decided to start a PhD in philosophy of physics, although,

already at that time, many doubts had started dancing around me: is this really what I

want to do? Now, looking back, I am happy I decided to start, and I am happy to have

continued till the end. Much has occurred during this process.

I decided to go back to Madrid – I did not want to (permanently) live far away from

my family – and again Mauricio was crucial for making this possible. He agreed to be my

supervisor, which I was very happy about for he had continued to be a very important



reference point and source of encouragement throughout the year in London. And so I

entered the PhD program ‘Entre Ciencia y Filosofía’ at UCM. From this first year at UCM,

I wish to thank Julian Reiss, Antonio Blanco and Javier Vilanova. Ana Rioja’s course

on the Heisenberg’s relations of uncertainty was particularly interesting. Muchas gracias

Ana. In September 2006 I received the FPI scholarship associated with Mauricio’s research

project, which since then has allowed me to be economically independent. If this had not

been so, I probably wouldn’t have continued my PhD. Again, I wish to thank Mauricio for

this.

The FPI scholarship has the incredible feature of allowing one to spend six months

each year at a foreign university. I here want to thank the former Ministry of Science

and Technology for developing such a wonderful program. This possibility, alongside with

Mauricio’s help, has allowed me to take advantage of many otherwise inaccessible oppor-

tunities which have enormously enriched my education. I have been able to interact with

many different people and follow courses at other universities. Arthur Fine, Seattle and

the University of Washington have played such a major role in my life and work during the

last three years, that it’s difficult to convey it in words. Arthur, having received so much

from you, and of such fine quality, both at a human and at an intellectual level, makes me

feel incredibly fortunate, happy and grateful. I would not have reached the point of writing

the acknowledgments of my dissertation without you.

The Philosophy department at the University of Washington has been an embracing

home for me during my (long!) two research stays from January-June 2007 and March-

September 2008. Thank you very much Barb, Bev and Sara for treating me with great

care, Ann and Larry for being my first teachers of ‘real’ philosophy, and the staff and

graduate students at the department. It was a pleasure to be in such a wonderful graduate

community. I loved being with Monica and Ben, Rachel and Jeremy. And Karen. Joe,

Lars, Ali (my 8 o’clock good morning!), David Alexander, Jason, Mitch, Tye, Brandon, Jon,

Andrea, ... (and Negin!). And hurray for the pro-seminar and the work-sharing it got going!

And Micky, always, my guardian angel. Susan, at home, together. Nancy, biking all

over Seattle and always giving me her love. Peter, the first person who gave light to my

new home, and who afterward always continued doing so. Amy, whom I wish I had also

lived with the second year (but I loved to be with in Lasqueti!). And Patrick, whose love

and admiration for the kind of work I was doing was of great value to me. And Mount

Rainier, Golden Gardens, the Puget Sound, the Olympic Mountains, Port Townsend and

the Washington State Ferries. Hampstead Heath. The Englisher Garten. And, of course,

Oriol y la Sierra de Guadarrama. My own private refuges, without which I cannot live.



Finally, Mount Aspiring National Park and Fiordland, which managed to get me out of

the dark hole I was in.

Now, I am in Munich, at the Carl von Linde Academy (TUM). And again luck seems

to follow me. For working with Wolfgang and Fred has turned out to be a really wonderful

and unexpected treat. I am very grateful I have two great new friends! Wolfgang, thank you

also for making this research stay possible and for giving me extremely helpful comments

on my dissertation; and thank you Fred for our wonderful morning routine. I am also

grateful to the Carl von Linde Academy for allowing me to be part of it – Jörg Wernecke,

Klaus Mainzer and Rainhard Bengez. Finally, I want to thank the audiences at different

congresses – especially, at LSE, Cambridge University, UCM, University of Washington,

UA Barcelona, and APA Pasadena – for the very helpful opportunity of preparing a talk,

giving it, and getting feedback.

And in my mind, I now go back to Madrid. For there is Albert, with whom I’ve been

with during the four years at UCM. Me ha encantado encontrar un lugar para estar juntos

estos últimos meses de escritura. Mil gracias. Thanks also to the people in our research

group: Iñaki, Fernanda, Carlos, Pedro, Carl, Henrik, Mari Cruz Boscá. Y a Mari Cruz, que

me encanta tener de referencia del departamento en la UCM. Y gracias al departamento

por haberme dado la oportunidad de impartir docencia y haber proporcionado el marco en

el que se desarrolla este programa de doctorado; en particular, muchísimas gracias a Luis

Fernández por todo su apoyo y ayuda.

Y mi madre, mi padre, Alicia y Martirio. Jose. Marta. Eneritz. Y Domingo. No

encuentro palabras. Hebe y Marian, mis dos hadas madrinas españolas. Mi grupo de

Gestalt: Bea, Angelina, Borja, Nazaret, Aurora, Míguel, Edu, Marta, Silvia, Mónica, Sara,

Jorge, Margarita y Alejandro. Estefanía, Paloma, Isabel y Miguel. Y Marta Rosillo, a

la que espero seguir conociendo (y acercar a la Gestalt!) Ignacio, a quien sigo llevando

muy cerca de mi. María y Natalia (ya son 25 años!). Reyes, gran reencuentro en la recta

final, y Marina, qué gusto los pequeños encuentros contigo! Alisa. Álvaro, que finalmente

ha conseguido ganar la apuesta. Celine y Bea. Nurieta y Carol. Et Sophie! Y por todas

las ‘bobadas’, en Pirineos, en Burgos, o donde quiera. Mi abuela, a la que quiero con

locura, mi abuelo Pepe, que me encantaría que me abrazase en sus brazos siempre fuertes,

y mi abuela Dora, a la que estoy aprendiendo a admirar.

Finally, I’d like to end by talking about my research project, how it started going, how it

evolved and what I have learned. I found myself involved with philosophy of physics because

of quantum mechanics; actually, I didn’t quit after my third year of physics precisely

because of quantum mechanics. It had a strong enough pull to make me keep on going.

Till now. This pull is related, I think, to my wanting to really understand what is going



on (with whatever). And quantum physics is indeed difficult to understand! But now I can

say more clearly what it is that I don’t understand, why exactly I think that things turn

perplexing (for they remain so!). And I am really happy to have arrived at this point.

Working on this dissertation, on this particular topic, has allowed me to come to terms

with many of the questions that have nagged me for a long time now. And it is a great

feeling! Mauricio was the one who suggested getting involved in thinking about quantum

Bayesianism and was crucial for the first part of the project. Developing it with Arthur has

been of invaluable help; it was Arthur’s insight which guided my research to focus on the

conceptual analysis of the notion of conditional probability, something which has turned

out to be extremely fruitful in tackling the conceptual problems of quantum mechanics.

And working by myself after my return from Seattle in September 2008, has allowed me to

further pursue the questions and answer them in ways I found satisfactory. Here, Arthur’s

incredible conceptual clarity and simplicity, from which I have learned so much during

these years, have played a major role in allowing my own thought to arise.

And whither then? I cannot say.1

1. This line comes from one of Tolkien’s poems, which I often have in mind, and LOVE reciting with the love

of my life, my little sister Marta.

The Road goes ever on and on Still round the corner there may wait

Down from the door where it began. A new road or a secret gate

Now far ahead the Road has gone, And though I oft have passed them by

And I must follow, if I can, A day will come at last when I

Pursuing it with weary feet, Shall take the hidden paths that run

Until it joins some larger way West of the Moon, East of the Sun.

Where many paths and errands meet.

And whither then? I cannot say.



‘all the paradoxes of quantum theory arise from

the implicit or explicit application of Bayes’

axiom [...] to the statistical data of quantum

theory. This application being unjustified

both physically and mathematically.’
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Abstract

In this dissertation we argue against the possibility of defining a notion of conditional

probability in quantum theory, both at a mathematical and physically meaningful level.

We defend that the probability defined by the Lüders rule, the only possible candidate to

play such a role, cannot be interpreted as such. This claim holds whether quantum events

are interpreted as projection operators in an abstract Hilbert space, as the physical values

associated to them, or as measurement outcomes, both from a synchronic and a diachronic

perspective. The only notion of conditional probability the Lüders rule defines is a purely

instrumental one. In addition, we show that the unconditional quantum probabilities can

also be interpreted as probabilities only under a purely instrumental perspective, where

the difficulties in interpreting them non-instrumentally are, ultimately, the same as those

we encounter in giving a non-instrumental conditional interpretation of the probability

defined by the Lüders rule.

We frame this discussion within the general issue of conceptual change in science and

show how, generally, the fact that two concepts are co-extensive in their shared domain

of application – as the probability defined by the Lüders rule and classical conditional

probability are for compatible events – does not guarantee that the more general concept is

a conceptual extension of the more limited one. To give an appropriate account of concept

extension, we show that concepts present an ‘open texture’ that does not allow for a set of

jointly necessary and sufficient conditions to characterize an extended concept, and thus

formulate a new account, namely the ‘Cluster of Markers account’, in terms of a cluster

of markers which are expected to hold for the extended concept. This account, we argue,

can capture the complexity involved in actual cases of conceptual change in science and

can account for the fact that there are concepts which, even if co-extensive in their shared

domain of application, do not share enough meaning to justify regarding them as defining

the same concept.

1
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Chapter 1

Introduction

1.1 Quantum Probability: a peculiar kind of probability

From about the beginning of the twentieth century experimental physics amassed an

impressive array of strange phenomena which demonstrated the inadequacy of classical

physics.1.1 The attempt to discover a theoretical structure for the new phenomena was

resolved in 1926 and 1927 in the theory called quantum mechanics. This new theory

is, by its very nature, a statistical or stochastic theory; that is, it only yields probabil-

istic predictions for the values of physical quantities. Traditionally, this feature of quantum

mechanics has been taken as showing that the exact outcome of an experiment is fun-

damentally unpredictable, and that one has to be satisfied with merely computing the

probabilities of various outcomes.

In addition, quantum mechanics determines that the laws of combining these probab-

ilities are not those of the classical probability theory of Laplace. As Feynman remarks,

‘Nature with her infinite imagination has found another set of principles

for determining probabilities; a set other than that of Laplace, which never-

theless does not lead to logical inconsistencies.’ ([Feynman, 1945] p.533)

The quantum mechanical laws approach very closely the laws of Laplace as the size of

the objects involved in the experiments increases, but differ considerably when dealing with

objects of atomic dimensions. Therefore, the laws of probabilities which are conventionally

applied are quite satisfactory in analyzing the behaviour of the roulette wheel but not the

behavior of a single electron or a photon of light.

In this introduction, we illustrate the probabilistic laws of quantum mechanics by

describing an experiment dealing with a single electron.1.2 We focus on the all time

favourite: the two-slit experiment (see figure 1.1.). In this experiment a source emits

identically prepared electrons; all the electrons have the same energy but come out in

different directions to impinge on a detecting screen (S2). Between them is another screen

with two slits (S1), call them A and B, through which the electrons may pass; they are

then detected one by one as they ‘hit’ the detecting screen. The electrons are emitted at a

1.1. This introduction draws on [Feynman, 1945] and [Fine, 1972].

1.2. One can just as well use light instead of electrons in this experiment. The same points would be illustrated.
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steady rate slow enough to ensure that no more than one electron passes through the appar-

atus at the same time,1.3 and the experiments are run long enough to have a large number

of electrons detected. What one measures for various positions R on the detector screen

is the mean number of pulses per second. In other words, one determines experimentally

the (relative) probability p that the electron passes from the source to R as a function of R.

When one runs the experiment with both slits open, the graph of the probability that

the electron hits S2 at R, pAB(R), is the complicated curve illustrated qualitatively in

figure 1.1.(a). It has several maxima and minima, and there are locations near the center

of the screen at which electrons hardly ever arrive. Quantum physics yields precisely the

laws governing the structure of this curve.

To understand this curve, one might at first suppose that each electron which passes

from the source to the detecting screen S2 must go either through slit A or slit B. As a

consequence, one expects that the chance of arrival at R is the sum of two parts, namely,

pA(R), the chance of arrival at R coming through slit A, plus pB(R), the chance of arrival

at R coming through slit B. However, one can show by direct experiment that this is not

the case. Indeed, each of the component probabilities is easy to determine: to determine

the probability pA(R), we simply close slit B and measure the chance of arrival at R with

only slit A open; and similarly, by closing B, we find the chance pB(R) of arrival through

slit B. These probabilities are given in figure 1.1.(b).

Figure 1.1. Double slit experiment.

1.3. Indeed, if the detectors are extremely sensitive (such as a Geiger counter), one finds that the current

arriving at S2 is not continuous, but corresponds to a rain of particles. If the intensity of the source is very low the

detector will record pulses representing the arrival of a particle, separated by gaps in time during which nothing

arrives. If we had detectors simultaneously all over the screen S2, with a very weak source, only one detector would

respond, then, after a little time, another would record the arrival of an electron, etc. There would never be a

half response of the detector, either an entire electron arrives or nothing happens. And two detectors would never

respond simultaneously (except for the coincidence that the source emits two electrons within the resolving time of

the detectors – a coincidence whose probability can be decreased by further decreasing the source’s intensity).
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As one can clearly see, the sum of pA(R) and pB(R) does not agree with the probability

pAB(R). Hence, experiment tells us definitely that pAB(R)� pA(R)+ pB(R); that is, that

the chance of arrival at R with both holes open is not the sum of the chance with just hole

A open plus that with just hole B open, i.e. an additive pattern. In fact, the complicated

curve pAB(R) is exactly the intensity of distribution of an interference pattern, i.e. the

pattern one would expect if waves were to start from the source and, after passing through

the two slits, were to impinge on the screen S2. The additive and interference pattern are

substantially different: there are places, for example, where the interference pattern shows

a light patch of few electron hits but where the additive pattern shows a dark patch of

many electron hits. And conversely, there are places where the interference pattern shows

a dark patch of many hits but where the additive pattern shows a light one.

How is the interference pattern then to be understood? One might be tempted to say

that, given that it is not true that pAB(R)= pA(R)+ pB(R), we must conclude that when

both slits are open it is not true that the particle goes through one slit or the other. For

if it had gone through one or the other we could classify all the arrivals at R into two

disjoint classes, namely, those arriving via slit A and those arriving through slit B, and

the frequency of arrival at R would be surely the sum of the frequency of those coming

through A and of those coming through slit B.

However, it is easy to perform an experiment which speaks against this conclusion.

One has to merely place a source of light behind the slits and watch to see through which

slit the electron passes. For electrons scatter light, so that if light is scattered behind slit

A we may conclude that an electron passed through slit A; and if it is scattered in the

neighborhood of slit B, then the electron has passed through slit B. When one runs this

experiment, one finds, in effect, that for every electron which arrives at the screen S2 light

is scattered either behind slit A or behind slit B, and never (if the source is very weak) at

both places. Thus, one verifies that the electron does pass through either slit A or slit B.

Moreover, the fact that when these which-slit measurements are performed no inter-

ference pattern is found – in fact, one retrieves the classical additive pattern – does not

alter this conclusion. For if observation is to be an objective guide to reliable information,

then what we observe must correspond to how things are, either simultaneous with or just

prior to our observation. Thus, when both slits are open, just prior to our observation of

an electron at the outlet of slit A, the electron must have been passing through slit A,

regardless of actually measuring or not which slit the particle goes through. And this is,

of course, compatible with a possible disturbance of the electrons by our observation of

them that would subsequently result in retrieving the additive instead of the interference

pattern.1.4

1.1 Quantum Probability: a peculiar kind of probability 9



In fact, Niels Bohr and Werner Heisenberg, among others, offered the following reas-

oning as an explanation of these results. Their basic idea is that just by ‘watching’ the

electrons one changes their chance of arrival at R. Indeed, to observe them one needs to

use light, and the light in collision with the electron alters its motion and thus its chance

of arrival at R. And the difficulty is that, for objects of atomic dimensions, one cannot get

rid of this disturbance (by direct measurement). In effect, since the momentum carried by

the light is h/λ, where λ is the wavelength associated to the photon, weaker effects could

be produced by using light of longer wave length λ. However, there is a limit to this. For if

light of too long a wave length is used, one will not be able to tell whether it was scattered

from behind slit A or slit B (given that a source of light of wave length λ cannot be located

in space with precision greater than that of order λ). Thus, any physical agency designed

to determine through which slit the electron passes produces enough disturbance to alter

the distribution from pAB(R) to pA(R)+ pB(R).

In addition, Bohr and Heisenberg claimed that the consistency of quantum mechanics

requires a limitation to the subtlety to which experiments can be performed. In the case

of the double-slit experiment it says that any attempt to determine which slit the electron

passed through without deflecting the electron, and thus changing its momentum and

destroying the interference pattern, must necessarily fail. Note that this is different from

saying that any attempt to design an apparatus to determine which slit the electron passed

through, while being delicate enough so as not to deflect the electron sufficiently to destroy

the interference pattern, turns out to actually fail. Indeed, while the latter statement

implies that one cannot in fact make a precise direct simultaneous measurement of the

position and momentum of the electron passing through the double slit screen, the former

implies that no such (precise simultaneous) measurement whatsoever – neither direct nor

indirect – can be in principle performed.1.5

1.4. See [Fine, 1972], section 6, for further discussion of this point.

1.5. Actually, this is the content of Heisenberg’s uncertainty relations [Heisenberg, 1927], whose interpretation is

a rather intricate issue. What is uncontroversial is that, in the case of, say, position q and momentum p, they imply

that there is no way to make a precise direct simultaneous measurement of position and momentum. Indeed, if one

measures position on half the copies of an identically prepared system in state ψ, and momentum on the other half,

there is a statistical scatter such that the product of the standard deviation of position and of momentum is always

greater or equal to ~/2. That is, ∆pψ∆qψ>~/2, where ∆pψ= 〈ψ, p2 ψ〉 − |〈ψ, p ψ〉|2 and ∆qψ= 〈ψ, q2 ψ〉 − |〈ψ,
q ψ〉|2 are the standard deviations of position and momentum in the state vector ψ.

However, what these relations imply at an interpretive level is controversial. Some hold that the uncertainty to

which incompatible quantities can be determined is only a restriction on our simultaneously knowing their values by

means of direct measurements (one could then, in principle, come to know them by means of indirect measurements,

namely, by observing one of them directly and then inferring the value of the other one), while others, take a stronger

view, and hold that the uncertainty relations restrict what is or can be simultaneously real.
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Moreover, according to Bohr and Heisenberg’s view and their so-called Copenhagen

interpretation,1.6 all the puzzling features of quantum mechanics can be traced back to

this inevitable and uncontrollable physical disturbance brought about by the act of meas-

urement. Presented with this situation, the practicing physicist takes the following view.

When no attempt is made to determine which hole the electron passes through, one cannot

say that it must have passed through one hole or the other. Only in a situation where an

apparatus is operating to determine which hole the electron goes through is it permissible to

say that it passes through one or the other. That is, when one watches, one observes, and

thus can say, that the electron goes either through one or the other hole, but if one is not

looking, one does not observe, and thus cannot say, that it either goes one way or the other.

But is this all we can say about the quantum mechanical image of the world? Should we

be satisfied with taking the practicing physicist view which remains silent about whatever

it is not directly observing? Should we also hold, along with Bohr and Heisenberg, that

quantum mechanics implies that the act of observation necessarily alters the phenomenon

being observed, that by the very act of watching the observer necessarily affects the

observed reality? And, maybe, as the popular interpretation of Bohr has it, slip into

saying that quantum mechanics is ‘subjective’, that some of the data quantum physics

provides depend on the subjectivity of this or that particular experiencing subject?

We think not. Although, ultimately, we will conclude that we do not understand the

quantum mechanical image of the world, we will, at least, understand much better the

precise difficulties which give rise to this perplexing situation. Moreover, we will show that

the Copenhagen doctrine is mistaken in that not all the conceptual problems of quantum

mechanics can be traced back to the alleged irreducible and uncontrollable disturbance of

the system measured by a measuring instrument. In addition, hopefully, we may move a

little step further in our understanding of the picture of the world our best science offers.

1.2 Overview

In this dissertation we consider the puzzling phenomena described by quantum mechanics

(such as the double-slit experiment) and try to understand what picture of the world

quantum mechanics might provide. To do so, we undertake a conceptual (or philosophical)

investigation of the concept of quantum probability. In particular, we focus on the notion

of conditional probability, for it turns out to be a particularly beautiful and encompassing

way of tackling many of the conceptual difficulties of quantum theory.

1.6. We do not go into the intricacies of the differences between Bohr andHeisenberg’s interpretation of quantum

mechanics and simply refer to this roughly described view as the Copenhagen interpretation. A somewhat more

detailed account of Bohr’s view is given in section 9.1.2.
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Consider again the double slit experiment with the two slits open. An analysis in terms

of conditional probabilities is not correct since it does not yield the interference pattern that

is found experimentally. Indeed, let A be the event that the electron passes through slit

A, B the event that it passes through slit B, and R the event that the electron strikes the

region R of the detecting screen. Given that the notion of conditional probability is defined

as the pro rata increase of a joint probability distribution, i.e. for two classical events A

and B, the probability of A conditional on B with respect to the probability p, is given by

Pp(A|B)=
p(A∩B)

p(B)
(1.1)

one can write the following conditional probabilities:

− Pp(R|A) =
p(R∩A)

p(A)
is the probability that the electron strikes at R given that it

passes through slit A,

− Pp(R|B) =
p(R∩B)

p(B)
is the probability that the electron strikes at R given that it

passes through slit B, and

− Pp(R|A ∪ B) =
p[R∩ (A∪B)]

p(A∪B)
is the probability that the electron strikes at R given

that it passes through either slit A or slit B.

A simple calculation shows that Pp(R|A∪B) can be expressed in terms of Pp(R|A) and

Pp(R|B) as 1.7

Pp(R|A∪B)=
1
2
Pp(R|A) +

1
2
Pp(R|B) (1.2)

for p(A) = p(B) corresponding to the most simple experimental arrangement.

An analysis in terms of conditional probabilities thus yields an additive distribution

pattern which, as we have seen, is not what we obtain experimentally. The two slit experi-

ment, and more generally quantum mechanical phenomena, cannot, therefore, be analyzed

in terms of classical conditional probabilities. And hence the question arises as to whether

and, if so how, an appropriate notion of conditional probability can be introduced in

quantum mechanics.

A long-standing literature claims that the answer is ‘yes’; that it is in fact possible

to define an appropriate extension of conditional probability with respect to an event in

quantum mechanics, namely the probability defined by the so-called Lüders rule. This rule

yields the correct probabilistic predictions for the quantum phenomena as, for example,

the double slit experiment. Indeed, it predicts that the probability to arrive at R when

the two slits are open, is not, as in the classical case, the weighted sum of the probabilities

1.7. By distributivity: Pp(R|A ∪ B) =
p(R∩ (A∪B))

p(A∪B)
=
p((R∩A)∪ (R∩B))

p(A∪B)
. Since A and B are two mutually

exclusive events, Pp(R|A ∪ B) =
p(R∩A)+ p(R∩B)

p(A)+ p(B )
. And if we set p(A) = p(B) corresponding to the most simple

experimental arrangement, then Pp(R|A∪B) =
1

2

p(R∩A)

p(A)
+

1

2

p(R∩B)

p(B)
.
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when each slit is open; rather, the characteristic quantum interference terms are present

in this probability, namely1.8

Pψ(R|A∪B) =
1
2
Pψ(R|A) +

1
2
Pψ(R|B) + I (1.3)

where,

Pψ(R|A) = 〈ψA′ , PRψA′ 〉
Pψ(R|B) = 〈ψB′ , PRψB′ 〉

I =
1
2
〈ψA′ , PRψB′ 〉+

1
2
〈ψB′ , PRψA′ 〉 (1.4)

More generally, the Lüders rule states that for two quantum events, represented by projec-

tion operators P and Q on the Hilbert space H associated to the system, the probability

of the quantum event P conditional on the quantum event Q is given by

PW(P |Q) =
Tr(QWQP )
Tr(QW )

(1.5)

where W is a density operator on H. In the context of quantum probability theory, rule

(1.5) satisfies the formal condition of specifying the only probability measure on the state

space that reduces to a pro rata conditional probability for compatible events. Moreover,

this formal condition is analogous to an existence and uniqueness property of classical

conditional probability. Thus, several authors have argued for interpreting the Lüders rule

as defining an appropriate notion of conditional probability in quantum mechanics.

In addition, the Lüders rule appears in the orthodox interpretation of quantum mech-

anics. Indeed, it is the generalized version of the so-called ‘Projection Postulate’, which

determines uniquely the state of the system after a measurement of a certain physical

quantity. The new density matrix representing this state can then be used to calculate

probability assignments for subsequent measurements. In effect, imagine we perform a

measurement of a certain observable, where Q belongs to its spectral decomposition, on

a system in state W , and find measurement outcome q. The Lüders rule determines that

the new state is Wq=
QWQ

Tr(QWQ)
. If we then perform a measurement of a second observable,

where P belongs to its spectral decomposition, the probability to find measurement out-

come p in this second measurement is given by this new density operator as

PW(p|q) = pWq(p)=Tr
(

QWQ

Tr(QWQ)
P

)

(1.6)

Thus, in these cases, it (seemingly) becomes meaningful to speak of the probability dis-

tribution of a physical quantity given the result of a previous measurement of another

physical quantity. Indeed, it seems that the probability given by (1.6) can be interpreted

as the probability of measurement outcome p conditional on measurement outcome q.

1.8. A detailed derivation of this result is given in section 4.4.2. and 7.6.
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Hence, the proposal is that the Lüders rule defines the notion of conditional probability

in quantum mechanics both for quantum events represented by projection operators and

for measurement results. The quantum notion agrees with its classical counterpart when

it applies to compatible events (those represented by commuting projection opertors) but

differs from it when incompatible events (those represented by non-commuting projection

opertors) are involved. In these cases it cannot be interpreted as a classical conditional

probability but rather is seen as providing an extension of this notion appropriate for the

quantum context.

In our dissertation we first argue that, even if the probabilities defined by the Lüders

rule are the only probabilities which are co-extensive with conditional probabilities for

compatible events, we have no reason to assimilate them to conditional ones for incompat-

ible events, neither for physical values nor at a formal level for projection operators, both

from a synchronic and a diachronic perspective. Rather, we give many reasons against this

assimilation. Second, we argue that the orthodox interpretation of quantum mechanics

also does not justify the understanding of the probability defined by the Lüders rule as

a conditional-on-measurement-outcome probability (again both from a synchronic and a

diachronic perspective). The only notion of conditional probability the Lüders rule defines

is a purely instrumental one which reduces quantum theory to a mere algorithm for gen-

erating the statistical predictions of the outcomes of measurements.

We develop these arguments in Chapters 5 and 7. In sections 5.3 and 5.4 we show why

the probability defined by the Lüders rule cannot be understood as a synchronic conditional

probability for physical values. In section 7.3 we show why it also cannot be understood

as a synchronic nor diachronic conditional probability for measurement results, nor as a

diachronic conditional probability for physical values. This allows us to further establish

the inadequacy of the formal notion of conditional probability for projection operators,

both from a synchronic and a diachronic perspective (sections 5.2 and 7.4). Finally, in

section 7.5, we argue that the only notion of conditional probability offered by the Lüders

rule is a purely instrumental one. Indeed, if when one says the probability of a certain

measurement outcome p given a previous measurement which has outcome q is PW(p|q)
one only means that if these two measurements are repeated many times, one after the

other, one expects that the fraction of those which give the outcome p is roughly P(p|q),
then no problems arise. But as soon as one attempts to say anything else, then all the

problems we consider in sections 5.2, 5.3, 5.4, 7.3 and 7.4 appear.

Thus, we conclude that, contrary to the standard view, the probability defined by the

Lüders rule does not acquire a precise meaning, in the sense of synchronic or diachronic

conditional probability, when quantum mechanics is interpreted as a generalized probab-
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ility space or as probability space for measurement results. While establishing this result,

we also show that the puzzles of quantum mechanics cannot be traced back to an inevitable

and uncontrollable physical disturbance brought about by the act of measurement.

It is important to note that these questions do not apply to another type of (pur-

portedly) conditional probability which also arises in the context of measurements. Indeed,

it is not uncommon to hear that all quantum probabilities are conditional probabilities for

measurement outcomes conditional on measurements. However, in section 6.4 we argue

that these conditional-on-measurement probabilities (not conditional-on-measurement-

outcome probabilities) are not really conditional probabilities. For there is an important

distinction between the role of background conditions which specify the conditions in

effect at the assessment of a probability function – in this case, the measurement pro-

cedure – and the propositions that can really be conditioned on.

In Chapter 8, we consider the interpretation of the unconditional quantum probabil-

ities. We show that, similarly to the probabilities defined by the Lüders rule, these can

only be interpreted as probabilities under a purely instrumental view of quantum mech-

anics. And we argue that the difficulties in giving a (non-instrumental) interpretation of

quantum unconditional probability are ultimately the same as those we encountered in

giving a (non-instrumental) interpretation of the probability defined by the Lüders rule.

More concretely, we argue that quantum Bayesianism is not a viable interpretation of

quantum mechanics, both from a subjective and an objective perspective; and that a (non-

instrumental) frequency interpretation of the quantum probabilities is not possible either.

Finally, in Chapter 9, we frame this discussion within the general issue of the dynamics

of conceptual change in science. We first show that the standard account of conceptual

generalization or extension, based on co-extension of the ‘extended’ and the old concept in

their shared domain of application (as for example, that presented by the logical positivists,

by Imre Lakatos or by Albert Einstein), is inadequate. We then argue that concepts present

an ‘open texture’ that does not allow for a set of jointly necessary and sufficient conditions

to characterize an extended concept, and propose a new account of concept extension in

terms of a ‘cluster of markers’ which, though not fast-holding conditions, do provide an

appropriate rationale to evaluate conceptual extension. This account, we argue, provides a

more adequate analysis of when two concepts, even if co-extensive in their shared domain

of application, do not share enough meaning to justify regarding them as defining the same

concept, and comes closer to capturing the actual relations between concepts which appear

in different theoretical contexts.

In Chapter 10 we bring this dissertation to an end by briefly summarizing our main

conclusions.
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Chapter 2

Classical Conditional Probability

In classical probability theory the probability of an event A conditional on another event

B is defined as the probability of their joint event A ∩ B, divided by the probability of

the conditioning event B. This ratio is supposed to capture the notion of conditional

probability, namely the probability of an event, qualified or informed by some body of

evidence. In this chapter we consider whether this is in fact so.

We first argue that the ratio p(A ∩ B)/p(B) should not be seen as a definition of

conditional probability but rather as an analysis of this notion (section 2.3). Then we

show why ratio can in fact capture such notion, both from an intuitive understanding

of probability and from the perspective of two particular interpretations of probability,

namely the subjective Bayesian and the frequency interpretation of probability. Finally,

we give two formal characterizations of the conditional measure defined by the ratio p(A∩
B)/p(B) (section 2.4); first, as the only probability measure defined on the whole classical

event space such that for events A contained in B, conditionalizing on B just involves a

renormalization of the initial probability measure; and second, as the only measure which

is necessarily additive with respect to conditioning events.

2.1 Classical Probability Theory

The theory of probability has a mathematical and a foundational or philosophical aspect.

Whereas there is a significant consensus about its mathematics, there is much disagreement

about the philosophy. In this section we only briefly introduce the main formal elements of

classical probability theory. The aim is to quickly lay out the formalism in which to consider

interpretive questions about conditional probability and establish the notation we use.

Let us start with the definition of a classical probability space and the concepts in

terms of which it is defined.2.1
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Definition 2.1. Classical Probability Space. A classical probability space consists of

a triple 〈S,F(S), p〉 where

i. S is a space of points w called the sample space and sample points

ii. F(S) is a σ-field of subsets of S. These subsets are called events.

iii. p( · ) is a probability measure on F(S).

Definition 2.2. σ-Field. A set of subsets F(S) of a space S is a σ-field if it is closed under

complementation ( c), and countable unions ( ∪ ) and intersections ( ∩ ). The complement

of S is the empty set ∅.

With these operations the set of subsets of a real space form a Boolean algebra B.
In full generality a Boolean algebra is a set A together with binary operations ‘ + ’

and ‘ · ’, a unary operation ‘ − ’, and elements ‘0’, ‘1’ of A for which the following laws

hold: commutative and associative laws for addition and multiplication, the distributive

laws both for multiplication over addition and for addition over multiplication, and the

special laws x+ (x · y) = x, x · (x+ y) = x, x+ (− x) = 1, and x · (− x) = 0. In a classical

event structure, in which events are represented by subsets of S, the set A consists of

the set F(S) of subsets of S, ‘+ ’ corresponds to the union of subsets, ‘ · ’ corresponds to
their intersection, and ‘ − ’ corresponds to the complementation with respect to S, with

members ‘∅’ and ‘S’ playing the role of ‘0’ and ‘1’ respectively.

The standard axiomatization of probability is the following. It was first provided by

[Kolmogorov, 1950].

Definition 2.3. Classical Probability. A set function p( · ) defined on a σ-field F(S) of

subsets of S is a classical probability measure if

i. (Non-negativity) p(A)> 0 for all A∈F(S).

ii. (Normalization) p(S)= 1

iii. (σ-additivity) for every finite or countable collection {Ai} of sets in F(S) such that

Ai is disjoint from Aj, i� j,

p(
⋃

i

Ai)=
∑

i

p(Ai) (2.1)

2.1. We mostly follow [Breiman, 1968].
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Notice that additivity is really the essential constraint for a probability measure: non-

negativity simply establishes a scale and normalization says that the whole sample space

is maximally probable, which seems almost self-evident.

Denote the class of Borel subsets of R, i.e. the smallest family of subsets of R that

includes the open sets and is closed under complements and under countable intersections,

by B(R). A random variable is a measurable function f :S→R with the following special

features:2.2

Definition 2.4. Random Variable. A real function f(w) defined on S is called a random

variable if for every Borel set b in the real line R, the set {w; f(w)∈b} is in F(S). For

b∈B(R) and random variable f, f−1(b) is the event that f has a value in b.

In a random experiment, the elements of S correspond to the possible outcomes of

the experiment, the sets in F(S) correspond to random events, and the measure p(A) for

A ∈F(S) gives the probability that the event A occurs. Random variables correspond to

measurable quantities for the random experiment. In effect, we can associate with each

quantity A a function fA such that for every point w of the sample space S, fA(w) yields a

real number, namely, the value of A. Thus the possible values of A will correspond to the

range of the function fA: A will take a value in the Borel set b for the set of sample points

w for which fA(w)∈b. That is, A will take a value in b for all sample points w∈ fA−1(b).

Therefore the event (A,b), namely ‘quantity A has a value in b’ is represented in classical

theory by the subset of the phase-space fA
−1(b)⊆S.

One can associate probabilities to the events f−1(b) in the usual way: p[f−1(b)] is the

probability of the event that the random variable f has value in b.

Definition 2.5. Classical Probability Distribution. For a random variable f defined

on S, the probability measure pf on B(R) defined by

pf(b)= p[f−1(b)] (2.2)

is called the distribution of f.

If f , g are random variables, one can also define the probability of the simultaneous

occurrence of events such as f−1(a)∩ g−1(b), a,b∈B(R).

2.2. We restrict ourselves to the family of Borel subsets ofR because it is not possible to construct a probability

measure defined on all subsets of R.
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Definition 2.6. Classical Joint Distribution. The joint distribution of f , g is defined

as the probability measure pf ,g on B(R2) satisfying, for all a,b∈B(R),

pf ,g(a×b) = p[f−1(a)∩ g−1(b)] (2.3)

pf ,g(a×b) is naturally interpreted as the probability that f has a value in a and g has a

value in b. It can be shown that pf ,g always exists and satisfies the consistency conditions

as to the marginal distributions pf(a) and pg(b), i.e.

pf ,g(a×R) = pf(a) (2.4)

pf ,g(R×b)= pg(b) (2.5)

Thus, the joint distribution pf ,g determines the marginal distributions pf and pg. The

converse, however, does not hold: one can give examples of cases in which the individual

distributions pf , pg do not determine the joint distribution pf ,g. Nevertheless the distribu-

tions of x1 f +x2 g for all x1, x2∈R do determine pf ,g. In fact, it can be shown that pf ,g

is the unique measure on B(R2) that satisfies

pf ,g{(y1, y2):x1 y1 + x2 y2∈b}= p{ω ∈S:x1 f(ω) + x2 g(ω)∈b} (2.6)

for every E ∈B(R), x∈R2.

The definition of joint distribution can be easily generalized for a finite set of n random

variables. The joint distribution of f1,� , fn is defined as the probability measure pf ,� ,fn
on B(Rn) satisfying:

pf1,� ,fn(a1×� ×an)= p[f1
−1(a1)∩� ∩ fn−1(an)] (2.7)

for all a1,� , an ∈B(R). pf1,� ,fn always exists and satisfies the consistency conditions as

to the marginal distributions pf1,� ,fn(a×� ×R)= pf1(a).

2.2 Conditional Probability: A Definition

Conditional probability is, roughly, probability given some body of evidence or information.

In classical probability theory this notion is defined by the so-called ratio formula, which

stipulates that the probability of an event A conditional on another event B, Pp(A|B),

is given by the ratio of two unconditional probabilities, namely their joint probability

p(A∩B) divided by the probability of B.
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Definition 2.7. Conditional Probability with Respect to an Event. Given a classical

probability space 〈S,F(S), p〉, for sets A,B ∈F(S), such that p(B)> 0, the probability of

event A conditional on event B is defined as

Pp(A|B)=
p(A∩B)

p(B)
(2.8)

This new function Pp is indeed a probability function. It is non-negative given that p is

non-negative; it is also normalized, i.e.

Pp(B |B) =
p(B ∩B)

p(B)
= 1 (2.9)

And it is additive: for every finite or countable collection {Ai} of sets in F(S) such that

Ai is disjoint from Aj, i� j, it satisfies Pp(∪iAi|B) =
∑

i
Pp(Ai|B). In effect,

Pp(∪iAi|B)=
p[(∪iAi)∩B]

p(B)
=
p[∪i (Ai∩B)]

p(B)
=

∑

i
p(Ai∩B)

p(B)
=
∑

i

Pp(Ai|B) (2.10)

What is essential for additivity to hold is first, that the distributive law, i.e. (∪iAi)∩B=

∪i (Ai ∩ B), holds in F(S); and second, given that the sets Ai ∩ B are disjoint, that the

probability of their union is simply the sum of the probability of each set.

Following [Beltrametti & Cassinelli, 1981] and [Hughes, 1989], we use the notation

Pp( · | · ) for conditional probability rather than the standard notation p( · | · ) to emphasize

the distinction between the conditional probability function Pp and the unconditional one

p. For even if Pp is defined in terms of p, they are conceptually distinct notions.

2.3 Justification of the Ratio Analysis

It is part of the orthodoxy to take (2.8) as the definition of conditional probability: uncon-

ditional probability is taken as the basic notion, and conditional probability is taken as a

subsidiary one mathematically defined in terms of it (and is thus taken as the fourth axiom

of classical probability by adding it to the axioms of definition 2.3). However, thought

of this way, there is nothing conditional about conditional probability – it is just one

mathematical function of two variables defined in terms of a function of one variable. But

this abstract function is of interest precisely because it comes close to capturing some other

intuitive notion: the probability of A given B; that is, the probability that A has, given

that certain conditions obtain, among others, that a probability of 1 is assigned to event B.

Conditional probability is thus not just a technical term devoid of any associated

intuitions; it is meant to capture the notion of ‘the probability of A, qualified by or informed

by some condition B’, words which are loaded with philosophical and commonsensical

associations. E. J. Lowe writes
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‘... we can only make clear sense of the notion of ‘conditional probability’

if we attempt to explain it [...] in conditional terms – not, that is, as a

new kind of probability, but rather as the (ordinary!) probability that a

proposition has if certain conditions obtain. In short: talk about conditional

probability is properly construed not as talk about a conditional kind of

probability, but rather as talk of a conditional kind about probability.’([Lowe,

2008] p.222)

Some authors, therefore, prefer to denote the conditional-on-B probability function of

A by pB(A) rather than by Pp(A|B).

Now the problem is that the ratio in (2.8) may or may not express our associations

adequately. So while we are free to stipulate that Pp(A|B) is merely shorthand for the ratio

p(A∩B)/p(B), we are not free to stipulate that ‘the conditional probability of A, given B’

should be identified with this ratio. Hence the ratio formula (2.8) should not be regarded

as a stipulative definition, but rather as an analysis of the notion of conditional probability

in need of justification.2.3 We refer to this analysis as the ratio analysis, or simply by ratio.

What is then the rationale for the identification of conditional probability with ratio?

That is, why is the probability of an event qualified or informed by some condition captured

by the ratio analysis?

2.3.1 General Rationale

Consider the following example. Imagine a fair die is about to be tossed. The probability

that it lands with ‘1’ showing up, i.e. p(1), is one sixth; this is an unconditional probab-

ility. But the probability that it lands with ‘1’ showing up conditional on or given that

the outcome is an odd number, i.e. Pp(1|odd), is one third. Intuitively, this conditional

probability is one third because the possible outcomes are narrowed to the three equally

possible odd ones, and ‘1’ is one of them. And this number agrees with what the ratio

formula delivers, namely

Pp(1|odd)=
p(1∩ odd)

p(odd)
=

1/6

1/2
=

1
3

(2.11)

Let us spell out the underlying rationale in more detail. First, if we know that the outcome

of the throw is an odd number, then the appropriate sample space is not S = {1, 2, 3,

4, 5, 6} anymore; rather S gets replaced by a new one, namely the set of odd outcomes

2.3. [Hájek, 2003, 2008] and [Easwaran, 2008] defend this view. See also [Mellor] Chp.7.
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Sodd= {1, 3, 5}. There are however many probability measures on this new sample space.

For example, the outcome ‘1’ could be assigned a probability of one half while ‘3’ and ‘5’ a

probability of one fourth each. Or both ‘1’ and ‘3’ could have a zero probability, while ‘5’

have a probability one.

What specifically defines the conditional probability measure is that the sample space

changes from S to Sodd and nothing else. That is, the conditional probability given ‘odd’,

by definition, differs from the original one solely by taking into account the qualification

of an odd outcome. This means that one has to eliminate the points in S that are not in

Sodd (2, 4 and 6), without altering the relative probability of the points which remain (1,

3 and 5), i.e. by increasing the latter’s value ‘pro rata’. Thus, Pp(1|odd) is derived from

the initial probability measure by dividing the initial measure by the initial probability of

odd, i.e. Pp(1|odd) =
p(1)

p(odd)
=

1/6

1/2
=

1

3
, which agrees with what the ratio formula delivers.

Indeed, in this example A= {1} is a subset of B= {odd}; hence, A∩B=A and the ratio

formula reduces simply to P(A|B) =
p(A)

p(B)
.

For general subsets A that are not necessarily subsets of B, as for example A= {1, 2,
3} and B= {odd}, one has to consider only the probability of the sample points in A that

are also in B and disregard the rest. For the sample points in A that are not also in B

will not be possible outcomes in the new event space SB and, therefore, will be assigned

zero probability. Hence for any set A, not generally included in B, its conditional-on-B

probability is the sum of the initial probability of the sample points that are both in A and

in B, i.e. p(A ∩ B), increased pro rata. In other words, the conditional probability of A

given B is the probability of that part of A lying in B increased pro rata. Just what the

ratio analysis stipulates.

2.3.2 Ratio and Interpretations of Probability

The ratio analysis also captures the notion of conditional probability under specific inter-

pretations of probability. It is standard to assume that probability comes in at least two

varieties: epistemic and physical . Epistemic interpretations take probabilities to be related

to our knowledge of the world, whereas physical interpretations regard probabilities as

features of the objective material world, unrelated and independent of our knowledge of it.

Physical probabilities are thus necessarily objective in the sense of being agent-independent,

whereas epistemic probabilities can be either subjective or objective depending on whether

or not prior degrees of belief are taken to be uniquely determined by the agent’s background

knowledge.
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Under the subjective epistemic view, probabilities measure how strongly one believes

certain propositions and are, therefore, features of the people who hold those beliefs; they

are neither features of the world nor features of what the credences are about and are

generally referred to as credences or degrees of belief . In contrast, under the physical view,

probabilities exist heedless of our beliefs and interests, and of our ever coming to conceive

or know about them; they are neither relative to evidence nor matters of opinion and are

generally referred to as chances. Finally, under the objective epistemic view, probabilities

measure how far evidence confirms (or disconfirms) a certain hypothesis and are neither

real features of the world nor matters of opinion.

There are different particular interpretations of these three kinds of probabilities. We

here focus and develop one particular interpretation of two of them, namely the frequency

interpretation of chances and the subjective Bayesian interpretation of credences.2.4 We

present both of them in turn, first, specifying how the notion of conditional probability

is understood under each of them, and then showing how the ratio analysis agrees with

such understanding. Appendix A provides a more detailed presentation on the subjective

Bayesian interpretation of probability.

2.3.2.1 Frequency Interpretation

Long run relative frequency is typically a good guide to determining chances. Some, e.g.

[Reichenbach, 1949], [von Mises, 1957], think that, more than being a good guide, such

relative frequency should be identified with objective chance. This view is normally referred

to as the ‘Frequency Interpretation’. Frequentism applies to chances but not to credences.

In addition, frequentists may deny that credences exist; that is, frequentists may deny

either that belief comes by degrees or that, in case they do, these degrees have a probability

measure.

Frequencies do not measure possibilities of outcomes but just how often the outcomes

occur in a large number of (identical) experiments. Indeed, frequentism provides a non-

modal surrogate for the idea of chance as a measure of physical possibility. Probabilities

are generally taken as measuring possibilities, where possibility is further (standardly) seen

as coming in degrees. And hence, frequentism, by identifying ‘how possible something is’

with ‘how frequently something occurs’, can interpret probabilities as measuring physical

possibilities. Note, however, that it does not explain possibilities as such, it just explains

them away.

2.4. On the various interpretations of probability see, for example, [Gillies, 2000a], [Mellor, 2005].
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Frequentism is also closely related to the ‘Humean view of causation’, namely the view

in which all it takes for causes to be sufficient for their effects is that they always produce

them. Similarly, causes are necessary for their effects if the latter never occur without the

presence of the former (i.e. effects only occur in the presence of their causes). Frequentism

about chances then gives a Humean reading of this idea of sufficiency and necessity: causes

are sufficient for their effects if there is a zero chance (relative frequency) for them not to

occur. Similarly, a cause is necessary for its effect if there is a zero relative frequency of

the effect in the absence of its cause.

Let us see how the frequency interpretation justifies the ratio analysis of conditional

probability. Suppose that we run a long sequence of n trials, on each of which B might or

might not occur. On a simple frequency interpretation the probability of B is identified

with the relative frequency of trials on which it occurs, that is, the number of trials on

which B appears divided by the total number of trials:

p(B)≡ nb(B)
n

(2.12)

Consider among those trials in which B occurs the proportion of those on which A also

occurs, namely nb(A ∩B)/nb(B). This is by definition the conditional probability of A

given B, that is,

P(A|B)= nb(A∩B)/nb(B) (2.13)

Now divide both terms by the total number of trials n. Under a simple frequentist inter-

pretation nb(A∩B)/n is identified with the probability of the joint occurrence of A and

B, that is,

p(A∩B)≡ nb(A∩B)
n

(2.14)

And nb(B)/n is identified with the probability of B as (2.12) shows. Hence, P(A|B) =
p(A∩B)

p(B)
, as the ratio analysis stipulates.

Similarly, in terms of the die example, to conditionalize on ‘odd’ under the frequency

reading is to select the subsequence of throws with results 1, 3 and 5. This selection leaves

unaltered the numbers of throws with each of these three results, and hence the ratios of

the relative frequencies of these results are also unaltered. Thus the conditional probability

of ‘1’ given ‘odd’ agrees with the ratio analysis.

2.3.2.2 Subjective Bayesian Interpretation of Probability

Consider now the subjective Bayesian interpretation wherein probabilities are defined as

the subjective degrees of belief of a coherent agent. Degrees of belief are measured through

so-called betting quotients and coherence requires that the agent will not accept a series of
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bets that will make her lose whatever happens. This ensures that degrees of belief satisfy

the standard axioms of probability.

The most usual approach to subjective conditional probability is the so-called Ramsey

test , which takes the subjective conditional probability P(A|B) as given by the degree

of belief one has in A when supposing B (or hypothetically adding B to one’s stock of

beliefs).2.5 The notion of supposition is crucial for it allows one’s conditional degree of

belief to differ from how one’s beliefs would actually change were one to learn B with cer-

tainty. (See Appendix A for further detail.) However, regardless of what exactly conditional

degrees of belief are – or whether they can be reduced to some notion of supposition –

betting behavior, as with the notion of degree of belief, sheds important light on this notion.

Indeed, it seems that Pp(A|B) ought to have some connection to the agent’s disposition

to accept bets on A that will be called off if B is not true.

It turns out there is a standard Dutch book argument suggesting that under this

interpretation, one ought to set Pp(A|B) to what the ratio analysis stipulates. In effect,

one can show that an agent would be incoherent, i.e. be ‘Dutch Booked’, if she does not set

her conditional degree of belief in A given B to her degree of belief in their joint occurrence

divided by the degree of belief in B, i.e. if she does not set Pp(A|B) =
p(A∩B)

p(B)
. Thus the

coherent agent will set her conditional degree of belief to precisely what the ratio formula

requires.

More intuitively using the die example, if the probabilities are read as degrees of belief

and all we know is that ‘odd’ is true but nothing about which particular result of the throw

actually made ‘odd’ true, then we should leave the relative values of our degrees of belief

in the three odd results unaltered. And hence our degrees of belief conditional on ‘odd’

are derived from our initial unconditional ones by increasing their value ‘pro rata’, again

in agreement with the ratio analysis.

We end this section by emphasizing the distinction between conditional probability

and conditionalization. Subjectivists typically recognize no constraints on initial or prior

subjective probabilities beyond the coherence condition. But they typically advocate a

learning rule for updating probabilities in the light of new evidence. This rule is the so-

called principle of conditionalization which states that, when one acquires new evidence B

at time tf , one should systematically transform one’s initial probability assignment pi(A)

to generate a final or posterior probability assignment pf(A) by conditioning on B, that is,

pi(A) � pf(A) =Ppi(A|B) (2.15)

2.5. One also finds in the literature the attempt to define subjective conditional probability as the probability

of a conditional, that is, as the degree of belief assigned unconditionally to an indicative conditional. However, this

account does not work. See [Easwaran, 2008], [Eells and Skyrms, 1994].
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It is important to realize that the notions of conditional probability and conditionalization

are distinct notions: while conditionalization is a diachronic notion – it applies to prob-

abilities held at a time prior to learning of evidence B and to probabilities held at a time

posterior to this learning, conditional probability is a synchronic notion – it applies only

to probabilities at one time. And arguments in favour of the synchronic notion do not

necessarily support the diachronic rule. (See Appendix A for further detail)

But regardless of whether or not conditionalization is the appropriate rule for updating

probability assignments it is clear that one can always associate a diachronic dimension

to the notion of conditional probability. For one can straightforwardly use the conditional

probability function to update a probability assignment. And this is all we need to have

in mind when evaluating whether it is conceptually possible to define either a quantum

notion of conditional probability or a quantum conditionalization rule.

2.3.3 Problems for the Ratio Analysis

In this section we have emphasized that the ratio formula (2.8) should not be regarded as

a stipulative definition of conditional probability, but rather as an analysis of that notion.

And we have seen various justifications for why this should be so. However, [Alan Hájek,

2003] has forcefully argued against the adequacy of the ratio formula as an analysis of

conditional probability. Briefly, he argues that conditional probabilities can be well defined

in many and important cases in which the ratio analysis goes silent. However, given that

Hájek’s arguments give rise to difficulties which are not particularly problematic for the

project of defining a quantum notion of conditional probability, we will simply bracket his

arguments in our discussion. We provide a brief summary of them in Appendix B.

2.4 Two Characterizations of Conditional Probability

We now consider two formal characterizations of the conditional measure Pp( · | · ) defined
by the ratio p(A∩B)/p(B). First, we show that the conditional probability measure thus

defined is the only probability measure defined on the whole event space F(S) such that

for sets A contained in B, conditionalizing on B just involves a renormalization of the

initial probability measure p(A) to Pp(A|B), where Pp(B |B)=1. In other words, starting

with a probability p defined over S, if for all A⊆B one defines a probability measure mp

in terms of the initial probability measure p as mp(A) =
p(A)

p(B)
, then mp can be extended

to all F(S); the extension is a new probability measure which is unique and is precisely

given by the usual ratio. We refer to this characterization of conditional probability as ‘the

existence and uniqueness characterization’ (section 2.4.1).
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Second, we present a characterization of conditional probability which arises given that

not only is the conditional probability measure necessarily additive with respect to the

conditioning events, but, conversely, any measure additive with respect to the conditioning

events is necessarily a conditional probability measure. More specifically, if a probability

measure m has the structure of a mixture of the conditional probability measures Pp( · |Bi)
with weights p(Bi)

p(B)
for Bi ∩ Bj = ∅, that is, m(A) =

∑

i

p(Bi)

p(B)
Pp(A|Bi), then m is the

conditional probability with respect to B = ∪i Bi. We refer to this characterization of

conditional probability as ‘additivity with respect to conditioning events’ (section 2.4.2).

2.4.1 Existence and Uniqueness

Let 〈S,F(S), p〉 be a classical probability space. To every subset A∈F(S), p( · ) assigns

A a value in the interval [0,1]. We have seen that every probability measure p( · ) defines a
conditional probability measure Pp( · | · ), such that the conditional probability of A given

B is given by Pp(A|B) =
p(A∩B)

p(B)
(with p(B)� 0). The following theorem shows that the

conditional probability measure thus defined from p( · ) is the only probability measure on

the set of all events F(S) such that for every event A in F(B), Pp(A|B) =
p(A)

p(B)
.2.6

Theorem 2.1. Existence and Uniqueness. Given a non-empty set S and a field F(S)

of subsets of S, let B belong to F(S) and p( · ) be any probability measure on F(S) such

that p(B)� 0. For any A in F(B) – the subsets of B that are in F(S) – define the function

mp(A) =
p(A)

p(B)
(2.16)

Then:

1. m( · ) is a probability measure on F(B),

2. there exists an extension Pp( · |B) of m( · ) to all F(S),

3. the extended probability measure Pp( · |B) is unique and, for all C in F(S), is given

by

Pp(C |B) =m(C ∩B) =
p(C ∩B)
p(B)

(2.17)

This theorem, hence, states that there is only one way of extending a conditional probab-

ility measure defined for sets A in F(B) as Pp(A|B)=
p(A)

p(B)
, to all sets C in F(S) which is

precisely given by the ratio formula Pp(C |B)=
p(C ∩B)

p(B)
. The extended probability measure

of any measurable subset A of B agrees with the original probability of that subset, i.e.

Pp(A|B)=mp(A); and for general subsets C in F(S) simply assigns C the probability that

corresponds to that part of C which is contained in B, and zero value to the remaining

part, i.e. Pp(C |B)=mp(C ∩B).

2.6. See [Cassinelli & Zanghí, 1983], [Teller & Fine, 1975], [Hughes, 1989].
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This uniqueness result may seem to distinguish conditional probability formally. In

fact it does not. For in classical probability every probability measure on a subspace is

uniquely extendable to the full space; there is nothing special about a conditional probab-

ility measure defined by the ratio rule. Indeed the following theorem holds:2.7

Theorem 2.2. Extendability of Classical Probability. Given a non-empty set S and

a field F of subsets of S, let B belong to F(S) and m( · ) be a probability measure on F(B).

Then:

1. there exists an extension p( · ) of m( · ) to all of F(S),

2. this extension is unique and, for all C in F(S), is given by

p(C) =m(C ∩B) (2.18)

Hence, it is a simple consequence of this general fact about classical extendability that in

the special case of conditional probabilities the extension will satisfy the ratio formula.

That is, theorem 2.1 is just a particular instance of the more general theorem 2.2 when

m( · ) for A in F(B) is defined as mp(A)=
p(A)

p(B)
. There is nothing special about conditional

probability: all other measures m( · ) on F(B), which also assign B probability one but

which need not be defined as the ratio p(A)

p(B)
, will be likewise extendable to the full space

F(S).

Note that both points 1. and 2. of theorem 2.2 depend only on the probability measure

m( · ) restricted to F(B): as we have seen, the extended probability measure p(C) =

m(C ∩ B) simply assigns C the probability that corresponds to that part of C which is

contained in B, and zero value to the remaining part. To anticipate, the situation will not

be analogous in the quantum case: although an analogue version of theorem 2.1 holds,

points 2. and 3. in that case will depend critically on the initial measure p( · ) defined on

the full space. Thus it will not be possible to see the quantum version of theorem 2.1 as a

consequence of an analogue version of theorem 2.2; in fact the quantum version of theorem

2.2 is false.

2.4.2 Additivity with Respect to Conditioning Events

The conditional probability measure with respect to an event B=∪iBi, with Bi∩Bj=∅ for
i� j, is necessarily additive with respect to the (disjoint) conditioning events Bi. In effect,

Pp(A| ∪Bi)=
p[A∩ (∪iBi)]

p(B)
=
p[∪i (A∩Bi)]

p(B)
=

∑

i
p(A∩Bi)
p(B)

(2.19)

2.7. This theorem was formulated by Arthur Fine. The proof is simple. Imagine there is another measure p′( · ),
where p′( · )� p( · ) that also satisfies the condition p′(A)=m(A). For all C ∈F (S), p′(C)= p′(C ∩B)+ p′(C ∩ (S−
B)). Now p′(B)=m(B)=1 and so p′(S−B)=0; and since 06p′(C∩(S−B))6p′(S−B), we get p′(C)= p′(C∩B).

But C ∩B ∈F (B) and so p′(C) = p′(C ∩B)=m(C), which is equal to p(C). And thus p′(C)= p(C).
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And multiplying (2.19) by p(Bi)

p(Bi)
, we get that

Pp(A| ∪Bi) =
∑

i

p(Bi)
p(B)

Pp(A|Bi) (2.20)

One can also show that the converse also holds. That is, that any measure which is

additive with respect to the (disjoint) conditioning events Bi is necessarily the conditional

probability measure given B=∪iBi. The following theorem establishes this result.2.8

Theorem 2.3. Let 〈S,F(S), p〉 be a classical probability space, B an element of F(S) such

that p(B)� 0 and {Bi} a countable disjoint set of elements of F(S) such that B =∪iBi.
Let m be a probability measure such that for each Bi and A, an element of F(S),

m(A) =
p(A)
p(B)

(2.21)

Then m is the conditional probability with respect to B.

Let us go through the proof of this theorem to see exactly how it establishes that

additivity with respect to conditioning events characterizes conditional probability.

Proof.

To prove theorem 2.3, it suffices to show that it holds for a set A⊆B. For if m(A)=
p(A)

p(B)

coincides with Pp(A|B) for A⊆B, then it coincides with Pp on the whole F(S) because

of theorem 2.1. Let A be any element of F(S) such that A⊆B, then

A=A∩B=A∩ (∪iBi) =∪i (A∩Bi) (2.22)

Hence m(A)=m[∪i (A∩Bi)], and since m is a probability measure:

m(A)=
∑

i

m(A∩Bi) (2.23)

Now for each index i, A∩Bi⊆Bi, so that, by definition (2.21) of m,

m(A∩Bi) =
p(A∩Bi)
p(B)

(2.24)

And inserting (2.24) into (2.23),

m(A)=
∑

i

p(A∩Bi)
p(B)

=

∑

i
p(A∩Bi)
p(B)

=
p(
∑

i
A∩Bi)

p(B)
=
p(A∩B)
p(B)

=
p(A)
p(B)

(2.25)

Hence m(A)=Pp(A|B) �

Additivity with respect to the Bi’s can be now made explicit by multiplying (2.25) by
p(Bi)

p(Bi)
:

m(A) =
∑

i

p(A∩Bi)
p(B)

p(Bi)
p(Bi)

=
∑

i

p(Bi)
p(B)

p(A∩Bi)
p(Bi)

=
∑

i

p(Bi)
p(B)

Pp(A|Bi) (2.26)

2.8. See [Cassinelli & Zanghí, 1984].
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Thus we can reformulate theorem 2.3 in the following way:

Theorem 2.4. Additivity with Respect to Conditioning Events. Let 〈S, F(S),

p〉 be a classical probability space, B an element of F(S) such that p(B) � 0 and {Bi}
a countable disjoint set of elements of F(S) such that B = ∪i Bi. Let m be a probability

measure such that for each Bi and A, an element of F(S), m(A) is the convex combination

of the conditional measures Pp( · |Bi), i.e.

m(A) =
∑

i

p(Bi)

p(B)
Pp(A|Bi) (2.27)

Then m is the conditional probability with respect to B, i.e.

m(A) =P(A|B)=
∑

i

p(Bi)
p(B)

Pp(A|Bi) (2.28)

Hence, in addition to the characterization of conditional probability provided by theorem

2.1, conditional probability can also be characterized by its being additive with respect to

conditioning events.

Note that additivity with respect to conditioning events is another way of stating the so-

called theorem of compound probabilities or law of total probability, namely, for a partition

{Bi} of B – Bi disjoint and
∑

Bi= I – the total probability of A is given by

p(A) =
∑

Pp(A|Bi)p(Bi) (2.29)

Indeed from (2.28) it follows that

Pp(A|
∑

Bi) p(B) =
∑

p(Bi)Pp(A|Bi) (2.30)

And given that
∑

Bi= I and p(B) = 1, (2.30) reduces to (2.29).

To anticipate, the situation will not be analogous in the quantum case. In effect, unlike

the classical case, there is not a unique probability measure on the quantum event structure

which coincides with the quantum analogue of Pp( · |B) for each Bi. And quantum condi-

tioning, when conditioning is taken over a set of quantum events that mutually exclude each

other, does not in general return a classical convex mixture over the components in the sum.
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Chapter 3

Quantum Probability Theory

By quantum mechanics we will refer to the Hilbert space formalism, including the

dynamical rule for the quantum state given by the Schrödinger equation, Born’s rule

for calculating probabilities, and the association of physical magnitudes with Hermitian

operators. These elements seem to be the core of the (non relativistic) theory. There

are many mathematical formulations of quantum mechanics: the standard formulation

in terms of Hilbert spaces and operators, Feynman path integrals, axiomatic and algeb-

raic approaches, C∗ algebra formalism, etc. In addition, the quantum mechanical formalism

can be expressed as a theory of probability, an approach which is traditional and goes

back at least to [von Neumann, 1932].3.1 In this chapter we present the formalism of

quantum probability theory in detail. This approach is useful in general to study the

mathematical structure of quantum theory. For us the motivation is straightforward: it

is the natural framework in which to consider whether it is possible (and, if so how)

to define a quantum notion of conditional probability.

The probability theory underlying quantum mechanics is phrased in terms of operators

on a Hilbert space. In general these operators do not commute and hence quantum prob-

ability is sometimes called a non-commutative probability theory. This non-commutativity

is the main difference between the classical and quantum probability theories and has

far-reaching consequences. At the formal level, this claim is uncontroversial: quantum

mechanics simply uses a method for calculating probabilities which is different from that of

classical probability theory. However, whether this also implies that the interpretation of

quantum probability is fundamentally different from classical probability requires further

investigation. We do this in chapters 5 to 8. In the present chapter we simply lay out the

basic formalism of quantum probability theory.

Traditionally a theory of probability distinguishes between the set of possible events

(called the algebra of events, or the set of possible outcomes) and the probability measure

defined on them. In section 3.1, we consider the mathematical entities which represent

3.1. More modern formulations can be found, for example, in the following books: [Mackey, 1963], [Bub, 1974],

[Gudder, 1979], [Beltrametti & Cassinelli, 1981], [Varadarajan, 1985], [Gudder, 1988], and [Pitowsky, 1989].
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quantum events and their algebraic structure, and, in section 3.2, the probability functions

which can be defined over this structure. Then, in section 3.3, we consider the standard

semantic rule for ascribing values in quantum mechanics, namely the eigenstate-eigenvalue

link, a term coined by Arthur Fine.3.2 Finally, in section 3.4, we present the connection

between the non-commutativity of the quantum mechanical operators and the joint prob-

ability distributions ascribed to these.

3.1 Quantum Events and their Structure

Standard presentations of quantum mechanics go as follows. Each physical system is asso-

ciated with a Hilbert space H. A Hilbert space is a vector space on which an inner product

has been defined and which is complete.3.3 This stands in striking contrast to the classical

case in which a physical system is not associated with a vector space but with a real space.

Observables are also not represented by real-valued functions on a real space as for a

classical system but by Hermitian operators acting on the Hilbert space associated with a

system.3.4 The possible values of the observable are given by the spectrum of the operator

which represents it.

For operators with a discrete spectrum, the possible values of the corresponding observ-

able are restricted to a discrete set of eigenvalues. An observable A will take a certain value

ai, where ai is a discrete eigenvalue of the operator A, for a system whose state lies in the

eigenspace Lai
A associated with the eigenvalue ai; the quantum event ‘A takes the value ai’

is thus represented by the subspace Lai
A of the relevant Hilbert space. For general operators

that do not admit eigenvectors and have a continuous spectrum, to each Borel set b on

R there corresponds a closed subspace LA(b) of H such that the value of A is within b;

the quantum event ‘A takes the value b’ is thus represented by the subspace LA(b) of the

relevant Hilbert space.3.5 Hence, in quantum theory events are not represented by subsets

of the real phase space as for a classical system, but by closed subspaces of a Hilbert space.

3.2. See for example, [Fine, 1970].

3.3. V is a vector space if for any vectors u, v ∈V and λ1, λ2∈C, λ1u+λ2 v ∈V . A vector space is complete if

any converging sequence of vectors in the space converges to a vector in the vector space.

3.4. An operator A on H is said to be linear if ∀ψ, ϕ1, ϕ2∈H, λ∈C, 〈ψ,Aλ ( ϕ1 + ϕ2)〉=λ 〈 ψ,Aϕ1〉+λ 〈 ψ,
A ϕ2〉, where 〈 , 〉 represents the inner product in H. A linear operator A on H is said to be a Hermitian operator

if ∀ψ, ϕ∈H, 〈ψ,Aϕ〉= 〈Aψ, ϕ〉.
3.5. The identification between quantum events and subspaces of a Hilbert space assumes the so-called eigen-

state-eigenvalue link, which we present in detail in section 3.3 after defining quantum states in section 3.2.
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There is a natural one-to-one correspondence between the set of orthogonal projection

operators PA of H and the set of closed subspaces LA of H.3.6 Projection operators have

the property of ‘projecting onto a subspace’: given a subspace L, we can decompose any

vector ψ of H into two parts, ψ= ψL+ ψL⊥, such that ψL lies in L and ψL⊥ is orthogonal

to ψL, and the projection operator P over subspace L is then defined by its action over the

arbitrary vector ψ as P ψ = ψL. Given the bijection between the set of closed subspaces

and the set of orthogonal projection operators, we can use projectors and closed subspaces

interchangeably and represent the event that the observable A has a value ai [in the set b],

i.e. (A, ai) [(A,b)], both as the closed subspace Lai
A [LA(b)] or as the projection operator

Pai
A [PA(b)].

The usual operations of (1) set-containment A ⊆ B, (2) set-union A ∪ B, (3) set-

intersection A ∩B, and (4) set-complementation Ac in S have their natural counterparts

for subspaces and projectors. In subspace language these are (1)M ⊆N , (2) spanM ∪N =

M ⊕N – where span means the closed span, (3) M ∩N , and (4) orthogonal complement

M⊥. And, in projection language, (1) P 6Q (so that PQ=QP =P ), (2) the orthogonal

projection onto the closed subspace spanned by the ranges of P and Q, i.e. P ∨Q , (3) the

orthogonal projection onto the intersection of the ranges of P and Q, i.e. P ∧Q, and (4)

the orthogonal projection onto the complement of the closed subspace spanned by the range

of P , i.e. P⊥ = I −P , where I is the identity operator on H. If P and Q are orthogonal,

then P ∧Q=P Q and P ∨Q=P +Q.

With these operations, the algebraic structure of the set of quantum events is not a

Boolean algebra; rather is a complete orthocomplemented lattice.3.7 We denote the set of

orthogonal projections of H as L(H); L(H) is thus the set of possible quantum mechanical

events. For our present purposes it suffices to note that in L(H) the distributive property

does not hold. This can easily be seen in the following example.

Example 3.1. Non-Distributivity. Consider a spin-1 particle. The system’s associated

space is a three-dimensional Hilbert space, for which one complete orthonormal basis is

given by the set of unit vectors {ψz−1, ψz0, ψz+1}, corresponding to the eigenvalues {− 1,0,

1} of the spin observable in the z-direction Sz. Each of these vectors spans a subspace of

the Hilbert space H {Lsz−1
, Lsz0, Lsz+1

}, with its corresponding projector operator {Psz−1
,

Psz0, Psz+1
}. Consider a nontrivial linear combination ψa of ψz−1 and ψz0 and denote by

La the subspace spanned by ψa, so that La⊆Lsz−1
⊕Lsz0.

3.6. A linear operator P on H is said to be a projection operator if P is Hermitian and Idempotent, i.e. P 2=P .

3.7. For a detailed account see, for example, [Beltrametti & Cassinelli, 1981], [Hughes, 1989].
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Figure 3.1. Non-distributive quantum event structure.

For the lattice of projectors {Psz−1
, Psz0, Psz+1

} to be Boolean the condition of dis-

tributivity must hold, i.e.

Pa∧ (Psz−1
∨Psz0)= (Pa∧Psz−1

)∨ (Pa∧Psz0) (3.1)

(or equivalently, La∩ (Lsz−1
⊕Lsz0) = (La∩Lsz−1

)⊕ (La∩Lsz0)). However, while the left-

hand side of the equation is

Pa∧ (Psz−1
∨Psz0) =Pa (3.2)

the right-hand side is

(Pa∧Psz−1
)∨ (Pa∧Psz0) = 0 (3.3)

And thus equality (3.1) is violated.

It is important to note that although the algebra L(H) as a whole is not Boolean, it

does contain Boolean sub-lattices: each observable considered separately can be identified

with a Boolean algebra and so can every set of compatible observables. (We call two

physical quantities compatible when they are represented by commuting operators; and

two Hermitian operators A,B in H are said to commute whenever AB=BA.3.8) Indeed,

for P and Q projection operators on the Hilbert space H, P and Q commute if and only

if the sublattice of L(H) generated by P , Q, P⊥ and Q⊥ is Boolean.

To sum up, in quantum probability theory the measurable space 〈S,F(S)〉 of classical
probability theory is replaced with the pair 〈H,L(H)〉.

3.2 Quantum Probability

Quantum theory can be essentially regarded as a theory of probability defined over the

projection lattice L(H). This probability measure is a map p( · ) from the projection

operators into the real numbers in the closed interval [0,1] which is normalized and additive

for orthogonal projection operators.

3.8. Note also that only if two physical quantities are compatible is their ‘product’ a physical quantity: indeed,

the product of two Hermitian operators A,B is Hermitian if and only if AB=BA.
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Definition 3.1. Quantum Probability. A real function p( · ) defined from the lattice

L(H) of projection operators on a Hilbert space H is a quantum probability measure if

i. (Non-negativity) p(P )> 0 for all P ∈L(H).

ii. (Normalization) p(PI) = 1, where I stands for the identity operator on H

iii. (Additivity) for every countable set of mutually orthogonal projection operators {Pi}
in L(H),

p(
∑

i

Pi)=
∑

i

p(Pi), (forPi Pj= 0 if i� j) (3.4)

Unit vectors ψ on H and, more generally, density operatorsW on H, define all the possible

quantum probability measures. Indeed, if ψ is a unit vector in H and P a projection

operator of L(H), the function defined by the inner product

pψ(P ) = 〈ψ, Pψ〉 (3.5)

defines a probability function on L(H), where additivity holds given the additivity property

of the inner product.3.9 And any given density operator W defines a probability function

pW on L(H) by

pW(P )=Tr(WP ) (3.6)

for P ∈L(H). A density operator W on H is a positive trace-class operator – an operator

such that its trace is positive for all ψ ∈ H – of trace one, where the trace of a positive

operator is defined as the quantity

TrA=
∑

i

〈ψi, Aψi〉 (3.7)

for an orthonormal basis {ψi} of H. (Note that this quantity is independent of the basis

{ψi}.)

The probability measures pW defined by density operators correspond to classical stat-

istical mixtures of the probability measures pψ defined by vectors. Indeed, any density

operator can be expressible as a weighted sum of orthogonal projection operators Pi, i.e.

W =
∑

i
ai Pi where ai> 0 and

∑

i
ai= 1, so that expression (3.6) can be written as the

weighted sum of the traces Tr(PiP ), where Tr(PiP )= 〈ψi, Pψi〉, for an orthonormal basis

{ψj} of H such that Piψj = δijψj.3.10

3.9. Indeed, pψ(
∑

Pi)= 〈ψ,∑
i
Piψ〉=

∑

i
〈ψ,Piψ〉=

∑

i
pψ(Pi).

3.10. In detail, Tr(Pi P ) = Tr(P Pi) =
∑

j
〈ψj, P Pi ψj〉, with {ψj} any orthonormal basis of H. And we can

choose {ψj} such that Piψj= δijψj so that
∑

j
〈ψj , P Piψj〉= 〈ψi, P ψi〉= pψi(P ).
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In contrast to classical mechanics in which the state of a system is determined by its

position and momentum, in quantum theory the physical state of a system is given by a

probability function on L(H). If ψ is a unit vector of H, we call the probability function

pψ(P ) = 〈ψ,Pψ〉, where P ∈L(H), a pure state. If W is a density operator in H, we call

the probability function pW(P ) =Tr(WP ), where P ∈L(H), a mixed state.3.11 Quantum

states can thus be represented in full generality by density operators W on L(H).

Remarkably, the converse of this results holds as well. [Gleason, 1957] proved that if the

dimension of H is equal or greater than 3, the probability measures on L(H) representable

by density operators on H exhaust the set of all probability measures on L(H), where each

probability measure corresponds uniquely to a density operator.3.12

Theorem 3.1. Gleason’s Theorem. If the dimension of H is no less than 3, then every

probability measure p on L(H) arises from a density operatorW in H, according to the rule

pW(P ) =Tr(WP ) (3.8)

for every projection operator P ∈L(H).

Gleason’s theorem thus characterizes the set of all possible states on set L(H) of sub-

spaces of H: it contains just those states which are representable by density operators

on H. Hence once one assumes the algebraic structure of the set of quantum events is

L(H), Gleason’s theorem dictates the probabilistic structure. An important consequence of

Gleason’s theorem is that it rules out all discontinuous measures over L(H) when dim(H)>

3. This is because for any given density operator W the map P →Tr(WP ) is continuous

on the unit sphere of H. Thus, non-trivial probability measures having only the values 0

and 1 are not admitted. This is one way of putting the no-go results of the Bell-Kochen-

Specker theorem.3.13

There is a simplified version of Gleason’s theorem for the case in which the density

operator is a one-dimensional projection operator. It is a considerably weaker form of

Gleason’s theorem but requires a less sophisticated proof.3.14 Following [Malley, 1998,

2004], we refer to it as ‘micro-Gleason’.

3.11. In effect, a mixed state is a function p: H→ [0,1] of the form p=
∑

i
λi pψi, where ψi are unit vectors, and

λi>0,
∑

λi= 1. Mixed states correspond to the fact that convex combinations of probability measures are again

probability measures. One can show that the ψi can always be chosen to be orthogonal and that the mixed state

p=
∑

i
λipψi can always be represented by the density operatorW =

∑

i
λiPi, where Pi is the orthogonal projection

onto the span of ψi.

3.12. [Gleason, 1957]. See also [Beltrametti & Cassinelli, 1981], p.115.

3.13. See [Beltrametti & Cassinelli, 1981] p.267ff.

3.14. [Gudder, 1979], p.129 corollary 5.17.
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Theorem 3.2. Micro-Gleason’s Theorem. Let dim H > 3 and let p be a probability

measure on the lattice of projectors L(H) which assigns probability one to any one-dimen-

sional projector Pψ, i.e. p(Pψ) = 1, where ‖ψ‖=1. Then p must be such that

pψ(P ) =Tr(PψP ) = 〈ψ,Pψ〉 (3.9)

for all projectors P ∈L(H).

It is instructive to see why equality (3.9) holds. Given Tr(PψP )=Tr(PPψ ) and
∑

j
〈φj ,

φj〉=1, we have

Tr(PPψ) =
∑

j

〈φj , P Pψφj〉=
∑

j

〈φj , P ψ〉 〈ψ , φj〉= 〈ψ,P ψ〉
∑

j

〈φj , φj〉 (3.10)

and thus Tr(PψP ) = 〈ψ,Pψ〉.

To sum up, we may identify quantum probability theory with the quantum probability

space (H,L(H),W ), which is defined as follows:

Definition 3.2. Quantum Probability Space. A quantum probability space consists of

a triple 〈H,L(H),W 〉 where

i. H is a closed complex Hilbert space.

ii. L(H) is the set of projection operators on H. These projectors represent quantum

events.

iii. W are the density operators which generate all the possible probability functions

according to the rule pW(P ) =Tr(WP ), for every projection operator P ∈L(H).

3.3 Eigenstate-Eigenvalue Link

Recall that in section 3.1 we identified the quantum event ‘observable A takes the value

ai’, with the projection operator Pai by saying that ‘A will take the value ai for all systems

whose state lies in the eigenspace Lai associated with the eigenvalue ai’. This identification

rests upon an assumption that has come to be known as the eigenvalue-eigenstate link , (or

e-e link in short). This link is the standard rule for ascribing values in quantum mechanics,

although many interpretations of quantum mechanics actually deny it.
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The e-e link states that an observable A has a well-defined value for a quantum system

in state ψ if and only if ψ is an eigenstate of A, that is, Aψ= aiψ, in which case ai is the

value of A in state ψ. It can be analyzed as the conjunction of two rules which correspond

to the ‘if’ and ‘only if’ part:

1. Rule of Law. The eigenstate to eigenvalue rule says that if ψ is an eigenstate of

A with eigenvalue ai, then the system, whose state is ψ, has the value ai for the

observable A. Fine calls this the ‘Rule of Law’: if for some eigenvalue ai of the

operator A, the state ψ of a system is an eigenstate of A, then the ‘law’ requires

that we attribute the value ai to the system.

2. Rule of Silence. The eigenvalue to eigenstate rule says that if the system, whose

state is ψ, has the value ai for the observable A, then ψ is an eigenstate of A with

eigenvalue ai. Fine, considering the contrapositive formulation of this rule, refers

to it as the ‘Rule of Silence’: if there is no eigenvalue ai of A such that ψ is an

eigenstate of A, then we must be silent about saying that the system has the value

ai for the observable A.

Note that when we identify the quantum event ‘observable A takes the value ai’ with Pai

by saying that ‘A will take the value ai for all systems whose state lies in the eigenspace

Lai’ we are using the eigenstate to eigenvalue rule (or the rule of law). And that when we

only allow eigenstates to take determinate values, we employ the eigenvalue to eigenstate

rule (or the rule of silence)

A more general way to formulate the e-e link is as follows.3.15

Definition 3.3. Eigenstate-Eigenvalue Link

1. Eigenstate to eigenvalue link: if pW(Pai) = 1, then the system, whose state is W,

takes value ai for observable A.

2. Eigenvalue to eigenstate link: if the system, whose state is W, takes value ai for

observable A, then W is such that pW(Pai) = 1.

3.4 Joint Probability Distributions

As (3.6) prescribes, the probability that observable A takes a value in the Borel set b is

given by the function Tr(WPA(b)). Thus in quantum probability theory observables play

the role of random variables and the projection operators PA(b) correspond to events. By

analogy with classical probability theory, we call the probability measure b→Tr(WPA(b))

the distribution of the observable A in the state W .

3.15. [Dickson, 1998], pp.18-19.
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Definition 3.4. Quantum Probability Distribution. The probability measure

b→Tr(WPA(b)) (3.11)

is the probability distribution of observable A in state W.

In classical probability theory the joint distribution for random variables f , g is defined

by (2.3) as the probability measure pf ,g on B(R2) satisfying pf ,g(a × b) = p[f−1(a) ∩
g−1(b)] for all a,b∈B(R). In an analogue way, one could try to define a joint probability

distribution for two self-adjoint operators A, B and a system in state W as the function

pW ;A,B on the subsets of R2 of the form a×b, with a,b∈B(R), such that

pW ;A,B(a×b) =Tr[WPA(a)PB(b)] (3.12)

However, it is not possible to define a joint probability distribution in this way when dealing

with non-commuting observables because (3.12) may not be a real number. Only when A

and B commute does there exist a third observable C and two Borel functions f , g such

that A= f(C) and B= g(C) 3.16 and hence pW ;A,B takes the form

pW ;A,B(a×b) =Tr[WPC(f−1(a)∩ g−1(b)] (3.13)

analogous to the classical joint distribution. In this way commuting observables act like

random variables and their stochastic properties can be found using classical probability

theory.

A better way of defining a joint distribution of two observables in the quantum setting

is by taking the lead from a fact we pointed out in section 2.1, namely that even if pf , pg

do not determine pf ,g, the distributions of x1 f +x2 g for all x1, x2∈R do determine pf ,g

as the unique measure on B(R2) which satisfies pf ,g{(y1, y2):x1 y1 +x2 y2∈a}= p{w∈S:

x1 f(w) + x2 g(w) ∈ a} for every a ∈ B(R), x ∈ R2. Motivated by this fact, we give the

following definition of a joint probability distribution over L(H).

Definition 3.5. Quantum Joint Probability Distribution. Let A1 and A2 be observ-

ables such that xA= x1A1 + x2A2 are self-adjoint for every x= (x1, x2)∈R
2. A1 and A2

have a joint distribution in state W if there exists a measure pA1,A2 on B(R2) such that

for every a∈B(R2)

pA1,A2{y ∈R2:x y ∈a}=Tr(WP xA(a)) (3.14)

There have been other proposals for definitions of joint distributions in the quantum

mechanics literature 3.17 but we will henceforth only consider that given by (3.14).

3.16. [von Neumann, 1955].

3.17. [Gudder, 1968], [Margenau, 1963a], [Urbanik, 1961], [Varadarajan, 1962].
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3.4.1 Joint Distributions and Commutativity

The joint distribution of two observables A1, A2 as defined by (3.14) need not always exist.

In fact, while it always exists for compatible observables and agrees with that defined

by (3.13), it does not generally exist for incompatible observables. However, the relation

between the non-existence of the joint distribution of two observables and their incom-

patibility is subtle and depends critically on the fact that a joint distribution is defined in

terms of a particular state W . In this section we present the connection in detail.

We begin with a result which was first established by [Nelson, 1967] (pp.117-119) and

then reproved by [Gudder, 1979] (pp.18-19). It establishes that a pair of observables may

be treated as random variables if and only if they commute.

Theorem 3.3. Nelson-Gudder. Let A1, A2 be self-adjoint operators on a Hilbert space

H. Then A1, A2 commute if and only if they have a joint distribution in every state.

It is critical for the above bi-conditional to hold that it applies to every state rather

than to a particular state. In effect, it is not the case that if A1,A2 have a joint distribution

in a particular state W , then A1, A2 commute. Or contra-positively, it is false that if A1,

A2 do not commute, then necessarily their joint distribution in state W does not exist. To

emphasize, whereas if the joint distribution of two observables in a particular stateW does

not exist, then the observables do not commute, it is not true that if two observables do

not commute that their joint probability distribution does not exist for anyW . In symbols,

where joint distribution is abbreviated as j.d.,

A1, A2 commute :
⇒ there exists j.d. of A1, A2 in stateW (3.15)

or contra-positively:

there does not exist j.d. of A1, A2 in stateW :
⇒ A1, A2donot commute (3.16)

There have been several recent attempts in the literature to achieve a result that, while

remaining valid, is as ‘close’ as possible to the invalid implications given in (3.15) and

(3.16). The conditions for these results were originally formulated in terms of conditions for

hidden variable models of quantum mechanics. However, they can be easily reformulated in

terms of joint probability distributions since, as [Fine, 1982a, 1982b] proves in detail, ‘the

idea of deterministic hidden variables is just the idea of a suitable joint probability func-

tion.’ We here present a brief overview of them in terms of joint probability distributions.

James Malley proves the following result.3.18

Theorem 3.4. Malley 2004. If all observables have joint distributions in every state,

then all observables must commute.

3.18. [Malley, 2004], p. 5, Theorem 2 and its proof on pp. 6-7, [Malley & Fine, 2005].
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which is a generalization of theorem 3.3. Malley and Fine further proved the following

stronger result.3.19

Theorem 3.5. Malley & Fine 2005. If a given set of observables do not commute in

a particular state, then not all observables have joint distributions in that state.

In effect, it might be the case that if A1, A2 do not commute, their joint distribution

does exist in a particular ψ.

In 2006 Malley then showed that any attempt to augment with joint probabilities for

pairs of incompatible observables leads to contradictions. In more detail, he proved that

the existence of a joint distribution for all observables imply that the space of projectors

collapses to a single one-dimensional projector. That is, if one insists on defining joint dis-

tributions for all observables, then there can at most be a single one-dimensional projector

acting on the Hilbert space H.

Finally, [Malley & Fletcher, 2008], in a still unpublished article, have proved an even

stronger result.3.20 Suppose a given projector pair {P ,Q} with a joint distribution in state

W (note that the projectors need not be orthogonal for this to be the case). Call the pair

ortho-consistent if p(P = 1, Q = 1) = 0. That is, the probability for their simultaneous

occurrence is zero, but one can still ascribe them a properly defined joint distribution.

(Note that every orthogonal pair of projectors is necessarily ortho-consistent.) Then, we

have the following result:

Theorem 3.6. Malley & Fletcher 2008. Suppose an arbitrary nonorthogonal projector

pair {P ,Q} has a properly defined joint distribution in stateW. Then there exists a finitely

constructible set of projectors S= {P , Q,R, .., Z} such that

1. there exists at least one joint distribution for S that is consistent with that for

{P , Q};

2. given any joint distribution on S, consistent with that for {P , Q}, there exists at

least one orthogonal pair in S that fails to be ortho-consistent.

Given that the second result contradicts quantum mechanics – an orthogonal pair of pro-

jectors is necessarily ortho-consistent – one can conclude that even in those cases in which

a non-commuting projector pair {P ,Q} can be ascribed a joint distribution in a particular

W , this ascription will always result in a contradiction with the quantum mechanical

probabilistic ascriptions for a finitely constructible set of projectors S = {P , Q, R, .. , Z}
to which they belong. And this certainly draws us very close to the desired result, namely

if P and Q do not commute then their joint distribution does not exist for any W .

3.19. [Malley & Fine, 2005], p.53, Theorem 1.

3.20. I here follow Arthur Fine’s reformulation of their result.
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Hence, the requirement that each pair of statistical variables in quantum theory have

a joint distribution in every state is at variance with the most fundamental and distinctive

feature of quantum theory: the use of non-commuting observables. It is not simply that

joint distributions happen to be undefined; rather the fact that some joints are undefined

points to the essential feature of the theory: without this feature, quantum theory would

simply reduce to a classical probability theory.
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Chapter 4

Quantum Conditional Probability

We have just seen that, because of its non-commutative structure, quantum mechanics

does not assign joint probabilities to all pairs of quantum events; and that, moreover, the

fact that some joints are undefined points to the essential feature of quantum theory. We

also saw in Chapter 2 how the notion of conditional probability is standardly analyzed as

the pro rata increase of a joint probability distribution. Hence, the question arises as to

whether and, if so how, an appropriate notion of conditional probability can be introduced

in quantum mechanics.

A long-standing literature claims that the answer to both questions is ‘yes’; that it is in

fact possible to define an appropriate extension of conditional probability with respect to

an event in quantum mechanics, and that it is given by the probability defined by the so-

called Lüders rule. This rule states that for all projectors P and Q of L(H), the probability

of the quantum event represented by projector P conditional on the event represented by

projector Q is given by

PW(P |Q) =
Tr(QWQP )
Tr(QWQ)

(4.1)

In the context of quantum probability theory this rule satisfies the formal condition of

specifying the only probability measure on the state space that reduces to a pro rata

conditional probability for compatible events. Moreover, this formal condition is analogous

to the existence and uniqueness property of classical conditional probability captured by

theorem 2.1. Thus, several authors have argued for interpreting the Lüders rule as defining

the appropriate notion of conditional probability in quantum mechanics.

Explicit arguments for this view are found in [Bub, 1979] and in [Cassinelli & Truni,

1979], which have then been expounded in [Cassinelli & Zanghí, 1983, 1984], [Bub, 1979a,

1979b] and [Beltrametti & Cassinelli, 1981]. Modern textbooks in the Philosophy of

Quantum Mechanics presenting this view are, among others, [Hughes, 1989] and [Dickson,

1998].4.1 These authors claim that

4.1. In addition, in his 1979 book Gudder presents it as the standard view for ‘quantum conditional expectation’

with references that go back to at least to 1954 with H. Umegaki’s paper ‘Conditional Expectations on an Operator

Algebra I’ Tohoku Mathematics Journal 6, pp. 177-181.
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‘[The Lüders rule] acquires a precise meaning, in the sense of conditional

probabilities, when quantum mechanics is interpreted as a generalized prob-

ability space’ ([Cassinelli & Zanghí, 1983], p.245).

‘I want to suggest that the Lüders rule is to be understood as the quantum

mechanical rule for conditionalizing an initial probability assignment [...]

with respect to an element in the non-Boolean possibility structure of the

theory’ ([Bub, 1979b], p.218)

Hence, in their view, the probabilities dictated by the Lüders rule are to be properly

interpreted as the quantum conditional probabilities. Busch and Lahti in the ‘Compendium

of Quantum Physics’ state:

‘The Lüders rule is directly related to the notion of conditional prob-

ability in quantum mechanics, conditioning with respect to a single event.’

([Busch & Lahti, 2009], p.1)4.2

Another argument is also standardly invoked in favour of this same conclusion. Recall

that classical conditional probability, in addition to being characterized by the existence

and uniqueness theorem 2.1, is also characterized by being additive with respect to con-

ditioning events (as theorem 2.4 shows). It turns out that the probability defined by the

Lüders rule lacks this additive property and it is precisely because of this that the Lüders

rule can account for the specifically quantum interference effects. In effect, when quantum

conditioning is taken over a set of quantum events that mutually exclude each other, the

probability defined by the Lüders rule yields the interference of probabilities that is typical

of some quantum situations, as for example in the two-slit experiment we considered in

the introduction. Thus, Bub writes:

‘The natural generalization of the classical conditionalization rule

appropriate to non-Boolean possibility structure is the Lüders rule. Thus,

the ‘paradox’ involved in the two-slit experiment is resolved by showing

precisely how the assumption of a non-Boolean possibility structure explains

the existence of the ‘anomalous’ interference effects’ ([Bub, 1979b], p.224).

In this chapter we present in detail the arguments in favour of interpreting the probab-

ilities defined by the Lüders rule as conditional probabilities. We begin in sections 4.1 and

4.2 by motivating the need for an extended or generalized notion of conditional probability

in quantum mechanics; to do so we consider the difficulties that arise when one attempts

to define conditional probability by ratio or by a quantum analogue of ratio within the

structure of quantum theory. In section 4.3 we present the argument for the conditional

4.2. The page numbering refers to the paper on the web; the book in which it appears is still unpublished.
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interpretation of the probabilities defined by the Lüders rule based on its uniqueness and

existence characterization. Then, in section 4.4, we show how these probabilities fail to

be additive with respect to conditioning events and why this is taken to support their

conditional interpretation.

4.1 No Ratio Analysis in Quantum Theory

We saw in chapter 3 that, because of its non-commutative structure, quantum mechanics

does not assign joint probabilities to all pairs of quantum events; it does so for commuting

pairs, but not necessarily for non-commuting ones. We also saw that the requirement that

each pair of statistical variables in quantum theory have a joint distribution in every state

is at variance with the most fundamental and distinctive feature of quantum theory: the

use of non-commuting observables. Hence, the ratio analysis of conditional probability is

wildly at odds with the most fundamental and distinctive aspects of quantum theory.

What are the implications of this failure of the ratio analysis to provide an analysis of

conditional probability in quantum theory? Two different perspectives seem available. On

the one hand, one can hold, as we mentioned in section 2.3.3 (and developed in appendix

B), that the ratio formula is not a definition of conditional probability but an analysis of

the notion and that, moreover, it is only a partially successful analysis. Hence the failure

of ratio in quantum theory could be seen as a defect of the analysis itself. One could then

consider whether a modified version or a different analysis might adequately capture the

quantum notion of conditional probability.

On the other hand, one might argue that, regardless of ratio being a definition or an

analysis of conditional probability, to demand that the same definitions or analyses of

classical notions hold in quantum theory is utterly unreasonable – after all, if this were the

case, quantum probability theory and, hence, quantum mechanics, would not present any

novelties with respect to classical theory! And that hence, the failure of ratio in quantum

theory has no implications for a quantum notion of conditional probability. One could then

consider whether such a notion does in fact exist. A notion which, while being different in

some aspects from its classical counterpart, is sufficiently similar to it to justify calling it

an extension or a generalization of the latter.

Although both perspectives are logically possible, we focus on the latter one since

we bracket the arguments against the adequacy of the ratio formula as an analysis of

conditional probability. Moreover, as we will soon see, the characterizations of conditional

probability given in section 2.5 – in which conditional probability was defined in accordance

to the ratio analysis – will be important in evaluating whether there is a quantum notion

of conditional probability. So let us see whether such a notion exists.
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4.2 A Quantum Analogue of Ratio?

At first sight one might be tempted to define the conditional probability function in a

quantum probability space 〈H,L(H),W 〉 in strict analogy with the classical case as

PpW(P |Q)≡ pW(P ∧Q)
pW(Q)

(4.2)

for all projection operators P , Q∈L(H) and pW(P ) =Tr(WP ). For, just as the classical

probability of an event A conditional on another event B is given by their joint probability

– the probability of their intersection A∩B – divided by the probability of B, the quantum

probability of a quantum event P conditional on another quantum event Q should be given

by the probability of the event P ∧Q – the orthogonal projection onto the intersection of

the ranges of P and Q – divided by the probability of Q. In this way, one would circumvent

the difficulty with the non-existence of joint probability distributions – pW(P ∧ Q) is

defined for all projectors in L(H) – and hope to capture the core features of conditional

probability.

However, the function defined by (4.2) is not a probability measure on L(H). This

is easily seen by noticing that it is not an additive function as definition 3.1 requires.

Indeed, for every countable set of mutually orthogonal projection operators {Pi} in L(H),

additivity requires that

p(
∑

i

Pi)=
∑

i

p(Pi) (Pi Pj =0 if i� j) (4.3)

But for two orthogonal projectors P1 and P2, PpW as defined by (4.2) is not in general

additive; that is,

PpW(P1 +P2|Q)� PpW(P1|Q) +PpW(P2|Q) (4.4)

(Note, however, that since P1 and P2 are orthogonal, this poses no problem for their

unconditional probability; that is p(P1 ∨ P2) = p(P1 + P2).) This failure of additivity can

be easily seen in the following case. Let ϕ1 and ϕ2 be two orthogonal vectors in H, and ψ

an element of the subspace spanned by ϕ1 and ϕ2. Then,

(Pϕ1 +Pϕ2)∧Pψ=Pψ (4.5)

Pϕi∧Pψ= 0, for i=1, 2 (4.6)

So that,

PpW [(Pϕ1 +Pϕ2)|Pψ]≡
pW [(Pϕ1 +Pϕ2)∧Pψ]

pW(Pψ)
=
pW(Pψ)

pW(Pψ)
= 1 (4.7)

PpW(Pϕi|Pψ)≡
pW(Pϕi∧Pψ)
pW(Pψ)

= 0 (4.8)

But then,

PpW(Pϕ1 +Pϕ2|Pψ)� PpW(Pϕ1|Pψ)+PpW(Pϕ2|Pψ) (4.9)
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And additivity fails.

As we pointed out in section 2.1, additivity is the critical feature of a probability

function. In effect, for an event that is made up of sub-events which have no overlap, the

probability of the event must be the sum of the probabilities of the components. End

of story: this is what characterizes a probability function. Moreover, this requirement

seems to be fully justified for a quantum probability function since it is defined only for

orthogonal events. The non-additivity problem arises because in (4.4) PW(P |Q), as defined

by equation (4.2), applies to a further event Q, which need not be orthogonal to P1 and P2.

And hence, the differences that exist between Boolean and non-Boolean event structures

arise. Recall that we showed in example 3.1 that L(H) is not distributive; this is precisely

what precludes the function defined by equation (4.2) from being a probability function.

Indeed, if Q is not orthogonal to two orthogonal events P1 and P2

(P1 +P2)∧Q� P1∧Q+P2∧Q (4.10)

and hence

pW [(P1 +P2)∧Q]� pW(P1∧Q) + pW(P2∧Q) (4.11)

which then implies (4.9). In contrast, in a classical event structure,

(A1∪A2)∩B=(A1∩B)∪ (A2∩B) (4.12)

so that the conditional probability measure, as defined by the ratio p(A ∩ B)/p(B), is

additive.

4.3 The Lüders Rule

Hence, to define a conditional probability function in quantum theory, one needs, to begin

with, a function linking events P and Q in an additive way; it will then also have to link

them in a way which allows its interpretation precisely as a conditional probability. The

existence and uniqueness characterization of classical conditional probability (theorem 2.1)

provides the key for finding this function.

4.3.1 Existence and Uniqueness Theorem

Let us start then by defining a conditional function for projectors P 6 Q; since the sub-

lattice of projectors P 6Q, i.e. L(Q), is Boolean, this function will be defined analogously

to the classical one. Hence, define a new probability function mpW(P ) over the sub-lattice

L(Q) as

mpW(P )=
pW(P )

pW(Q)
, forP 6Q (4.13)
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The measure mpW(P ) is the probability of the event P conditional on the event Q. Note

that mpW( · ) is defined in terms of a more general probability measure pW(P ), which is

in turn defined over the whole set of quantum events L(H) as pW(P )=Tr(WP ). (This is

the only possibility as fixed by Gleason for dimH> 3.)

We now ask whether the function just defined can be extended to all L(H), that is,

whether this new probability measure can be defined over all projectors P which are not

included in Q. It just so happens that, as in the classical case, it can be extended. And,

in addition, also in a unique way.4.3 The following theorem is an existence and uniqueness

result analogue to theorem 2.1 (A proof of it is given in appendix C.)

Theorem 4.1. Existence and Uniqueness. Let Q be any projector in the lattice L(H) of

projectors of a Hilbert space H, dim(H)> 3. Let p( · ) be any probability measure on L(H),

with corresponding density operator W, such that pW(Q)� 0. For any P in L(Q) define

mpW(P ) =
pW(P )

pW(Q)
(4.14)

where pW(P ) =Tr(WP ), as fixed by Gleason’s theorem. Then,

1. mpW( · ) is a probability measure on L(Q)

2. there is an extension PW( · |Q) of mpW( · ) to all L(H)

3. the extended probability PW( · |Q) is unique and, for all P in L(H), is given by the

density operator

WQ=
QWQ

Tr(QWQ)
(4.15)

so that

PW(P |Q) =Tr(WQP ) =
Tr(QWQP )

Tr(QWQ)
(4.16)

This expression is referred to as the Lüders rule.

This theorem tells us that if one begins with a probability measure p on the whole event

space (defined through the trace rule by a density operatorW ), and defines a new probab-

ility function mpW for an event P whose range is included in the range of another event Q

as the ratio of the probabilities of each event, then this restricted probability function can

be extended to apply to all quantum events (one makes no restriction on the projectors

to which it applies, in particular, one does not require that the range of projector P be

4.3. See [Beltrametti&Cassinelli, 1981], p.288, [Cassinelli & Zanghí, 1983], [Malley, 2004], pp.13-15.
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included in the range of projector Q), this extension is unique, and it is given by the Lüders

rule.

The uniqueness here derives from the uniqueness built into the trace-density operator

rule of Gleason’s theorem, and would apply to any probability measure on L(Q), not just

the conditional one. Also note that the result depends on the use of Gleason’s theorem

to extract a density operator from the unrestricted probability measure with which we

start. That is, points 2. and 3. depend critically on the initial measure pW( · ) defined

on all projectors of L(H). This is how we get to use Gleason’s theorem: not only to

achieve uniqueness but also to define an extension to all L(H) via the density operator W

that Gleason’s theorem associates with the new probability measure PW( · |Q), namely

WQ=
QWQ

Tr(QWQ)
. If pW , and hence W , were only defined in L(Q), then in some cases one

could not define a density operator on all L(H).4.4

Recall that this was not so in the classical case. Points 1. and 2. of theorem 2.2 on

the extendability of classical probability measures depend only on the probability measure

m( · ) restricted to F(B) (the extended probability measure p(C) = m(C ∩ B) simply

assigns C the probability that corresponds to that part of C which is contained in B,

and zero value to the remaining part.) However, given that points 2. and 3. of theorem

4.2 depend critically on the initial measure pW( · ) defined on the full space, the quantum

analogue of theorem 2.2 is false.

In addition, while in the classical case both the restricted conditional probability

mp(A) =
p(A)

p(B)
and the extended probability Pp(A|B) =

p(A∩B)

p(B)
are defined as a ratio

of two unconditional probabilities, this is not so in the quantum case. The restricted

probability function mpW(P ) =
pW(P )

pW(Q)
is defined in perfect analogy to its classical coun-

terpart. However, the extended function PW(P |Q) =
Tr(QWQP )

Tr(QWQ)
is defined directly in

terms of W since it cannot be defined as the ratio of two probabilities pW . Indeed, when P

and Q do not commute the operator QWQ is not a density operator and hence the quantity

Tr(Q W Q P ) is not a probability. Rather, WQ =
QWQ

Tr(QWQ)
is the density operator that

generates the extended probability function PW(P |Q) through the trace rule Tr(WQP ).

Finally, note that contrary to the function pW (P ∧Q)

pW (Q)
considered in the previous section,

the function PW(P |Q) =
Tr(QWQP )

Tr(QWQ)
is additive, and hence a probability function. In

effect, for P1 and P2 orthogonal projectors and Q ∈ L(H), by additivity of the trace, i.e.

Tr[QWQ (P1 +P2)]=Tr(QWQP1) +Tr(QWQP2), we have

PW(P1 +P2|Q) =PW(P1|Q)+PW(P2|Q) (4.17)

4.4. For example, a non-trivial probability measures having only the values 0 and 1 in H of dimensionality 2,

cannot be extended to a higher dimensionality space since Gleason’s theorem rules out all discontinuous measures

for dimH>3. Recall our discussion on Gleason’s theorem in section 3.2.
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4.3.2 Quantum Conditional Probability with Respect to an Event

The formal results of theorem 4.1 are standardly invoked to support an interpretation of the

Lüders rule as defining the appropriate notion of conditional probability on the quantum

event structure L(H). The reasoning given is as follows:

‘... as in the classical case, the Lüders rule gives the only probability

measure that, for events P 6Q, just involves a renormalization of the [initial]

generalized probability function [pW ] given by the operator W . This offers

strong grounds for regarding it as the appropriate conditionalization rule for

generalized probability functions on L(H)’ ([Hughes, 1989], p.224, notation

adapted).

Hence the claim is that the Lüders rule

‘is the appropriate rule for conditionalizing probabilities in the non-

Boolean possibility structure of quantum mechanics.’ ([Bub, 1977] p.381)

The proposal is thus that the probabilities defined by the Lüders rule define the notion

of conditional probability in quantum mechanics:

Definition 4.1. Quantum Conditional Probability with Respect to an Event. The

probability given by the Lüders rule for two quantum events P , Q∈L(H)

PW(P |Q)=
Tr(QWQP )
Tr(QWQ)

(4.18)

is the probability of the event P conditional on event Q with respect to the probability

measure pW.

Grounds for thinking of the probabilities dictated by the Lüders rule as the natural

extension of classical conditional probabilities are also taken to appear from their behavior

in two special cases.4.5 Consider first the case when P and Q are compatible. Then the

Lüders rule straightforwardly defines classical conditional probabilities. Indeed if events

P and Q are compatible then the corresponding projection operators P and Q commute

so that PQ=QP =R, where R projects onto the intersection of the subspaces associated

with P and Q, i.e. LP ∩LQ. Inserting this into the Lüders rule, and using the invariance

of the cyclic permutations of the trace operation, we obtain:

PW(P |Q) =
Tr(QWQP )

Tr(QWQ)
=

Tr(WR)

Tr(WQ)
=
p(R)

p(Q)
=
p(LP ∩LQ)

p(LQ)
(4.19)

which is the ratio analysis of classical conditional probability. Commutativity of the pro-

jection operators is thus a sufficient condition for the probability defined by the Lüders

rule to be equal to classical conditional probability as given by the ratio analysis.

4.5. [Hughes, 1989] pp. 224-225 explicitly points this out.
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It has also been claimed that commutativity is a necessary condition for the probability

defined by the Lüders rule to be equal to classical conditional probability.4.6 However, this

does not seem correct. Indeed, given that in some cases joint distributions exist for non-

commuting operators (see section 3.4), it seems possible to equate the probability defined

by the Lüders rule to the classical definition of conditional probability in those cases. And

in these cases, the function Tr(QWQP ) would turn out (presumably) to be equivalent to

the definition of quantum joint probability distribution as given by definition 3.5.

As a second case, or rather as a particular case of the previous one, consider a composite

system with two components 1 and 2; the states of the composite system will be represented

in the tensor-product space H1 ⊗ H2.4.7 Let P1 be a projector on H1 representing a

quantum event associated with system 1, P2 a projector on H2 representing a quantum

event associated with system 2, and W the density operator on H1 ⊗H2 that represents

the state of the composite system. Here P1 and P2 commute and the joint probability of

P1 and P2 is given by

p(P1, P2)=Tr[W (P1⊗P2)] (4.20)

and the probabilities of the individual events are given by

p(P1) =Tr[W (P1⊗ I2)] and p(P2) =Tr[W (I1⊗P2)] (4.21)

One can then show4.8 that the probabilities dictated by the Lüders rule behave exactly as

in the classical case:

PW(P1|P2) =
pW(P1, P2)

pW(P2)
(4.22)

To finish this section, we consider the probability defined by the Lüders rule for a system

in a pure state represented by the vector ψ. We show how (4.18) reduces to

Pψ(P |Q) =

〈

Qψ

||Qψ‖ , P
Qψ

||Qψ‖

〉

(4.23)

where writing ψQ=
Qψ

‖Qψ‖ , we have

Pψ(P |Q)= pψQ(P ) = 〈ψQ, P ψQ〉 (4.24)

Indeed, if the initial state of the system is in a pure state ψ, then (4.18) yields WQ =
QPψQ

Tr(QPψQ)
. Now, for any vector φ

(QPψQ) φ=QPψ (Qφ)=Qψ 〈ψ, Qφ〉=Qψ 〈Qψ, φ〉=PQψφ=PψQ′ φ (4.25)

with ψQ
′ =Qψ. In addition,

Tr(QPψQ) =Tr(PQψ) =
∑

j

〈φj, PQψφj〉= 〈Qψ, Qψ〉= ‖Qψ‖2 = ‖ψQ′ ‖2 (4.26)

4.6. [Butterfield, 1987] p.219

4.7. For the quantum formalism for composite systems see, for example, [Ballentine, 1998].

4.8. P(P1|P2) =
Tr[(I1 ⊗P2)W (I1 ⊗P2) (P1 ⊗ I2)]

Tr[W (I1 ⊗P2)]
=

Tr[W (I1 ⊗P2) (I1 ⊗P2) (P1 ⊗ I2)]

Tr[W (I1 ⊗P2)]
=

Tr[W (P1 ⊗P2)]

Tr[W (I1 ⊗P2)]
=
p(P1, P2)

p(P2)
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Hence, WQ=PψQ′ /‖ψQ
′ ‖2. This expression can be further simplified. For any vector φ

WQφ=
PψQ′

‖ψQ′ ‖2
φ=

ψQ
′

‖ψQ′ ‖

〈

ψQ
′

‖ψQ′ ‖
, φ

〉

= ψQ 〈ψQ, φ〉=PψQφ with ψQ=
ψQ

′

‖ψQ′ ‖
(4.27)

So Tr(WQP ) =Tr(PψQP ). But Tr(PψQP ) = 〈ψQ, P ψQ〉 – see (3.11) – and hence (4.24).

Definition 4.2. Quantum Conditional Probability with Respect to an Event for

Pure States. The probability given by the Lüders rule for two quantum events P ,Q∈L(H)

Pψ(P |Q) =

〈

Qψ

||Qψ‖ , P
Qψ

||Qψ‖

〉

(4.28)

is the probability of the event P conditional on event Q with respect to the probability

measure pψ given by a pure state ψ.

As before, if W = Pψ, for P1 and P2 orthogonal projectors and Q ∈ L(H), additivity

holds for Pψ(P |Q). By linearity of the scalar product, i.e. 〈ψQ, (P1 + P2) ψQ〉 = 〈ψQ,
P1 ψQ〉+ 〈ψQ, P2 ψQ〉, we have

Pψ(P1 +P2|Q) =Pψ(P1|Q) +Pψ(P2|Q) (4.29)

4.4 Non-Additivity and Interference

In section 2.4 we showed that classical conditional probability with respect to an event

is characterized both by an existence and uniqueness theorem – theorem 2.1 – and by its

being additive with respect to conditioning events – theorems 2.3 and 2.4. In the previous

section we saw that the quantum analogue of theorem 2.1, namely theorem 4.1, serves to

characterize quantum conditional probability with respect to an event. However, trouble

arises if we try to carry the additivity characterization to a quantum probability space.

Indeed, let {Qi} be a countable orthogonal set of elements of L(H) such that
∑

i
Qi=

Q, that is, event Q is split into a set of physical events that mutually exclude each other.

Then, unlike the classical case, there is not a unique probability measure on L(H) which

coincides with PW( · |Q) for each Qi. Only if the density operator W commutes with

each Qi, can one single out quantum conditional probabilities that behave classically with

respect to the splittings of the conditioning event.4.9 And hence the probabilities defined

by the Lüders rule are in general non-additive when we consider conditioning with respect

to an event that is the sum of orthogonal events. That is,

PW(P |Q)�∑
i

PW(P |Qi) (4.30)

4.9. [Cassinelli & Zanghí, 1984] theorem 2, p.144.
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However, defenders of the conditional interpretation of the probabilities defined by the

Lüders rule do not see any problem in this non-additive feature. On the contrary, they

hold that quantum conditional probabilities differ from their classical counterparts exactly

in the way they should. For precisely because of their non-additive character one can

replace classical conditional probabilities by quantum conditional probabilities and obtain

the quantum statistics. Indeed, in (4.30) there appears an extra term which is responsible

for the non-additivity, and which precisely yields the interference of probabilities that is

typical of some quantum situations in which the occurrence of the event Q is not drawn

back to the occurrence of the single events Qi that compose it.

Suppose, for simplicity, that the quantum system is the pure stateW =Pψ, with ψ∈H,

and let Q=
∑

i
Qi, with ‖Qi‖2 � 0 for all i and QiQj = 0, if i � j. For a pure state, the

probability of event P conditional on Q is given by definition 4.2. Setting Qiψ

||Qiψ‖ = ψQi, a

straightforward calculation yields:

PW(P |
∑

i

Qi) =
∑

i

(

‖Qiψ‖
‖Qψ‖

)2

PW(P |Qi) +
∑

i� j ‖Qiψ‖ ‖Qjψ‖
‖Qψ‖2

〈

ψQi, P ψQj
〉

(4.31)

Contrary to the classical case, expression (4.31) says that the conditioned state

PW(P | ∑
i
Qi) is not a mixture of the probability measures PW(P |Qi). Rather

PW(P | ∑
i
Qi) is the sum of two parts: the first part contains the diagonal terms and

is the exact transcription of the classical form (2.27); the second part contains the off-

diagonal terms, which are the typical quantum interference terms, and is responsible of

the fact that the state PW(P |∑
i
Qi) is not a mixture. Note that for the interference

term to be zero P and Q have to commute in state ψ. If this is the case, then PQiψ=QiPψ

and there exists a common basis of eigenvectors for Q and P so that
〈

ψQi, PψQj

〉

=0.4.10

To conclude, quantum conditioning, when conditioning is taken over the orthogonal

decomposition of the conditioning event, yields interference terms, thus sharply distin-

guishing it from classical conditioning. Precisely because of their non-additive character

one can replace classical conditional probabilities by quantum conditional probabilities and

obtain the quantum statistics. Thus Cassinelli and Zanghí write:

‘... the generalized conditional probability maintains all the character-

izing features of the classical one and, at the same time, it introduces typical

quantum effects. The essential point is that, in the non-commutative case

the «theorem of compound probabilities» [or, equivalently, additivity with

respect to conditioning events,] does not hold’ ([Cassinelli & Zanghí, 1984],

p.244)

4.10. If P and Q commute then
〈

ψQi
, P ψQj

〉

∼ 〈Qiψ, P Qj ψ〉 = 〈Qiψ, Qj P ψ〉, and there exists a common

basis of eigenvectors for Q and P so that Pψ∼ ψ. Thus 〈Qiψ, QjPψ〉 ∼ 〈Qiψ, Qjψ〉=0 for i� j.
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In the next subsection, we present two concrete physical examples of how the Lüders

rule yields the correct probabilistic predictions when interference effects are present.4.11

4.4.1 Stern-Gerlach Series Experiment

Consider a spin-1 particle and two Stern-Gerlach devices that separate the possible values

of the spin component, viz. − 1, 0, 1, along the x- and y- axis, as given in figure 4.1.

Figure 4.1. A Stern-Gerlach series experiment with interference.

Let Q be the event ‘the x-component is 0 or 1’ and let P be the event ‘the y-component

is +1’. We have Q=Q1 +Q2, where Q1 and Q2 are the events ‘the x-component is +1’

and ‘the x-component is 0’, respectively, i.e. Q1 =Sx+1 and Q2=Sx0, and P =Sy+1. Then

Pψ(Psy+1
|Psx+1

+ Psx0) =

(

‖Psx+1
ψ‖

‖(Psx+1
+Psx0) ψ‖

)2

Pψ(Psy+1
|Psx+1

) +

(

‖Psx0 ψ‖
‖(Psx+1

+Psx0) ψ‖

)2

Pψ(Psy+1
|Psx0) +

‖Psx+1
ψ‖ ‖Psx0 ψ‖

‖(Psx+1
+Psx0) ψ‖2 Re

〈

Psx+1
ψ

||Psx+1
ψ‖ ,

Psy+1

Psx0 ψ

||Psx0 ψ‖

〉

(4.32)

gives precisely the empirical probability of getting the system in the Sy+1 channel after

having passed through the Sx Stern-Gerlach device. Thus, Pψ(P |Q)=Pψ(Sy+1|Sx+1+Sx0)

is interpreted as the probability that ‘the y-component of spin is + 1’ conditional on

the event that ‘the x-component of spin is 0 or 1’. Quantum conditioning as defined by

the Lüders rule thus yields the appropriate interference terms and allows one to replace

classical conditional probabilities by quantum conditional probabilities.

Note, however, that if one were to draw back the occurrence of event Q to the occur-

rence of the single events Qi that compose it, the interference terms would vanish. Indeed,

imagine that the channels emerging from the first Stern-Gerlach apparatus are made totally

independent. That is, consider the experiment given in figure 4.2.

4.11. [Beltrametti & Cassinelli, 1981] pp. 281-285.
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Figure 4.2. A Stern-Gerlach series experiment with no interference.

Then only the first part of (4.32), that is, the quantum transcription of the classical

conditional probability (2.27), would result. In effect

Pψ(Sy+1|Sx+1 + Sx0) =

( ‖Sx+1ψ‖
‖(Sx+1 +Sx0)ψ‖

)2

Pψ(Sy+1|Sx+1) +
(

‖Sx0 ψ‖
‖(Sx+1 +Sx0) ψ‖

)2

Pψ(Sy+1|Sx0) (4.33)

gives the probability of getting the particle in the Sy+1 channel in this experiment. And

hence (4.33) gives the probability that ‘the y-component of spin is +1’ conditional on the

event that ‘the x-component of spin is 0’ or ‘the x-component of spin is 1’.

4.4.2 The Double Slit Experiment

The double-slit experiment provides another physical example of such a situation. In this

experiment the event with respect to which conditioning occurs is the passage of the

particle through the double slit and no attempt is made to verify which slit the particle

has passed through. Let us consider again this experiment. Recall that we showed in the

introduction how an analysis in terms of pro rata conditional probabilities does not provide

an adequate description of the experiment if the two slits are open. Indeed, it yields that

Pp(R|A∪B) =
1
2
Pp(R|A)+

1
2
Pp(R|B) (4.34)

(for p(A)= p(B) corresponding to the most simple experimental arrangement). In contrast,

an analysis in terms of the Lüders rule does yield the correct probabilistic predictions.

Consider first the experiment with only one slit open. Imagine a free particle traveling

toward the S1 screen in the direction of the x-axis with constant velocity v, which then

reaches the detecting screen S2 (see figure 4.3). A common simplifying approximation is

to treat classically the motion along the x-axis. Let t=0 the instant at which the particle

reaches S1, and t=τ the instant at which it reaches S2; adopt an inertial frame of reference

in which the particle has no velocity along the x-axis. Thus we have just to consider the

position along the y axis.
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Figure 4.3. Reference frame for double slit experiment.

The conditional probability that the y-coordinate of the particle has a value in the

(Borel) set R on the screen S2 at time t= τ , given that it was localized in the interval A

on the screen S1 at time t=0, is given by the Lüders rule as

PW(PR, t= τ |PA, t=0) (4.35)

where W is the state of the incoming particle. We suppose that W is a pure state with

density operator Pψ, and that the y-coordinate of the particle has a non-vanishing prob-

ability of having a value in A at time t=0:

〈ψ,PAψ〉= ‖PAψ‖2� 0 (4.36)

Using the expression for quantum conditional probability for pure states given by definition

4.2, we get:4.12

Pψ(PR, t= τ |PA, t=0) = 〈UτψA , PRUτψA〉=

∫

R

|UτψA(y)|2 d y (4.37)

where Uτ is the free evolution operator in L(H) from t=0 to t= τ (i.e. from screen S1 to

S2), and ψA=
PAψ

‖PAψ‖
. Equation (4.37) gives the probability that the particle arrives at the

the region R on the detecting screen when only slit A is open. The claim is that Pψ(PR,

τ |PA, 0) is the probability that the particle arrives at R on S2 conditional on localization

to the range A on S1.

Similarly, if only slit B is open, we have that

Pψ(PR, t= τ |PB , t= 0) = 〈UτψB , PRUτψB〉=

∫

R

|UτψB(y)|2 d y (4.38)

4.12. Pψ(PR, t= τ |PA, t= 0) = Tr
([

Uτ
PAPψPA

Tr(PψPA)
Uτ

−1
]

PR

)

=
Tr(PAPψPA Uτ

−1PRUτ)

Tr(PψPA)
. Using that PA Pψ PA=

PPAψ, Tr(PψPA)=‖PAψ‖2 and that Tr(PPAψ Uτ
−1PRUτ)= 〈PAψ,Uτ−1PRUτPAψ〉, as well as writing ψA=

PAψ

‖PAψ‖
we get Pψ(PR, t= τ |PA, t= 0)= 〈UτψA , PRUτψA〉.
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with ψB =
PBψ

‖PBψ‖ . Equation (4.38) gives the probability that the particle arrives at the

the region R on the detecting screen when only slit B is open. The claim is that Pψ(PR,

τ |PB , 0) is the probability that the particle arrives at R on S2 conditional on localization

to the range B on S1.

Let us now turn to the third experiment in which the two slits are open. We make the

same simplifying assumptions about the motion along x; let Pψ be the density operator

of the initial pure state ψ, and let ‖PA ψ‖2 � 0, ‖PB ψ‖2 � 0. We are interested in the

conditional probability that the y-coordinate of the particle has values in the (Borel) set

R of the screen S2 at time t= τ , given that it was localized in the set A∪B of the screen

S1 at time t=0. That is,

Pψ(PR, t= τ |PA∪B , t= 0) (4.39)

Noting that A∩B= ∅ and thus that PA∪B=PA+PB, we get4.13

Pψ(PR, t= τ |PA∪B , t= 0)=

∫

R

|Uτ (CAψA+CBψB)|2 d y (4.40)

where

CA=
‖PAψ‖

‖(PA+PB) ψ‖ , CB=
‖PBψ‖

‖(PA+PB) ψ‖ (4.41)

Equation (4.40) thus gives the probability that the particle arrives at the the region R on

the detecting screen when both slits are open. Again, the claim is that Pψ(PR, τ |PA∪B ,0)

is the probability of arrival at R on S2 conditional on localization to the range A∪B on S1.

The probability of arrival at R with both slits open can be expressed in terms of the

probabilities of arrival at R with only one slit open as

Pψ(PR, τ |PA∪B , 0) =Pψ(PR, τ |PA, 0) +Pψ(PR, τ |PB , 0) + I (4.42)

where the interference term I given by

I = 2CACBRe
∫

R

UτψA(y) UτψB(y) dy (4.43)

which is different from zero if τ � 0.

4.13. First, Pψ(PR, t = τ |PA∪B, t = 0) = Pψ(PR, t = τ |(PA + PB), t = 0) =

Tr
([

Uτ
(PA+PB)Pψ (PA+PB)

Tr[Pψ (PA+PB)]
Uτ

−1
]

PR

)

=
Tr[(PA+PB)Pψ (PA+PB) Uτ

−1
PRUτ)

Tr[Pψ (PA+PB)]
. Using that (PA + PB) Pψ (PA +

PB) = P(PA+PB)ψ and that Tr[Pψ (PA + PB)] = ‖(PA + PB)ψ‖2, we have
Tr[(PA+PB)Pψ (PA+PB) Uτ

−1PRUτ)

Tr[Pψ (PA+PB)]
=

Tr(P(PA+PB)ψ Uτ
−1PRUτ)

‖(PA+PB)ψ‖2
, which, in turn, is equal to

〈(PA+PB) ψ, Uτ
−1PRUτ (PA+PB)ψ〉

‖(PA+PB) ψ‖2
. Now

(PA+PB) ψ

‖(PA+PB) ψ‖ =

‖PAψ‖
‖(PA+PB) ψ‖

PAψ

‖PAψ‖ +
‖PBψ‖

‖(PA+PB) ψ‖
PBψ

‖PBψ‖ = CA ψA + CB ψB, with CA =
‖PAψ‖

‖(PA+PB) ψ‖ , CB =
‖PBψ‖

‖(PA+PB) ψ‖

so that
〈

(PA+PB) ψ

‖(PA+PB) ψ‖ , Uτ
−1

PR Uτ
(PA+PB) ψ

‖(PA+PB)ψ‖

〉

is equal to
〈

CA ψA + CB ψB, Uτ
−1

PR Uτ (CA ψA + CB ψB)
〉

.

And hence Pψ(PR, t= τ |PA∪B, t= 0)=

〈

Uτ (CAψA+CBψB) , PRUτ (CAψA+CBψB)

〉

.
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The distribution pattern one obtains for the experiment when both slits are open, i.e.

Pψ(PR, τ |PA∪B , 0), is thus not the sum of the patterns when only one or the other slit

is open, i.e. Pψ(PR, τ |PA, 0) + Pψ(PR, τ |PB , 0), but also contains the interference term

I , which is a peculiar quantum effect and is responsible for the empirical fact that the

probability of finding the particle in R is not the sum of the probabilities that one would

have for each slit separately. Note that the occurrence of the quantum superposition

CAψA+CBψB in (4.40) is here a clear consequence of the calculus of the probabilities by

means of the Lüders rule, and is directly responsible for the existence of the interference

term.

4.5 Conclusion

In this chapter we have considered the main arguments in favour of the interpretation of

the probability given by the Lüders rule as defining conditional probability with respect

to an event in quantum probability theory. The claim is that PW(P |Q) =
Tr(QWQP )

Tr(QWQ)
, for

P , Q ∈ L(H), is to be interpreted as the probability of the event P conditional on event

Q with respect to the initial probability measure pW . The two main arguments for this

interpretation are, first, that it is the only probability measure over the whole quantum

event structure L(H) which agrees with classical conditional probabilities for compatible

events. And second, that in the cases in which quantum interference effects are present,

the probabilities defined by the Lüders rule differ from their classical counterparts exactly

in the way they should. Precisely because of their non-additive character, one can replace

classical conditional probabilities by quantum conditional probabilities and obtain the

quantum statistics. In the next chapters we evaluate the validity of these arguments.

60 Quantum Conditional Probability



Chapter 5

Interpreting Quantum Conditional
Probability I

In the previous chapter we showed why the Lüders rule is standardly taken as defining the

notion of conditional probability with respect to an event in quantum probability theory.

The quantum notion agrees with its classical counterpart when it applies to compatible

events but differs from it when incompatible events are involved. In these cases, it cannot

be interpreted as a classical conditional probability but is rather seen as providing an

extension of this notion appropriate to the quantum context. As such, it presents features

which are different from those of classical conditional probability.

For example, suppose we have a spin 1

2
particle in a state corresponding to a positive

value of spin along the z-axis, i.e. ψs+z. Then, the probability for the event P = Ps+z

corresponding to a positive value of spin along the z-axis, as given by (3.5), is one, i.e.

pψ(Ps+z)= 〈ψs+z, Ps+zψs+z〉= |〈ψs+z |ψs+z〉|2 =1 (5.1)

What is the probability for this same event conditional on another event Q such that

pW(Q)� 0, say Q=Pφ, with φ= aψs+z+ bψs−z?5.1 Intuitively, it should also be equal to

one. For since the unconditional probability of P is already one, then considering Q, where

pW(Q) � 0, should leave this value unaltered. This intuition is preserved by the classical

notion of conditional probability and, in particular, is secured by the ratio analysis. Indeed,

in a classical probability space, if p(A)=1 then any other event B such that its intersection

with A is zero – and hence such that p(B) = 0 – is ruled out. In all other cases – those in

which p(B)� 0 – the ratio analysis yields Pp(A|B) = 1.5.2

5.1. For Q=Pφ, φ=aψs+z
+ bψs−z

(|a|2+ |b|2=1) and ψ=ψs+z, (3.5) yields pψ(Q)= |〈φ|ψs+z〉|2= |a|2. Hence,

pψ(Q)� 0 if a� 0.

5.2. There are three possible cases:

(i) if B ⊆A then A∩B=B and Pp(A|B)=
p(A∩B)

p(B)
=
p(B)

p(B)
= 1.

(ii) if A⊂B then A∩B=A and Pp(A|B)=
p(A∩B)

p(B)
=
p(A)

p(B)
. But given p(A)=1, then p(B)=1 (where the part

of B that is different from A , i.e Ac−Bc, is assigned a zero probability). So Pp(A|B)= 1.

(iii) if A∩B=C � 0 then Pp(A|B)=
p(A∩B)

p(B)
=
p(C)

p(B)
. But given p(A)=1, then p(C)= p(B). So Pp(A|B)=1.
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However, this is not so for the probabilities defined by the Lüders rule. The probability

Pψ(Ps+z |Pφ) given by definition 4.2, is not assigned the value one as the unconditional

probability pψ(Ps+z). Rather it can range from 0 to 1 depending on the value of a given

that5.3

Pψ(Ps+z|Pφ)= |a|2 (5.2)

Moreover, the probability Pψ(Ps+z |Pφ) should seemingly not take any value different from

zero, be it one or any other value. For Ps+z and Pφ seem to have nothing in common since

the intersection of their ranges is zero. And hence the conditional probability of Ps+z given

Pφ should be zero.

How do we then understand these new features of the quantum notion of conditional

probability? That is, what does it mean to say that the probability PW(P |Q) defined by

the Lüders rule gives the probability of the quantum event P conditional on the quantum

event Q for incompatible events? Perhaps it may not even be possible to interpret it, after

all, as a conditional probability. For the fact that it agrees with its classical counterpart in

their shared domain of application, i.e. compatible events, does not necessarily guarantee

that outside this domain, i.e. incompatible events, the two notions will have the same

meaning; and this regardless of the fact that the probability defined by the Lüders rule is

the only possible candidate for a quantum notion of conditional probability (recall theorem

4.1). Indeed, when extending concepts, it is important to keep in mind that, while there

may be some similarities between the old and the extended concept, it is critical to evaluate

whether these similarities can provide enough interpretive content so as to justify regarding

the concept in the new domain as an extension or a generalization of the old one.

Hence, the question arises as to whether the probability defined by the Lüders rule can

be interpreted as a genuine extension of the notion of classical conditional probability to

the quantum context. In this chapter we consider this question and thus evaluate whether

the arguments presented in the previous chapter provide enough interpretive content for

its reading as a conditional probability.

In section 5.1 we argue that, if the probability defined by the Lüders rule is to be

understood as a conditional probability for incompatible quantum events, it cannot rely on

the classical notion of commonality in terms of subspace intersection. Rather, one needs

a notion of commonality which can first, cope with the fact that PW(P |Q) is in general

non-zero for events P and Q such that the intersection of their ranges is zero, and second,

5.3. Given ψQ=
Qψ

‖Qψ‖ =
Pφψs+z

‖Pφψs+z‖
= φ, Pψ(P |Q)= 〈ψQ, PψQ〉= 〈φ, Ps+zφ〉= |〈φ|ψs+z〉|2 = |a|2.
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determine the particular non-zero value which the Lüders rule actually assigns PW(P |Q).

In section 5.2 we provide such a rationale, although, we argue, the notion of conditional

probability it yields – what we call ‘synchronic projective quantum conditional probability’

– is rather weak and counterintuitive.

Then, in sections 5.3 and 5.4, we consider whether this same rationale can be trans-

lated for the eigenvalues p and q associated with the projection operators P and Q. For,

we argue, that the projective reading, however poor and unsatisfactory, is a physically

adequate interpretation of the probability defined by the Lüders rule only in so far as it

can underwrite a quantum notion of conditional probability in terms of the physically

meaningful values p and q. We show that this is not possible; that is, that the mathematical

notion of quantum conditional probability afforded by the projective reading – a notion

which applies to mathematical projection operators P and Q – does not translate into

a physical notion of quantum conditional probability – a notion which applies to their

corresponding physical values p and q – when P and Q are incompatible projectors. And

hence we conclude that the probability PW(P |Q) defined by the Lüders rule cannot be

understood (from a physically meaningful perspective) as an extension of the notion of

conditional probability to the quantum context.

5.1 A First Look I

Let us begin by considering some requirements which seem to be essential for any condi-

tional probability function to be regarded as such. We write this conditional probability

as P(A|B) but do not commit ourselves to the ratio analysis, the Lüders rule or any

other analysis of this notion; the idea is to characterize the intuitive notion of conditional

probability, irrespective of how the notion should be analyzed. These basic requirements

are the following:

1. The probability of any event given itself must be one, i.e. P(A|A)= 1.

2. The probability of the complement of any event given the event itself must be zero,

i.e. P(Ac|A) = 0.

3. The probability of a necessarily true event T (e.g. the whole event space) given any

event A must be one, i.e. P(T |A)= 1.

4. The probability of a necessarily false event F (e.g. the null event) given any event

A must be zero, i.e. P(F |A) = 0.
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Alan Hájek, considering different intuitions concerning the values of conditional probabil-

ities, writes:

‘1-4 are alike in being extreme cases, and in being not merely true but

necessarily true. That is, all [conditional] probability functions should agree

on them. They are non-negotiable in the strongest sense.’ ([Hájek, 2008] p.4)

It is easy to show that the previous four basic requirements hold for the probabilities

defined by the Lüders rule as PW(P |Q) =
Tr(QWQP )

Tr(QWQ)
. (Of course, they also hold for the

conditional probabilities defined by the standard ratio formula.) In effect,

1. PW(P |P ) = 1: the probability of any event P given itself is one given that

Tr(PWPP ) =Tr(PWP ), and hence PW(P |P ) =
Tr(PWP )

Tr(PWP )
=1 for all P ∈L(H).

2. PW(P⊥|P ) = 0: the probability of the orthogonal complement P⊥ of any event is

zero given that PP⊥=0 and hence Tr(PWPP⊥) = 0 for all P ∈L(H).

3. PW(PI |P ) = 1: the probability of the necessarily true event PI, i.e. the identity

event, given any event P is one given that Tr(P W PPI) = Tr(P W P ), and hence

PW(PI |P ) =
Tr(PWP )

Tr(PWP )
=1 for all P ∈L(H).

4. PW(P∅|P ) = 0: the probability of the necessarily false event P∅, i.e. the null event,

given any event P is zero given that P P∅ = 0 and hence Tr(P W P P∅) = 0 for all

P ∈L(H).

Note, however, the fact that these requirements hold for the quantum probabilities

PW(P |Q) should come as no surprise. For in all four cases the events involved are compat-

ible and hence the quantum probabilities are identical to classical conditional probabilities.

Indeed, the possible differences between classical and quantum conditional probability

arise precisely for incompatible events, which are the distinctively quantum events. And

it is in these cases that we need to consider how – or whether – quantum conditional

probability can be thought of as a conditional probability.5.4

5.4. Note that this remark also applies to the two special cases we saw in section 4.3.2 in which the probabilities

defined by Lüders rule behave like classical conditional probabilities and which (supposedly) gave additional grounds

for thinking of them as conditional probabilities. Note also that that Fuchs uses the latter case in [Fuchs, 2002a]

pp.34-35 to seemingly show how neatly quantum updating works in the EPR type cases. But this comes as no

surprise given that the projectors are compatible: in a case of commuting operators the Lüders’ rule straightforwardly

becomes Bayesian updating. The challenge is when the operators don’t commute! See section 7.7 for a detailed

discussion of Fuchs’ analysis.
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So let us consider the Lüders rule for incompatible events. Take again the example

of a spin 1

2
particle in state ψs+z. The quantum events P = Ps+z, and Q = Pφ, where

φ = a ψs+z + b ψs−z, are incompatible if a and b are different form zero. As before, the

conditional probability of P given Q should seemingly be zero because these projectors

have nothing in common given the intersection of their ranges is zero. And yet the Lüders

rule yields a value which in general is different from zero, namely

Pψ(P |Q)= |a|2 (5.3)

Only if a or b are zero – in which case P and Q are compatible – will the intuitive

notion of conditionality agree with the probability dictated by the Lüders rule: if a = 0,

Q = Ps−z, P Q = Q P = 0, and hence Pψ(P |Q) = 0; and if b = 0, P = Q = Ps+z and

Pψ(P |Q) =Pψ(P |P ) = 1.

However, note that we have so far assumed that if the intersection of the ranges of two

events P and Q is zero, then these events should be regarded as having nothing in common.

But to what extent is this claim really justified? Indeed, in a classical probability space

two events have nothing in common if their intersection is the empty set, i.e. A ∩B = ∅,
in which case their conditional probability P(A|B) is necessarily zero. Thus, the second

basic requirement for a conditional probability function, namely P(Ac|A) = 0, is simply a

particular case of this general fact when B=Ac. In general, when A∩B= ∅, the event B

will be a subset of Ac, i.e B ⊆Ac, and their conditional probability will be zero.

In contrast, in quantum probability theory the fact that the second basic requirement

holds, namely PW(P⊥|P ) = 0, is not a particular case of a more general situation in

which PW(P |Q) = 0 if the intersection of the ranges of P and Q is zero with P = Q⊥.

Rather, PW(P |Q) is in general non-zero for events P and Q such that the intersection

of their ranges is zero; in our example the probability given by equation (5.3) is simply a

particular example of this general fact. Hence, if PW(P |Q) is to be generally understood

as a conditional probability, we cannot appeal to a notion of commonality tied to the

intersection of the ranges of P and Q.

Similarly, consider the intuition that if the probability of an event A is one, then the

probability of that same event given any other event (whose probability is not zero) must

also be one. In classical probability theory this is true because p(A) = 1 automatically

rules out any other event B that has nothing in common with A, i.e. any B such that

A∩B=0. And hence p(A|B)=1 for every possible B. Or equivalently, if the probability

of an event A is one, events B such that A ∩ B = 0 are not ruled out but are assigned a

zero probability. And hence P(A|B)= 0 for B such that p(B)= 0, and P(A|B)= 1 for B

such that p(B)� 0.5.5
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However, again, this is not so in quantum probability theory. There can be events P

which are assigned a probability one without this implying that all other events Q such

that the intersection of their ranges with that of P is zero, are assigned a zero probability.

As we have already seen, for a spin 1

2
particle in state ψs+z and events P =Ps+z, Q=Pφ,

where φ= a ψs+z + b ψs−z, even if pψ(P ) = 1 and P ∧ Q= 0, the probability assigned to

Q, namely pψ(Q) = |a|2, is different from zero for a� 0. One cannot, therefore, appeal to

the intuition that if pW(P ) = 1, any event Q such that P ∧ Q = ∅ should be assigned a

zero probability (on account of having nothing in common with P ), and thus ensure that

PW(P |Q)=1 for the Q’s such that P ∧Q� ∅. This only holds if P is the identity operator:

in this case there are no Q such that Q ∧ PI = ∅ (because Q ∧ PI = Q for all Q ∈ L(H)

(excluding Q = ∅)); and thus PW(PI |Q) = 1, which is the third basic requirement for a

conditional probability function.

To conclude, if the probability defined by the Lüders rule is to be understood as a condi-

tional probability for general quantum events, one cannot think of a notion of commonality

between projectors in terms of the intersection of their subspaces. One needs a new notion

of commonality which can cope with the fact that PW(P |Q) is in general non-zero for

events P and Q such that the intersection of their ranges is zero. Moreover, not only does

this notion need to explain why one should assign PW(P |Q) a non-zero value; it should

also determine the particular non-zero value which the Lüders rule actually assigns it.

As a final remark, note that the fact that a notion of commonality based on subspace

intersection cannot underwrite a quantum notion of conditional probability was to be

expected. Indeed, this notion corresponds to the definition of conditional probability given

in (4.3) as the ratio pW (P ∧Q)

pW (Q)
, which we showed does not define a probability function over

the quantum event structure L(H) due to its non-additive character.

We also showed that this non-additivity is a direct consequence of the non-Boolean

structure of L(H). Hence, what we did in the above examples was to consider particular

pairs of events P and Q which exhibit this non-Boolean character, namely incompatible

events, and which thus raise difficulties for the interpretation of the ratio pW(P ∧Q)

pW (Q)
as a

5.5. This reading may seem somewhat counterintuitive from a diachronic perspective. For example, if for a

throw of a die the result ‘1’ is assigned a probability one, then ‘1’ is the case and the result ‘2’ cannot occur. Hence,

the probability of ‘1’ given ‘2’ might seem to make no sense. However this is not so; P(1|2) = 0, where p(2) = 0,

can be understood in terms of the counter-factual had ‘2’ been the case – which it has not since p(2) = 0 – then

the probability of ‘1’ given ‘2’ would have been zero. Note that the ratio analysis cannot yield this value for it is

undefined if p(B)=0. This is an instance of the zero denominator problem we considered in appendix B: contingent

propositions – such as B = ‘2’ – may be assigned probability zero, and yet it is legitimate to form conditional

probabilities with them as conditionals.
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conditional probability. In other words, the value we assigned to the conditional probability

of the various pairs of P ’s and Q’s appealed to intuitions based on Boolean relations

between events; this value was thus necessarily in conflict with the value assigned to these

pairs by the Lüders rule, a probability assignment for two events which is tailor-made for

a non-Boolean event structure.

In the next section we look for a new notion of commonality between quantum events,

one which is more appropriate for their non-Boolean structure, and which thus might serve

to underwrite a notion of conditional probability fitting the probabilities defined by the

Lüders rule.

5.2 Quantum Conditional Probability

To consider whether such a notion of commonality exists, let us begin by examining the

probabilities defined by the Lüders rule in a concrete example.

Example 5.1. Incompatible Observables. Suppose a system in a generic state given by

ψ= c1 β1 + c2 β2 + c3 β3 (5.4)

where |c1|2 + |c2|2 + |c3|2 =1, and consider two observables given by operators:

A= a1Pα1 + a2Pα2 + a3Pα3 (5.5)

B= b1(Pβ1 +Pβ3) + b2Pβ2 (5.6)

where

α1 =
β1 + β2

2
√ , α2 =

β1− β2

2
√ , α3 = β3 (5.7)

Initially state ψ assigns probabilities to the quantum projectors Pαi as in (3.7), i.e.

pψ(Pαi) = 〈ψ, Pαiψ〉= |〈αi|ψ〉|2 (5.8)

Hence,

pψ(Pα1)=
1
2

(|c1|2 + |c2|2)

pψ(Pα2) =
1
2

(|c1|2 + |c2|2)
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pψ(Pα3) = |c3|2 (5.9)

Given the e-e link, each projector Pαi corresponds to a value of observable A, namely the

eigenvalue ai, and we can think of the probabilities pψ(Pαi) as the probabilities for each

value ai. In contrast, not every projector Pβi corresponds to a possible value of observable

B; rather projector Pβ1 + Pβ3 corresponds to the value b1 and projector Pβ2 corresponds

to the value b2. We calculate the probabilities for these two projectors as pψ(Pβi) = 〈ψ,
P βiψ〉= |〈βi|ψ〉|2, i.e.

pψ(Pβ1 +Pβ3) = |c1|2 + |c3|2

pψ(Pβ2)= |c2|2 (5.10)

Given the e-e link, theses probabilities are, respectively, interpreted as the probability for

value b1 and for value b2.

The probability assignments dictated by the Lüders rule for Pψ(Pαi|Pβ1 + Pβ3) are

given by definition 4.2 as pψPβ1+Pβ3
(Pαi)= |〈αi|ψPβ1+Pβ3〉|

2 with ψPβ1+Pβ3=
c1

|c1|2 + |c3|2
√ β1+

c1

|c1|2 + |c3|2
√ β3, i.e.

Pψ(Pα1|Pβ1 +Pβ3)=
1
2

|c1|2
|c1|2 + |c3|2

Pψ(Pα2|Pβ1 +Pβ3)=
1
2

|c1|2
|c1|2 + |c3|2

Pψ(Pα3|Pβ1 +Pβ3) =
|c3|2

|c1|2 + |c3|2
(5.11)

The question we want to consider is how to understand the probabilities Pψ(Pαi|Pβ1+Pβ3)

given in (5.11) as the conditional probabilities of the various events Pαi conditional on

event Pβ1 +Pβ3.

Let us begin with an easy case, that of Pψ(Pα3|Pβ1+Pβ3). Given that Pα36 (Pβ1+Pβ3)

– recall α3 = β3 – the probability of Pα3 conditional on Pβ1 + Pβ3 is simply the pro rata

increase of the initial probability of Pα3. Thus, given (5.9) and (5.10), we have that

p[Pα3 given (Pβ1 +Pβ3)]=
pψ(Pα3)

pψ(Pβ1 +Pβ3)
=

|c3|2
|c1|2 + |c3|2

(5.12)

This value is the same as that prescribed by the Lüders rule in (5.11). Hence Pψ(Pα3|Pβ1+

Pβ3) can be straightforwardly interpreted as the conditional probability of a3 given b1. This

was, however, to be expected, for events (Pβ1 + Pβ3) and Pα3 are compatible, and hence

the probabilities dictated by the Lüders rule are simply classical conditional probabilities.
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Now what about Pψ(Pα1|Pβ1+Pβ3) and Pψ(Pα2|Pβ1+Pβ3)? This is a trickier situation

since it is not prima facie clear what either Pα1 or Pα2 have in common with Pβ1 + Pβ3.

Indeed, the classical intuitions do not work given that the quantum events Pβ1 + Pβ3

and Pα1 or Pα2 are incompatible. If, as in the previous section, we consider that two

events have nothing in common if the intersection of their ranges is zero, then, given

Pαi∧ (Pβ1+Pβ3)=0 i=1,2, the conditional probability of Pαi given Pβ1+Pβ3 is zero. And

we know that this result does no coincide with the probability assigned by the Lüders rule.

However, Pα1, where α1 =
β1 + β2

2
√ , does seem to have something more in common

with Pβ1 + Pβ3 than, say, Pβ2, even if both Pα1 ∧ (Pβ1 + Pβ3) and Pβ2 ∧ (Pβ1 + Pβ3) are

zero. For while Pβ2 and (Pβ1 + Pβ3) are orthogonal5.6 – the vector β2 forms a 90◦ angle

with the β1-β3 plane – this is not so for Pα1
5.7 – the vector α1 =

β1 + β2

2
√ forms an angle

with the β1-β3 plane which is different from 90◦. Hence, if we consider that two quantum

events have nothing in common only if they are orthogonal (and not if the intersection

of their ranges is zero), we can account for the fact that Pψ(Pβ2|Pβ1 + Pβ3) = 0 and

Pψ(Pα1|Pβ1 +Pβ3)� 0. Indeed, given Pβ2 (Pβ1 +Pβ3)=0, Pβ2 has nothing in common with

Pβ1+Pβ3, and hence the conditional probability of Pβ2 given Pβ1+Pβ3 is zero, in accordance

with Pψ(Pβ2|Pβ1 + Pβ3) = 0. And, given Pα1 (Pβ1 + Pβ3) � 0, Pα1 does have something in

common with Pβ1 + Pβ3, and hence the conditional probability of Pα1 given Pβ1 + Pβ3 is

different from zero, again in accordance with Pψ(Pα1|Pβ1 + Pβ3) � 0.5.8 And similarly for

Pα2.

Nevertheless, these intuitions are simply the first step in understanding the probabilities

defined by the Lüders rule as conditional probabilities. We still need to find a rationale

to explain why the Lüders rule assigns Pψ(Pα1|Pβ1 +Pβ3) and Pψ(Pα2|Pβ1 +Pβ3) precisely

the value 1

2

|c1|2
|c1|2 + |c3|2

. Consider the following one. First, take as the common ‘event’ of

events Pα1 and Pβ1 +Pβ3 the ‘projector’ onto the (non-normalized) vector (Pβ1 +Pβ3)α1 =
1

2
√ β1, i.e. P 1

2
√ β1

. Then assign this common ‘projector’ a new ‘probability’ by means of

the state vector ψ through the standard trace rule, i.e pψ(P 1

2
√ β1

) = Tr(Pψ P 1

2
√ β1

) =

|〈 1

2
√ β1|ψ〉|2 =

1

2
|c1|2. This ‘probability’ can thus be read as something like the joint or

common ‘probability’ of projectors Pα1 and (Pβ1 +Pβ3). Finally, increase this number pro

rata, i.e. divide it by pψ(Pβ1 +Pβ3) = |c1|2 + |c3|2, i.e.

p[Pα1 given (Pβ1 +Pβ3)] =
1
2

|c1|2
|c1|2 + |c3|2

(5.13)

5.6. Pβ2
(Pβ1

+Pβ3
)=P∅

5.7. Pα1
(Pβ1

+Pβ3
)= |β1 + β2

2
√ 〉〈β1 + β2

2
√ |β1 + β3〉〈β1 + β3|= 1

2
√ |β1 + β2〉〈β1 + β3|� 0.

5.8. Note that pψ(Pβ1
+Pβ3

)� 0. Otherwise PW (P |Q) would be zero.
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The probability of a1 conditional on b1 is thus given by (5.13). Which is exactly the value

assigned to Pψ(Pα1|Pβ1 +Pβ3) by the Lüders rule. And similarly for Pα2.

More generally, take the definition of quantum conditional probabilities 4.2. By the

invariance of the trace under cyclic permutations,

PW(P |Q)=
Tr(QWQP )

Tr(QWQ)
=

Tr(WQPQ)

Tr(QWQ)
(5.14)

If we now substitute P by Pα1 and write QPα1 Q as PQα1,5.9 i.e. the ‘projector’ onto the

(non-normalized) vector Qα1, we obtain

PW(Pα1|Q) =
Tr(WPQα1)

pW(Q)
=
pW
′ (PQα1)

pW(Q)
(5.15)

Thus, it seems that the probabilities defined by the Lüders rule can be read in general as

conditional probabilities. In effect, (5.15) defines quantum conditional probability ana-

logously to classical conditional probability as given by the ratio analysis. The ‘projector’

PQα1 represents the common quantum ‘projector’ of Q and Pα1 which corresponds to the

classical event A ∩ B. If P is not one-dimensional we cannot manipulate (5.14) to yield

(5.15) and then it is the ‘projector’ QPQ which represents the common ‘projector’ of P

and Q. This ‘projector’ is assigned a ‘probability’ value by means of the trace rule, i.e.

pW
′ (QPQ), and is then increased pro rata, i.e. divided by pW(Q).

We thus have seemingly not only explained why one should assign a non-zero condi-

tional probability to projectors P and Q such that P ∧ Q = 0, but also why it takes the

particular non-zero value the Lüders rule assigns it. Hence, by appealing to a notion of

commonality of quantum projectors based on their projective geometry, it looks like the

probability defined by the Lüders rule can be interpreted as the probability of a quantum

projector conditional on another quantum projector. Note that it is a synchronic notion.

Definition 5.1. Synchronic Quantum Conditional Probability. The probability

given by the Lüders rule for two quantum projectors P , Q∈L(H)

PW(P |Q) =
Tr[W (QPQ)]

Tr(WQ)
=
pW
′ (QPQ)
pW(Q)

(5.16)

is the probability of the projector P conditional on projector Q with respect to the probability

measure pW. The operator QPQ represents the common operator of projectors P and Q.

Let us pause for a moment. Does this notion really yield a notion of conditional prob-

ability? First, notice that when giving the conditional reading of PW(P |Q) =
pW
′ (QPQ)

pW(Q)

we say that the common quantum ‘projector’ Q P Q is assigned a ‘probability’ pW
′ (not

pW) by means of the trace rule. And all these quotation marks are not here by accident.

5.9. As in (4.24), for any vector φ: (QPα1
Q) φ=QPα1

(Qφ)=Qα1 〈α1, Qφ〉=Qα1 〈Qα1, φ〉=PQα1
φ.
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For the operator Q P Q is not a projector, and hence pW
′ (Q P Q) is not a probability

function. We already pointed out this fact in section 4.3.1: PW(P |Q)=
Tr(QWQP )

Tr(QWQ)
cannot

be defined as the ratio of two probabilities pW because, when P and Q do not commute,

the operator QWQ is not a density operator and hence the quantity Tr(QWQP ) is not

a probability.5.10 And second, why should we take Q P Q, or PQα when P = Pα, as the

common quantum ‘projector’? It seems to be a blatantly ad hoc manoeuvre.

The first objection to the notion of quantum conditional probability does not seem

conclusive, for the function Tr(W Q P Q) is not a probability function only in the sense

that it is not normalized. Indeed, it is non-negative, it takes values which are smaller than

one and, moreover, it is additive, which, as we have already emphasized, is the substantial

requirement for a probability function. Hence, it does not seem so inadequate to regard

the function Tr(WQPQ) as giving the probability of QPQ. The second objection cannot,

however, be so easily dismissed.

Indeed, one could bite the bullet and simply stipulate that QPQ is by definition the

common ‘projector’ of P and Q in the projective lattice L(H). This option, however,

would not yield a very satisfactory notion of commonality between projectors and would

thus provide a somewhat feeble notion of conditional probability. Moreover, it seems coun-

terintuitive to regard Q P Q as the common ‘projector’ of Q and P . For in PW(P |Q)

the common ‘projector’ is the operator Q P Q, while in PW(Q|P ) it is P Q P , which

are in general different from each other. And yet, why should they be different if they

are both supposed to represent what P and Q have in common? The operator Q P Q,

therefore, cannot be so straightforwardly taken as the common quantum ‘projector’ for the

probability of P conditional on Q.

And thus it seems that, after all, definition 5.1 does not provide an adequate notion of

quantum conditional probability. Contrary to the standard view, the probabilities defined

by the Lüders rule do not seem to acquire a precise meaning, in the sense of conditional

probabilities, when quantum mechanics is interpreted as a generalized probability space.

Some caution seems to be, however, recommended. Indeed, the claim that QPQ does

not adequately represent the common operator of P and Q, solely rests on our intuitions.

And one could easily reply that these are not reliable when considering projection operators

which have a non-Boolean structure. Hence, one cannot conclude that the quantum notion

conditional probability as given by definition 5.1 does not provide an understanding of why

the probability defined by the Lüders rule should be read as a conditional probability. It

5.10. In the case of Q P Q = PQα we can easily check this: PQα is not a projection operator given that it is

not idempotent: (PQα)2� PQα since Qα is in general not a normalized vector. Indeed, PQα= |Qα〉〈Qα| and thus

(PQα)2 = 〈Qα|Qα〉|Qα〉〈Qα|� |Qα〉〈Qα|=PQα.
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does provide one, although one which is rather poor – it needs to stipulate that the common

projector of P and Q is Q P Q – and counterintuitive –it takes Q P Q as the common

quantum ‘projector’ for the probability of P conditional on Q, and PQP as the common

quantum ‘projector’ for the probability of Q conditional on P , something for which it

provides no understanding.

5.3 No Physical Quantum Conditional Probability

Nevertheless, the crucial question still remains to be raised: does the notion of quantum

conditional probability given by definition 5.1 provide a notion of conditional probability

for the values of physical quantities of a quantum system? Indeed, it applies directly

to projection operators on a Hilbert space H (we thus henceforth refer to this notion

as synchronic projective quantum conditional probability) but theses are only physically

meaningful through their associated eigenvalues. Hence, the projective reading, however

poor and unsatisfactory, is a physically adequate interpretation of the probability defined

by the Lüders rule only in so far as it can underwrite a quantum notion of conditional

probability in terms of physically relevant values. That is, a reading of PW(P |Q) as the

probability for value p – the eigenvalue associated with P – conditional on value q – the

eigenvalue associated with Q.

However, we now argue that this is not possible; that is, that the mathematical notion

of quantum conditional probability afforded by the projective reading – a notion which

applies to mathematical projection operators P and Q – does not translate into a physical

notion of quantum conditional probability – a notion which applies to their corresponding

physical values p and q – when P and Q are incompatible projectors. And hence we

conclude that the probability PW(P |Q) defined by the Lüders rule cannot be understood,

from a physically meaningful perspective, as an extension of the notion of conditional

probability to the quantum context.

Consider again example 5.1. We argued that Pα1 has more in common with Pβ1 +Pβ3

than Pβ2 – even if both Pα1∧ (Pβ1 +Pβ3) = 0 and Pβ2∧ (Pβ1 +Pβ3) = 0 – because whereas

the vector β2 forms a 90◦ angle with the plane β1-β3, the vector α1=
β1 + β2

2
√ forms an angle

with the plane β1-β3 which is different from 90◦. Thus the projection of β2 onto β1-β3 is

zero while the projection of α1 onto β1-β3 is different form zero. And hence Pβ2 is seen as

having nothing in common with Pβ1+Pβ3, while Pα1 does have something in common with

Pβ1 +Pβ3. In addition, to explain why the Lüders rule assigns a particular number to the

conditional probability of P given Q, it was crucial to take the ‘projector’ QPQ (PQα if

P is the one-dimensional projector Pα) as the common quantum event.

72 Interpreting Quantum Conditional Probability I



But how can these rationales, which are crucial in understanding the notion of quantum

conditionality for projection operators, even get off the ground for scalar values such as the

eigenvalues associated with these projectors? Indeed, the notion of commonality between

projectors and the notion of common ‘event’ QPQ relies critically on the projective geo-

metry of a Hilbert spaceH. This geometry has a non-Boolean structure which, as Gleason’s

theorem dictates, determines the probabilistic structure that can be defined over it. And

the problem is that, this event structure, and the ensuing quantum probabilistic structure,

do not allow the probability PW(P |Q) defined by the Lüders rule to be interpreted as the

probability of value p conditional on value q.

First, the event ‘p and q’ cannot always be represented in terms of the projection

operators P and Q when the projectors are incompatible; that is, the projector P ∧ Q

cannot always be understood as the event ‘p and q’. And second, in the cases in which such

a correspondence does exist, the probability assigned to the event P ∧Q does not always

correspond to the probability assigned to the common operator of P and Q employed by

the projective notion of quantum conditional probability, i.e. QPQ. Thus, the probability

PW(P |Q) defined by the Lüders rule cannot be understood as the pro rata increase of the

probability of ‘p and q’; and hence, it cannot be interpreted as the probability of value p

conditional on value q. Only if P and Q are compatible projectors do all these notions line

up – ‘p and q’ can be represented by the projector P ∧ Q, which in turn is equivalent to

the common operator QPQ – and the probability PW(P |Q) can be read as the pro rata

increase of ‘p and q’.

Let us see this in detail by considering some examples. We start with an example

involving compatible observables A and B, and we show how one can derive the probab-

ilities defined by the Lüders rule by thinking of them as conditional probabilities for the

possible values of A and B.

Example 5.2. Compatible Observables5.11. Let ψ be the state of a system represented

by a state in a three dimensional Hilbert space H, spanned by one-dimensional vectors α1,

α2, α3. Consider the operators

A= a1Pα1 + a2Pα2 + a3Pα3,witha1� a2� a3 (5.17)

B= b1Pα1 + b2(Pα2 +Pα3),with b1� b2 (5.18)

where Pαi projects onto the αi 1-D subspace. For instance, if we are considering a spin 1

system, A could be the observable for spin in the z direction Sz, with a1 = 0, a2 = 1, and

a3=− 1; and B would then be the observable A2, i.e. (Sz)
2, with b1 =0 and b2=1. Clearly

A and B are compatible, i.e. AB=BA.

5.11. This example is taken from [Teller, 1983], p.414.
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If the initial state is given by the vector

ψ= c1α1 + c2α2 + c3α3 (5.19)

where |c1|2 + |c2|2 + |c3|2 =1, the probabilities for the events Pαi are given by

pψ(Pαi) = |ci|2 (5.20)

The Lüders rule yields the following values for Pψ(Pαi|Pα1)
5.12

Pψ(Pα1|Pα1) = 1

Pψ(Pα2|Pα1) = 0

Pψ(Pα3|Pα1) = 0 (5.21)

and Pψ(Pαi|Pα2 +Pα3)
5.13

Pψ(Pα1|Pα2 +Pα3)= 0

Pψ(Pα2|Pα2 +Pα3) =
|c2|2

|c2|2 + |c3|2

Pψ(Pα3|Pα2 +Pα3) =
|c3|2

|c2|2 + |c3|2
(5.22)

Can these probabilities be interpreted as conditional probabilities for the physical values

of A and B for a spin-1 particle? We begin with the unconditional probabilities assigned

to the various ai and bi’s. First, since the e-e link assigns each Pαi the eigenvalue ai, the

probabilities pψ(Pαi) can be directly understood in terms of the probabilities of the possible

values of observable A. And hence

pψ(Pαi) = p(ai) = |ci|2 (5.23)

In contrast, Pα2 and Pα3 are not each associated a particular value of B; rather the e-e

links assigns the quantum event (Pα2 + Pα3) the value b2. Thus, the probabilities for the

possible values of B are

p(b1) = pψ(Pα1) = |c1|2

p(b2) = pψ(Pα2 +Pα3)= pψ(Pα2) + pψ(Pα3) = |c2|2 + |c3|2 (5.24)

Turn now to the interpretation of the probabilities Pψ(Pαi|Pα1) given in (5.21). Since A

and B are compatible, it should be possible to interpret Pψ(Pαi|Pα1) as the probability

that observable A takes the value ai conditional on B taking the value b1, i.e. P(ai|b1).
This is particularly simple to see in the case of A= Sz, with a1 = 0, a2 = 1, a3 =− 1, and

B=(Sz)2, with b1 =0 and b2 =1. In effect, if the particle’s squared value of spin along the

5.12. Pψ(Pαi|Pα1
)= pψPα1

(Pαi)= 〈ψPα1
, PαiψPα1

〉= |〈αi|α1〉|2.
5.13. Pψ(Pαi|Pα2

+ Pα3
) = pψPα2+Pα3

(Pαi) = 〈ψPα2+Pα3
, Pαi ψPα2+Pα3

〉 = |〈αi|ψPα2+Pα3
〉|2 with ψPα2+Pα3

=
(Pα2 +Pα3) ψ

‖(Pα2
+Pα3

) ψ‖ =
c2

|c2|2 + |c3|2
√ α2 +

c3

|c2|2 + |c3|2
√ α3.
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z-axis is zero, i.e. b1 =(sz0)
2 =0, then its value of spin along the z-axis has to be zero, i.e.

a1 = sz0 = 0, but cannot be one nor minus one, i.e. not a2 = sz+1 =+1 nor a3 = sz−1 =− 1.

The probability of a1 conditional on b1 should thus be one, i.e.

p(a1 given b1) = 1 (5.25)

which is precisely the value the Lüders rule assigns Pψ(Pα1|Pα1). And the probability of

a2 conditional on b1, and of a3 conditional on b1, should be zero, again in accordance with

the value the Lüders rule assigns Pψ(Pα1|Pα2) and Pψ(Pα1|Pα3).

Consider next the probabilities Pψ(Pαi|Pα2 +Pα3) given in (5.22). Again, since A and

B are compatible, it should be possible to interpret Pψ(Pαi|Pα2 + Pα3) as the probability

that observable A takes the value ai conditional on B taking the value b2, i.e. P(ai|b2). In
effect, using the spin example, if the particle’s squared value of spin along the z-axis is one,

i.e. b2 = (sz)2 = 1, then its value of spin along the z-axis can either be one or minus one,

i.e. a2= sz+1 and a3= sz−1, but not zero, i.e. not a1= sz0. The probability of a1 conditional

on b2 should thus be zero

p(a1 given b2) = 0 (5.26)

which is precisely the value the Lüders rule assigns Pψ(Pα1|Pα2 + Pα3). In contrast, the

probability of a2 conditional on b1, and that of a3 conditional on b1, should not be zero;

rather their conditional-on-b2 probability should simply be the pro rata increase of their

unconditional probability. That is,

p(a2 given b2) =
pψ(a2)

pψ(b2)
=

|c2|2
|c2|2 + |c3|2

p(a3 given b2) =
pψ(a3)

pψ(b2)
=

|c3|2
|c2|2 + |c3|2

(5.27)

Again these values are the same as those assigned by the Lüders rule to Pψ(Pα2|Pα2 +Pα3)

and Pψ(Pα3|Pα2 +Pα3).

Hence, for compatible observables A and B, one can derive the probabilities defined by

the Lüders rule by thinking of them as conditional probabilities for the possible values of A

and B. As we pointed out in section 3.4, commuting observables act like random variables

whose stochastic properties can be found using classical probability theory. The probability

for the joint occurrence of values ai and bj, i.e. p(ai∩ bj), corresponds to the probability

for the corresponding projection operators, i.e. p(Pai∧Pbj); and, for commuting projectors,

Pai∧Pbj is simply the product PaiPbj, which is also equal to the common quantum event

employed by the Lüders rule, i.e. PbjPaiPbj. Thus, the probabilities defined by the Lüders

rule are straightforwardly classical conditional probabilities.
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Turn now to consider incompatible observables; in this case, one cannot derive the

probabilities defined by the Lüders rule by thinking of them as conditional probabilities

for the possible values of A and B. Consider, for instance, in example 5.1, the probability

PW(Pαi|Pβ1 + Pβ3). Even if the relation ‘ai and b1’ can be understood as the relation

of conjunction between the associated projectors of these eigenvalues, i.e. Pαi ∧ (Pβ1 +

Pβ3) (we elaborate on this in section 5.4.2), the probability assigned to this event does

not correspond to the ‘probability’ assigned to the common operator employed by the

projective notion of quantum conditional probability, i.e. (Pβ1 +Pβ3)Pαi (Pβ1 +Pβ3).

In effect, the probability of the projector associated with ‘ai and b1’, i.e. Tr[Pαi ∧
(Pβ1 + Pβ3)], is not equivalent to the ‘probability’ of the common projector employed by

the Lüders rule, i.e. Tr[(Pβ1 + Pβ3) Pαi (Pβ1 + Pβ3)]. This is due to the fact that, since

Pαi does not commute with Pβ1 nor with Pβ3, the projector Pαi ∧ (Pβ1 + Pβ3) is not

equal to the projector Pαi Pβ1 + Pαi Pβ3 (for i = 1, 2); and thus, its trace is not equal to

Tr[PαiPβ1+PαiPβ3], which is precisely the ‘probability’ of the common projector employed

by the Lüders rule. Indeed, by the cyclic property of the trace and the fact that the Pβi’s

are orthogonal, Tr[(Pβ1 +Pβ3)Pαi (Pβ1 +Pβ3)]=Tr[Pβ1PαiPβ1 +Pβ1PαiPβ3 +Pβ3PαiPβ1 +

Pβ3PαiPβ3]=Tr[PαiPβ1

2 +PαiPβ3

2 ]=Tr[PαiPβ1+PαiPβ3]. Thus, PW(Pαi|Pβ1+Pβ3) cannot

be understood as the pro rata increase of the probability of ai and b2, and, therefore, it

cannot be interpreted as the probability of value ai conditional on b2.

Moreover, sometimes the projector P ∧Q cannot even be understood as (the standard)

conjunction of the associated eigenvalues, i.e. ‘p and q’, let alone be equal to the common

operator Q P Q. For instance, as in section 4.4, consider the case in which Q is the sum

of two orthogonal projection operators Q1 and Q2, i.e. Q = Q1 + Q2, where both Q1

and Q2 are associated distinct eigenvalues q1 and q2. Then, it turns out that projector

P ∧Q=P ∧ (Q1 +Q2), although (somehow) understandable as the event ‘p and q1 or q2’,

cannot be read as the event ‘p and q1 or p and q2’ (we elaborate on this in section 5.4.2).

Thus, when projector Q is decomposed into the sum of the orthogonal projectors Qi, i.e.

Q =
∑

i
Qi, or, in other words, the event represented by Q is split into a set of physical

events that mutually exclude each other, the situation is even worse for the interpretation

of the probability PW(P |Q) as a conditional probability in terms of physical values.

To conclude, the probability PW(P |Q) defined by the Lüders rule cannot be read

as the probability of the physical value p conditional on the physical value q associated

with projectors P and Q (for P and Q incompatible events). It can only be interpreted

as a conditional probability at a formal or mathematical level for projection operators –

and then, only under a weak and counterintuitive construal of such a notion. To assign a
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number to two values of incompatible quantities one has to introduce a special rule such

as the Lüders rule. One might then call this an ‘extension’ of conditional probability, but

it is really a different concept that bears no resemblance with conditionality at any level

that is not purely formal.

The uniqueness argument of section 4.3 can only underwrite this formal notion, but

is mute as to its interpretation for physical values. Even if the probabilities defined by

the Lüders rule are co-extensive with classical conditional probabilities in their shared

domain of application, this formal argument does not provide any interpretive content so

as to justify regarding them as an extension or a generalization of classical conditional

probabilities to the quantum context at a physical level. Thus, although the premises of the

uniqueness argument are correct, its interpretive conclusion only follows at a formal level.

That is, it is a valid argument at a formal level – although with important reservations for

the formal notion it secures is rather poor and counterintuitive – but is invalid at physically

meaningful level.

Similarly, the argument of section 4.4 based on the non-additive character of the prob-

abilities defined by the Lüders rule, can also only work at a formal level. In addition,

precisely because of this non-additivity with respect to conditioning events, the event ‘p

and q1 or q2’ cannot be represented in terms of the projection operators P and Q as the

projector P ∧ (Q1+Q2), thus making their interpretation as conditional-on-physical-values

probabilities even more difficult. (Because not only is P ∧ (Q1 + Q2) not equivalent to

the common projector employed by the Lüders rule, but P ∧ (Q1 + Q2) cannot even be

interpreted as p and q1 or q2).

5.4 Disengaging Formal and Interpretive Features

Our claim that the probabilities defined by the Lüders rule cannot be interpreted as con-

ditional probabilities for physical values relies crucially on the premise that formal and

interpretive aspects need to be kept distinct when considering the meaning or interpret-

ation of a concept. And hence, the claim that the projective reading, even if poor and

counterintuitive, is a physically adequate interpretation of the probability defined by the

Lüders rule as a conditional probability only in so far as it translates to a reading in terms

of physically relevant values. In general, even if formal features are a good guide when

extending established concepts to new contexts, formal features alone can never justify that

the formally extended concept is also conceptually extending the notion to the new domain.
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This need to disengage formal and interpretive features is even more critical when

extending concepts to the quantum domain. We here consider the case of the so-

called ‘logic’ of quantum mechanics which provides a particularly illuminating illustra-

tion of this fact. Similarly to quantum ‘conditional probability’, although the ‘logical’

relations between quantum events are in many ways formally analogue to ordinary logical

relations between classical events, their meaning is so different from that of the latter,

that quantum ‘logical’ notions cannot be interpreted as extensions of our ordinary (phys-

ically meaningful) logical notions. This will further shed light on the difficulties to interpret

the probabilities defined by the Lüders rule as quantum conditional probabilities.

5.4.1 Quantum Logic

As we saw in chapter 3, in the quantum event structure L(H) one can define algebraic

relations between the projection operators representing quantum events which are the

counterparts of set-union, set-intersection, and set-complementation. These are, respect-

ively, the orthogonal projection onto the closed subspace spanned by the ranges of P and

Q, i.e. P ∨ Q; the orthogonal projection onto the intersection of the ranges of P and Q,

i.e. P ∧ Q; and the orthogonal projection onto the complement of the closed subspace

spanned by the range of P , i.e. P⊥ = I −P . Many of the relations between the quantum

algebraic relations are similar to those between the classical one. For example, just as

(Ac)c=A holds for set-complementation, (P⊥)⊥=P holds for subspace-complementation;

or just as A∪Ac=S in F(S), P ∨P⊥= I in L(H); or similarly to (A∩Ac)c=S, we have

(P ∧P⊥)⊥= I.

Now, in classical logic, the logical relations between events (or propositions repres-

enting those events) correspond naturally to the algebraic relations between the subsets

that represent those events. To the disjunction of events ‘or’, there corresponds the set-

union (A ∪ B); to the conjunction of events ‘and’, there corresponds the set-intersection

(A ∩ B); and to the negation of events ‘not’, there corresponds the set-complementation

(Ac). The suggestion is, thus, that, given the similarities between the classical and the

quantum algebraic relations, the algebraic relations in L(H) correspond to ‘quantum logical

relations’, where it is assumed that these provide some kind of extension of our ordinary

logical notions in the quantum context. Thus, the algebraic relation ‘∨ ’ between quantum

projectors is interpreted as the quantum logical ‘or’ for quantum events. Similarly, the

algebraic relation ‘∧ ’ is taken to correspond to the quantum logical ‘and’, and ‘⊥ ’ is read

as the quantum logical ‘not’.5.14

5.14. [Putnam, 1969]
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However, just as with quantum ‘conditional probability’, these analogies turn out to

hold only at a purely formal level. That is, the algebraic relations ‘ ∨ ’, ‘ ∧ ’, and ‘ ⊥ ’

for quantum projectors cannot be understood, respectively, as generalized or extended

notions of the ordinary logical concepts of disjunction (‘or’), conjunction (‘and’) – when the

algebraic relation ‘∧ ’ appears in an expression along with relations ‘∨ ’ and/or ‘⊥ ’ – and

negation (‘not’) from any physically meaningful perspective. And hence, for example, even

if formally one has (P⊥)⊥=P , one should not interpret this equation as double negation;

nor should one interpret P ∨P⊥ or (P ∧P⊥)⊥ as the logical laws of excluded middle and

non-contradiction respectively.

5.4.1.1 A Toy Model

[Arthur Fine, 1972] argues for this conclusion by constructing the analogue to quantum

logic for a simple, two-dimensional system. In this logic it is clear that the meaning of the

algebraic relations differs substantially from the meaning of the ordinary logical relations.

And hence, the conclusion that the former cannot be regarded as extensions of the latter.

These conclusions then carry over to quantum logic. Let us consider this toy model.

Consider the location of a certain point P on a given circle C. Suppose that for the

location of P there are three accessible regions: (1) the center of the circle, (2) the entire

area of the circle and (3) any diameter of the circle. Any sentence of the form ‘P is on X’,

where X is one of the accessible regions, corresponds to an elementary sentence. The idea

is to construct a logic from the elementary sentences by introducing sentential connectives

and truth conditions.

Let us first introduce the binary connective ‘∧ ’ such that for elementary sentences ‘P

is on X ’ and ‘P is on Y ’, the conjunction

‘P is on X ’ ∧ ‘P is on Y ’ ≡ ‘P is on Z’

where Z describes the region of the circle that is the intersection of the X and Y regions.

One can readily verify that the intersection of two accessible regions is again an accessible

region and, therefore, that conjunction is well-defined. The functor ‘ ∧ ’ is just the usual

sentential conjunction with regard to the interpretation of sentences as locating the particle

on the circle.

It is also the usual conjunction with regard to truth conditions. In effect, each possible

location L for the particle P that is on the circle but not at the center yields an assignment

of truth values according to the prescription:

‘P is on X ’ is true under L iff under L, P is on X.
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Hence the sentence ‘P is on the center of the circle’ is false under all truth assignments

(and will play the role of ‘the false’ in this system.) And the semantic rule for conjunction

is thus defined as follows. If φ, ψ are elementary sentences, an assignment L of truth values

to the elementary sentences automatically assigns truth values to conjunctions according

to the rule

‘φ∧ ψ’ is true under L iff ‘φ’ and ‘ψ’ are true under L

The functor ‘∧ ’ is thus also the usual conjunction with regard to truth conditions. Note

that the semantic notions of validity and logical equivalence are defined as usual

φ is valid iff φ is true under all assignments of truth values

φ is logically equivalent to ψ iff φ and ψ have the same truth value under all

assignments

The situation with negation is, however, quite different. If one wanted to introduce the

usual negation, then one should introduce a unary functor ‘∼ ’ as

∼ (P is on X) ≡ P is in the circle but not on the regions described by X

The problem with the ‘∼ ’ definition of negation is that the set of elementary sentences is

not closed under it. For example, if X describes a diameter, then ∼ (P is on X) describes

the circle minus a diameter, which is not an accessible region. For the elementary sentences

to be closed under negation ‘ ∼ ’ one can either expand the list of accessible regions so

as to include with each region on the list its complement relative to the circle (and then

introduce ordinary negation as above), or retain the previous list of accessible regions by

introducing a unary functor under which the elementary sentences are closed. The new

functor will, therefore, be different from the ordinary sentential negation.

Consider the second option and define the unary functor ‘¬’ as

¬(P is on X) ≡ P is on X⊥

where if R is the region described by X, then X⊥ describes (1) the center of the circle

if R is the whole circle, (2) the whole circle if R is the center of the circle, and (3) the

diameter perpendicular toR if R is a diameter. Note that ‘¬’ satisfies the desired involutary

property, namely ¬(¬P ) = P . Also, an assignment L of truth values to the elementary

sentences automatically assigns truth values to ¬φ according to the rule

If ‘φ’ is true under L, then ‘¬φ’ is false under L
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However, contrary to conjunction, the functor ‘¬’ is not the usual logical negation. Both

with regard to the interpretation of sentences as locating the particle on the circle and with

regard to truth conditions.

First, to deny that point P is in diameter X is not to assert that it is in the diameter

perpendicular to X , as ‘negation’ ¬ prescribes. Indeed, the point could be anywhere in

the circle! Second, whereas the above semantic rule holds for ‘negation’ ‘¬’, its converse

– while true for ordinary negation – does not hold here. For example, suppose that the

assignment L derives from P being on diameter X. If φ is the sentence ‘P is on Y ’, where

Y describes a diameter not perpendicular to the X diameter, then both ‘P is on Y ’ and ‘P

is on Y ⊥’ are false under L; that is, both ‘φ’ and ‘¬φ’ are false under L. The trouble arises
because if it is false that P is on a certain diameter, it does not follow that P is on the

perpendicular diameter. Thus, even though the set of elementary sentences is closed under

functor ‘¬’, it is not ordinary negation nor an extension of it.

Finally, given conjunction and negation, one can introduce disjunction by the De

Morgan Laws

(φ∨ ψ) ≡ ¬(¬φ∧¬ψ)

The semantics forced on disjunction by this definition are as follows:

If ‘φ’ is true under L or ‘ψ’ is true under L, then ‘φ∨ ψ’ is true under L

The converse, however, does not hold, that is, the disjunction can be true although neither

disjunct is true. For example, if φ, ψ locate P in distinct diameters, then the disjunction

(φ∨ ψ) is true under all assignments of truth values, since it merely says that P is some-

where on the circle. And under an assignment in which P is on neither of the mentioned

diameters, each disjunct will be false, whereas the disjunction as a whole will be true. Also

notice that if φ, ψ locate P in distinct diameters, the conjunction (φ ∧ ψ) is false under

all assignments, since it would place P on the center of the circle. Thus, the algebraic

relation ‘∨ ’ cannot be understood as disjunction nor as an extension of it.

To finish, let us look at the distributive law. Suppose φ1, φ2, φ3 locate P on distinct

diameters R1, R2, R3 respectively. The conjunction (φ1 ∨ φ2) ∧ φ3 locates P on R3 while

the disjunction (φ1∧ φ3)∨ (φ2∧ φ3) locates P on the center of the circle. Thus the latter

disjunction is false under every assignment of truth values while the former conjunction is

true under the assignment where P is on R3. Hence

(φ1∨ φ2)∧ φ3� (φ1∧ φ3)∨ (φ2∧ φ3) (5.28)
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and the distributive law does not hold in this ‘circular logic’. The distributive law fails

due to the oddities of disjunction, which in turn derive from the nonstandard ‘negation’

‘¬’. But given that the latter differs in meaning (with regard to both interpretation and

truth conditions) form ordinary negation, the failure of the distributive law for this system

does not illustrate how the ordinary law of distributivity might be false. To assert the

distributive law in this circular logic is not to assert the ordinary distributive law at all.

5.4.1.2 Quantum Logic

Similarly to the definition of ‘negation’ ‘¬’ in the ‘circular logic’, quantum logic also chooses

the second option when defining quantum ‘negation’, or nequation, as Fine calls it, where

the ‘q’ reminds us of quantum theory and the difference in spelling helps us to keep in

mind the difference between negation and nequation. The features of ‘circular logic’ hence

have their corresponding analogues in quantum ‘logic’. Let us consider them.

In quantum logic the elementary sentences are of the form ‘observable A takes a value

in the Borel set b’ – what we have been calling quantum events PA(b). For operators with

discrete spectrum, the elementary sentences are of the form ‘observable A takes a value

ai’, where ai is an eigenvalue of the operator A, and are represented by the projector Pai
A.

(Note that the sentences or events are referred to a fixed system.) The assignments of truth

values are simply the various states ψ of the system.5.15 Indeed, for an elementary sentence

Pai and state ψ

Pai is true under an assignment Vψ (i.e. in state ψ) iff ψ is an eigenstate of Pai 5.16

The unary functor ⊥ is defined on the quantum event P ∈L(H) as

P⊥ ≡ orthogonal projection onto the complement of the closed subspace spanned

by the range of P

An assignment Vψ of truth values to the elementary sentences automatically assigns truth

values to the nequation of Pai, i.e. (Pai)
⊥, according to the rule

If ‘Pai’ is true under Vψ, then ‘(Pai)
⊥’ is false under Vψ

Similarly to ‘¬’ in the ‘circular logic’, nequation ‘ ⊥ ’ cannot be interpreted as logical

negation nor an extension of it. For example, consider a two dimensional Hilbert space and

an observable A with a discrete and non-degenerate spectrum A= a1Pa1 + a2Pa2. For Pa1

5.15. For ease of exposition we will stick to pure states ψ and operators with discrete spectrum.

5.16. We use Vψ to note an assignment of truth values rather than Lψ, which can be confused with subspace Lψ.
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and Pa2 (which are orthogonal projectors), nequation prescribes that to deny that event

Pa1, i.e. observable A takes value a1, is the case is to assert that event Pa2, i.e. observable

A takes value a2, is the case. But again this is crazy. For the event could be any of the

possible combinations of Pa1 and Pa2, i.e. c1Pa1 + c2Pa2 with b� 0 and |c1|2 + |c2|2 = 1, in

which case A would simply take no value for state ψ.

Moreover, whereas the above semantic rule holds for nequation ‘⊥ ’, its converse – while

true for ordinary negation – does not hold here. For example, suppose that the assignment

Vψ derives from A taking no value, e.g. ψ= c1α1+ c2α2, with c1 and c2 different from zero.

If Paj is the sentence ‘A takes value aj’, then both ‘A takes value aj’ and ‘A takes a value

ai different form aj’ are false under Vψ (because ψ is not an eigenstate of either). That

is, both ‘Paj’ and ‘(Paj)
⊥’ are false under Vψ and thus the semantic rule ‘if ‘(Pai)

⊥’ is true

under Vψ, then ‘Pai’ is false under Vψ’ does not hold. The trouble arises because nequation

of (Pψ), i.e. it is false that A takes no value, implies (Pψ)
⊥, i.e. A takes no value, and not

Pai, i.e. A takes a determinate value (any of the eigenvalues of A), as it would intuitively

do if it could be interpreted as negation.

If one wanted to introduce ordinary negation, then one would define the negation

of ‘A takes the value ai’ as the assertion that ‘either A takes no value or it takes a value

corresponding to an eigenvalue different from ai’. This negation is true under an assignment

Vψ just in case ψ is either not an eigenstate of A, i.e. ψ is a superposition of eigenstates

of A with distinct eigenvalues, or ψ is an eigenstate of A but with eigenvalue different

from ai, i.e. ψ lies in the subspace (Lai)
⊥ orthogonal to the space spanned by Pai. Thus

the negation of ‘A takes the value ai’ is true under Vψ iff either ψ is a superposition of

eigenstates of A with distinct eigenvalues, or Vψ lies in (Lai)
⊥.

Both alternatives of defining negation are perfectly meaningful and experimentally

verifiable. Nevertheless, as we have seen, quantum logic does not use this last negation. It

instead focuses on only one of the alternatives above and takes the quantum ‘negation’ to

be nequation, and thus takes the ‘negation’ of ‘A takes the value ai’ to be ‘A takes a value

corresponding to an eigenvalue different from ai’, which is true under Vψ just in case ψ lies

in (Lai)
⊥. Notice that nequation corresponds to negation for compatible observables, but

is completely different from it for incompatible events. Indeed, the nequation of ‘A takes

no value under Vψ’, i.e. (Pψ)
⊥, is also ‘A takes no value under Vψ’, and thus has nothing

to do with negation. Hence, similarly to quantum conditional probability, the fact that

nequation is co-extensive with negation in their shared domain of application, does not

guarantee that outside that domain the nequation can be regarded as an extension or a

generalization of negation.
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Conjunction is defined in quantum ‘logic’ analogously to that of the ‘circular logic’:

‘Pai∧Paj’ is true under Vψ iff ‘Pai’ and ‘Paj’ are true under Vψ.

As we can see, the functor ‘∧ ’ is just the ordinary relation ‘and’. Disjunction is also defined

in quantum ‘logic’ analogously to disjunction in the ‘circular logic’:

If ‘Pai’ is true under Vψ or ‘Paj’ is true under Vψ, then ‘Pai∨Paj’ is true under Vψ

and thus presents analogue problems for its interpretation as an extension of the logical ‘or’.

Indeed, the converse of this semantic rule for disjunction does not hold; that is, the disjunc-

tion can be true although neither disjunct is true. For example, for an assignment of truth

values Vψ with ψ= c1α1 + c2α2 and observable A= a1Pa1 + a2Pa2, the disjunct Pa1∨Pa2

is true in ψ (because ψ is an eigenstate of PI), while neither Pa1 nor Pa2 are true in ψ

(because if both c1 and c2 are different from zero ψ is not an eigenstate of Pa1 nor Pa2).

And hence, for the system in state ψ, A does not take value a1 nor does it take value a2,

yet A does take some value. This certainly precludes understanding disjunction ‘∨ ’ as an

extension of the logical relation ‘or’.

Another particularly relevant example is the following. For incompatible quantities

A and B, the conjunction Pai∧Pbj is false under all truth assignments. For example, for

a spin 1

2
particle and an assignment of truth values Vψ with ψ = c1 ψs+z + c2 ψs−z, the

conjunct Ps+z ∧ Ps+x is false for any c1, c2. And hence the spin 1

2
particle can never take

both a positive value of spin along the z-axis and a positive value of spin along the x-axis.5.17

This is the famous non-simultaneity of incompatible observables (in this example Sx and

Sz). Similarly, the non-simultaneity of position and momentum of a quantum mechanical

particle, i.e. the non-localizability of such a particle in arbitrarily regions of both position

and momentum, is a consequence of the fact that the conjunction Pδx∧Pδp is false under

all truth assignments.

5.4.2 Quantum Conditional Probability

In section 5.3 we argued that the quantum probabilities defined by the Lüders rule are con-

ditional probabilities for values of physical quantities only if the quantities are compatible.

Our discussion on quantum logic helps us understand why Pψ(Pαi|Pα2 +Pα3) in example

5.2, for A and B compatible quantities, can be so interpreted, and why Pψ(Pαi|Pβ1 +Pβ3)

5.17. Notice these two examples are analogue to the two particular cases we considered at the end of section

5.4.1.1.
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in example 5.1, for A and B incompatible quantities, cannot . Briefly, even though both

[Pαi ∧ (Pα2 + Pα3)] in example 5.2 and Pαi ∧ (Pβ1 + Pβ3) in example 5.1 correspond,

respectively, to ‘A takes the value ai and B takes the value b2’ and ‘A takes the value

ai and B takes the value b1’, where ‘and’ is the ordinary conjunction relation, the latter

event is false under all truth assignments and thus cannot serve as the common quantum

projector to which a rationale for why the probability defined by the Lüders rule for Pαi

and Pβ1 +Pβ3 is non-zero could resort to.

In more detail, consider first the example with incompatible observables. The event

Pαi∧ (Pβ1 +Pβ3) corresponds to ‘A takes the value ai and B takes the value b1’, with ‘and’

the ordinary logical relation. However, it is false under all truth assignments Vψ since there

is no state ψ which is an eigenstate of both Pαi and (Pβ1 +Pβ3). Hence the probability of

ai conditional on b1 should be zero for all ψ, which we know is not what the Lüders rule

prescribes. Thus the probabilityPψ(Pαi|Pβ1+Pβ3) cannot be understood as the probability

of ai conditional on b1. Only if either c1 or c3 are zero, will the Lüders rule also assign

a zero value to this probability and will one be able to understand it as a conditional

probability. Indeed, if c1 = 0, p(a1) = 0 and thus p(a1|b1) = 0; and if c3 = 0, p(a3) = 0 and

thus p(a3|b1) = 0.

Turn now to the example with compatible observables. Event [Pαi ∧ (Pα2 + Pα3)]

corresponds to ‘A takes the value ai and B takes the value b2’ – ‘ai and b2’ in short –

where ‘and’ is the ordinary conjunction relation. But now, depending on the truth value

assignment Vψ, ‘ai and b2’ will either be true – in which case it will be assigned a probability

one – or be false – in which case it will be assigned a zero probability, or have no determinate

truth value – in which case its probability will be in the open interval (0, 1). Increasing

pro rata these joint probabilities yields the same value as that of Pψ(Pαi|Pα2 +Pα3).

Indeed, if ai= a1 then ‘a1 and b2’ is false under all truth assignments Vψ because there

is no ψ which is an eigenstate of both Pα1 and (Pα2 + Pα3). Hence, p(a1 and b2) = 0 and

p(a1|b2) = 0. Second, if ai= a2, then ‘a2 and b2’ can either be true, false or indeterminate

depending on the truth value assignment Vψ. It is false only under a truth assignment Vψ

for which ψ = 0 (c1 = c2 = c3 = 0), in which case p(a2|b2) = 0. It is true if ψ = α2 (c2 = 1)

since α2 is an eigenstate of both Pα2 and (Pα2 + Pα3), and hence p(a2|b2) = 1. Under all

other truth value assignments, ‘a1 and b2’ is not either true nor false but rather will not

take a determine value since ψ cannot be an eigenstate of both Pα2 and (Pα2 + Pα3). In

this case its probability will be determined by the trace rule as Tr[W (Pα2∧ (Pα2+Pα3))]=

Tr(WPα2)= pψ(a2). And increasing this value pro rata, we get P(a2|b2)=
|c2|2

|c2|2 + |c3|2
. (Note

that the same reasoning applies when ai= a3.)
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Lastly, consider the case in which Q is the sum of two orthogonal projection operators

Q1 and Q2, i.e. Q=Q1 +Q2, where both Q1 and Q2 are associated distinct eigenvalues q1

and q2. For example, as in section 4.3.1, take a spin-1 particle and let Q1 and Q2 be the

events ‘the x-component is + 1’ and ‘the x-component is 0’, respectively, i.e. Q1 = Psx+1

and Q2 = Psx0. And let P be the event ‘the y-component is + 1’, i.e. P = Psy+1
. Recall

that the probability defined by the Lüders rule in this case is given by

Pψ(Psy+1
|Psx+1

+ Psx0) =

(

‖Psx+1
ψ‖

‖(Psx+1
+Psx0) ψ‖

)2

Pψ(Psy+1
|Psx+1

) +

(

‖Psx0 ψ‖
‖(Psx+1

+Psx0) ψ‖

)2

Pψ(Psy+1
|Psx0) +

‖Psx+1
ψ‖ ‖Psx0 ψ‖

‖(Psx+1
+Psx0) ψ‖2

Re

〈

Psx+1
ψ

||Psx+1
ψ‖ ,

Psy+1

Psx0 ψ

||Psx0 ψ‖

〉

(5.29)

The question is whether Pψ(Psy+1
|Psx+1

+Psx0) can be interpreted as the probability that

the y-component of spin is + 1 conditional on the x-component being + 1 or 0, i.e. the

probability of physical value ‘sy+1’ conditional on physical value ‘sx+1 or sx0’.

The problem here is two-fold. First, the event ‘the y-component of spin is +1 and the x-

component of spin is +1 or 0’, i.e. the event ‘sy+1 and sx+1 or sx0’, cannot be represented as

Psy+1
∧ (Psx+1

∨Psx0). And second, even if Psy+1
∧ (Psx+1

∨Psx0) could be so understood, the

probability assigned to it does not correspond to the probability assigned to the common

operator of P and Q employed in the Lüders rule, i.e. QPQ. Thus, its probability would

not be equal to that given by (5.29). Hence, Pψ(Psy+1
|Psx+1

+Psx0) cannot be interpreted

as the probability that the y-component of spin is + 1 conditional on the x-component

being +1 or 0.

Consider the first problem is some more detail. The fact that ‘sy+1 and sx+1 or sx0’,

cannot be represented as Psy+1
∧ (Psx+1

∨ Psx0) is due to the fact that the algebraic

relations ‘ ∨ ’ and ‘ ∧ ’ in this expression cannot be understood, respectively, as ordinary

disjunction and conjunction (nor as extensions of these notions). Indeed, Psy+1
∧ (Psx+1

∨
Psx0) can seemingly be read as ‘sy+1 and sx+1 or sx0’, because ‘∧ ’ defines the usual notion

of conjunction, and ‘∨ ’ applies here to two orthogonal and, therefore, compatible events.

However, if Psy+1
∧ (Psx+1

∨ Psx0) could really be thus read, then its reading as ‘sy+1

and sx+1 or sy+1 and sx0’ should also be possible. For otherwise ‘ ∧ ’ and ‘ ∨ ’ could not

be interpreted as the logical relations of conjunction and disjunction. And the problem

is that Psy+1
∧ (Psx+1

∨ Psx0) cannot be read as ‘sy+1 and sx+1 or sy+1 and sx0’ because,

given that Psy+1
and Psx+1

and Psx0 are incompatible, Psy+1
∧ (Psx+1

∨ Psx0) is not equal
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to (Psy+1
∧ Psx+1

) ∨ (Psy+1
∧ Psx0). Thus even if the algebraic relation ‘ ∨ ’ applies to

two orthogonal and, therefore, compatible, events in Psy+1
∧ (Psx+1

∨ Psx0) it cannot be

understood as ordinary disjunction nor as an extension of it.5.18 Once again, we see that,

when incompatible events are involved, the conceptual difficulties associated with the non-

Boolean character of the quantum event structure arise.

To sum up, for incompatible quantities P and Q, the event ‘p and q’ cannot always

be represented in terms of the projection operators P and Q as P ∧ Q, and in the cases

in which such a correspondence does exist, the probability assigned to the event P ∧ Q

does not correspond to the probability assigned to the common operator of P and Q

employed by the projective notion of quantum conditional probability, i.e. QPQ. Thus,

the probability PW(P |Q) defined by the Lüders rule cannot be understood as the pro

rata increase of the probability of ‘p and q’; and hence, it cannot be interpreted as the

probability of value p conditional on value q for P and Q incompatible quantities.

There is thus no physically meaningful quantum notion of conditional probability.

Only at mathematical level, in which we cannot appeal to Boolean intuitions, does it seem

possible to interpret the probabilities defined by the Lüders rule as such.

5.5 A new concept?

As we have shown, when extending a concept into a new domain, it is not sufficient to

show that there are some formal analogies between the old and the extended concept. In

addition, it is essential to evaluate whether these analogies can provide enough interpretive

content so as to justify regarding the concept in the new domain as an extension or a

generalization of the old one. In the case of the probabilities defined by the Lüders rule

we have argued that the formal analogies do not provide enough interpretive content so as

to justify regarding them as an extension or a generalization of classical conditional prob-

abilities to the quantum context from a physically meaningful perspective; they can only,

and with great difficulty, be interpreted as extensions of classical conditional probabilities

at a purely formal level.

5.18. This same conclusion can also be reached in the following way. The disjunct Psx+1
∨ Psx0 is true in

ψ = c+1 ψsx+1
+ c0 ψsx0 + c−1 ψsx

−1
(because ψ is an eigenstate of PI), while neither Psx+1

nor Psx0 are true in ψ

(because if both c+1 and c0 are different from zero, ψ is not an eigenstate of Psx+1
nor of Psx0). And hence, for the

system in state ψ, Sx does not take value + 1 nor does it take value 0, yet Sx does take some value, something

which certainly precludes understanding ‘∨ ’ as logical disjunction.
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But a question remains. Does the Lüders rule define any concept which can be under-

stood from a physically meaningful perspective? After all, quantum theory is not just a

formal mathematical theory, but a theory which purportedly describes the physical world.

To try to answer this question we first need to make a small detour and consider how

measurement was introduced into quantum theory in the attempt to make it a little more

comprehensible.
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Chapter 6

Orthodox Quantum Theory

We have so far been concerned with the conceptual understanding of quantum probability

theory. This theory is a perfectly consistent mathematical theory. The problem is that it

is not at all clear how to get from it to a consistent and satisfactory physical theory. In

this chapter we present in some detail how the orthodox account of quantum mechanics

manages to get a consistent, though not very satisfactory physical theory if one wants to

interpret it as something more than a mere algorithm for generating the statistical predic-

tions of the outcomes of measurements. A central element of the orthodox interpretation

is its adherence to the so-called Projection (or Collapse) Postulate which prescribes that

every measurement, represented by some suitably chosen observable, leads to non-unitary

reduction of the total state vector to an eigenstate of the measured observable.

In section 6.1 we present the so-called quantum measurement problem, namely the

problem of reconciling the fact that quantum mechanics predicts no definite outcomes

for measurements and the fact that (we perceive) measurements do have definite out-

comes. Then, in section 6.2, we present how the orthodox account, as presented by [von

Neumann, 1932], solves this problem by changing the dynamics of quantum mechanics

when measurements are performed: states always evolve in accordance with the linear

dynamics of the Schrödinger equation except when measurements are performed, for which

a nonlinear collapse dynamics, explicitly probabilistic, takes over. Under this view, when

a measurement of a physical observable is performed upon a system, the system’s state

will instantaneously, and non-linearly, ‘jump’ or ‘collapse’, with a certain probability, to

one of the eigenstates of the observable being measured. This is the so-called ‘Projection

Postulate’, which ensures that after the measuring interaction the measurement device

does have a definite outcome.

The Lüders rule appears in the orthodox interpretation of quantum mechanics as the

generalized version of the Projection Postulate. It determines uniquely the state of the

system after a measurement of a certain physical quantity with degenerate eigenvalues.

This new density matrix W can then be used to calculate probability assignments for

subsequent measurements. Hence, as we discuss in section 6.3, it seems that the probability

given by this new density operator can be interpreted as the probability of a measurement
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outcome of the second measurement conditional on a measurement outcome of the first one.

We refer to this interpretation of the probability defined by the Lüders rule as ‘conditional-

on-measurement-outcome probability’.

Then, in section 6.4, we distinguish this conditional-on-measurement-outcome prob-

ability from another type of (purportedly) conditional probability which also arises in the

context of quantum measurements. Indeed, it is not uncommon to hear that all quantum

probabilities are conditional probabilities for measurement outcomes conditional on meas-

urements. However, we argue that these conditional-on-measurement probabilities are not

really conditional probabilities. Finally, in section 6.5, we argue that the orthodox inter-

pretation, with its reliance on the Projection Postulate, does not provide an adequate

interpretation of quantum theory unless one thinks of quantum theory instrumentally.

6.1 The Consistency – or Measurement – Problem

As we have seen, in quantum mechanics each system is associated to a Hilbert space H and

the state of a system is represented by a density operator W defined on H. Observables

are represented by Hermitian operators acting on H, where their possible values are given

by the spectrum of the operator which represents them. The evolution in time of a system

which begins in state Wt0 at the initial time t0 is given by the time-evolution unitary

operator Ut−t0 = e−iH (t−t0), where H is the Hamiltonian operator for a given system,

according to the equation

Wt=Ut−t0Wt0Ut−t0
−1 (6.1)

If the system’s state is a pure state represented by the vector ψt, then (6.1) may be written

as

dψt
d t

=− i ~Hψt (6.2)

This expression of the dynamical equation for quantum systems is usually referred to as

the Schrödinger equation. The dynamics given by (6.1) or (6.2) is linear and deterministic.

A problem arises if we attempt to describe measurement interactions by a unitary

operator for, as we now show, measurements then generally turn out to not have definite

outcomes. However, it is an empirical fact that measurements do have definite outcomes

(or, at the very least, we perceive definite outcomes at the conclusion of a measurement).

The difficulty of reconciling these two facts, i.e. that quantum mechanics predicts no

definite outcomes for measurements and that (we perceive) measurements do have definite

outcomes, is generally known as the ‘measurement problem’. Let us consider this problem

in some detail.
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A familiar idealization of the measurement process amounts to supposing that meas-

uring instruments are non-destructive. This means that when a measurement is performed

the physical system and the measuring instrument, initially separated, will first form a

compound system, both preserving their own identity during the mutual interaction, and

then, become separated again after a certain time. This enables one to ascribe both the

system and the measuring instrument a final state after the measurement. It is important to

realize that many actual measurements instruments violate this idealization: for example, a

photon spectrometer measures the energy of a photon by absorbing it and hence destroying

it by the very act of measurement.

A further idealization is that of an ideal measurement. To establish a correlation

between the values of a certain property of the system and the values of another prop-

erty of the measuring device requires some sort of interaction between the system and

the measuring apparatus. For some measuring interactions one can suppose that the mag-

nitude of the interaction can be made so small that the system’s state remains totally

unaffected. An ideal measurement is precisely a measurement in which the state of the

system remains unchanged after the measurement interaction.

Quantum theory would initially describe a measurement interaction as any other phys-

ical interaction by first, ascribing a quantum state to the measuring device and then,

treating the interaction between the system and the measuring device as a quantum

interaction, i.e. one that obeys the Schrödinger equation or, more generally, one that

is described by a unitary operator. Let us see how an ideal measurement works in the

quantum context. We employ pure states and observables with discrete spectrum to keep

the formulation simple.

Suppose that a quantum system begins in the state α1, an eigenvector of observable A

with eigenvalue a1. We perform an ideal measurement of A: the measuring device begins

in a ready-to-measure state M0, i.e. an eigenstate of an observable M , and after the

measurement is perfectly correlated with the value of A possessed by the system:

α1M0� α1M1 (6.3)

where M1 is the state of the apparatus that indicates the value of a1. The interaction in

(6.3) can be rewritten in terms of a unitary time evolution operator U(t) as Ut(α1M0) =

α1 M1. Since the states before and after the interaction are simultaneous eigenstates of

A⊗ I and I ⊗M , the eigenstate-eigenvalue link allows an ascription of the value a1 to the

system, both before and after the interaction, and of the value m0 to the measuring device

before the measurement, and m1 after the measurement.
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Similarly, if the system begins in the state α2, then the interaction of the system with

the measuring device will be:

α2M0� α2M2 (6.4)

and the e-e link allows an ascription of the value a2 to the system, both before and after

the interaction, and of the value m0 to the measuring device before the measurement, and

m2 after the measurement. Similarly, (6.4) can be rewritten in terms of a unitary time

evolution operator U(t) as Ut(α2M0)=α2M2.

So far so good. But consider what happens now if the system is in a superposition of

the states α1 and α2, i.e. ψ=c1α1+ c2α2. This interaction, given that physical interactions

are described by some unitary operator which is linear, is 6.1

ψM0 = (c1α1 + c2α2)M0� c1α1M1 + c2α2M2 (6.5)

The initial state ψ, although not an eigenstate of A⊗ I , was an eigenstate of I ⊗M . But

the final state c1α1M1+ c2α2M2 is not an eigenstate of either A⊗ I or I ⊗M ; indeed, the

measurement interaction has left the joint system still in a non-eigenstate of A⊗ I and has

changed the joint system into a non-eigenstate of I ⊗M . Hence, after the measurement

interaction, the eigenstate-eigenvalue link, implies that no single, definite state, and hence

no definite outcome, can be attributed to the measuring device.6.2 So how is it then that at

the conclusion of a measurement we always observe a definite outcome? This is the famous

measurement problem of quantum mechanics.6.3

The foundations and philosophy of quantum mechanics literature is loaded with articles

considering this problem and trying to provide adequate answers to it. The different solu-

tions proposed give rise to the myriad of interpretations of quantum mechanics. We here

only consider the orthodox (textbook) interpretation with its famous collapse or projection

postulate. To name a few others: the relative-state interpretations, introduced by [Everett,

1957] and further developed as ‘many-worlds’ and ‘many-minds’ interpretations, propose

alternative readings of the formalism of standard quantum mechanics; the class of modal

6.1. Indeed, by linearity of the time evolution operator U(t), we have that Ut[(c1α1+c2α2)M0]=Ut (c1α1M0)+

Ut (c2α2M0)= c1α1M1 + c2α2M2.

6.2. Note that no single, definite state, and hence no definite outcome, can be attributed to the system either,

both before and after the measurement. This also presents an interpretive problem. However, given that the systems

which quantum mechanics describes are generally too small to be observed by ‘ordinary’ means (although not all

those which it presumably describes are small!; see section 6.5), this issue becomes more pressing for macroscopic

systems such as measuring devices.

6.3. The ‘measurement problem’ is actually a more complex problem which contains two separate questions,

namely, why we perceive a single outcome for the determinate variable –this is the problem we have presented and

is referred to as ‘the problem of outcomes’ – and why a particular quantity (usually position) is always selected as

the determinate variable. The latter is known as ‘the preferred-basis problem’. For a more detailed exposition see,

for example, [Schlosshauer & Fine, 2007], [Maudlin, 1995].
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interpretations, first suggested by [van Fraassen, 1991], modify the rules that connect

the formalism to the actual physical properties (they reject the ‘rule of silence’); physical

collapse theories like the Ghirardi-Rimini-Weber (GRW) approach [GRW, 1986] change

the dynamics and postulate new physical mechanisms; and the de Broglie-Bohm pilot-wave

theory, is a highly nonlocal hidden-variable interpretation [Bohm, 1952] which changes the

state space by introducing additional variables – the so-called ‘hidden variables’ – and also

introduces additional governing equations.

6.2 The Projection Postulate

6.2.1 Von Neumann’s Projection Postulate

The orthodox account, as presented by [von Neumann, 1932] (pp. 347-349), solves the

measurement problem by changing the dynamics of quantum mechanics and postulating

the existence of ‘collapses’: states always evolve in accordance with the linear dynamics of

the Schrödinger equation except when measurements are performed, for which a nonlinear

collapse dynamics, explicitly probabilistic, takes over. Under this view, when a measure-

ment of a physical observable A is performed upon a system in state ψ, the system’s state

will instantaneously, and non-linearly, ‘jump’ or ‘collapse’ to one of the eigenstates αi

of the observable being measured. This ensures that after the measuring interaction the

measurement device will have a definite outcome: ψ will collapse to a particular eigenstate

αi of A – rather than remain a superposition of the different αi’s – and hence ψM0 will

evolve to a particular αiMi.

The orthodox account further postulates that the probability with which the state’s

system collapses onto each particular αi after the measurement of observable A is per-

formed is given by the Born rule, namely,

pψ(ai) = |〈αi, ψ〉|2 (6.6)

where ai is the eigenvalue associated with the eigenvector αi. This rule can be more

generally expressed in terms of the projection operator Pai onto the subspace αi as

pψ(ai) = 〈ψ,Paiψ〉 (6.7)

Or, even more generally, in terms of the density operator W =Pψ, as

pW(ai) =Tr(WPai) (6.8)

This new kind of time evolution, which is explicitly probabilistic, is the content of the

projection postulate.
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Proposition 6.1. von Neumann’s Projection Postulate. Upon a measurement of an

observable A=
∑

i
aiPai on a system in state W, the state of the system ‘collapses’ to the

state W ′, where

W ′=Pai (6.9)

for some eigenvalue ai of A. The probability that the state collapses to Pai is

pW(ai) =Tr(WPai) (6.10)

Note that (6.10) is the general expression for a probability function we saw in section

3.2. But within the orthodox approach it is interpreted in a very specific way, namely as

the probability for finding measurement result ai when a measurement of observable A is

performed on a system in state W . Also note that the orthodox interpretation changes

radically the classical way of conceiving measurements: they are not ideal processes for

merely learning something; they are invariably processes which drastically change the

measured system, (in addition to being unlike any other interactions since they are not and

cannot be represented by a unitary time evolution operator – more on this in section 6.5).

The projection postulate is usually justified because it ensures repeatability of meas-

urement results. That is, it guarantees that when we repeat a measurement, the result of

the second measurement always matches the result of the first. The projection postulate

is certainly sufficient to guarantee this matching. In effect, according to it, a measure-

ment must necessarily change the state of the measured system – it makes it ‘collapse’,

it makes it ‘jump’ – from whatever it may have been just prior to the measurement into

an appropriate eigenstate of the measured observable operator, namely the eigenstate

whose eigenvalue matches the outcome of the measurement. After the measurement, the

system remains in that particular eigenstate so that the probability of finding that same

measurement result upon a second measurement at a later time is 1.

Von Neumann’s postulate only determines uniquely the final state of the system if ai

is a non-degenerate eigenvalue of A, for in this case the corresponding eigenspace is one-

dimensional and the final state is the projection operator Pai; but when ai is degenerate, so

that the corresponding eigenspace is at least two dimensional, the final state of the system

is left undetermined. If one tries to generalize von Neumann’s postulate in the obvious way,

namely as prescribing a state change fromW to
Pai

TrPai
, where Pai is the projection operator

onto the eigenspace of dimension greater or equal to two associated with ai,6.4 the resulting

change does not satisfy the repeatability requirement for degenerate eigenvalues. Indeed the

von Neumann measurement interaction represents a degeneracy-breaking measurement: it

6.4. Pai appears divided by its trace Tr(Pai) because only when a projection operator projects onto a 1-

dimensional space is it of trace one and hence a density operator.
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makes a particular selection of eigenstates within each degeneracy subspace and thus does

not leave the degenerate eigenspaces invariant.

6.2.2 Lüders’ Projection Postulate

To overcome this problem, and thus be parallel with the requirement that the measurement

of a non-degenerate eigenvalue be repeatable, [Lüders, 1951] proposed that the change of

state upon measurement of an observable A when the eigenvalue ai is found, be from W

to Wai =
PaiWPai
Tr(PaiW )

. This measurement interaction distinguishes the eigenstates belonging

to each eigenvalue from those belonging to any other eigenvalue, but all those belonging

(degenerately) to a single eigenvalue are left indistinguishable.

Proposition 6.2. Lüders’ Projection Postulate. Upon a measurement of an observable

A=
∑

i
aiPai on a system in state W, the state of the system ‘collapses’ to the state Wai,

where

Wai=
PaiWPai
Tr(PaiW )

(6.11)

for some eigenvalue ai of A. The probability that the state collapses to Wai is

pW(ai) =Tr(WPai) (6.12)

If A does not have a purely discrete spectrum and if the observed value is in a subset b of

the spectrum of A, then formula (6.11) admits the obvious generalization:

WA(b) =
PA(b)WPA(b)

Tr(WPA(b))
(6.13)

We briefly note that for continuous observables the Lüders rule violates the condition that

repeated measurements should be stable. It appears that the only fix for this is to alter

the notion of conditional expectation.6.5

To gain a better understanding of how the Lüders’ projection postulate works, let us

consider the case in which the initial state of the system is in a pure state ψ. In this case,

(6.11) reads:

Pψ� PaiPψPai
Tr(PψPai)

(6.14)

This expression can be simplified as follows. Let Pai ψ = ψai
′ be the non-normalized pro-

jection of ψ onto the subspace spanned by the eigenvectors associated with the eigenvalue

ai. For any vector φ, we have that

(PaiPψPai )φ=PaiPψ (Paiφ)=Paiψ 〈ψ,Paiφ〉=Paiψ 〈Paiψ, φ〉=PPaiψφ=Pψbi
′ φ (6.15)

Since this holds for any φ, the numerator of (6.14) is PaiPψPai=Pψai
′ . In addition,6.6

Tr(PψPai) =Tr(PaiPψPai)=Tr(PPaiψ) = 〈Paiψ, Paiψ〉= ‖Paiψ‖2 = ‖ψai′ ‖2 (6.16)

6.5. See [Valente, 2007] and references therein.
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Thus the change of state given by (6.14) is equivalent to the change

Pψ� Pψai
′

‖ψai′ ‖2
,with ψai

′ =Paiψ (6.17)

But
Pψai

′

‖ψai
′ ‖2 = Pψai, with ψai =

ψai
′

‖ψai
′ ‖ . Indeed, similarly to how we derived (6.15), for any

vector φ, we have

Pψai
′

‖ψai′ ‖2
φ=

ψai
′

‖ψai′ ‖
〈 ψai

′

‖ψai′ ‖
, φ〉= ψai 〈ψai, φ〉=Pψaiφ (6.18)

Hence, the Lüders’ projection postulate for pure states prescribes that when a measurement

of observable A is performed on a system in state Pψ and the observed value is ai, its state

Pψ changes to Pψai or, equivalently, its state changes from ψ to the normalized projection

of ψ onto the subspace spanned by the eigenvectors associated with the eigenvalue ai, i.e.

ψ� ψai=
ψai

′

‖ψai′ ‖
,with ψai

′ =Paiψ (6.19)

Proposition 6.3. Lüders’ Projection Postulate for Pure States. Upon a meas-

urement of an observable A=
∑

i
aiPai on a system in state ψ, the state of the system ‘col-

lapses’ to the state ψai for some eigenvalue ai of A, namely,

ψai=
Paiψ

‖Paiψ‖
=

ψai
′

‖ψai′ ‖
(6.20)

where ψai is the normalized projection of ψ onto the eigenspace belonging to ai.

The probability that the state collapses to ψai is given by

pψ(ai) = |〈αi, ψ〉|2 (6.21)

where αi is the eigenstate associated to the eigenvalue ai.

The general version of Lüders’ projection postulate given by proposition 6.2 can be

recovered from its version for pure states given by proposition 6.3 by adding the assumption

that the non-pure initial states of the system are affected by the measuring instrument in

such a way that the convex structure is preserved.

We draw this section to an end by seeing how examples 5.1 and 5.2 are seen from the

perspective of orthodox quantum mechanics.

Example 6.1. Incompatible Observables. In example 5.1 we considered a system in

state ψ=c1β1+c2 β2+c3β3, where |c1|2+ |c2|2+ |c3|2=1, and two incompatible observables

A= a1Pα1 +a2Pα2 + a3Pα3 and B= b1(Pβ1 +Pβ3)+ b2Pβ2, where α1 =
β1 + β2

2
√ ; α2 =

β1− β2

2
√ ;

α3 = β3.

6.6. Tr(PPaiψ)=
∑

j
〈φj , PPaiψφj〉=

∑

j
〈φj, Paiψ〉 〈Paiψ , φj〉= 〈Paiψ,Paiψ〉.
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Suppose that we perform an ideal first-class measurement of observable B and find

result b1. Then the Lüders projection postulate (proposition 6.3) tells us that the new state

will be given by the normalized projection of ψ onto the subspace spanned by β1 and β3,

namely

ψb1 =
c1

|c1|2 + |c3|2
√ β1 +

c1

|c1|2 + |c3|2
√ β3 (6.22)

as is illustrated in figure 6.1.

Figure 6.1. Lüders’ Projection Postulate for Incompatible Observables

Example 6.2. Compatible Observables. In example 5.2 we considered a system in

state ψ= c1 α1 + c2 α2 + c3 α3 and two commuting operators A= a1Pα1 + a2 Pα2 + a3Pα3,

and B= b1Pα1 + b2(Pα2 +Pα3).

Imagine we perform an ideal first-class measurement of observable B, getting result

b2. The Lüders projection postulate (proposition 6.3) then tells us that the resultant state

after this measurement is ψb2, that is the (normalized) projection of ψ onto the α2 − α3

plane. The post-measurement state will thus be given by

ψb2 =
c2

|c2|2 + |c3|2
√ α2 +

c3

|c2|2 + |c3|2
√ α3 (6.23)

Note that the Lüders projection postulate rule is only one rule among many possibilities

specifying the state of the system after the measurement interaction. Another rule might,

for example, specify that, after a measurement of observable B in which one finds result

b2, in the situation described in example 6.2, the resultant state lies halfway between ψb2

and α2 or α3, or whichever is nearer to ψb2. The fact that the Lüders projection postulate

yields ψb2 as given by (6.23) is the correct post-measurement state is, as we saw, to ensure

repeatability of measurement results. Indeed, the Lüders projection postulate is chosen

precisely because it leaves indistinguishable all the eigenstates belonging (degenerately) to

a single eigenvalue.
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6.3 Conditional-on-Measurement-Outcome Probability

Von Neumann and Lüders’ projection postulates allow one to specify uniquely the state

of the system after a measurement of a quantity with a given result. The new density

matrix can then be used to calculate probability assignments for subsequent measurements.

(Henceforth we will only discuss Lüders’s projection postulate given that it generalizes von

Neumann’s for degenerate eigenvalues.)

In effect, imagine we first measure an observable A on a system in state W and obtain

measurement result ai; subsequently, we measure a second observable B. The probability

to find the value bi upon measuring B will then be given by the trace rule using the

density operatorWai after the measurement of A given by the Lüders projection postulate

(proposition 6.2), i.e.

pWai
(bi) =Tr(WaiPbi) =

Tr(PaiWPaiPbi)

Tr(PaiW )
(6.24)

Thus in these cases it appears to be meaningful to speak of the probability distribution of

a physical quantity (B) given the result (ai) of a previous measurement of another physical

quantity (A).

The Lüders rule thus seems to allow the introduction and interpretation, within

quantum theory, of the concept of conditional probabilities: it seems possible to interpret

the probability given by (6.24) as the probability of measurement outcome bi conditional

on measurement outcome ai. This interpretation leads naturally to writing (6.24) as

pWai
(bi) =PW(bi|ai) =

Tr(PaiWPaiPbi)

Tr(PaiW )
(6.25)

When considering conditional probabilities we usually talk of the probability of an event

a given another event b – rather than that of b given a. Thus, we henceforth exchange

the order of the bi and ai’s in (6.25), with the resultant change in the order in which

the measurements are performed: first a measurement of B and then a measurement

of A. We refer to this interpretation of (6.25) as Conditional-on-Measurement-Outcome

interpretation.

Definition 6.1. Conditional-on-Measurement-Outcome Probability. When an

observable B is measured on a system in state W, followed by a second measurement of

an observable A, the probability

PW(ai|bi) =PWbi
(ai) =

Tr(PbiWPbiPai)

Tr(PbiW )
(6.26)
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is the probability of measurement outcome ai conditional on measurement outcome bi.

If the system is in a pure state ψ, then the probability (6.28) can be expressed as

Pψ(ai|bi) = pψbi(ai) = |〈αi, ψbi〉|2 (6.27)

with ψbi=
Pbiψ

‖Pbiψ‖
.

Consider these probabilities in example 6.1. With the new state vector prescribed by the

Lüders rule after a measurement of observable B with measurement outcome b1, i.e. ψb1 =
c1

|c1|2 + |c3|2
√ β1 +

c1

|c1|2 + |c3|2
√ β3, one can calculate the probabilities assigned to subsequent

measurements. If one performs a measurement of observable A, the probabilities to find

the results ai are given by pψb1(ai) = |〈αi|ψb1〉|2, namely,

pψb1(a1) =Pψ(a1|b1) =
1
2

|c1|2
|c1|2 + |c3|2

pψb1(a2)=Pψ(a2|b1) =
1
2

|c1|2
|c1|2 + |c3|2

pψb1(a3) =Pψ(a3|b1) =
|c3|2

|c1|2 + |c3|2
(6.28)

These probabilities thus seem to allow a conditional-on-measurement-outcome probab-

ility interpretation. Indeed, Pψ(ai|b1) is read as the probability of finding measurement

outcomeai when observable A is measured upon a system in state ψ, conditional on having

found measurement outcome b1 upon a previous measurement of observable B.

Similarly, in example 6.2, using the new state vector prescribed by the Lüders rule after

a measurement of observable B with measurement outcome b2, i.e. ψb2 =
c2

|c2|2 + |c3|2
√ α2 +

c3

|c2|2 + |c3|2
√ α3, one can calculate the probabilities assigned to subsequent measurements.

If one performs a measurement of observable A, the probabilities to find the results ai are

given by pψb2(ai)= |〈αi|ψb2〉|2:

pψb2(a1) =Pψ(a1|b2)= 0

pψb2(a2) =Pψ(a2|b2) =
|c2|2

|c2|2 + |c3|2

pψb2(a3) =Pψ(a3|b2) =
|c3|2

|c2|2 + |c3|2
(6.29)

Pψ(ai|b2) is, in accordance with definition 6.1, interpreted as the probability of finding

measurement outcome ai when observable A is measured upon a system in state ψ,

conditional on having found measurement outcome b2 upon a previous measurement of

observable B.
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At this point we do not evaluate whether the conditional-on-measurement-outcome

interpretation is an adequate interpretation of the probabilities defined by the Lüders

projection postulate – we discuss this issue at length in the next chapter. What we want

to do now is to clearly distinguish the conditional-on-measurement-outcome probability

from another type of (purportedly) conditional probability which also arises in the context

of quantum measurements.

6.4 Conditional-on-Measurement Probability

It is not uncommon to hear that all quantum probabilities are conditional probabilities

since they are given by the Born rule and this rule yields conditional probabilities for par-

ticular measurement outcomes conditional on measurements.6.7The projection postulate of

the orthodox interpretation, in both its von Neumann and Lüders’ version, does indeed lead

to this reading: pW(ai)=Tr(WPai) is interpreted as the probability of measurement result

ai conditional on a measurement of observable A on a system in state W ). The quantum

probabilities under the Orthodox account of quantum mechanics are thus interpreted as

probabilities for measurement outcomes conditional on measurements performed. We refer

to this interpretation of the quantum probability pW(ai) = Tr(W Pai) as the conditional-

on-measurement interpretation (and not conditional-on-measurement-outcome).

Definition 6.2. Conditional-on-Measurement Probability. When an observable A

is measured on a system in state W, the probability

pW(ai)=Tr(WPai ) (6.30)

is the probability of measurement outcome ai conditional on a measurement of observable A.

But is the conditional-on-measurement probability just defined really a conditional

probability? This probability seems, if at all, a very strange species of conditional probab-

ility. For it is evidently not a probability for an event given another event, nor, in particular,

for a measurement outcome conditional on another measurement outcome. These con-

ditional-on-measurement probabilities really seem to be unconditional probabilities for

finding certain measurement outcomes when measurements are performed. One can stretch

the use of ‘conditional’ and say that these probabilities are probabilities ‘conditional’

on performing measurements. But this reading seems to retain little of the notion of

conditionality.

6.7. For example, Hájek says ‘Quantum mechanics apparently tells us that certain chances, conditional on free

acts, are defined, and it even purports to tell us their values. For example, it tells us that the chance that a certain

particle is measured to be spin-up, given that it is measured for spin in a given direction, is 1/2.’ ([Hájek, 2003a],

p-305)
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Indeed, there seems to be an important distinction between the role of ‘background

conditions’ which specify the conditions in effect at the assessment of the probability

function – in this case, the measurement procedure – and the propositions that can really

be conditioned on. It is not clear that the physical situation of the measurement can be

given any sort of propositional form that could resemble an event nor, if it could, whether

it is a type of event to which one could ascribe (or be interested in ascribing) a probability.

Moreover, quantummechanics does not itself provide such a probability ascription: it would

need to give probabilities to propositions of the form ‘measurement M is performed by

experimenter X’, which it does not, and most likely cannot, do. Hence, the conditional-

on-measurement probabilities are better understood as unconditional probabilities.

The question of whether the conditional-on-measurement probability is a genuine con-

ditional probability, is in fact very similar to another debate about probabilities in the

propensity account literature. On the propensity interpretation probabilities measure the

disposition or tendency of a particular experimental set-up to produce a certain frequency

of outcomes in the long run; similarly, pW(ai) in (6.30) can be thought of as the tendency

of the measuring device to produce a frequency of outcome ai equal to the value pW(ai)

when measuring observable A. And the question arises as to whether propensities actually

play the role of conditional or unconditional probabilities.

We will not go into this discussion in any detail6.8 for we here take the view that,

irrespective of the particular interpretation of probability, the distinction between back-

ground conditions and regular events does indicate the distinction between conditional

and unconditional probabilities. Hence, we regard conditional-on-background-conditions

probabilities, such as the conditional-on-measurement probability of definition 6.2, as

unconditional probabilities, and probabilities conditional on events as (genuine) condi-

tional probabilities.

This distinction is particularly relevant for us since the classical theorem 2.1 and its

analogue in quantum probability theory (theorem 4.2), which are precisely supposed to

characterize conditional probability, could otherwise not fulfill their task. Indeed, for the

probability Pp(A|B) to be a (genuine) conditional probability and be defined in terms of

the unconditional probability measure p, it is necessary that the measure p applies to both

A and B. For example, P(1|odd) in the die example is a (genuine) conditional probability

since p assigns both the events ‘1∩ odd’ and ‘odd’ a probability which serves to calculate

P(1|odd). In contrast, in the example of the radioactive particle, p(particle decays ∩

6.8. See, for example, [Easwaran, 2008]’s reconstruction of the debate, [McCurdy, 1996], [Gillies, 2000], and

[Humphreys, 1985].
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particle has the relevant features) is undefined and hence the conditional probability that

the particle decays given it has the relevant features is also undefined. And thus the

probability for a radioactive particle to decay is better conceived of as an unconditional

probability.6.9 Of course, that the particle is of the relevant isotope, or has the relevant

atomic structure, is indeed relevant for the particle to decay, but not in the way in which

a (genuine) conditional probability requires.

Similarly, the conditional-on-measurement probability of definition 6.2 is not a

(genuine) conditional probability. The event ‘measurement M of observable A is per-

formed by experimenter X’ is not relevant to the event ‘measurement result ai’ in the

right way. There is no projector operator which represents it as Pai represents ‘meas-

urement result ai’, and hence the density operator W cannot assign it any probability

similarly to how it assigns it to Pai. Hence their conditional probability is not determ-

ined. And thus, again, the conditional-on-measurement probabilities are better understood

as unconditional probabilities – albeit ones which only apply to measurement results.

To conclude, the conditional-on-measurement probability given by definition 6.2 is

really an unconditional probability which, as such, does not need to be considered as a

possible candidate for a quantum notion of conditional probability.

6.5 Non-Adequacy of the Orthodox Interpretation

We finally turn to evaluate whether the orthodox interpretation, with its reliance on the

Projection Postulate, provides an adequate interpretation of quantum theory. First, as we

saw in section 6.2, the projection postulate is usually justified because it ensures repeatab-

ility of measurement results. That is, it guarantees that when we repeat a measurement,

the result of the second measurement always matches the result of the first. However,

while sufficient to ensure repeatability, the projection postulate is by no means necessary.

Indeed, nothing more than the quantum probability theory and the Schrödinger equation

are required to guarantee the matching.6.10

Consider, similarly to equation (6.5), a measurement interaction described by a unitary

dynamical evolution (in particular, we make no use of the projection postulate), i.e.

∑

i

ciαiM0�∑

ciαiMi (6.31)

6.9. Note that Hájek sees this as a failure of the ratio analysis while we see it as indicating that the probability

involved is not really a conditional probability. See footnote B.2 and [Hájek, 2003a].

6.10. [Dickson, 1998], pp.28-29
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And introduce a second apparatus, whose eigenstates are Ni. The second measurement

interaction, again under unitary dynamics, gives
∑

i

ciαiM0N0�∑

ciαiMiNi (6.32)

Calculate now the probability of two states of the measuring devices Pj
M and Pi

N , i.e.

pψ(Pj
M ⊗ Pi

N) =

∣

∣

∣

∣

∣

(

∑

i

ci〈αi|〈Mi|〈Ni|
)

Pj
M ⊗ Pk

N

(

∑

i

ci|αi〉|Mi〉|Ni〉
)

∣

∣

∣

∣

∣

∣

2

=

δjk |cj |2 (6.33)

where δij = 0 if i � j and δij = 1 if i= j. The probability for finding the two measuring

devices in non-matching states given by (6.33) is already zero, with no need to invoke von

Neumann’s or the Lüders projection postulate. Hence, the projection postulate can only

be partly justified by empirical evidence. As Lüders says,

‘The [von Neumann] ansatz – at least so far – is justified only partly

through experiment, but mainly by its compelling simplicity’ ([Lüders, 1951],

p.664)6.11

In addition, the projection postulate faces other difficulties that cast serious doubt

on its adequacy. First, the projection postulate introduces an extra-dynamics for the act

of measurement and thus makes measurement interactions unlike any other interactions.

Indeed, measurement interactions cannot count as regular physical process because the

projection postulate, which gives the evolution of the system upon measurement, cannot

be derived by considering a Schrödinger evolution for the composite system containing the

measuring apparatus – this is what the insolubility proofs of the measurement show.6.12

But what else could measurement interactions be?

Moreover, even if one admits this special status for measurements, the orthodox view

does not say what kinds of interactions qualify as measurements. It introduces the notion

of measurement into the statement of the fundamental physical laws without providing an

explicit definition of measurement nor what is it about measurements that causes such a

collapse. And to make things worse, the solution it gives for the ‘measurement problem’ is a

non-starter as soon as one realizes that the problem is not only restricted to the context of a

measurement but to all macroscopic objects: all sorts of interactions involving macroscopic

systems will evolve by Schrödinger’s law into states that are not eigenstates of ordinary

physical properties. The orthodox interpretation is hence on very bad grounding unless

one thinks of quantum theory instrumentally, that is, as merely providing an algorithm

for generating the statistical predictions of the outcomes of measurements.

6.11. Note that Lüders’ statement equally applies to his own rule for change of state upon measurement.

6.12. [Wigner, 1963], [Fine, 1970], [Shimony, 1974]
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Von Neumann’s and Lüders’ projection postulates are thus, at best, seen as nothing

more than definitions of special classes of measuring instruments (with interactions unlike

any other physical interactions!). And though the majority of the measuring instruments

used in practice do not satisfy either of them, there is no definite example of a phys-

ical quantity not admitting at least one measuring instrument satisfying, even if only

approximately, these postulates.6.13 Following a terminology proposed by Wolfgang Pauli,

the measuring instruments that obey von Neumann’s projection postulate are referred to

as ‘first-kind instruments’. And those that match the stronger postulate of Lüders are often

called ‘ideal and of first kind’.

6.13. [Beltrametti & Cassinelli, 1981], p.79.
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Chapter 7

Interpreting Quantum Conditional
Probability II

In Chapter 5 we argued that the Lüders rule does not define the quantum extension of the

notion of conditional probability at a physically meaningful level, and we asked ourselves

what concept it could possibly define. It appears that the previous chapter provides an

answer to this question: when an observable B is measured on a system in state W (with

an ideal first-kind measuring device), followed by a second measurement of an observable

A, the probability PW(ai|bi) = PWbi
(ai) =

Tr(PbiWPbiPai)

Tr(PbiW )
given by definition 6.1 seems to

define the probability of measurement outcome ai conditional on measurement outcome bi.

But is this really so? In this chapter we argue against this claim.

We also argue that introducing a diachronic perspective for the conditional-on-meas-

urement-outcome probability interpretation, and thus interpreting PW(ai|bi) as the prob-

ability for finding measurement outcome ai when observable A is measured at time tf,

conditional on a measurement of measurement of observable B with measurement out-

come bi at time ti, provides little help in understanding the probabilities defined by the

Lüders rule as conditional-on-measurement-outcomes probabilities (section 7.3). Moreover,

this discussion sheds further light on why the formal projective notion of conditional

probability cannot, after all, yield an adequate reading, both interpreted synchronically

or diachronically (section 7.4). Hence, we conclude that the probability defined by the

Lüders rule cannot be interpreted as a conditional probability neither for measurement

results, nor at a formal level for projection operators (nor for physical values), both from

a synchronic and a diachronic perspective.

In section 7.5 we use our discussion on the diachronic projective notion of conditional

probability to show explicitly that the only possible reading of the probability defined

by the Lüders rule as a conditional probability is a purely instrumental one. Indeed, this

rule can only define the probability for measurement outcome ai at time t2 immediately

before the measurement of observable A conditional on measurement outcome bi at time

t0 immediately before the measurement of B, namely

PW(ai, t2|bi, t0) =
Tr[WPbi(t0)Pai(t2)Pbi(t0)]

Tr[WPbi(t0)]
(7.1)
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therefore saying nothing about what happens to the system during the first measurement

nor between both measurements. Thus, it offers a purely instrumental interpretation with

a strong ‘black-box’ character which is unsatisfactory unless one reduces quantum theory

to an algorithm for generating the statistical predictions of the outcomes of measurements.

Indeed, if when one says the probability of a certain measurement outcome ai at time

t2 given a previous measurement at time t0 which has outcome bi is PW(ai, t2|bi, t0) one

only means that if these two measurements are repeated many times, one after the other,

one expects that the fraction of those which give the outcome ai is roughly PW(ai, t2|bi,
t0), then no problems arise. But as soon as one attempts to say anything else, then all the

problems we consider in sections 5.2, 5.3, 5.4, 7.3 and 7.4 appear.

We end the chapter by reconsidering the two-slit experiment in the light of our dis-

cussion (section 7.6) and by evaluating two further arguments, namely those presented

in [Bub, 1979a, 1979b, 2007] and [Fuchs, 2002a, 2002b], for the interpretation of the

probability defined by the Lüders rule as a conditional probability (section 7.7).

7.1 A First Look II

So far we have seen two possible definitions of a quantum notion of conditional probability.

First, in Chapter 5, we argued that the probability defined by the Lüders for projectors P

and Q with respect to the initial probability measure pW , namely

PW(P |Q) =
Tr(WQPQ)
Tr(QWQ)

(7.2)

can be interpreted, albeit under a quite feeble and counterintuitive reading, as the quantum

extension of conditional probability at the formal level of projection operators (definition

5.1). Indeed, since PW(P |Q) is the pro rata increase of the common ‘projector’ QPQ of

P and Q, it is to be understood as the probability of projector P conditional on projector

Q, with respect to the initial probability measure pW .

We also argued in Chapter 5 that this probability cannot be understood as a conditional

probability for the eigenvalues p and q associated with P and Q. For if P and Q are

incompatible, the event ‘p and q’ cannot always be represented in terms of the projection

operators P and Q as P ∧Q; and in the cases in which such a correspondence does exist,

the probability assigned to the event ‘p and q’ does not correspond to the probability

assigned to the common operator of P and Q employed by the Lüders rule, i.e. Q P Q.

PW(P |Q) cannot, therefore, be read as the pro rata increase of the probability of ‘p and q’
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and, hence, cannot be interpreted as a quantum conditional probability from a physically

meaningful perspective.

Second, in chapter 6, we defined the notion of quantum conditional-on-measurement-

outcome probability (definition 6.1). For an ideal first-kind measurement of an observable

B (with possible eigenvalues bi) performed on a system in state W , followed by a meas-

urement of an observable A (with possible eigenvalues ai), the probability of measurement

outcome ai conditional on measurement outcome bi is

PW(ai|bi)=PWbi
(ai) =

Tr(PbiWPbiPai)

Tr(PbiW )
(7.3)

Or, for a pure state ψ, Pψ(ai|bi) = pψbi(ai) = |〈αi, ψbi〉|2, with ψbi=
Pbiψ

‖Pbiψ‖
.

The probability given by (7.3) can also be expressed in terms of the values p and q

associated with P and Q. Imagine we perform an ideal first-kind measurement of a certain

observable, where Q belongs to its spectral decomposition, and find measurement outcome

q. We then perform a measurement of a second observable, where P belongs to its spectral

decomposition. According to definition 6.1, the probability to find measurement outcome

p in this second measurement, conditional on having found q in the first one, is

PW(p|q) = pWq(p)=Tr
(

QWQ

Tr(QWQ)
P

)

(7.4)

for a system in state W .

Now, the right hand side of equations (7.2) and (7.4) are formally the same. But in

(7.4) it is interpreted as giving the probability of measurement outcome p conditional on

measurement outcome q, i.e PW(p|q), whereas in (7.2) it is interpreted as the probability

of the projector P conditional on the projector Q, i.e. PW(P |Q) (albeit under a weak

construal of such a notion). We want to evaluate whetherPW(p|q) can really be interpreted

as the probability of measurement outcome p conditional on measurement outcome q, when

P and Q are incompatible. It seems that it cannot, and for reasons that go beyond those we

presented in sections 6.5 when discussing the inadequacy of the orthodox interpretation.

Indeed, under the projective interpretation, the probability PW(P |Q) is read as

the ‘probability’ of the common ‘projector’ Q P Q increased pro rata, i.e. divided by

pW(Q). The state W determines the ‘probability’ of both the common ‘projector’ QPQ

– an operator which only depends on the projectors P and Q – and the probability

of projector Q, and hence determines the probability of P conditional on Q. However,

for the conditional-on-measurement-outcome reading of PW(p|q), there seems to be no

possible notion of commonality between measurement outcomes p and q which would
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underwrite interpreting it as a conditional-on-measurement-outcome probability when P

and Q are incompatible observables. For one cannot seemingly perform simultaneous meas-

urements of incompatible quantities and thus cannot read PW(p|q) as the probability

for finding measurement result p and q, increased pro rata.7.1

The only possible reading of PW(p|q) seems to be that of a transition probability:

changes of state are called transitions, and the probabilities associated with them are

called transition probabilities. In effect, upon finding q as the measurement outcome of the

first measurement, the state of the system changes from W to Wq =
QWQ

Tr(QWQ)
, where the

probability for finding q is given by pW(q)=Tr(WQ). Then, when the system is measured

a second time and measurement result p is found, its state changes again, this time from

state Wq to state Wp, where Wp =
PWqP

Tr(WqP )
if the second measurement is also ideal and

of the first-kind. The probability for finding the outcome p is given by the state Wq as

pWq(p) = Tr(Wq P ) in accordance with (7.4). Thus, PW(p|q) is the probability that the

state of the system changes from Wq to Wp, that is, it is a transition probability.

However, the situation is far more involved that this. First, even if one cannot seemingly

perform simultaneous measurement of incompatible quantities, one can still consider the

probability for finding measurement result p and q at different times, i.e. pW(ptf&qti).

And thus one can try to interpret PW(p|q) as the probability for finding measurement

outcome p at a certain time tf, conditional on having found measurement outcome q at

an earlier time ti, i.e. PW(ptf |qti). This would yield a notion of conditional probability

different both from a synchronic notion of conditional probability PW(pti|qti) – wherein

measurement results p and q are both considered at the same initial time ti – and from a

diachronic notion of conditionalization pW(ptf) =PW(pti|qti) – wherein the probability of

measurement outcome p at time tf is updated by equating it to the synchronic conditional

probability of p given q at time ti. We might call this notion, in general, diachronic

conditional probability; and in our particular case, diachronic conditional-on-measurement-

outcome probability.

And second, while it is true that one cannot measure simultaneously two incompatible

quantities directly , one can measure them simultaneously by means of indirect measure-

ments (when one allows the system of interest to interact with another system on which one

can also perform measurements). Thus, the possibility of a simultaneous measurement of

incompatible quantities cannot be ruled out so lightly and, therefore, PW(p|q) might still

allow a synchronic conditional-on-measurement-outcome interpretation. Let us consider

these different possibilities in detail.

7.1. See for example [Margenau, 1963a, 1963b], [Parker & Margenau, 1968], and [Varadarajan, 1962].

108 Interpreting Quantum Conditional Probability II



7.2 Transition Probabilities

7.2.1 Classical Transition Probability

Classical transition probabilities appear in the theory of Markov chains.7.2AMarkov chain,

is a stochastic process with the Markov property , namely that, given the present state,

future states are independent of the past states; in other words, that the description of the

present state fully captures all the information that could influence the future evolution

of the process. Formally, a Markov chain is a sequence of random variables X1,X2,� .,Xn

which satisfy the Markov property

P(Xn+1 = x|Xn= xn,� , X1 =x1) =P(Xn+1 =x|Xn=xn) (7.5)

At each step the system may change its state from the current state to another state, or

remain in the same state, according to the probability distribution given by (7.5).7.3 The

changes of state are called transitions, and the probabilities associated with the various

state-changes are called transition probabilities.

Now only for reversible Markov chains, which are necessarily stationary, can transition

probabilities be read as conditional probabilities. In effect, time-homogeneous or stationary

Markov chains are processes where, for all n,

P(Xn+1 = x|Xn= y) =P(Xn=x|Xn−1 = y) (7.6)

So that if X0 has a certain distribution p, then Xn at any subsequent time has the same

distribution. Reversible Markov chains are those in which one can ‘invert’ a transition

probability using Bayes’ rule, i.e.

P(Xn= i|Xn+1 = j) =
p(Xn= i,Xn+1 = j)

p(Xn+1 = j)
=
p(Xn+1 = j |Xn= i) p(Xn= i)

p(Xn+1 = j)
(7.7)

Intuitively, a reversible chain is one in which given a movie of the chain run forward and

the same movie run backward, one cannot tell which is which.

7.2. We give here a very basic exposition of the theory of Markov chains. See [Doob, 1953] for a detailed

exposition.

7.3. Note that chains with a certain ‘memory’ can also be regarded as Markov chains. In effect, for a Markov

chain with memory m, where m is finite, i.e. p(Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, � , X1 = x1) = p(Xn =

xn|Xn−1 = xn−1, Xn−2 = xn−2,� , Xn−m= xn−m), it is possible to construct a chain (Yn) from (Xn) which has

the Markov property. Indeed, let Yn = (Xn, Xn−1, ..., Xn−m+1), the ordered m-tuple of X values. Then Yn is a

Markov chain that has the Markov property.
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In general, thus, transitions probabilities do not satisfy equation (7.7). Only for revers-

ible processes does it hold and therefore

p(Xn= i,Xn+1 = j) =P(Xn= i|Xn+1 = j) p(Xn+1 = j)

=P(Xn+1 = j |Xn= i) p(Xn= i) (7.8)

That is, both products are equal to the joint probability p(Xn = i, Xn+1 = j) and hence

the transition probabilities P(Xn+1 = j |Xn= i) and P(Xn= i|Xn+1 = j) can also be read

as conditional probabilities, i.e.

P(Xn+1 = j |Xn= i) =
p(Xn= i,Xn+1 = j)

p(Xn= i)

P(Xn= i|Xn+1 = j) =
p(Xn= i,Xn+1 = j)

p(Xn+1 = j)
(7.9)

Note, however, that these conditional probabilities, are different both from the synchronic

notion of conditional probability and from the diachronic notion of conditionalization

we saw in chapter 2. Expressing them in terms of our usual notation for conditional

probabilities, with the events indexed in time, namely

P(At2|Bt1) =
p(Bt1∩At2)
p(Bt1)

P(Bt1|At2)=
p(Bt1∩At2)
p(At2)

(7.10)

we can clearly see that they are different from a synchronic notion of conditional probability

Pt1(A|B) =P(At1|Bt1) =
p(Bt1∩At1)
p(Bt1)

(7.11)

wherein events A and B are both considered at the same initial time t1, and from a

diachronic notion of conditionalization

pt2(A)=Pt1(A|B) (7.12)

wherein the probability of A at time t2 is updated by equating it to the synchronic con-

ditional probability of A given B at time t1. Indeed, A and B are considered at different

times in the joint event of A and B in the conditional probabilities (7.10). As we suggested

in the previous section, we can call this new notion of conditional probability, diachronic

conditional probability.

To sum up, in the classical case, if a process is reversible then the equality

P(At2|Bt1) p(Bt1) =P(Bt1|At2) p(At2) = p(Bt1∩At2) (7.13)
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is satisfied for the transition probabilities P(At2|Bt1) andP(Bt1|At1). And hence P(At2|Bt1)
and P(Bt1|At2) can also be interpreted as diachronic conditional probabilities. The reverse

implications also hold. Hence, a process is reversible if and only if equality (7.13) holds;

and the probabilities P(At2|Bt1) , P(Bt1|At2) can be interpreted as (classical) conditional

probabilities if and only if equality (7.13) holds.

7.2.2 Quantum Transition Probability

As we have just seen, ifP(At2|Bt1) p(Bt1)�P(Bt1|At2) p(At2), then the classical process that

these probabilities represent is non-reversible and the transition probabilities P(At2|Bt1)
and P(Bt1|At2) cannot be interpreted as conditional probabilities. However, if A and B

are considered at the same time, the ratio definition of synchronic conditional probability

implies that P(A|B) p(B) = P(B |A) p(A) always holds. Hence, the failure of equality

(7.13) only makes sense in the classical case if events A and B occur at different times. In

contrast, in the quantum case, the equality analogue to (7.13) for the probabilities PW(p|q)
and PW(q |p) defined by the Lüders rule, namely

PW(p|q) pW(q) =PW(q |p) pW(p) (7.14)

can fail even if p and q are considered at the same time. Indeed, only if P and Q are

compatible, is (7.14) satisfied. We can easily show that this is the case for our previous

examples involving compatible and incompatible observables.

Example 7.1. Incompatible Observables. In example 6.1 we considered a system in

state ψ=c1β1+c2 β2+c3β3, where |c1|2+ |c2|2+ |c3|2=1, and two incompatible observables

A= a1Pα1 +a2Pα2 + a3Pα3 and B= b1(Pβ1 +Pβ3)+ b2Pβ2, where α1 =
β1 + β2

2
√ ; α2 =

β1− β2

2
√ ;

α3 = β3. Initially state ψ assigns probabilities to the various measurements results ai of

observable A

pψ(a1) =
1
2

(|c1|2 + |c2|2); pψ(a2) =
1
2

(|c1|2 + |c2|2); pψ(a3)= |c3|2 (7.15)

And to the various measurements results bi of observable B

pψ(b1)= |c1|2 + |c3|2; pψ(b2) = |c2|2 (7.16)

Let us first calculate Pψ(a1|b1) pψ(b1) and then Pψ(b1|a1) pψ(a1). If we perform an ideal

first-class measurement of observable B and find result b1, the Lüders projection postulate

tells us that the new state just after the measurement of B is

ψb1 =
c1

|c1|2 + |c3|2
√ β1 +

c1

|c1|2 + |c3|2
√ β3 (7.17)
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With this new state vector:

pψb1(a1) =Pψ(a1|b1)=
1
2

|c1|2
|c1|2 + |c3|2

(7.18)

and thus

Pψ(a1|b1) pψ(b1) =
1
2
|c1|2 (7.19)

Now, if we perform first an ideal first-class measurement of observable A and find result

a1, the Lüders projection postulate tells us that the new state is

ψa1 =α1 =
β1 + β2

2
√ (7.20)

With this new state vector:7.4

pψa1(b1) =Pψ(b1|a1) =
1
2

(7.21)

and thus

Pψ(b1|a1) pψ(a1) =
1
4

(|c1|2 + |c2|2) (7.22)

which is different form the result of (7.19). Hence,

P(b1|a1) p(a1)� P(a1|b1) p(b1) (7.23)

Example 7.2. Compatible Observables. In example 6.2 we considered a system in

state ψ= c1 α1 + c2 α2 + c3 α3 and two commuting operators A= a1Pα1 + a2 Pα2 + a3Pα3,

and B = b1 Pα1 + b2(Pα2 + Pα3). Initially state ψ assigns probabilities to the various

measurements results ai of observable A

pψ(ai) = |ci|2 (7.24)

and to the possible measurement results bi of observable B

pψ(b1) = |c1|2; pψ(b2) = |c2|2 + |c3|2 (7.25)

If we perform an ideal first-class measurement of observable B and find result b2, the Lüders

projection postulate tells us that the resultant state after this measurement

ψb2 =
c2

|c2|2 + |c3|2
√ α2 +

c3

|c2|2 + |c3|2
√ α3 (7.26)

With this new state vector

pψb2(a2) =Pψ(a2|b2) =
|c2|2

|c2|2 + |c3|2
(7.27)

7.4. 〈ψa1
, (Pβ1

+Pβ3
) ψa1

〉= 〈ψa1
, Pβ1

ψa1
〉= |〈β1, ψa1

〉|2 =
1

2
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and thus

Pψ(a2|b2) pψ(b2) = |c2|2 (7.28)

Now, if we perform an ideal first-class measurement of observable A getting result a2, the

Lüders projection postulate tells us that the resultant state after this measurement is

ψa2 = α2 (7.29)

With this new state vector

pψa2(b2) =Pψ(b2|a2) = 1 (7.30)

and thus

Pψ(b2|a2) pψ(a2) = |c2|2 (7.31)

Hence,

P(a2|b2) p(b2) =P(b2|a2) p(a2) (7.32)

So what are the interpretive consequences of the failure of equality (7.14) for incompat-

ible observables? Orthodox interpreters claim that the key to understanding this failure

lies in that, analogously to the classical case, the probabilities PW(p|q) for incompatible

observables are not really conditional-on-measurement-outcome probabilities, but rather

transition probabilities for irreversible processes, and hence cannot be given a conditional

interpretation. Indeed, the probability PW(p|q) only makes sense if it is indexed in time

as PW(pt2|qt1) and then it is to be interpreted as a transition probability; that is, as the

probability that a measurement changes the state of the quantum system from state Wq

at time t1 to state Wp at time t2. The underlying reasoning would go something like this.

Given that one cannot perform simultaneous measurements of incompatible observ-

ables, the probability PW(p|q) (for P and Q incompatible) only makes sense if it is indexed

in time. In addition, given that quantum measurements are necessarily disturbing, they

correspond to irreversible processes. Indeed, quantum measurements are invariably pro-

cesses which drastically change the measured system and which introduce an irreducible

disturbance to the quantum system. And thus, transition probabilities for incompatible

observables cannot be understood as classical conditional probabilities. That is why equa-

tion (7.14), appropriately indexed in time, i.e. PW(pt2|qt1) pW(qt1) =PW(qt1|pt2) pW(pt2),

does not hold for incompatible ones. In orthodox quantum mechanics measurements are

thus not ideal processes for merely learning something. Only if the quantities involved are

compatible is quantum measurement like classical measurement.
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The reasoning afforded by the orthodox interpreter for why the probabilities defined

by the Lüders rule for incompatible events are transition probabilities for the irreversible

process of a quantum measurement, and hence cannot be given a classical conditional-on-

measurement-outcome interpretation is, however, flawed. Schematically, it is the following:

Premise 1 : One cannot perform simultaneous measurements of incompatible

observables, and hence the probability PW(p|q) (for P and Q incompat-

ible) only makes sense if it is indexed in time. For P and Q incompatible,

PW(ptf |qti) is thus a transition probability.

Premise 2 : Quantum measurements are necessarily disturbing, and hence

correspond to irreversible processes.

Premise 3 : Transitions probabilities for irreversible processes cannot be

interpreted as conditional probabilities.

——————–——————–——————–——————–——————–

Conclusion: The transition probabilityPW(pt2|qt1) for P and Q incompatible

observables cannot be understood as a classical diachronic conditional-

on-measurement-outcome probability.

The problem with this argument is two-fold. First, premise 1’s claim on the non-simul-

taneous measurability of incompatible observables is incorrect. Indeed, even if one cannot

measure simultaneously two incompatible quantities directly, and, seemingly, cannot inter-

pret PW(p|q) as the pro rata increase of the joint probability of measurement outcome p

and q, one can measure them simultaneously by means of indirect measurements (when

one allows the system of interest to interact with another system on which one can also

perform measurements). And thus it is not correct to hold that PW(p|q) (for P and Q

incompatible) only makes sense if it is indexed in time. In effect, PW(p|q) might still allow

a synchronic conditional-on-measurement-outcome interpretation.

Second, the orthodox interpreter does not present any justification for the assumption

of premise 2, namely that quantum measurements are necessarily disturbing. Moreover,

even if this assumption does hold in practice – there is no argument to the effect that

quantummeasurements are necessarily disturbing as a matter of principle, but it in practice

quantum measurements are disturbing– the conclusion of premise 2 does not follow from

it. For disturbing processes need not always lead to irreversible processes. Hence, one can

still consider the probability for finding measurement result p and q at different times, i.e.

pW(pt2&qt1), and try to interpret PW(pt2|qt1) as the probability for finding measurement

outcome p at time t2 conditional on having found measurement outcome q at an earlier

time t1; that is, as a diachronic-conditional-on-measurement-outcome probability.
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The rationale given by the orthodox interpreter to the effect that the probability

PW(p|q) only makes sense if it is indexed in time as PW(pt2|qt1), and that then it is

to be interpreted as a transition probability, thus, is not correct. Unlike the classical case,

the fact that (7.14) does not hold for P and Q incompatible at the same and at different

times, i.e. PW(p|q) pW(q)�PW(q |p) pW(p) andPW(pt2|qt1) pW(qt1)�PW(qt1|pt2) pW(pt2),

does not rule out the interpretation of the probability PW(p|q) and P(pt2|qt1) as a syn-

chronic or diachronic conditional-on-measurement-outcome probability.

However, as it turns out, this is not so. But for reasons which are not, contrary to

what the orthodox interpreter holds, related to the (allegedly) disturbing character of

measurements of incompatible quantities. The reasons for why PW(p|q) and P(pt2|qt1)
cannot be so interpreted, i.e. as synchronic or a diachronic conditional-on-measurement-

outcome probabilities for incompatible quantities, lie elsewhere. We tackle this issue in the

next section.

7.3 Conditional-on-Measurement-Outcome Probability

Let us then see why the probability defined by the Lüders projection postulate PW(p|q)
cannot be interpreted as a (synchronic nor diachronic) conditional-on-measurement-out-

come probability. Recall that to motivate this possibility, we appealed to the fact that while

one cannot measure simultaneously two incompatible quantities directly (and thus cannot

interpret PW(p|q) as the pro rata increase of the joint probability of measurement outcome

p and q), one can measure them simultaneously by means of indirect measurements when

one allows the system of interest to interact with another system on which one can also

perform measurements.

Discussions on indirect measurements are intimately tied with discussions on locality,

and these are rather intricate and involved. However, we do not need to go into them.

For, as we already mentioned in the previous section, PW(p|q) cannot be interpreted as

a synchronic nor diachronic conditional-on-measurement-outcome probability for reasons

that have nothing to do with measurements. Hence, we show that the conceptual problems

of quantum mechanics cannot be traced back to the alleged irreducible and uncontrollable

disturbance of the system measured by a measuring instrument.

Let us begin by considering the synchronic case. An interpretation of PW(p|q) as

a synchronic conditional probability for measurement results, simply considers a partic-

ular interpretation of the physical values of the probability PW(p|q) of sections 5.3 and
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5.4, namely physical values as measurement outcomes. Thus, the same difficulties we

encountered there come into play here.

Indeed, recall that we there argued that, for incompatible quantities P and Q, the

event ‘p and q’ cannot always be represented in terms of the projection operators P and

Q as P ∧ Q, and in the cases in which such a correspondence does exist, the probability

assigned to the event ‘p and q’ does not correspond to the probability assigned to the

common operator of P and Q employed by the projective notion of quantum conditional

probability, i.e. QPQ. Thus, the probability PW(P |Q) defined by the Lüders rule cannot

be understood as the pro rata increase of the probability of ‘p and q’; and hence, it cannot

be interpreted as the probability of value p conditional on value q for P and Q incompatible

quantities.

Let us rehearse this argument again for the spin-1 particle example of section 4.4.1. in

terms of measurement results. The probability

Pψ(sy+1|sx+1
) =

〈

Psx+1
ψ

||Psx+1
ψ‖ , Psy+1

Psx+1
ψ

||Psx+1
ψ‖

〉

(7.33)

cannot be interpreted as the probability of measurement outcome sy+1 conditional on

measurement outcome sx+1. Indeed, the event Psx+1
∧ Psy+1

corresponds to ‘Sx takes the

value + 1 and Sy takes the value + 1’, with ‘and’ the ordinary logical relation. However,

it is false under all truth assignments Vψ since there is no state ψ which is an eigenstate

of both Psx+1
and Psy+1

. Hence the probability of sx+1 conditional on sy+1 should be

zero for all ψ. Which we know is not what the Lüders rule prescribes in (7.33). Hence,

Pψ(sy+1|sx+1
) cannot be interpreted as a the probability for measurement outcome sy+1

conditional on measurement outcome sx+1.

The same applies for the probability Pψ(Psy+1
|Psx+1

+ Psx0), although here it is even

more difficult to interpret it as a conditional-on-measurement-outcome probability. For the

projector Psy+1
∧ (Psx+1

∨ Psx0) cannot even be interpreted as measurement outcome sy+1

and measurement outcome sx+1 or sx0 as we discussed at length in section 5.4.2.

In addition, notice that nothing in the above argument hinges on time; we could run

this same argument for measurement results p and q considered at different times. Hence,

the probability PW(p|q) defined by the Lüders rule cannot be interpreted either as the

synchronic or the diachronic probability of measurement outcome p conditional on meas-

urement outcome q. Thus, it seems that, after all, we cannot interpret the probabilities

defined by the Lüders rule as conditional-on-measurement-outcome probabilities. Their

only possible interpretation as conditional probabilities appears to be the, weak and coun-

terintuitive, formal notion of conditional-on-quantum-event probability.
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But is the latter interpretation viable after all? In the next section we argue that this

formal notion of synchronic conditional probability is even less plausible than what we

argued in section 5.2.

7.4 Diachronic Projective Conditional Probability

Similarly to the conditional-on-measurement-outcome probabilitiesPW(p|q) andPW(q |p),
the conditional-on-quantum-event probabilities PW(P |Q) and PW(Q|P ) are such that for

P and Q incompatible

PW(P |Q) pW(Q)� PW(Q|P ) pW(P ) (7.34)

(recall that PW(P |Q) is formally equivalent to PW(p|q)), where this inequality fails both

for P and Q considered at the same and at different times. i.e.

PW(Pt2|Qt1) pW(Qt1) =PW(Qt1|Pt2) pW(Qt2) (7.35)

In section 5.2 we considered its interpretive consequences for the former case. We argued

that PW(P |Q) and PW(Q|P ) can be understood as extended conditional probabilities –

PW(P |Q) as the pro rata increase of the common ‘projector’ QPQ, and PW(Q|P ) as the

pro rata increase of the common ‘projector’ PQP – even though the notion of commonality

it relies on is somewhat counterintuitive – the common projector for P and Q in PW(P |Q)

is different from that of Q and P in PW(Q|P ) – and weak – the common projector of P

and Q is taken to be QPQ (or PQP ) without any explanation.

However, this notion of commonality would not be so counterintuitive if the events P

and Q were considered at different times. Indeed, the operator Qt1 Pt2 Qt1 would be the

common ‘projector’ of P at time t2 given Q at time t1 as given by PW(Pt2|Qt1), which,
prima facie, need not be equal to Pt2 Qt1 Pt2, i.e. the common ‘projector’ of Q at time t1

given P at time t2 as given by PW(Qt1|Pt2) for the time-reverse process. Indeed, already

in the classical context, there are physical processes which are not reversible in which this

is so. One would then calculate the (diachronic) joint ‘probability’ of Pt2 and Qt1 through

the trace rule, i.e. Tr(WQt1Pt2 Qt1), and thus arrive at a less counterintuitive reading of

PW(P |Q).

Hence, the correct interpretation of PW(P |Q) is not as a synchronic conditional prob-

ability, namely as the probability at time t1 of P conditional on Q, but rather as a

diachronic conditional probability, namely as the probability of projector P at time t2 con-

ditional on projector Q at time t1, i.e. PW(Pt2|Qt1). This notion would be somewhat weak –

it would still need to postulate that precisely Qt1Pt2Qt1 represents the common ‘projector’

of Pt2 given Qt1 – but it would not be as counterintuitive as its synchronic counterpart.
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Moreover, this same result would also hold in the presence of interference terms. Indeed,

consider the particular example of section 4.4.1 of the spin-1 particle for events Q =

Psx+1
+Psx0 and P =Psy+1

. The existence of interference terms in Pψ(Psy+1
|Psx+1

+Psx0)

would raise no additional difficulties: again, under the diachronic perspective, there is no

reason to suppose that the common ‘projector’ of (Psy+1
)t2 given (Psx+1

+Psx0)t1 should be

the same as that of (Psx+1
+Psx0)t1 given (Psy+1

)t2. In addition, one would understand the

origin of the interference terms given that each term of the common ‘projector’ gives rise to

a term in the probability defined by the Lüders rule. In effect, the probability Pψ

[

(Psx+1
+

Psx0)t1

∣

∣

∣
(Psy+1

)t2

]

is the sum of two terms because (Psy+1
)t2(Psx+1

+ Psx0)t1 (Psy+1
)t2 is

composed of only two common ‘projectors’; whereas Pψ

[

(Psy+1
)t2

∣

∣

∣
(Psx+1

+ Psx0)t1

]

is the

sum of four terms because (Psx+1
+ Psx0)t1 (Psy+1

)t2(Psx+1
+ Psx0)t1 is composed of four

common ‘projectors’.

However, notice that under this diachronic reading of PW(Pt2|Qt1), the projectors P

and Q evolve in time. Is this possible? Thus far, we have been working in the ‘Schrödinger

picture’, according to which states evolve in time (according to the Schrödinger equation)

and any given observable is at all times represented by the same operator. But to interpret

PW(Pt2|Qt1) as a diachronic conditional probability for projectors in L(H), P and Q need

to evolve in time. Thus, can PW(Pt2|Qt1) really be interpreted as a diachronic conditional

probability for projection operators?

Yes, it seems that it can. For there is an equivalent formulation of quantum mechanics,

namely the so-called ‘Heisenberg picture’, which is equivalent to the ‘Schrödinger picture’ –

in the sense that they generate the same probability measures over the values of observables

at all times – but which employs the reverse time evolution dependence. That is, in the

Heisenberg picture, contrary to what happens in the Schrödinger one, states are constant in

time and observables evolve in time. In effect, if At1 represents a given observable at time

t1, then, in the Heisenberg time-picture, At represents the same observable at time t, with

At=Ut−t1
−1 At1Ut−t1 (7.36)

Note that this time evolution is different from that of the quantum states, namely Wt =

Ut−t1 Wt1 Ut−t1
−1 as given by equation (6.1) because of the order in which the unitary

evolution operator Ut−t1 and its inverse appear.

And if one now writes PW(Pt2|Qt1) in the Heisenberg time picture, i.e. PW(Pt2|Qt1)H,
one gets

PW(Pt2|Qt1)H =
Tr(WQt1Pt2Qt1 )
Tr(Qt1WQt1)

=
Tr(WQt1Ut2−t1

−1 Pt1Ut2−t1Qt1 )

Tr(Qt1WQt1)
(7.37)
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Hence, it seems that PW(Pt2|Qt1)H, as given by (7.37), can actually be read as the prob-

ability of P at time t2 given Q at time t1: it is the pro rata increase of the ‘probability’

of the common ‘projector’ Qt1 (Ut2−t1
−1 Pt1 Ut2−t1)Qt1 . The state of the system W , which

does not evolve in time in the Heisenberg picture, generates both the ‘probability’ of the

common ‘projector’ Qt1Pt2Qt1and the probability of Qt1. Thus, it seems that, after all, we

do have a sound interpretation of the probability defined by the Lüders rule as a conditional

probability for projection operators. We refer to this interpretation as the Heisenberg

diachronic projective notion of conditional probability.

Definition 7.1. Heisenberg Diachronic Projective Quantum Conditional Probab-

ility. The probability given by (the Heisenberg analogue of) the Lüders rule for projectors

Pt2, Qt1∈L(H) in the Heisenberg picture, namely

PW(Pt2|Qt1)H =
Tr[W (Qt1Pt2Qt1)]

Tr(WQt1)
=
pW
′ (Qt1P t2 Qt1)
pW(Qt1)

(7.38)

is the probability of projector P at time t2 conditional on projector Q at time t1 with respect

to the probability measure pW. The operator Qt1Pt2Qt1 represents the common operator of

projectors Pt2 and Qt1, where the evolution from Pt1 to Pt2 is given by the unitary evolution

operator Ut2−t1 as

Pt2 =Ut2−t1
−1 Pt1Ut2−t1 (7.39)

To repeat, even if the Heisenberg diachronic projective notion, similarly to the synchronic

one, is somewhat weak – it gives no understanding of why precisely the operator Qt1Pt2Qt1

represents the common ‘projector’ of Qt2 and Pt1 – it is not counterintuitive – there is

nothing wrong with the fact that the common projector of Pt2 given Qt1 is not equal to that

of Qt1 given Pt2. Moreover, this diachronic projective notion appeals to a time evolution

which is perfectly acceptable from a physical perspective since it is dictated by a unitary

operator (unlike the one which the diachronic conditional-on-measurement-outcome notion

would need to invoke).

In effect, the evolution given by (7.39) is from event P at time t1 to event P at time t2,

i.e. Pt2 =Ut2−t1
−1 Pt1Ut2−t1, and then Pt2 is used to calculate the common projector of Qt1

and Pt2. This evolution is indeed quite different from the evolution dictated by the Lüders

projection postulate from stateW before the first measurement to stateWQ=
QWQ

Tr(WQ)
after

the first measurement. Indeed, while the former can be represented by a unitary evolution

operator, the latter cannot . And thus, while the evolution from W to WQ is generated by

an interaction which is unlike any other physical interaction, the evolution from Pt1 to Pt2

is a perfectly normal time evolution.
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This last remark, however, throws cold water on the Heisenberg diachronic projective

interpretation. It is indeed quite dubious that, simply by a change of time picture, one gets

both the probability for event P after a perfectly normal time evolution process represented

by the unitary evolution operator Ut2−t1, and the probability for measurement result p after

a measurement interaction governed by the projection postulate. Indeed, these two pictures

should be equivalent in the sense that they generate the same probability measures over

the values of observables at all times. Thus, maybe, the change from the Schrödinger to the

Heisenberg picture which led to definition 7.1 is not as innocent as it looks. Indeed, upon a

closer look, it turns out to be incorrect: the probability given by (7.38), i.e. PW(Pt2|Qt1)H=
Tr[W (Qt1Pt2Qt1)]

Tr(WQt1)
, is not equal to the probability given by the Lüders rule, i.e. PW(P |Q)=

Tr(QWQP )

Tr(WQ)
.

To see why our derivation of (7.38) is incorrect, we begin with the (inadequate) inter-

pretation of PW(pt2|qt1) as a diachronic conditional-on-measurement-outcome probability

under the Schrödinger picture. At time t1 an ideal first-kind measurement is performed

on a system in state W , and measurement outcome q is found; thus the system’s state

changes fromW to (Wq)t1=
QWQ

Tr(WQ)
. The system then evolves freely until time t2: (Wq)t2=

Ut2−t1 (Wq)t1Ut2−t1
−1 . Finally, a second measurement is performed on the system, where P

belongs to the spectral decomposition of the observable measured. If it is an ideal first

class measurement, then the state after this measurement is again given by the Lüders

projection postulate as (Wp)t2 =
P (Wq)t2P

Tr[(Wq)t2P ]
. This process is, schematically, the following:

W� FirstMeasurement � (Wq)t1 =
QWQ

Tr(WQ)
� FreeEvolution � (Wq)t2 =

Ut2−t1 (Wq)t1Ut2−t1
−1 � SecondMeasurement� (Wp)t2 =

P (Wq)t2P

Tr[(Wq)t2P ]
(7.40)

Now, if the system’s state does not change in its free evolution between measurements,

as for example in the spin-1 example of section 4.4.1, we have that (Wq)t2 = (Wq)t1. In

this case, the state only changes due to the measurement interaction as described by the

projection postulate. The probability given by the Lüders rule for measurement outcome

p at time t2 is then given by (Wq)t2 =(Wq)t1 =
QWQ

Tr(WQ)
. Hence,7.5

PW(p, t= t2|q, t= t1)= p(Wq)t2
(p)= p(Wq)t1

(p) =
Tr[(Wq)t1P ]

Tr[(Wq)t1 Q]
=

Tr(QWQP )
Tr(WQ)

(7.41)

Now write (7.41) in terms of projection operators instead of measurement outcomes, i.e.

PW(P , t= t2|Q, t= t1)= p(WQ)t2
(P )= p(WQ)t1

(P ) =
Tr[(WQ)t1P ]

Tr[(WQ)t1Q]
=

Tr(QWQP )
Tr(WQ)

(7.42)

7.5. Note that probability ‘p’ and measurement outcome ‘p’, appear together in (7.39). Though this is not

particularly appropriate, their difference should be clear by the context in which they appear.
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And then switch to the Heisenberg picture as we did to derive (7.38): first, we said that

PWt2
(P |Q) in the Schrödinger picture, which is equal to PWt1

(P |Q), was equivalent to

PW(Pt2|Qt1)H in the Heisenberg picture; second, we developed Pt2 as Ut2−t1
−1 Pt1Ut2−t1; and

we, thus, obtained PW(Pt2|Qt1)H =
Tr(WQt1Ut2−t1

−1 Pt1Ut2−t1Qt1 )

Tr(Qt1WQt1)
, and its understanding as

the pro rata increase of the common projector of Q at time t1 and P at time t2 (under an

ordinary dynamical evolution of projector Pt).

However, this derivation is flawed. For even though PWt2
(P |Q) is equal to PWt1

(P |Q)

in the Schrödinger time picture – given that the system’s state does not change between

t1and t2 – neither of them is equivalent to PW(Pt2|Qt1)H in the Heisenberg picture. Indeed,

in the Heisenberg equivalent of the SchrödingerPWt2
(P |Q), the projector P does not evolve

freely from Pt1 to Pt2 =Ut2−t1
−1 Pt1Ut2−t1. For, just as the system’s state does not change in

between measurements, there is no free evolution of projector P between t1 and t2. And

hence, PW(Pt2|Qt1)H given by (7.38) in the Heisenberg time picture does not describe the

same process as PWt2
(P |Q) in the Schrödinger time picture.

If the Schrödinger and Heisenberg pictures are to be equivalent – in the sense that they

generate the same probability measures over the values of observables at all times – then

Qt1 must be Qt1 =
QWQ

Tr(WQ)
. And hence, the probability defined by the Lüders rule in the

Heisenberg picture should be

PW(Pt2|Qt1)H☼ =Tr
(

QWQ

Tr(WQ)
P

)

(7.43)

where the sun symbol ☼ emphasizes that PW(Pt2|Qt1)H☼ is different from the previous

one, i.e. PW(Pt2|Qt1)H, and is the correct one. Thus, the relevant time evolution for

PW(Pt2|Qt1)H☼ is that of Qt from Q to Qt1 =
QWQ

Tr(WQ)
, so that

PW(Pt2|Qt1)H☼ =Tr(Qt1Pt2) =Tr
(

QWQ

Tr(WQ)
P

)

=
pW
′ (QPQ)
pW(Q)

(7.44)

We refer to this interpretation as the Heisenberg☼ diachronic projective notion of quantum

conditional probability.

Definition 7.2. Heisenberg☼ Diachronic Projective Quantum Conditional Prob-

ability. The probability given by (the Heisenberg☼ analogue of) the Lüders rule for

projectors Pt2, Qt1∈L(H) in the Heisenberg picture, namely

PW(Pt2|Qt1)H☼ =Tr(Qt1Pt2) =
pW
′ (QPQ)

pW(Q)
(7.45)
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is the probability of projector P at time t2 conditional on projector Q at time t1 with respect

to the probability measure pW, where the evolution from Q to Qt1 is given by the Heisenberg

analogue of the Lüders projection postulate as

Qt1 =
QWQ

Tr(WQ)
(7.46)

The probabilities defined by the Heisenberg☼ notion, in contrast to those defined by the

Heisenberg one, do agree with the probabilities defined by the Lüders rule. Thus, the

Heisenberg☼ projective diachronic reading of (7.45), even if rather weak – it gives no

understanding of why precisely the operator Q PQ represents the common ‘projector’ of

Qt1 and Pt2 – does seem to provide a correct non-counterintuitive understanding of why

the probability defined by the Lüders rule should be read as a diachronic conditional

probability for quantum projectors.

However, a more careful analysis shows that again this is not so; that, in fact, the

Heisenberg☼ notion faces serious and, as we now argue, unsurmountable difficulties. Indeed,

first, it is clear that it relies on a physically unacceptable time evolution, for the evolution

it invokes is not a unitary one from event P at time t1 to event P at time t2. Rather, to

calculate PW(Pt2|Qt1)H☼, one needs to consider the time evolution from Q to Qt1=
QWQ

Tr(WQ)

as if the observable to whose spectral decomposition Q belongs to, say B =
∑

i
qi Qi,

were subject to a measurement and the measurement interaction were governed by the

Heisenberg analogue of the Lüders projection postulate. Indeed, one needs to consider the

following time evolution

W , Q, P�FirstMeasurementB=
∑

i
qiQi� W , Qt1 =

QWQ

Tr(WQ)
, P (7.47)

The relevant change for PW(Pt2|Qt1)H☼ is that of Qt when the first ‘measurement’ is

performed, i.e. from Q to Qt1. Indeed, in the Schrödinger picture – see diagram (7.40) –

it is the evolution from W to (Wq)t2 which is relevant to calculate PW(p|q), and not that

from (Wq)t2 to (Wp)t2, as would need to be if the relevant time evolution for PW(Pt2|Qt1)H☼

were Pt2 =Ut2−t1
−1 Pt1Ut2−t1.

Now the fact that the evolution from Q to Qt1 =
QWQ

Tr(WQ)
is given by an extra-dynamics

which cannot be derived from a unitary-type dynamics may not be particularly trouble-

some, since the projective notion can, at most, only work at a mathematical level for

projection operators. So what sense would it make to consider non-measurement unitary-

type interactions as physically acceptable and measurement non-unitary-type interactions

as unacceptable? Moreover, even if this is so, a problem does arise as to when and why one

should consider unitary and non-unitary time-evolutions. Indeed, to make these choices

and to justify them (and thus retrieve the correct probabilistic predictions), one needs to
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supplement the Heisenberg☼ diachronic projective reading with too many physical intu-

itions, i.e. ‘imagine’ process (7.47) as taking place, which are, moreover, not even adequate

in the case of the evolution from Q to Qt1 =
QWQ

Tr(WQ)
due to all the problems related to the

quantum notion of measurement (section 6.5). The resulting notion thus presents, at best,

a strange mixture of mathematical and physical components.

However, regardless of whether or not the preceding arguments provide grounds to

fully dismiss this second Heisenberg diachronic projective reading (definition 7.2), it turns

out that this notion is, after all, not even correct. Indeed, the problem is that for the

general case in which the projection operator Q also ‘evolves freely’ after the first ‘meas-

urement’, i.e. it ‘evolves’ from Qt1 =
QWQ

Tr(WQ)
(just after the first ‘measurement’) to Qt2 =

Ut2−t1
−1 Qt1Ut2−t1 (just before the second ‘measurement’), the probabilities provided by the

Heisenberg☼ picture do not agree with the probabilities defined by the Lüders rule in the

Schrödinger picture. And the latter are the correct empirical probabilities.

Let us see this in detail. When considering the probability of projector P at time t2

given projector Q at time t1 in the Heisenberg☼ picture, one has to imagine a time evolution

process similar to that given in (7.40), namely

[W, Qt0, Pt0]� 8
Measurement

′Bt0 � [

W , Qt1 =
Qt0WQt0
Tr(WQt0)

,

Pt0

]� Free
8

Evolution
′
of Qt � [W , Qt2 =Ut2−t1

−1 Qt1Ut2−t1, Pt0]� Measurement
8 ′At0 �

[

W , Qt2, Pt2 =
Pt0WPt0
Tr(WPt0)

]

(7.48)

After the first ‘measurement’ Qt changes from Qt0 to Qt1=
Qt0WQt0
Tr(WQt0)

. If no further evolution

of Qt occurs, then the probability of P at time t2 is given by definition 7.2 as

PW(Pt2|Qt1)H☼ =Tr
(

Qt0WQt0
Tr(WQt0)

Pt0

)

=Tr(Qt1Pt0) (7.49)

(Note that (7.49) employs both projection operators Pt and Qt before the second ‘meas-

urement’ is performed, i.e. Pt1 = Pt0 and Qt1 =
Qt0WQt0
Tr(WQt0)

.) But if the operator Qt does

evolve freely from the first to the second ‘measurement’, namely from Qt1 to Qt2 =

Ut2−t1
−1 Qt1 Ut2−t1, then to calculate the probability of P at time t2 in the Heisenberg☼

picture one now needs to consider this freely evolved projection operator. Analogously

to (7.49), this probability would be given by

PW(Pt2|Qt1)H☼ =Tr(Qt2Pt0) =Tr
(

Ut2−t1
−1 Qt0WQt0

Tr(WQt0)
Ut2−t1Pt0

)

(7.50)

And the problem is that the probability given by (7.50) does not agree with the probability

given by the Lüders rule in the Schrödinger picture.
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Indeed, consider again the process given by (7.40), namely

Wt0 � FirstMeasurement � (Wq)t1 =
QW t0 Q

Tr(W t0Q)
� FreeEvolution � (Wq)t2 =

Ut2−t1 (Wq)t1Ut2−t1
−1 � SecondMeasurement� (Wp)t2 =

P (Wq)t2P

Tr[(Wq)t2P ]
(7.51)

where measurements are now really existing processes. Consider the probabilities defined

by the Lüders rule for measurement outcomes p and q when, as described by (7.51), the

system’s state does change in its free evolution between the two measurements, i.e. (Wq)t2=

Ut2−t1 (Wq)t1Ut2−t1
−1 (rather than the case we considered before with (Wq)t2 =(Wq)t1). The

probability for measurement outcome p at time t2 is then given by the standard trace rule

by using the state of the system at time t2, i.e. (Wq)t2 =Ut2−t1
QWt0Q

Tr(W t0Q)
Ut2−t1

−1 :

PWt0
(p, t2|q, t1) = p(Wq)t2

(p) =Tr[(Wq)t2P ] =Tr
(

Ut2−t1
QWt0Q

Tr(Wt0Q)
Ut2−t1

−1 P

)

(7.52)

Written in terms of projection operators P and Q, instead of measurement outcomes p

and q, we get

PWt0
(P , t2|Q, t1) =P(WQ)t2

(P ) =Tr
(

Ut2−t1
QWt0 Q

Tr(Wt0Q)
Ut2−t1

−1 P

)

(7.53)

Now compare this probability with the (supposedly) same probability calculated in the

Heisenberg picture as given by (7.50), namely

PW(Pt2|Qt1)H☼ =Tr
(

Ut2−t1
−1 Qt0WQt0

Tr(WQt0)
Ut2−t1Pt0

)

(7.54)

One can see that PW(Pt2|Qt1)H☼ given by (7.54) does not agree with the empirically

adequate PW(P , t = t2|Q, t = t1) given by (7.53), where the difference lies in the order

in which the unitary evolution operators appear.7.6 Hence, the Heisenberg☼ projective

reading of the probability defined by the Lüders rule as a diachronic conditional probability

(definition 7.2) is not correct.

The Heisenberg projective reading (definition 7.1) is also incorrect when Qt evolves

freely between both measurements (in addition to, as we showed before, when Qt does not

evolve). Indeed, in this picture, the probability of projector Pt2 given projector Qt1 is given

by

PW(Pt2|Qt1)H =
Tr[W (Qt2Pt2Qt2)]

Tr(WQt1)
=
pW
′ (Qt2P t2 Qt2)

pW(Qt1)
(7.55)

with Qt2 = Ut2−t1
−1 Qt1 Ut2−t1 = Ut2−t1

−1 Qt0WQt0
Tr(WQt0)

Ut2−t1 and Pt2 = Pt0. And (7.55) is also

different from (7.53).7.7

7.6. This order cannot be altered by invoking the invariance property of the trace under cyclic permutations.

Also note that that Pt0 in the Heisenberg picture is just P in the Schrödinger picture, i.e. [Pt0]H=[P ]S, and similarly,

[Qt0]H =[Q]S and [W ]H = [Wt0]S.
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We thus seem to have arrived at the end of our story. For we have considered all

the seemingly possible ways of giving an understanding of the probability defined by the

Lüders rule as a conditional probability. In sections 5.3 and 5.4 we showed why it cannot

be understood as a synchronic conditional probability for physical values. In section 7.3 we

showed why it cannot be understood as a synchronic nor diachronic conditional probability

for measurement results, (nor as a diachronic conditional probability for physical values).

And in this section we have shown why it cannot either be understood as a diachronic

conditional probability for projection operators.

Furthermore, acknowledging the inadequacy of the diachronic projective notion,

weakens even more the synchronic projective notion of conditional probability we discussed

in section 5.2. Indeed, it shows that, what seems to be a possible intuitive explanation

of the fact that the common projector of P and Q for PW(P |Q) is different than that

for PW(Q|P ), namely that the projectors are to be considered at different times, is not

satisfactory. Hence, even if one cannot fully dismiss the synchronic projective reading

of the probabilities defined by the Lüders rule, one can safely conclude that it is unlikely

that it can provide an adequate understanding of a quantum notion of conditional prob-

ability. Indeed, it gives no understanding of why the operator Q P Q represents the

common ‘projector’ of Q and P ; it relies on a counterintuitive notion of commonality

since the common projector of P given Q is not equal to that of Q given P ; and a pos-

sible way, if not the only, of making sense of this counterintuitive property is inadequate.

To conclude, we have seen nothing so far which justifies the understanding of the prob-

ability defined by the Lüders rule as a conditional probability, but quite, on the contrary,

have given many arguments against this understanding at different levels. Indeed, it cannot

be interpreted as a conditional probability for physical values, nor for measurement results,

nor at a formal level for projection operators, both from a synchronic and a diachronic

perspective. Even if the probabilities defined by the Lüders rule are the only probabilities

which are co-extensive with conditional probabilities for compatible events, we have no

reason to assimilate them to conditional ones for incompatible events and many reasons

against this assimilation.

Contrary to the standard view, the probability defined by the Lüders rule does not

acquire a precise meaning, in the sense of synchronic or diachronic conditional probability,

when quantum mechanics is interpreted as a generalized probability space or as probability

space for measurement results. Nothing comparable to the classical way of generating the

conditional probability measure works in the Hilbert space when incompatible events are

involved.

7.7. This is explicitly shown in the next section.
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7.5 So Why Is It Seemingly a Conditional Probability?

However, there remains a tension. For in spite of the validity of the rather intricate and long

argument developed in this dissertation (against the conditional reading of the probability

defined by the Lüders rule), the Lüders rule still defines a probability which is, in some

sense, a conditional probability. Indeed, look again at the examples of section 4.4. For

example, in the double slit experiment it does yield the probability that the electron hits

the detecting screen given that either one or both slits are open. So isn’t this enough to

regard the probabilities it defines as conditional probabilities? How do we reconcile this

intuition with our arguments? Incredibly enough, seeing explicitly why the Heisenberg

probability PW(Pt2|Qt1)H given by (7.55) does not agree with the empirically adequate

(Schrödinger) probability defined by the Lüders rule, i.e. PWt0
(P , t2|Q, t1), will allow us

to resolve this tension.

Take the (Schrödinger) probability PWt0
(P ,t2|Q,t1) defined by the Lüders rule as given

by (7.53). Using first the invariance of the trace rule,7.8 then switching to the Heisenberg

picture,7.9 and finally rearranging this expression taking into account that Pt0 =Pt1,7.10 we

get
[

PWt0
(P , t2|Q, t1)

]

S
=

[

pW
′ (Qt0Pt2Qt0)
pW(Qt0)

]

H

(7.56)

where we emphasize by an under-script the time picture used in each expression. And hence

we can clearly see that the probability defined by the Lüders rule
[

PWt0
(P , t2|Q, t1)

]

S
is

not equal to either the (alleged) Heisenberg H projective reading of it (definition 7.1) given

by (7.55), i.e.

PW(Pt2|Qt1)H =
pW
′ (Qt1P t2Qt1)

pW(Qt1)
(7.57)

nor to the (alleged) Heisenberg H☼ projective reading of it given by (7.54), i.e.

PW(Pt2|Qt1)H☼ =
Tr(Qt0WQt0 Ut2−t1Pt1Ut2−t1

−1 )

Tr(WQt0)
�[ pW′ (Qt0Pt2 Qt0)

pW(Qt0)

]

H

(7.58)

(because, given the order in which the evolution operators appear, one cannot equate

Ut2−t1Pt1Ut2−t1
−1 with Pt2, and hence write PW(Pt2|Qt1)H☼ as

[

pW
′ (Qt0Pt2Qt0)/pW(Qt0)

]

H
).

Thus, as we concluded in the last section, the probability defined by the Lüders rule cannot

be interpreted as the probability of projector P at time t2 given projector Q at time t1.

7.8. PWt0
(P , t2|Q, t1)=Tr

(

Ut2−t1
QWt0Q

Tr(Wt0
Q)
Ut2−t1

−1
P
)

=
Tr(QWt0QUt2−t1

−1
P Ut2−t1)

Tr(Wt0
Q)

.

7.9.

[

Tr(QWt0QUt2−t1

−1 P Ut2−t1)

Tr(Wt0
Q)

]

S

=

[

Tr(Qt0WQt0Ut2−t1
−1 Pt0Ut2−t1)

Tr(WQt0)

]

H

.

7.10.

[

Tr(Qt0WQt0Ut2−t1
−1 Pt0Ut2−t1)

Tr(WQt0
)

]

H

=

[

Tr(Qt0WQt0Ut2−t1

−1 Pt1Ut2−t1)

Tr(WQt0)

]

H

=
[

Tr(Qt0WQt0Pt2)

Tr(WQt0
)

]

H
=

[

pW
′ (Qt0Pt2Qt0)

pW(Qt0)

]

H
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However, simply by reading (7.56), it appears that we can now finally say how it can

be interpreted. Indeed, the probability defined by the Lüders is simply the probability of

projector P at time t2 – immediately before the second measurement – given projector Q

at time t0 – immediately before the first measurement. The problem with the Heisenberg H

and H☼ readings of the probability defined by the Lüders rule is that they invoke incorrect

Heisenberg time pictures. Indeed, guided by the attempt to interpret this probability as

the probability of projector Q after the first measurement, i.e. event Qt1, given projector

P after the second measurement, i.e. Pt2, we have derived incorrect Heisenberg expressions

of it.

The probability defined by the Lüders rule is defined for projection operator Qt0 imme-

diately prior to the first measurement, and not for Qt1 immediately posterior to the first

measurement. That is, projector Qt needs to be considered immediately before the first

measurement rather than immediately after it. (Note that, since the actual result of the

second measurement plays no role in PWt0
(P , t2|Q, t1) – just as the actual result of a

measurement plays no role in the ‘unconditional’ probability given by the trace rule pW(P )

– we have not needed to introduce a further time t3 to distinguish between Pt2 immediately

before the second measurement and Pt2 immediately after the second measurement). We

refer to this (almost last!) interpretation of the probabilities defined by the Lüders rule as

Heisenberg diachronic(t0−t2) projective notion of conditional probability.

Definition 7.3. Heisenberg Diachronic(t0−t2) Projective Quantum Conditional

Probability The probability given by the Lüders rule for projectors Pt, Qt ∈ L(H) in the

Heisenberg picture, namely

PW(Pt2|Qt0) =
Tr(Qt0WQt0Pt2)

Tr(Qt0W )
=
pW
′ (Qt0Pt2Qt0)

pW(Qt0)
(7.59)

is the probability of projector Pt at time t2 – immediately before the second measurement of

the observable to whose spectral decomposition Pt belongs to – conditional on projector Qt

at time t0 – immediately before the first measurement of the observable to whose spectral

decomposition Qt belongs to – with respect to the probability measure pW.

The operator Qt0 Pt2 Qt0 represents the common operator of projectors Pt2 and Qt0,

where, given that Pt0 =Pt1, the evolution from Pt0 to Pt2 is given by the unitary evolution

operator Ut2−t1 as

Pt2 =Ut2−t1
−1 Pt0 Ut2−t1 (7.60)

Note that, since [Qt0]H=[Q]S and [Pt0]H=[P ]S, (7.59) simply reduces the usual expression

of the probability defined by the Lüders rule, i.e. PW(P |Q) =
Tr(QWQP )

Tr(QW )
.
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It is not strange that, after all, the Heisenberg picture does provide the appropriate

interpretation of the probability defined by the Lüders rule. Indeed, the notion of condi-

tional probability is that of the probability of an event conditional on another event, and

given that quantum events are represented by projection operators and that these need to

be considered at different times, one needs to resort to the time picture in which the time

evolution is carried by the projection operators, namely the Heisenberg picture.

Note that we have arrived at this conclusion after a long argument. Indeed, to derive

expression (7.59) we have been guided by our discussion in section 5.2 and in this chapter,

which has first, made us search for a common quantum event of P and Q given by QPQ

and second, consider these projection operators at different times (and hence in the Heisen-

berg picture).7.11 But expression (7.59) is very easy to derive from the probability defined

by the Lüders rule in the Schrödinger picture. Indeed, it takes, at most, two lines of trivial

calculations (see footnotes 7.8-7.10). However, as we have seen, adequately interpreting

such an expression and seeing why each attempted reading goes wrong has not been as

trivial.

However, the Heisenberg diachronict0−t2 reading is again not wholly satisfactory. First,

it relies on a strange mixture of physical and mathematical notions. For it is defined for

projection operators, and hence gives an interpretation of a mathematical notion, while it

invokes time and physical and measurement processes, and hence, gives a physical inter-

pretation of such a notion. Indeed, both time t0 and t2 are defined as immediately prior to

both the first and the second measurement, respectively, and the time evolution process

of Pt, namely Pt0 =Pt1 and Pt2 =Ut2−t1
−1 Pt0 Ut2−t1, needs to be considered. Second, it still

provides no explanation of why Qt0Pt2 Qt0 represents the common quantum event of Qt0

and Pt2 in PW(Pt2|Qt0).

Finally, and most importantly, the Heisenberg diachronict0−t2 projective reading,

however weak and unsatisfactory, is physically adequate only in so far as it can underwrite

a quantum notion of conditional probability in terms of physically relevant values. That

is, a reading of PW(Pt2|Qt0) as the probability for value p at time t2 conditional on value

q at t0 associated with projection operators Pt2 and Qt0, respectively, where p and q can

both be interpreted as physical values or, in particular, as measurement results. Given that

PW(Pt2|Qt0), as defined by definition 7.3, makes explicit use of measurements, we focus on

the latter interpretation of p and q. We refer to this interpretation as the diachronic(t2−t0)

conditional-on-measurement-outcome reading of the probability defined by the Lüders rule.

7.11. Note that this has led us to, contrary to what we intended, define a Heisenberg notion which is not even

calculated through the standard trace rule. Indeed, definition 7.2 reads PW(Pt2|Qt1)H☼ = Tr(Qt1 Pt2), something

which should have warned us against the adequacy of such a reading before developing the general expression of

PW (Pt2|Qt1)H☼ when Qt evolves freely between measurements.
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Definition 7.4. Diachronic(t2−t0) Conditional-on-Measurement-Outcome

Quantum Probability. When an ideal first-kind measurement of a certain observable

(where Q belongs to its spectral decomposition), is performed at time t1 on a system in

state W, followed by a second measurement of an observable (where P belongs to its spec-

tral decomposition) at time t2, the probability given by the Lüders rule for measurement

outcome qt0 at time t0 – immediately before the first measurement – associated to pro-

jector Qt0 ∈ L(H) – and measurement outcome pt2 at time t2 – immediately before the

second measurement – associated to projector Pt2∈L(H), namely

PW(pt2|qt0) =
Tr(WQt0Pt2Qt0)

Tr(WQt0)
(7.61)

is the probability of measurement outcome pt2 conditional on measurement outcome qt0.

The evolution from Pt0 to Pt2 is given by the unitary evolution operator Ut2−t1 as

Pt2 =Ut2−t1
−1 Pt0 Ut2−t1 (7.62)

Note that this is so because Pt0 =Pt1.

So can the probability given by (7.61) be interpreted as the probability for measure-

ment outcome p at time t2, immediately prior to the second measurement, conditional on

measurement outcome q at time t0, immediately prior to the first measurement?

There are several problems with this interpretation. First, neither qt0 nor pt2 are really

measurement outcomes, for they are both considered prior to the actual performance of

both measurements. One could try to solve this by thinking of them as potential meas-

urement outcomes rather than actual measurement outcomes. Moreover, this potential

interpretation would allow one to escape the difficulty in the cases in which the occurrence

of the event Qt0 is not drawn back to the occurrence of the single events (Qi)t0 that compose

it. Indeed, consider the Stern-Gerlach or the double slit experiments we presented in

sections 4.4.1 and 4.4.2. There, we have Qt0=(Psx+1
)t0+(Psx0)t0 and Qt0=(PA)t0+(PB)t0,

respectively, where no actual measurement result can be ascribed to them since no actual

measurement of (Psx+1
)t0 or (Psx0)t0, and of (PA)t0 or (PB)t0, is performed at time t0. But

since qt0 is interpreted as a potential measurement outcome, one does not need to consider

actually performed measurements; qt0 can potentially be either (q1)t0or (q2)t0, without this

implying that either of them has to be actual.

But regardless of whether this potential versus actual talk is acceptable, the notion

of conditional probability afforded by the diachronic(t2−t0) conditional-on-measurement-

outcome reading is utterly unsatisfactory. Indeed, it says nothing about what happens

to the system in the first measurement since the notion strictly applies to q at time t0

immediately before the first measurement. This is the way in which this reading of the
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probability defined by the Lüders rule avoids introducing an extra-dynamics for the act of

measurement.

The diachronict2−t0 conditional-on-measurement-outcome notion thus offers a purely

instrumental interpretation with a strong ‘black-box’ character which is unsatisfactory

unless one thinks of quantum theory as merely providing an algorithm for generating the

statistical predictions of the outcomes of measurements. Moreover, even if one admits that

this is in fact so, there is no determinate criteria as to what kinds of interactions qualify

as measurements.

To conclude, if when one says the probability of a certain measurement outcome p given

a previous measurement which has potential outcome q is P, one only means that if these

two measurement are repeated many times one expects that the fraction of those which

give the outcome p is roughly P, then no problems arise. But as soon as one attempts to

say anything else, then all the problems we saw in sections 5.3, 5.4 and 7.3 appear.

7.6 Revisiting The Two-Slit Experiment

Let us revisit the two-slit experiment in the light of all our discussion. We begin by

describing it from the perspective of an orthodox interpreter. A particle first leaves the

source in a state described by ψ. The two-slit screen S1 then performs a position meas-

urement of the particle in its plane: it localizes the particle to a certain range of values of

the position observable Y1, namely A when only slit A is open, B when only slit B is open,

and A∪B when both slits are open. Immediately after this measurement the state of the

particle is given by the Lüders projection postulate. When only slit A is open, the new state

is the normalized projection of the initial state ψ onto the subspace which is the range of

the projector PA belonging to the spectral decomposition of position observable Y1. That is,

ψA=
PAψ

‖PAψ‖
(7.63)

Similarly, when only slit B is open, the new state of the system immediately after the

electron has passed through slit B is

ψB=
PBψ

‖PBψ‖
(7.64)

And when both slits are open, the new state is the normalized projection of the initial state

ψ onto the subspace which is the range of the projector PA+PB. Indeed, given A∩B=∅,
PA and PB are orthogonal and hence PA∪B=PA∨PB=PA+PB. And, therefore, the state

of the particle immediately after the measurement of the double-slit screen is

ψAB=CAψA+CBψB (7.65)
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where CA =
‖PAψ‖

‖(PA+PB) ψ‖ , CB =
‖PBψ‖

‖(PA+PB) ψ‖ . If we set pψ(PA) = pψ(PB), i.e. ‖PA ψ‖2 =

‖PBψ‖2, corresponding to the most simple experimental arrangement, then CA=CB=
1

2
√

and thus

ψAB=
ψA+ ψB

2
√ (7.66)

The particle then evolves freely between the double slit screen S1 and the detecting screen

S2. Letting t=0 be the instant at which the particle reaches S1, t= τ the instant at which

it reaches S2, and Uτ the free evolution operator in L(H) between the two slits, the particle

reaches the detecting screen in state ψA
′ =UτψA when only slit A is open, ψB

′ =UτψB when

only slit B is open, and ψAB
′ = Uτ ψAB when both slits are open. Finally, upon reaching

the latter is localized in the set R in S2’s plane.

As we saw in section 4.4.2, using the time evolution of the states ψ ′ = Uτ ψ one can

calculate the probability that the particle is measured at R on the detecting screen. This

probability is given by the trace rule using the time evolution of the collapsed state as

given by the Lüders projection postulate. When only slit A is open, this probability is thus

given by

Pψ(R, t= τ |A, t=0) = pψ
A
′ (R)= 〈ψA′ , PRψA′ 〉 (7.67)

Similarly, when only slit B is open, the probability that the particle is measured at R on

the detecting screen at t= τ is

Pψ(R, t= τ |B, t=0) = pψ
B
′ (R) = 〈ψB′ , PRψB′ 〉 (7.68)

And when both slits are open, the probability that the particle is measured at R on the

detecting screen at t= τ is

Pψ(R, t= τ |A∪B, t=0) = pψ
AB
′ (R) =

〈

ψAB
′ , PRψ

′
AB

〉

(7.69)

The probability to arrive at R when the two slits are open (7.69) , is not, as in the classical

case, the weighted sum of the probabilities when each slit is open (7.67)-(7.68). Rather we

have the characteristic quantum interference terms. That is,

Pψ(R, τ |A∪B, 0)=
1
2
Pψ(R, τ |A, 0) +

1
2
Pψ(R, τ |PB , 0)+ I (7.70)

with

I =
1
2
〈ψA′ , PRψB′ 〉+

1
2
〈ψB′ , PRψA′ 〉 (7.71)

We now verify that in these three experiments the corresponding equalities given by

P(At2|Bt1) p(Bt1) =P(Bt1|At2) p(At2) fail, that is,

Pψ(R, τ |A, 0) pψ(A, 0)� Pψ(A, 0|R, τ) pψ(R, τ) (7.72)

Pψ(R, τ |B, 0) pψ(B, 0)� Pψ(P , 0|R, τ) pψ(R, τ ) (7.73)

Pψ(R, τ |A∪B, 0) pψ(A∪B, 0)� Pψ(A∪B, 0|R, τ ) pψ(R, τ) (7.74)
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Consider first the experiment in which only slit is A open. The left-hand side of inequality

(7.72), i.e.7.12

Pψ(R, τ |A, 0) pψ(A, 0) = 〈ψ,Uτ−1PRUτPAψ〉 (7.75)

and the right-hand side, i.e.7.13

Pψ(A, 0|R, τ) pψ(R, τ ) =
1

‖PRψ‖2
〈ψ,UτPRUτ−1PAψ〉 〈ψ,Uτ−1 PRUτψ〉 (7.76)

are, in general, not equal. Second, similarly to the previous case, when only slit B is open

we can verify inequality (7.73). Finally, consider the case in which both slits A and B

are open. We show this for the case in which ‖PA ψ‖2 = ‖PB ψ‖2. The left-hand side of

inequality (7.74), i.e.7.14

Pψ(R, τ |A∪B, 0) pψ(A∪B, 0) =
1
2
〈ψ, Uτ−1PRUτPAψ〉+

1
2
〈ψ, Uτ−1PRUτPBψ〉+

1
2
〈ψ,

PAUτ
−1PRUτPBψ〉+

1
2
〈ψ,PBUτ−1PRUτPAψ〉 (7.77)

and the right-hand side, i.e.7.15

Pψ(A ∪ B, 0|R, τ ) pψ(R, τ ) =
1

‖PRψ‖2

[

〈PR ψ, Uτ
−1 PA Uτ PR ψ〉 + 〈PR ψ,

Uτ
−1PBUτPR ψ〉

]

〈ψ,Uτ−1 PRUτψ〉 (7.78)

are not equal to each other, even in the case in which the interference term, i.e.

I =
1
2
〈ψA′ , PRψB′ 〉+

1
2
〈ψB′ , PRψA′ 〉 (7.79)

vanishes.

In addition, note that the interference term I is equal to zero only if τ is zero, and

hence there is a non-zero distance between the two screens. Indeed, for τ =0, we have that

ψA
′ = ψA and ψB

′ = ψB, and thus

I =
1

2
〈ψA , PRψB〉+

1

2
〈ψB , PRψA〉 (7.80)

7.12. Pψ(PR, τ |PA, 0) pψ(PA, 0) = 〈Uτ PAψ

‖PAψ‖ , PR Uτ
PAψ

‖PAψ‖〉 〈ψ, PA ψ〉 = 〈Uτ PA ψ, PR Uτ PA ψ〉 = 〈ψ,
PAUτ

−1
PRUτPAψ〉= 〈ψ, Uτ−1

PRUτPAψ〉.
7.13. Pψ(PA,0|PR, τ) pψ(PR, τ )= 〈Uτ PRψ

‖PRψ‖ ,PAUτ
PRψ

‖PRψ‖〉 〈Uτψ,PRUτψ〉=
1

‖PRψ‖2
〈UτPRψ,PAUτPRψ〉 〈ψ,

Uτ
−1 PR Uτ ψ〉 =

1

‖PRψ‖2
〈ψ, PR Uτ

−1
PA Uτ PR ψ〉 〈ψ, Uτ−1 PR Uτ ψ〉 =

1

‖PRψ‖2
〈ψ, Uτ PR Uτ

−1
PA ψ〉 〈ψ,

Uτ
−1 PRUτψ〉.
7.14. Pψ(PR, τ |PA∪B, 0) pψ(PA∪B, 0) =

1

2

[

‖PA ψ‖2 + ‖PB ψ‖2
]

[

1

‖PAψ‖2
〈ψ, Uτ−1

PR Uτ PA ψ〉 +
1

‖PBψ‖2
〈ψ,

Uτ
−1

PR Uτ PB ψ〉 +
1

‖PAψ‖
1

‖PBψ‖ 〈ψ, PA Uτ
−1

PR Uτ PB ψ〉 +
1

‖PAψ‖
1

‖PBψ‖ 〈ψ, PB Uτ
−1

PR Uτ PA ψ〉
]

. If

‖PAψ‖2 = ‖PBψ‖2, then we get (7.77).

7.15. Pψ(PA+ PB, 0|PR, τ) = Tr
([

Uτ
PRPψPR)

Tr(PψPR)
Uτ

−1
]

(PA+ PB)
)

=
Tr[PRPψPR Uτ

−1 (PA+PB)Uτ]

Tr(PψPR)
. Using that

PR Pψ PR= PPRψ, it is equal to
Tr(PPRψ Uτ

−1 (PA+PB)Uτ)

‖PRψ‖2
, which, in turn, is equal to

〈PRψ,Uτ−1 (PA+PB)UτPR ψ〉
‖PRψ‖2

=

1

‖PRψ‖2

[

〈PRψ, Uτ−1
PAUτPR ψ〉+ 〈PRψ,Uτ−1

PBUτPR ψ〉
]

, we get (7.78).
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But since

〈ψA , PRψB〉=
1

‖PAψ‖ ‖PBψ‖
〈ψ,PAPRPBψB〉=0 (7.81)

(given that PA commutes with PR – because Y1 and Y2 are compatible observables – and

that PA and PB are orthogonal), and similarly for 〈ψB , PR ψA〉, the interference term I

vanishes. In contrast, I is different from zero if τ � 0. Indeed, for τ � 0 both terms in (7.79)

are different from zero. Consider the first one, i.e.

〈ψA′ , PRψB′ 〉=
1

‖PAψ‖ ‖PBψ‖
〈ψ, PAUτ−1PRUτPBψB〉 (7.82)

Given PA does not commute with PR
′ = Uτ

−1 PR Uτ (since the evolution ψA → ψA
′ and

ψB→ ψB
′ will be generated by a Hamiltonian involving the momentum operator which is

incompatible with the position observables Y1 and Y2), we have that PA Uτ
−1 PR Uτ PB �

Uτ
−1PRUτPAPB. And hence (7.82), and therefore I, are non-zero.

This last analysis makes clear the role played by (i) the initial quantum state, namely

a superposition of states ψA and ψB, and (ii) the non-zero distance between the slit screen

and the detecting screen, i.e. a non-zero time evolution between the two screens, for the

presence of interference terms. Indeed, because of the former, inequality (7.74) – when both

slits are open – holds even more strongly than (7.72) and (7.73). Indeed, the superposition

ψAB =
ψA+ ψB

2
√ after the measurement of the double-slit is crucial to get the interference

terms in (7.79). And because of the the non-zero distance between the slit screen and the

detecting screen, the position observables Y1 and Y2 are incompatible – unlike Sx and Sy in

the S-G example which are always incompatible, Y1 and Y2 are only incompatible if they

are considered at different times.

Let us now look at the interpretation of the probabilities defined by the Lüders rule for

the three experiments and show why they cannot be interpreted as diachronic conditional-

on-measurement-outcome probabilities. That is, why they do not allow a non-instrumental

conditional-on-measurement-outcome interpretation. Recall that in section 7.3. we con-

sidered this interpretation for the probabilities defined by the Lüders rule in general and

dismissed it as not applicable. We now develop these arguments for the present case.

First, the probability defined by the Lüders rule with only one slit open, e.g. Pψ(R,τ |A,
0), cannot be understood as the pro-rata increase of the probability of measurement result

A at time t= 0 and measurement result R at time t= τ , and hence as a conditional-on-

measurement-outcome probability. For even though the event ‘measurement result A0 and

measurement result Rτ ’ is represented by (PA)0∧ (PR)τ , where ‘∧ ’ can be interpreted as

the ordinary ‘and’, the pro rata increase of the probability assigned to this event does not

coincide with the value assigned to Pψ(R, τ |A, 0)= 〈UτψA , PRUτψA〉 by the Lüders rule.
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By an analogue reasoning, one concludes that Pψ(R, τ |B, 0) cannot be interpreted as the

pro-rata increase of the probability of measurement result B at time t=0 and measurement

result R at time t= τ , and hence as a conditional-on-measurement-outcome probability.

Second, it is even more difficult to understand the probability defined by the Lüders

rule for the case in which both slits open, i.e. Pψ(R, τ |A ∪ B, 0) =
〈

ψAB
′ , PR ψ

′
AB

〉

, as

a conditional-on-measurement-outcome probability. For now (PA ∨ PB)0 ∧ (PR)τ cannot

even be interpreted as measurement result A or measurement result B at time t = 0,

and measurement result R at time t = τ . Indeed, recall our discussion in section 5.4.2.

In addition, the probability assigned to (PA ∨ PB)0 ∧ (PR)τ does not coincide with that

assigned to the common event (PA+PB)0 (PR)τ (PA+PB)0 employed by the Lüders rule.

To conclude, the probabilities Pψ(R, τ |A, 0), Pψ(R, τ |B, 0) and Pψ(R, τ |A ∪ B, 0)

defined by the Lüders rule for the three situations considered in the double slit experiment

cannot be interpreted as conditional-on-measurement-outcome probabilities. Contrary to

the standard view, they cannot be interpreted as

‘the probability that the [particle] will arrive at a certain region in the

detecting screen [R], conditional on localization to a certain range of values

of Y1, (A, B, or A∪B)’ on the double-slit screen. ([Bub, 1977], p.387)

As a final remark, note that the orthodox interpreter would try to resist our conclusion.

Take the experiment in which both slits are open. The orthodox interpreter would say

that the measurement performed by the double slit need not be interpreted in terms

of the measurement when only A is open and the measurement when only B is open.

That is, she would hold that the fact that (PR)τ ∧ (PA ∨ PB)0 cannot be interpreted as

measurement result R and measurement result A or B is irrelevant. For the measurement

performed by the double slit screen when both slits are open does not measure which slit

the particle actually goes through. Thus, according to her, one should not say anything

about measurements which have not been performed. Moreover, she would continue, if

one were to perform a which-slit experiment, then one could talk about the results of

both measurements. But since, in this case, no experimental interference terms would be

obtained, this would pose no further problem.

Now even if one accepts this reasoning, the orthodox interpreter would still have to

explain why the probability given by the pro rata increase of (PR)τ ∧ (PA∨PB)0 – where

now PA∨PB would simply be interpreted as a measurement result localizing the particle

to the range of values A∪B – does not coincide with the probability Pψ(PR, t= τ |PA∪B ,

t = 0). And thus, the orthodox interpreter cannot provide an answer to the interpretive

difficulties by not speaking about results of measurement which have not been performed.
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7.7 Two further arguments

One finds in the literature two further arguments for the claim that the probabilities

defined by the Lüders rule should be interpreted as conditional probabilities. First, [Bub,

1979a, 1979b, 2007] presents an argument based on a formal analogy between the classical

rule of conditionalization and the Lüders rule for this interpretation. He also claims that,

given this interpretation, one can show that the difference between classical and quantum

conditionalization cannot be regarded as grounds for interpreting the quantum-mechanical

conditionalization rule as reflecting the irreducible and uncontrollable disturbance of the

system measured by a measuring instrument. Rather, for him,

‘the peculiar features of the quantum-mechanical conditionalization rule

relative to the classical rule reflect solely the non-Boolean character of the

possibility structures of quantum-mechanical systems.’ ([Bub, 1979b] p.90)

And second, [Fuchs, 2002a, 2002b] presents an argument which goes beyond inter-

preting the Lüders rule as a conditionalization rule; he argues that, in contrast to the

classical picture in which gathering new information simply refines the agent’s old degrees

of belief through conditionalization,

‘quantum measurement is [...] a refinement and a readjustment of one’s

initial state of belief’ ([Fuchs, 2002a], p.34; emphasis added).

Let us, and with this finish this chapter, consider these arguments in detail.

7.7.1 Bub’s Analogy Argument

Bub considers a countable classical probability space 〈S, F(S), p〉, where he denotes by

x1, x2, � . the elementary events, associated with the characteristic functions χ1, χ2, � .

He denotes by a, b, � . other non-elementary events. He then gives the following formal

expression of a classical conditional probability assignment.7.16 For any probability measure

p defined by an assignment of probabilities pi to the elementary events xi, it is possible

to introduce a density operator ρ=
∑

i
piχi (where

∑

i
pi=1, pi> 0, for all i) in terms of

which the probability of an event a can be represented as

pρ(a) =
∑

j

(
∑

i

piχi(xj))χa(xj)=
∑

j

ρ(xj)χa(xj) (7.83)

7.16. The notation and numbering of equations are adapted to maintain uniformity.
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(7.83) can also be simply expressed as pρ(a)=
∑

ρχa, where the summation sign without

an index is understood as summing over all the atomic events. In terms of this density

operator ρ, the conditional probability of an event a, given an event b, can be expressed as

Ppρ(a|b)=

∑

j
ρ(xj)χb(xj)χa(xj)
∑

j
ρ(xj)χb(xj)

=

∑

ρχbχa
∑

ρχb
(7.84)

He then considers the transition from the probability measure given by p to the probability

measure given by Ppρ, and writes it in terms of the corresponding density operators. That

is, he considers the transition from ρ to ρb=
ρχb
∑

ρχb
or, equivalently in the symmetrized form,

ρ→ ρb=
χb ρ χb
∑

ρ χb
(7.85)

so that Ppρ(a|b)=
∑

ρbχa.

Bub then notes the formal similarity between equation (7.85) and the change of state

described by the Lüders rule and claims:

‘Now, equation (7.85) is just the classical analogue of the Von Neumann-

Lüders projection postulate in quantum mechanics! [...] After a measure-

ment of an observable B with outcome b [associated with the eigenvalue

corresponding to the projector Pb], the conditional probability of an event a,

relative to an initial probability assignment given by W , is:

PW(a|b)=Tr(WbPa) (7.86)

where,

Wb=
PbWPb

Tr(PbWPb)
(7.87)

That is, since the projection operators Pb are the non commutative analogues

of the characteristic functions χb, the transition W → Wb in (7.87), which

is the quantum projection postulate, is just the Bayesian rule (7.85) for

updating a probability distribution on new information.’ ([Bub, 2007], pp.

245-246, notation adapted)

Bub thus takes the formal analogy between (7.85) and (7.87) to show that the projec-

tion postulate describes the conditionalization of the statistics of a quantum system.

In addition, he uses this same conclusion to argue that the difference between clas-

sical and quantum conditionalization cannot be regarded as grounds for interpreting the

quantum-mechanical conditionalization rule as reflecting the irreducible and uncontrollable

disturbance of the system measured by a measuring instrument. For him, this difference

only reflects the non-Boolean character of the ‘possibility structures’ of quantum mechan-

ical systems. He gives the following argument.
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In the classical case, the rule (7.85) ρ→ ρb=
χb ρχb
∑

ρχb
represents conditionalization with

respect to the event b, in the sense that ρb preserves all initial ‘statistical information’

specified by χb concerning the system, consistent with the event b. That is, the transition

ρ→ ρb preserves the relative probabilities of events a such that a⊆ b. In contrast, the rule

ρ→ ρb
′ =

χb
∑

χb
(7.88)

represents conditionalization with respect to the event b and randomization of the initial

probability measure corresponding to ρ on the subset b, so that the initial ‘information’

specified by ρ or pρ concerning the relative probabilities of the events a⊆ b is eliminated.

That is, the initial measure is not merely renormalized to include the new information (that

the value is b), but replaced by a uniform measure over the set b, so that the information

contained in the initial measure concerning the relative probabilities of properties repres-

ented by subsets a in b is lost.

Now in quantum theory, the transition W → Wb dictated by the Lüders rule also

preserves the relative probabilities of events Pa6Pb, and hence, in his view, Wb retains all

initial statistical information specified byW concerning the system consistent with b. Thus,

it should be regarded as describing the conditionalization of the statistics of a quantum

system. In contrast, the Von Neumann rule

W→Wb
′=

Pb
Tr(WPb)

(7.89)

is the analogue of the classical rule (7.85) representing a conditionalization and randomiz-

ation of the initial measure within the subsets b.

Thus, Bub argues, that whereas the change of state prescribed by von Neumann’s pro-

jection postulate W→Wb
′ is conditionalization and randomization of the initial measure,

the transition prescribed by the Lüders rule W → Wb is only conditionalization on the

non-Boolean possibility structure. And hence, that the difference between classical condi-

tionalization and quantum conditionalization, as given by the Lüders rule, should not be

regarded as grounds for interpreting the quantum-mechanical conditionalization rule as

reflecting the irreducible and uncontrollable disturbance of the system measured by any

measuring instrument. In his own words,

‘On the usual interpretation, the projection postulate is a rule repres-

enting the effect of the necessarily finite and uncontrollable disturbance of a

system involved in any quantum mechanical measurement process. My point

is that the projection postulate in its corrected Lüders version is properly
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understood asmere conditionalization on a non-Boolean possibility structure,

since it is the analogue of mere conditionalization on new information in the

Boolean case. The effect of a measurement disturbance involved in obtaining

this information would be represented as an additional change in the stat-

istical operator, over and above the change defined by the Lüders rule. Such

a measurement disturbance may be more or less violent. The von Neumann

rule corresponds to the most violent disturbance possible, in which all initial

information concerning the system is lost, and only information represented

by the measurement result is retained.’ ([Bub, 1977], p.389)

7.7.2 Fuchs’ Two Process Interpretation

In the classical case, updating through Bayesian conditionalization can be seen as just

involving a refinement of the agent’s degrees of beliefs. This interpretation is grounded on

the fact that the degree of belief in A, q(A), can be expressed as a linear sum of the various

conditional degrees of belief q(A|Bi), weighted by the degree of belief in each possible Bi,

i.e. q(A)=
∑

i
q(A|Bi) q(Bi). When the agent learns that Bi is the case, she transforms her

initial or prior degree of belief q(A) to generate a final or posterior degree of belief qBi(A),

by conditioning on Bi, that is, qBi(A)= q(A|Bi). As Fuchs somewhat mysteriously puts it,

‘It is not as if the new state [qBi(A)] is incommensurable with the old

[q(A)]. It was always there; it was just initially averaged in with various other

potential beliefs.’ ([Fuchs, 2002a], p.30)

However the situation is more complex in the quantum case. When the agent learns that

bi is the case, the density operator generating the agent’s old degrees of belief W cannot

be expressed as a linear sum of the various Wbi’s due to the non-commutativity structure

of the quantum events. And hence, Fuchs argues, the change of state given by the Lüders

rule from W to Wbi=
PbiWPbi

Tr(PbiWPbi)
does not lend itself to be interpreted as a refinement of

the agent’s degrees of belief. Instead he claims that one can achieve a proper interpretation

by considering not only a refinement but also a ‘readjustment’.

Fuchs bases his interpretation on the possibility of formally breaking up the quantum

transition from W to Wbi into two distinct processes, which are subsequently understood

(respectively) as refinement and readjustment of an agent’s degrees of belief:7.17

1. ‘Process 1’: W→ W̃bi, where W =
∑

i
W̃bi q(Pbi) and W̃bi=

1

Tr(WPbi)
W 1/2PbiW

1/2.
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2. ‘Process 2’: W̃bi→Wbi, where Wbi=
PbiWPbi

Tr(PbiWPbi)
.

Given that W̃bi andWbi have the same eigenvalues and thatW can be expressed as a linear

sum of the various W̃bi with weights q(Pbi), Fuchs interprets the first process as

‘an observer refining his initial state of belief and simply plucking out a

term corresponding to the “data” collected.’ ([Fuchs, 2002a], p.34)

To make fully explicit the comparison between the classical and the quantum case we

rewrite the classical expression

q(A) =
∑

i

q(A|Bi) q(Bi) (7.90)

in terms of density operators as ρ=
∑

i
ρBi q(Bi), where q(A) =

∑

ρχA and

q(A|Bi) =
∑

ρBiχA,with ρBi=
χBi ρ χBi
∑

ρχBi
(7.91)

Thus the refinement form q(A) to q(A|Bi) is formally equivalent to the change from ρ to

ρBi, which is what Fuchs compares to the change from W to W̃bi.

Fuchs then sees the second process as

‘a further “mental readjustment” of the observer’s beliefs, which takes

into account details both of the measurement interaction and the observers

initial quantum state.’ ([Fuchs, 2002a], p.34)

Hence, he concludes that

‘one can think of quantum collapse as a non commutative variant of

Bayes’ rule.’([Fuchs, 2002a], p.35) where ‘[t]aking into account the idea

that quantum measurements are ‘invasive’ or ‘disturbing’ alters the classical

Bayesian picture only in introducing a further outcome-dependent readjust-

ment.’ ([Fuchs, 2002a], p.38)

7.7.3 Evaluation

We now argue that both Bub’s analogy argument for the claim that the Lüders rule is the

appropriate conditionalization rule in quantum mechanics and Fuchs’ interpretation that

quantum measurement is a refinement and a readjustment of one’s initial state of belief

are incorrect.

7.17. Note that [Palge and Konrad, 2008] argue that the expression for the unitary re-adjustment operator in

[Fuchs, 2002a] is not correct.
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Bub shows nicely that for a countable space we can rewrite the classical Bayes’ rule

as a state transition that mimics the transition achieved by applying the Lüders rule.

The relevant equations can be manipulated to display the same form. But in addition to

a formal analogy, what one would require is an interpretive analogy. As we have already

emphasized, even if formal features are a good guide when extending established concepts

to new contexts, formal features alone can never justify that the formally extended concept

is also a conceptual extension of the relevant notion to the new domain. Thus our main

reservation with his argument is that, by failing to distinguish formal and interpretive

aspects, he draws an unwarranted interpretive conclusion. Bub owes us an argument for

why his formal analogy about change of state would sanction the conclusion that the

meaning of this change in the quantum case is analogous to that of the classical case.

Moreover, given our discussion in Chapters 5 and 7, Bub’s argument is not merely incon-

clusive but incorrect: the Lüders rule cannot be interpreted as quantum conditionalization.

And, therefore, his (incorrect) conclusion can provide no grounds for his further claim that

the Lüders projection postulate, which describes the change of state of a quantum system

upon measurement, does not reflect the irreducible and uncontrollable disturbance of the

system measured by a measuring instrument. This claim may turn out to be true, but

Bub’s argument cannot support it.

Fuchs’ proposal also turns out to be inadequate. At first glance Fuchs’ suggestion for the

interpretation of ‘process 1’ seems to be reasonable. After all, the change from W to W̃Bi

looks equivalent to the classical conditionalization change from ρ to ρBi. So why should it

not be interpreted in the same fashion? However, as we have already emphasized, formal

similarity is not enough. We would like an argument for why ‘plucking out’ Tr(W̃Bi PA)

bears the same interpretation as q(A|Bi), which Fuchs says ‘was always there’. It is hard

to see in what sense what corresponds to a term in an operator equation would be ‘there’

at all, and especially if one is building a subjective view.

Fuchs’ treatment of ‘process 2’ fares worse. Here too Fuchs provides no rationale for the

interpretation he gives to the process; namely as a change of state arising from the disturb-

ance character of quantum measurements. Moreover, this reading of the state transition

cannot be correct in general; that is, the change cannot be understood as due to an ordinary

physical interaction between the measurement apparatus and the quantum system. This

is clearly seen in his own example of a probability function given by a pure state ψ. The

corresponding density operator W = |ψ〉〈ψ | can already be expressed as a linear sum of

the different WBi’s and hence he maintains that the only change that can come about is a

transition of the readjustment type (‘process 2’) according to the operator Ui= |i〉〈ψ |. In
Fuchs’ words,
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‘we learn nothing new; we just change what we can predict as a con-

sequence of our experimental intervention. [...] there is a sense in which the

measurement is solely disturbance’ ([Fuchs, 2002a], p.34).

However the transition from W = W̃Bi to WBi is just the usual transition given by

Lüders’ rule, which in this case is simply the old projection postulate.7.18 We know that it

cannot be derived from the Schrödinger equation and thus it cannot be interpreted as the

effect of an ordinary physical interaction.

Perhaps a more sophisticated treatment of Process 2 using decoherence might help

Fuchs here. But one needs to be careful because the state transitions used to demonstrate

decoherence effects already make use of the projection (or the Lüders) rule in tracing over

the environment-system to get the reduced state.7.19 In any case, the interpretive moves

that Fuchs does make with respect to the two processes seem unsupported by his formal

analysis. Finally nothing in Fuchs’ treatment hinges on taking a subjective view, either of

probability or the quantum state. Indeed the language Fuchs uses (beliefs tracking ‘data’,

and ‘invasive’ disturbances) readily lends itself to a realist view.

To sum up, both Bub and Fuchs’ arguments are not valid because, while their conclusion

is supposed to work at an interpretive level, their arguments are merely formal.

7.18. It is a transition from ψ to i enacted via the operator Ui= |i〉〈ψ |: Ui|ψ〉= |i〉〈ψ |ψ〉= |i〉. U simply acts

as a projection operator on ψ.

7.19. [Schlosshauer, 2007], section 8.1, especially p.333.
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Chapter 8

Implications for the Interpretations of
Quantum Probability

In this chapter we consider the interpretation of the unconditional quantum probabilities

defined by the trace rule. We show that, similarly to the conditional probabilities defined by

the Lüders rule, these can only be interpreted as probabilities under a purely instrumental

view of quantum mechanics. Indeed, if when one says the probability of a certain outcome

of an experiment is p, one only means that if the experiment is repeated many times

one expects that the fraction of those which give the outcome in question is roughly p,

then no problems arise. But as soon as one tries to give a more satisfactory interpret-

ation, then problems start cropping up. The difficulties in giving a (non-instrumental)

interpretation of quantum unconditional probability, we show, are ultimately the same as

those we encountered in giving a (non-instrumental) interpretation of quantum conditional

probability.

We show this by focusing on two interpretations of probability, namely quantum

Bayesianism and Frequentism. In sections 8.1.1 and 8.1.2 we consider, respectively, whether

a subjective or an objective Bayesian interpretation of the quantum probabilities is pos-

sible. We argue that neither of them can provide an adequate interpretation. In section 8.2,

we turn to the frequency interpretation of probability and consider whether the empirically

found quantum frequencies can be thought of, as in the classical frequency interpret-

ation, as arising from an ensemble of similarly prepared systems. We argue that this

is not so and that the quantum probabilities cannot be thus thought of as revealing an

underlying distribution of properties of quantum objects.

8.1 Quantum Bayesianism

Bayesianism interprets the concept of probability as ‘a measure of a state of knowledge’,

where the ‘state of knowledge’ concept is, broadly speaking, interpreted in two different

ways. For the subjectivist school, the state of knowledge corresponds to a ‘personal belief’,
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and is in that respect subjective. In particular, the claim is that the choice of the prior

probability is necessarily subjective. We considered this interpretation in Chapter 2. In

contrast, other Bayesians state that such subjectivity can be avoided, and claim that the

prior state of knowledge uniquely defines a prior probability distribution for well posed

problems. For the objectivist school, the rules of Bayesian statistics can be justified by

desiderata of rationality and consistency.

We now show that the quantum probabilities do not allow either a subjective or an

objective Bayesian interpretation.

8.1.1 Subjective Quantum Bayesianism: a Quantum Dutch Book

The quantum (subjective) Bayesian interpretation maintains that probabilities in quantum

mechanics are subjective, across the board .8.1As Timpson writes in ‘Quantum Bayesianism:

a Study’,

‘Considered as an interpretation of quantummechanics, the characteristic

feature of quantum [subjective] Bayesianism is [...] its non-realist view of the

quantum state. This takes a distinctive form: the quantum state ascribed to

an individual system is understood to represent a compact summary of an

agent’s degrees of belief about what the results of measurement interventions

on a system will be, and nothing more.’ ([Timpson, 2008], p.583)

That is, on this view, quantum states are a matter of what degrees of belief one has

about what the outcomes of measurement will be. The probability ascriptions arising from

a particular state assignment are understood in a purely subjective, Bayesian manner, in

the mold of de Finetti, and are assigned to individual systems.

In Quantum Chance and Non-Locality (pp.10-14), Michael Dickson considers whether

the quantum probabilities can be interpreted in such subjective manner by considering

whether a Dutch Book can be made against an agent whose degrees of belief are dictated

by the quantum probabilities. He first argues that it can be made, but then, casting doubt

on the adequacy of the assumptions on which the Dutch Book relies, does not reach a

definite conclusion. We first present his Dutch Book argument and his reservations about

it, and then argue why a Dutch Book can in fact be made against an agent who sets his

degrees of belief to the quantum probabilities.

8.1. This particular form of quantum Bayesianism can be found in the writings of Caves, Fuchs and Schack,

especially in [Fuchs, 2002a, 2002b]; [Caves, Fuchs, & Schack, 2002, 2007].
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Consider a quantum system in a pure state ψ and two quantum events, namely Pχ,

where χ= c1ψ+ c2ϕ, |c1|> |c2|, and ϕ is perpendicular to ψ, and Pξ, where ξ=d1ψ+d2ϕ

and |d1|> |d2|. Also, c1 and d1 are such that c1� d1. Note first, that Pχ and Pξ are non-

orthogonal, i.e. 〈χ|ξ〉 = c1 d1 + c2 d2 � 0, and hence incompatible; and second, that the

intersection of their ranges is zero, i.e. Pχ∧Pξ = ∅. The probabilities of these two events

are given, according to the trace rule (3.6), by

pψ(Pχ) =Tr(WψPχ) = |〈ψ, χ〉|2 = |c1|2 (8.1)

pψ(Pξ) =Tr(WψPξ) = |〈ψ, ξ〉|2 = |d1|2 (8.2)

We now show that if one sets one’s degrees of belief on events Pχ and Pξ to the quantum

probabilities (8.1) and (8.2), that is, if one accepts to pay |c1|2 for a wager that pays 1

if Pχ is occurrent and, similarly, one accepts to pay |d1|2 for a wager that pays 1 if Pξ is

occurrent, then one is subject to a Dutch Book.

The situation is the following. There are three possible cases. First, if Pχ occurs and

Pξ does not occur, i.e. the event Pχ ∧ ¬Pξ occurs, then one wins |c2|2 from the first

bet,8.2 and loses |d1|2 from the second one. So that the net gain if event Pχ∧¬Pξ occurs
is |c2|2− |d1|2< 0. Second, if Pχ does not occur and Pξ does occur, i.e. the event ¬Pχ∧Pξ
occurs, then one wins |d2|2 from the second bet and looses |c1|2 from the first one, so that

the net gain is |d2|2− |c1|2< 0. Finally, if neither of them occur, i.e. the event ¬Pχ∧¬Pξ
occurs, then one looses |c1|2 from the first bet and |d1|2 from the second one, and the net

gain is − |c1|2− |d1|2< 0. Given that these three net gains are negative, one is guaranteed

to lose no matter what happens. And hence, a Dutch Book can be made against an agent

whose degrees of belief are dictated by the quantum probabilities. Thus, if one sets one’s

degrees of belief on quantum events to the quantum probabilities, then these degrees cannot

be given a subjective interpretation.

Let us evaluate this argument. To begin with, note that it rests on the following

assumptions. First, that one’s degrees of belief on Pχ and Pξ individually should be set to

the probabilities dictated by quantum mechanics. Second, that if one’s degrees of belief on

Pχ and Pξ individually are |c1|2 and |d1|2 respectively, then these degrees of belief also hold

for Pχ and Pξ at the same time. That is, if one is committed individually to the fairness

of both bets, then one is committed to both bets taken together. And third, that Pχ and

Pξ cannot co-occur, i.e. the event Pχ∧Pξ cannot occur.
The first assumption seems justified for, in both cases, the degrees of belief are coherent.

In effect, one’s degrees of belief on the two mutually exclusive outcomes Pχ and ¬Pχ should
be coherent, i.e. p(Pχ)+ p(¬Pχ)= 1, which is satisfied if p(Pχ)= |c1|2 and p(¬Pχ)= |c2|2.

8.2. Given one’s degree of belief in Pχ is |c1|2, if Pχ occurs then one wins 1− |c1|2 = |c2|2
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Precisely what quantum theory dictates.8.3 And similarly for p(Pξ) and p(¬Pξ). It is not
clear, however, whether the second and the third assumptions are justified.

Consider first the third one. If one denies that Pχ ∧ Pξ cannot occur, that is, if one

holds that Pχ ∧ Pξ can occur, then the alleged Dutch Book is ruined. For then a fourth

case is possible, namely Pχ∧Pξ, and in this case the bettor wins – he wins |c2|2 from the

first bet and |d2|2 from the second one, so that the net gain is |c2|2 + |d2|2>0. Hence, no

sure loss is guaranteed and no Dutch Book can be made against the bettor.

Now the fact that Pχ and Pξ can co-occur seems justified by appealing to the non-exist-

ence of joint distributions for incompatible events. Indeed, given that the joint distribution

of Pχ and Pξ is not zero (because it is undefined), there is no reason to deny the occurrence

of Pχ and Pξ. On the other hand, precisely because their joint probability is undefined, a

story about how exactly it is possible for them to co-occur seems to be wanting. Moreover,

there seem to be other reasons for denying the occurrence of Pχ∧Pξ. Indeed, it may not

be possible for Pχ and Pξ to co-occur because Pχ and Pξ have nothing in common, given

that the intersection of their ranges is zero, i.e Pχ∧Pξ= ∅. Thus, Dickson writes:

‘Any proponent of the epistemic interpretation who wishes to avoid the

Dutch Book by allowing that Pχ and Pξ can co-occur must have a story to

tell about how they can co-occur given that (1) their lattice-theoretic meet

is the zero subspace (i.e. they are distinct simple events), and (2) their joint

probability is undefined. ([Dickson, 1998] p.12)

The appeal to the fact that the joint distribution of Pχ and Pξ is not defined, can also be

seen as providing grounds for denying the second assumption, thus again ruining the Dutch

Book argument and allowing the subjective interpretation of the quantum probabilities.

In effect, given that the joint distribution of Pχ and Pξ is not defined, it seems plausible

to agree to each of the bets individually, while refusing to agree to both of them together.

In addition, one could argue that, because one cannot (seemingly) verify the occurrence or

non-occurrence of each of a pair of incompatible events, propositions involving incompatible

events are not well-defined. And thus that to agree to both of them together is to take a

stand on the joint occurrence or non-occurrence of each of a pair of non-orthogonal events.

Something, which one might reasonably not want to do. In Dickson’s words,

‘To agree to both bets together is to take a stand on a statement about

non-orthogonal events. Therefore, agreeing to both bets together amounts

to betting on the truth or falsity of a statement whose meaning is undefined,

and to refuse such a bet seems completely reasonable.’ ([Dickson, 1998], p.13)

8.3. Or as Dickson puts it, this bet is fair for its expected value, i.e. p(Pχ) (amountwon)+ p(¬Pχ) (amountlost),

is zero, i.e. |c1|2 |c2|2− |c2|2 |c1|2 = 0.

146 Implications for the Interpretations of Quantum Probability



The difficulty, hence, seems to be the following. The third assumption of the Dutch

Book argument, namely that Pχ and Pξ cannot co-occur, seems to be justified because the

joint probability of Pχ and Pξ is undefined and because the intersection of their ranges is

zero. But does not seem justified because the joint distribution of Pχ and Pξ is not zero.

And the second assumption, namely that if one agrees to each of the bets individually, then

one must also agree to both of them together, seems to not be justified because first, the

joint distribution of Pχ and Pξ is not defined; and second, because given that one cannot

(seemingly) verify the occurrence or non-occurrence of each of a pair of incompatible

events, propositions involving them are not well-defined and thus should not be assigned a

probability. And the problem is that if either of these assumptions are not in place, then one

cannot make a Dutch Book against an agent who sets his degrees of belief to the quantum

probabilities, and hence the quantum probabilities would still allow a subjective Bayesian

interpretation. Maybe it would, in the end, turn out that they cannot be so interpreted,

but a new argument would need to be provided.

Ultimately, the crucial question is whether one can, and if so, what it means to have

a degree of belief in the joint outcome of two incompatible quantum events. Indeed, one

can hold a perfectly adequate degree of belief in a certain event Pξ, and another perfectly

adequate degree of belief in Pχ. But if these two events are incompatible, then it is not clear

if one should assign a degree of belief to the joint occurrence of both events, i.e. to the event

Pχ ∧ Pξ; and if one can assign a value to Pχ ∧ Pξ, what the appropriate value is. Again,

the fact that the structure of quantum events is non-Boolean gives rise to this situation.

For if one is concerned only with the results of a single observable (or with a compatible

set of them), then no problems arise: the quantum probabilities would simply agree with

the classical probabilities, and would thus allow a subjective Bayesian interpretation. The

interpretive difficulties precisely appear when one considers two or more incompatible

quantum events.

Let us reconsider the third assumption, i.e. that Pχ∧Pξ cannot occur, but now bringing

in what we learned form the previous chapters. First, the fact that the intersection of the

ranges of Pχ and Pξ is zero, does not seem to justify it. For it rests on the unjustified

assumption that if the intersection of the ranges of two events is zero, then they have

nothing in common, and thus cannot co-occur. Indeed, as we discussed in section 5.2, this

only holds for orthogonal events. For non-orthogonal events, we suggested that there is,

albeit under a somewhat lax reading, a measure of commonality between any two projectors

P and Q given by the ‘probability’ of their common ‘event’, namely Tr(WQPQ). (Recall

that this function is not normalized, but is non-negative and additive.) Hence, even if

Pχ∧Pξ=∅, Pχ and Pξ can be seen as having something in common which, in general, will
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not be assigned a zero ‘probability’.

However, the denial that Pχ and Pξ cannot co-occur, i.e. the claim that Pχ and Pξ can

co-occur, on the grounds that their ‘joint probability’ is defined by Tr(W Pχ Pξ Pχ) and

is generally non-zero, needs to be appropriately qualified. First, this ‘joint probability’

Tr(W Pχ Pξ Pχ) we have resorted to can only be so interpreted at a mathematical level

for projection operators; that is, it cannot be interpreted as the ‘joint probability’ for the

physical values nor for the measurement outcomes associated to Pχ and Pξ. And second, it

is not uniquely specified – for it can be either given by Tr(WPχPξPχ) or Tr(WPξPχPξ)

8.4 – and it is quite weak – for it postulates that these traces give the ‘joint probability’ of

Pχ and Pξ without giving any explanation of why this is so.

Moreover, the (seemingly) only possible way of uniquely specifying the ‘joint prob-

ability’ (and thus have a more adequate notion of joint probability distribution at the

mathematical level for projection operators), namely by interpreting it as a diachronic

probability – Tr[W (Pχ)t1 (Pξ)t2 (Pχ)t1] would then represent the probability of Pχ at time

t1 and Pξ at time t2, i.e. (Pχ)t1 ∧ (Pξ)t2, and Tr[W (Pξ)t1 (Pχ)t2 (Pξ)t1] would represent

the probability of Pξ at time t1 and Pχ at time t2, i.e. (Pξ)t1 ∧ (Pχ)t2 – does not yield an

adequate notion of joint probability.

Indeed, similarly to what we argued in section 7.4, the Heisenberg diachronic pro-

jective notion of joint probability of Pχ at time t1 and Pξ at time t2 as given by

Tr[W (Pχ)t1 (Pξ)t2 (Pχ)t1], does not coincide with the empirical ‘probability’ of Pχ at

time t1 and Pξ at time t2 as given by Tr
(

Ut2−t1 Pχ Wt0 Pχ Ut2−t1
−1 Pξ

)

.8.5 The only

adequate interpretation of the latter expression is as the probability for measurement

outcome pχ at time t0 – immediately before the first measurement of a certain observ-

able where Pχ belongs to its spectral decomposition – and measurement outcome pξ at

time t2 – immediately before the second measurement of an observable where Pξ belongs

to its spectral decomposition. And, as we argued in section 7.5, this reading yields a notion

of joint probability only under a purely instrumental interpretation of quantum mechanics.

But then the claim that the event Pχ∧Pξ cannot occur, i.e. the second assumption of

the Dutch Book argument, is fully justified whether it is interpreted at a formal level for

projection operators Pχ and Pξ, or in terms of the physical values or measurement results

associated to these, both from a synchronic and a diachronic perspective. And, therefore,

a Dutch Book can indeed be made against an agent who sets his/hers degrees of belief to

the quantum probabilities.

8.4. Note how the counterintuitive feature of the (synchronic) projective notion of conditional probability

translates into the non-uniqueness of the (synchronic) projective notion of joint probability.

8.5. See expression (7.53).
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Consider now the second assumption of the Dutch Book argument, namely that if one

agrees to each of the bets individually, then one must also agree to both of them together.

Recall that it was seemingly not justified because the joint distribution of Pχ and Pξ is

not defined. However, this does not seem correct. For one can take the joint distribution

of Pχ and Pξ to be defined for all incompatible events as Tr(WPξPχPξ).

To sum up, given that both the second and third assumptions are justified, a Dutch

Book can be made against an agent who sets his/hers degrees of belief to the quantum

probabilities. Indeed, given that the net gains are negative in the only three possible cases,

one is guaranteed to loose no matter what happens. And, therefore, if ones degrees of belief

on quantum events are dictated by the quantum probabilities, then they are not coherent

and, hence, cannot be given a (non-instrumental) subjective interpretation.

Note that this argument does not need to invoke the supposed impossibility of the

joint measurement of two incompatible quantities. In particular, one does not need to

evaluate whether the fact that one can (seemingly) not verify the occurrence or non-

occurrence of each of a pair of incompatible events justifies regarding propositions involving

incompatible events as not well-defined, and thus not worthy of assigning a degree of belief.

(So that one can agree to each of the bets individually, without also agree to both of them

together). As in section 7.3, we have shown that the Bohr-Heisenberg doctrine according

to which puzzling features of quantum mechanics can be traced back to an inevitable

and uncontrollable physical disturbance brought about by the act of measurement is not

correct.

To conclude, the quantum probabilities dictated by Gleason’s theorem cannot be inter-

preted as subjective probabilities, for physical values, nor for measurement results, nor at a

formal level for projection operators; both from a synchronic and a diachronic perspective.

Hence, subjective quantum Bayesianism is not a viable interpretation of quantum mech-

anics.

8.1.2 Objective Quantum Bayesianism

Up till now we have been focusing on the subjectivist view of credences, in which prob-

ability is interpreted as the degree of belief (or strength of belief) an individual has in

the truth of a proposition. However, as we already noted, there are two different views

within the Bayesian approach to probability. For the subjectivist school, the state of

knowledge corresponds to a ‘personal belief’, and is in that respect subjective. In contrast,

for the objectivist school, the rules of Bayesian statistics can be justified by desiderata of

rationality and consistency. This was actually the position taken in by the first followers
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of the Bayesian view, beginning with Laplace. In the Bayesian revival in the 20th century,

the chief proponents of this objectivist school were E. T. Jaynes and Harold Jeffreys.

Objective Bayesians resort to several principles for the objective construction of the

prior distribution as, for example, the maximum entropy principle, transformation group

analysis and reference analysis. Objective Bayesianism, as developed by [Jaynes, 1957,

1983] and [Williamson, 2004, 2009] focuses on the maximum entropy principle. Briefly,

as defined by Shannon’s Information Theory, entropy is a function of a probability distri-

bution which measures the amount of uncertainty that a certain probability distribution

represents. Hence, on this view, it is a measure of the lack of knowledge. According to

objective Bayesianism, an agent’s prior probability distribution should be given by the

one which maximizes entropy because it is the only possible unbiased assignment; that is,

according to this interpretation, to use any other probability distribution would amount

to an arbitrary assumption on information that we do not have. In Jaynes’ words,

‘The distribution that maximizes H [the entropy] subject to constraints

which represent whatever information we have, provides the most honest

description of what we know.’ ([Jaynes, 1983], p.109).

Our prior distribution should thus be the one which, while satisfying the constraints

imposed by our knowledge, is otherwise as non-committed as possible with regard to

missing information.

Now, an analogue objective Bayesian interpretation of the quantum probabilities can

be found in the recent literature. For example, Bub argues that

‘a quantum theory is best understood as a theory about the possibilities

and impossibilities of information transfer, as opposed to a theory about the

mechanics of non classical waves or particles’ ([Bub, 2004] p.241)

And one can find similar ideas in the writings of Chris Fuchs. For example, he claims

‘I myself see no alternative but to contemplate deep and hard the tasks,

the techniques, and the implications of quantum information theory. The

reason is simple, and I think inescapable. Quantum mechanics has always

been about information. It is just that the physics community has somehow

forgotten this.’ ([Fuchs, 2002a] p.4)

‘[T]he quantum state is solely an expression of subjective information –

the information one has about a quantum system. It has no objective reality

in and of itself.’ ([Fuchs, 2002a] p.7)
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In addition, [Fuchs, 2002a] gives an expression for a quantum entropy which also, upon

maximization, yields the quantum probabilities.

We do not give a detailed presentation of either of these approaches and simply con-

sider the general idea behind an objective Bayesian view of quantum mechanics.8.6 For an

evaluation of whether ‘objective quantum Bayesianism’ can provide an adequate interpret-

ation of the quantum probabilities seems to be possible without considering each different

approach in depth.

Indeed, prima facie, it seems unlikely that objective quantum Bayesianism is cap-

able of presenting a viable interpretation of the quantum probabilities for it faces the

same challenge as subjective Bayesianism, namely, that there is no (satisfactory, i.e. non-

instrumental) notion of the joint distribution of incompatible events, or, equivalently, no

notion of quantum conditional probability. And this precludes the interpretation of the

quantum probabilities as degrees of belief, regardless of whether or not the prior probab-

ility is determined by appealing to principles for the objective construction of the prior

distribution. Hence, while at a formal level the analogies between classical and quantum

information theory might be fruitful and interesting to study, they do not seem capable of

providing any new conceptual or interpretive insight.

8.2 Quantum Frequentism

Let us now turn to the frequency interpretation of probability. As we pointed out in

the introduction, the quantum probabilities allow a frequency interpretation under an

instrumental perspective. Indeed, if when one says the probability of a certain outcome

of an experiment is p, one only means that if the experiment is repeated many times

one expects that the fraction of those which give the outcome in question is roughly p,

then no problems arise. However, if one wants to interpret these frequencies as revealing

an underlying distribution of properties of quantum objects, as in the classical ensemble

interpretation, then problems arise.

The discussion in this section draws heavily on Pitowsky’s work ‘Quantum Probability.

Quantum Logic’ and various works of Arthur Fine (an integrative summary of them is

provided in [Fine, 1986]). We thus provide a detailed exposition of their results in Appendix

D and present here only a brief overview of them.

8.6. See [Timpson, 2007] for a detailed analysis.
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8.2.1 Classical Correlation Experiments

As we have seen, the differences between classical and quantum probabilities stem from the

fact that in quantum mechanics observables are generally represented by non-commutative

operators. Thus a good place to study the peculiarities of quantum mechanics is by looking

at scenarios which involve probabilities for more than a single observable. The experiments

considered in section 4.4 provided one such scenario. Correlation experiments provide

another such scenario, and a more appropriate one to consider unconditional probabilities.

In correlation experiments one performs simultaneous measurements of pairs of dif-

ferent physical quantities on a system and studies the relations that hold between the

various single and joint probabilities. In the most simple case, one performs simultaneous

measurements of two physical quantities, call them 1 and 2, and one finds that the relation

p1 + p2− p126 1 always holds between the various single and joint probabilities, i.e. p1, p2,

and p12, for classical systems. This is well understood by thinking of these probabilities

as having their source in an ensemble of systems with well-defined properties; that is, as

reflecting the distributions of properties of the systems.

To give an example, consider randomly selecting atoms of a gas and simultaneously

measuring their velocity and position. The number of atoms which either have a certain

velocity – property 1 – or a certain position – property 2 – or both, is simply the number

of atoms with property 1, plus those with property 2, minus the number with property 1

and 2 (in order to not count the atoms with properties 1 and 2 twice). In symbols, N1 or2=

N1 +N2−N1&2. And given that the number of atoms which have either property 1 or 2 is

at most equal to the total number of atoms in the gas, the inequality N1 +N2−N1&2 6N

must hold. Now if probabilities reflect the distributions of the atom’s properties, then they

will be simply given by proportions; that is, the probability for selecting an atom with

property 1 is given by the proportion of atoms with property 1, i.e. p1 =
N1

N
; and similarly

p2 =
N2

N
and p1&2 =

N1&2

N
. And hence the previous inequality translates into an inequality

for probabilities, namely p1 + p2− p126 1.

In addition to this objective reading which regards probabilities as reflecting the fre-

quency distributions of the properties of the various systems in the ensemble, one can

also provide a subjective one and hence view the probabilities as reflecting degrees of

belief of a rational agent. Both interpretations turn out to be formally equivalent. The

objective view leads to constraints on the probabilities in terms of linear inequalities,

e.g. p1 + p2 − p12 6 1, while the subjective view leads to constraints as convex sums of

certain vectors (see section D.1.1), and both constraints can be shown to be mathematically

equivalent. These constraints are, in turn, equivalent to requiring that the various single
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and joint probabilities allow an ensemble representation (see theorem D.1). These results

can be generalized for the single and joint probabilities in a general correlation experiment

(section D.1.2).

Two particularly relevant cases are the so-called Bell-Wigner and Clauser-Horne cor-

relation experiments (sections D.1.3 and D.1.4, respectively). In the former, the single and

joint probabilities p1, p2, p3, p12, p13, p23 admit an ensemble representation if and only if

they satisfy the ‘Bell inequalities’, namely

p1 + p2 + p3− p12− p13− p236 1

p1− p12− p13+ p23> 0

p2− p12− p23+ p13> 0

p3− p13− p23+ p12> 0 (8.3)

And in the latter, p1, p2, p3, p4, p13, p14, p23, p24 admit an ensemble representation if and

only if they satisfy the ‘Clauser-Horne inequalities’.

− 1 6 p13+ p14+ p24− p23− p1− p4 6 0

− 1 6 p23+ p24+ p14− p13− p2− p4 6 0

− 1 6 p14+ p13+ p23− p24− p1− p3 6 0

− 1 6 p24+ p23+ p13− p14− p2− p3 6 0 (8.4)

8.2.2 Quantum Correlation Experiments

It turns out that in quantum correlation experiments the empirically found (and theor-

etically predicted) single and joint frequencies (probabilities) do not generally satisfy the

above relations. (In sections D.2.1 and D.2.2 we give particular examples.) The quantum

probabilities do not, therefore, generally admit an ensemble representation, and thus their

understanding as revealing an underlying distribution of properties of quantum objects

or as subjective degrees of belief is precluded. That is, they cannot in general be given

an objective reading in terms of frequencies revealing proportions of properties nor a sub-

jective reading in terms of degrees of belief. (Note that the events can here be interpreted

as physical values or as measurement results.)

One can, however, try to modify the classical construal of an ensemble interpretation

so as to make it a viable interpretation for the quantum probabilities. In section D.3 we

consider this possibility in detail in the case of a Clauser-Horne experiment and show

that the problem in giving an ensemble representation appears when we consider a unique

probability function defined over an ensemble of systems in which all four observables

together, call them AA′BB ′, take determinate pre-measurement values. For it is then that

we cannot ignore the incompatibility between the values given for the BB ′ correlations

8.2 Quantum Frequentism 153



by the ABB ′ distribution and those given by the A′BB ′ distribution (see theorem D.2).

Hence, if one could somehow get rid of this incompatibility, the quantum statistics might

be understood as having their source in an ensemble of similarly prepared systems with

well-defined properties.

One way of avoiding this incompatibility is by employing Fine’s ‘Prism Models’ [Fine,

1986]. The main idea is that measurement results are not restricted to the two possible

eigenvalues corresponding to the measured observable, but can also yield no result at all

(so for example, if we measure A, the measurement result need not be a1 or a2, but also

no value at all). If one allows this possibility then not all measurements give determinate

values for the four observables, and the incompatible probabilistic predictions for the

incompatible observables disappear. In this way one can build statistical models that

reproduce the quantum statistics successfully.

The probabilities that arise from these statistical models are by construction compatible

with an ensemble representation. They can thus be seen as having their source in an

ensemble of similarly prepared systems taking values for the different observables but

without the requirement that every system has a definite value for all four observables:

some types of particles would have determinate values for AA′B (a1a1
′ b1 or a1a1

′ b2 or any

of the remaining six combinations) but would be ‘B ′-defective’, i.e. yielding no value upon

a B ′ measurement, others would have determinate values for A′BB ′ but would be A-

defective, and so on. The various single and joint probabilities arise by averaging over the

appropriate non-defective results. The probabilities could then be understood as reflecting

the properties of these ‘some times for some observables’-defective systems and could thus

be given this modified frequency reading.

What about a subjective interpretation? Our agent would assign degrees of belief to

these different possibilities but would in some way have to take into consideration the

possibility of defective systems. This would result in some modification of the coherence

condition imposed on her degrees of belief. Indeed, it is the requirement of coherence that

lies at the heart of the Ramsey-de Finetti theorem ensuring that degrees of belief satisfy the

classical axioms of probability. Hence if one is to give a consistent subjective interpretation

of the quantum probabilities it is this requirement that needs, in some way, to be modified.

How exactly the coherence assumption is to be changed would need to be developed.

We will not attempt here to give an evaluation of this particular proposal – Fine himself

wonders whether

‘it really contributes to our understanding of nature to suppose that

quantum systems have built-in properties that predetermine their suitability

for measurements’ ([Fine, 1986], p.56).
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The point we want to make is that it is possible to relax some of the conditions on the

statistical models of the quantum probabilities and explore how these modifications open

up new possibilities for understanding the quantum probabilities. Of course, ultimately

one needs to provide some rationale backing these modifications. But both an elaboration

of these changes and their detailed discussion lie outside the scope of the present essay.

8.3 Conclusion

In this chapter, we have considered the impossibility of providing an interpretation of the

quantum probabilities in terms of a frequency and a Bayesian interpretation. Ultimately,

the reason for the failure of these interpretations lies in the difficulty to define a quantum

notion of joint probability, or equivalently, a quantum notion of conditional probability,

which can be interpreted both at a mathematical level for projection operators and at a

physical level for the physical values associated with these projectors from a non-instru-

mental perspective.

For the notion of conditional probability, on the one hand, if one takes the joint prob-

ability of projectors P and Q (or physical values p and q) to be defined by p(P ∧Q), then

the ensuing conditional probability is inconsistent with the probability defined by the

Lüders rule. Moreover if either P or Q is the sum of two or more orthogonal events, say

Q=Q1 +Q2, then P ∧ (Q1 +Q2)=(P ∧Q1)∨ (P ∧Q2) cannot be generally interpreted as

the value ‘p and q1 or q2’. And, on the other hand, if one takes the joint ‘probability’ of

P and Q to be defined by the probability of their ‘common projector’, i.e. Tr(WQPQ),

then the ensuing conditional probability only works at a mathematical level for projection

operators in a weak and counterintuitive way from a synchronic perspective. When arguing

in section 8.1. that a Dutch Book can be made against an agent whose degrees of belief

are dictated by the quantum probabilities we relied on both these reasonings.

For the quantum correlations experiments this difficulty appears in a different way.

Take the Clauser-Horne case. There we calculated the joint probabilities by employing

equation (D.15), namely pij = Tr[WS (Pi ∧ Pj)]. These probabilities are well-defined

for, even though they involve incompatible quantities for a single electron, they apply

here to different electrons.8.7 Now choosing the Pi and Pj’s in an appropriate way, these

probabilities fail to comply with the Clauser-Horne inequalities and can thus not be seen

as arising from an ensemble of similarly prepared systems with well-defined properties.

Which, in turn, precludes the Bayesian and the frequency interpretations.

8.7. For example, in example of section D.2.1, the projector P1∧P3=P+x⊗P+z corresponds to the left electron

having spin up in the x direction and the right electron to have spin up in the z direction.
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Putting it somewhat differently, the difficulty is that the axioms of classical probability

are not compatible with the quantum probabilities. The axioms of non-negativity and

normalization do not pose any problems, and the axiom of additivity is respected for

the quantum probabilities since it is defined for orthogonal (i.e. compatible) projection

operators. But the fourth axiom of classical probability, which takes conditional probability

to be defined as a joint probability increased pro rata, simply does not work for the

quantum probabilities (if by joint occurrence we try to take the direct quantum analogue

of the classical joint distribution, i.e. p(P ∧Q)). In this way, we can now understand why

we chose to use Accardi’s quote at the beginning of this dissertation. For

‘all the paradoxes of quantum theory arise from the implicit or explicit

application of Bayes’ axiom (or of the theorem of composite probabilities,

which is an equivalent form of it [...]) to the statistical data of quantum

theory. This application being unjustified both physically and mathematic-

ally.’ ([Accardi, 1984a], pp.298 - 299).

Thus, it seems that the quantum probabilities cannot be interpreted as measuring our

degrees of belief on the quantum events as the Bayesian interpretation holds, nor as fre-

quencies revealing an objective distribution of the properties of quantum systems. Maybe

they need to be understood as part of the physical ‘furniture’ of the world described by

quantum theory, and, in particular, as dispositions that get manifested upon measurement.

Indeed, many different ways of fleshing out dispositional notions from a propensity inter-

pretation perspective have been used in the attempt to solve the quantum paradoxes.8.8

However, an evaluation of these proposals and their adequacy goes beyond the scope of

this dissertation.

8.8. Some of the best known are Heisenberg’s potentialities, Margenau’s latencies, and Maxwell’s propensitons.

See [Suárez, 2007] for a review and references therein. More recently, Mauricio Suárez [Suárez, 2004a, 2004b, 2007]

has developed the selective propensities interpretation of quantum mechanics.
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Chapter 9

Concept Extension

In Chapter 4, we showed that the probabilities defined by the Lüders rule, while not

additive with respect to ‘conditioning’ events, are characterized by an analogue existence

and uniqueness theorem (theorem 4.2) to the classical one (theorem 2.1), which states that

the Lüders rule gives the only probability measure that, for events P 6 Q in L(H), just

involves a renormalization of the initial probability function pW . Combining this result with

the fact that, if P and Q are compatible, the probabilities defined by the Lüders rule reduce

to classical conditional probabilities, we arrive at the result that the Lüders rule gives the

only probability measure on the quantum event space L(H) which reduces to classical

conditional probability in their shared domain of application, i.e. compatible events. In

Chapter 4 we explained why this result is standardly taken as justifying the interpretation

of the Lüders rule as defining the quantum extension of conditional probability in quantum

probability theory.

However, as we have argued in detail in Chapters 5 and 7, this is not so. Even if the

probabilities defined by the Lüders rule are the only probabilities which are co-extensive

with conditional probabilities for compatible events, we have no reason to assimilate them

to conditional ones for incompatible events, neither for physical values, nor at a formal

level for projection operators, both from a synchronic and a diachronic perspective (except

under a purely instrumental perspective). Rather, we have given many reasons against this

assimilation.

In this chapter we claim that this result holds in general. Indeed, in sections 9.1 and

9.2, we argue that the fact that a concept appearing in a certain theoretical context is co-

extensive with another concept of a different theoretical context in their shared domain

of application, does not guarantee that the former will be the conceptual extension of the

latter.9.1 Thus the standard philosophical view that concept extension can be characterized

by co-extension of two concepts in their shared domain of application – as for example,

that presented by the logical positivists, by Imre Lakatos or by Albert Einstein – is shown

to be inadequate.

9.1. Notice the different senses in which the word ‘extension’ is being used, namely as an enlargement in scope

– concept extension – and as the total range over which something extends – co-extension of two concepts in the

shared domain.
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We then argue that concepts present an ‘open texture’ that does not allow for a set

of jointly necessary and sufficient conditions to characterize an extended concept (section

9.3), and develop a scheme and methodology – the ‘Cluster of Markers’ account – for the

problem of tracing conceptual lineages so as to judge when one concept truly extends

another (section 9.4).9.2 This new account, we argue, can capture the complexity involved

in actual cases of conceptual change in science and can account for the fact that there are

concepts which, even if co-extensive in their shared domain of application, do not share

enough meaning so as to justify regarding them as defining one and the same concept.

9.1 Concept ‘Refinement’

Physicists and mathematicians have tended to focus on limits as the appropriate criterion

to characterize concept extension: a concept in a new context is taken to be an extension

of an old one if it reduces to it when taking the appropriate limit. For example, so-

called ‘relativistic mass’ mγ=m/ 1− v2

c2

√

is standardly seen as the extension of classical

mass because it reduces to it in the Newtonian limit, namely for speeds small compared

to the speed of light.

Similarly, philosophers and philosophically minded physicists have focused on co-exten-

sion in the shared domain of application as the adequate requirement for conceptual exten-

sion. Most extremely, the logical positivist tradition (e.g. philosophers such as Carnap,

Reichenbach and Hempel), tried to characterize extended concepts as logical extensions

of previous ones. But co-extension has also been defended as the appropriate require-

ment for conceptual extension under less stringent accounts. Albert Einstein, for example,

explicitly defended this view in his ‘method of conceptual refinement’.9.3; [Lakatos, 1976]

developed a somewhat similar account which he termed ‘conceptual stretching’; and [Fine,

1978, 1986], building on Einstein and criticizing Lakatos’ account, further spelled out

the method of conceptual refinement.9.4

9.2. Credit for the cluster of markers account should be jointly given to Arthur Fine and Isabel Guerra. It was

born from our going back and forth with each other over this problem.

9.3. We follow Fine’s interpretation of Einstein’s thought as presented in ‘The Shaky Game. Einstein, Realism

and the Quantum Theory’ [Fine, 1986]. The reader should, therefore, look for reference to Einstein’s own works in

Fine’s book. Regarding the method of conceptual refinement, Fine writes:

‘I try to tease out of Einstein’s scientific papers a general method of his, the method of conceptual

refinement, that actually requires significant conceptual change as the vehicle for scientific develop-

ment.’ ([Fine, 1986] pp. 3-4)
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In Lakatos’ view, science grows by making adjustments in the concepts employed in a

certain scientific argument so as to accommodate counterexamples or empirical anomalies;

and these adjustments result in the ‘stretching’ of concepts.9.5 In more detail, the concept

to be stretched figures centrally in a scientific argument (a law, a hypothesis or a theorem),

whose conclusion, as well as some stage of the argument itself, is challenged by a counter-

example. In order for progress to be made, what happens is that the argument is essentially

preserved by altering the concept so as to accommodate the counterexample. That is, the

concept is molded or stretched so as to avoid the counterexample and preserve the validity

of the argument. [Fine, 1978] argues that the program to construe conceptual change as

concept stretching is idle for it is seriously confused about the role of argument (both in

empirical sciences and mathematics). The method of conceptual refinement suggests why

this is so. So let us first look at this method.

In Einstein and Fine’s view, new concepts arise as a refinement of old ones: they

agree with the old ones in their shared range of application, but have a broader range

of application which enables a new and ‘deeper’ way of understanding and organizing

experience. Conceptual refinement can be seen as a process occurring in two-stages. The

first stage consists in a mapping of the boundary of a concept. One examines the limits of

the concept-to-be-changed so as to find out its range of application, i.e. where the concept

clearly applies, where it does not clearly apply and any possible middle grounds (which

will mostly cover unclear or indeterminate applications).

The second stage consists in the extension of the concept to its indeterminate or unclear

range of application. A new theory is in charge of determining how the refinement of the

concepts exactly takes place. It will employ the refined concepts satisfying the following

two constraints:

i. the refined concepts are co-extensional with the unrefined ones, at least approx-

imately, in the central region where the unrefined concepts clearly apply. This is

supposed to ensure that the refined concepts generalize or extend the originals.

ii. the refined concepts apply in a determinate way beyond this central region. This

constraint represents the progress of science: the new theory employing the refined

concept

9.4. We present here a rather simplified account of Einstein and Fine’s method of conceptual refinement. These

authors do not defend explicitly that co-extension in the shared domain of application is a necessary and sufficient

condition for conceptual extension. However, co-extension seems to be implicitly assumed to be the only condition

in their account since no other is considered.

9.5. Lakatos focused mainly on the development of mathematical science but took much of his conclusion to

also apply to empirical science.
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‘will penetrate into nature more deeply than its predecessors; it

should advance our understanding by allowing us to put to nature

certain questions which were not clearly expressible on the basis of the

old concepts and it should lead us to expect that some such questions

have determinate answers.’ ([Fine, 1978], p.331)

Thus, the first stage prepares the way for the second one:

‘In the first stage we show that there is room for conceptual innovation,

and in the second stage we do it.’ ([Fine, 1978], p.332).

Lakatos’ concept stretching account can, from this perspective, be seen as follows.

First, the role of counterexamples is to mark out the limits of where the concept of interest

applies, and second, the ‘good’ argument around which our concept is stretched functions

like the new theory. Indeed, the good argument forces our stretched concept to apply to

the clear cases, for otherwise it would not be a good argument at all; and it extends the

application of our concept by making the concept fit the more general constraints of the

proof. But, as Fine argues,

‘We are not playing “save the proof” (by stretching the concept), the

way the medievals played “save the phenomena” (by stretching the hypo-

thesis). We are playing the game of advancing our science, by developing

new theories. If it happens, as in mathematics especially it sometimes does,

that to develop the theory involves focusing on an especially interesting line

of argument, then conceptual refinement may come dressed as conceptual

stretching.

She wears those clothes well. And because Imre had an excellent eye

for finery, he may have mistaken the persona for the person. Had he got to

know her more intimately, I think it unlikely that he would have continued

his misapprehension.’ ([Fine, 1978] pp.339-340)

9.1.1 An Example: Cardinality

The extension of the notion of ‘the number of elements of a set’ from the finite to the

infinite provides an example of conceptual extension.9.6 For a finite set this notion applies

straightforwardly: we simply count the number of elements of the set. But what about for

9.6. [Fine, 1978] pp.335-338 and [Buzaglo, 2002], pp.42-44.
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an infinite set? Talk of the number of elements is not clear; indeed, one could plausibly

argue that counting only makes sense for a finite collection of objects. Does the set of, say,

the real numbers have the same number of elements as that of the natural numbers given

that they both have infinite elements? Or rather are there more real numbers than natural

numbers? Or to take another example, does the set of even numbers have fewer elements

than the set of the natural numbers, given that the former is a proper subset of the latter?

Or, on the contrary, do they have the same number of elements?

The notion of ‘the number of elements of a set’ of the finite domain does not afford

a clear answer to these questions involving infinite sets. Georg Cantor, in the late 19th

century proposed one. He argued that the concept ‘number of elements of a set’ is rooted

in the process of counting and that this is what allows defining its coherent extension in the

infinite domain. Indeed, establishing one-to-one correspondences is what we do when we

count the number of elements in the case of finite sets: we establish or follow an ordering

of its elements that maps isomorphically to an initial segment of the positive integers; then

the number of elements of a set is just the positive integer that corresponds to the last

element counted.

Therefore, Cantor proposed that two infinite sets have the same number of elements if

they can be put into a one-to-one correspondence with each other. The extended notion is

known as the cardinality of a set. The cardinality of set A is, thus, equal to the cardinality

of B just in case there is a one-to-one correspondence between A and B. Hence, the set

of natural numbers and the set of even numbers have the same number of elements or

cardinality given that there is a one-to-one correspondence between their elements – simply

associate 1 in N to 2 in E, 2 in N to 4 in E, 3 in N to 6 in E, etc. And this regardless of

the fact that the even numbers are a proper subset of the natural numbers. In contrast, the

set of natural numbers and the set of the real numbers do not have the same cardinality

since there is no way of establishing a one-to-one correspondence between them. In effect,

there are ‘many more’ real numbers than natural numbers even if both have an infinite

number of elements.

Two final remarks. First, notice that these counterintuitive properties of the extended

concept result from the very project of conceptual extension. Indeed, if the extended

concept is to adequately apply in a new domain, which the old concept was unable to

capture, then it cannot retain all the features of the concept it extends. Rather, it will retain

the essential features of the old concept, and let go of those which would not enable it to

capture the phenomena of the new domain. Second, notice that the concept of cardinality

reduces to the number of elements in the case of finite sets, in satisfaction of the conceptual
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refinement analysis’ first constraint, but takes over for infinite sets, according to the second

constraint. Here it enables one to raise questions which will now have determinate answers.

9.1.2 Necessity of Classical Concepts: the Bohr-Einstein Debate

Both Einstein and Bohr shared the view that, in constructing new theories, it is necessary

to seek for the precise limits of application of a concept. However they disagreed on

how exactly this information should be used; that is, they did not agree on the second

stage of the conceptual refinement method. In particular, they held opposite views on the

implications of the limits of application of the classical concepts. While Einstein thought

that in general the construction of a good theory calls for a refinement of the old concepts

– one looks to a series of revisions of the classical concepts by first seeking the limits of

their application in the experimental situations and then by building a theory to refine

them – Bohr thought that there could be no concepts which would extend the range of

application of the classical ones in a uniform way.9.7

In more detail, Bohr claimed that one must view the world through the old classical

concepts; that is, that we have only the classical concepts with which to organize exper-

ience for only these seem to be linked with the human capacity for conceptualization.

New contexts, though presenting new phenomena, may not be novel at a conceptual level

because new concepts are, as a matter of principle, ruled out.9.8 Thus, when looking into

the quantum domain one must first select a particular set of classical concepts to employ;

and what one then sees, once this choice is made, will depend on the chosen set of concepts,

i.e. on our view point, in such a way that different perspectives cannot be pieced together

in one unitary picture of the quantum world. This view became known as Bohr’s doctrine

of complementarity (recall section 6.6).

The most distinctive feature of the Bohr’s Copenhagen interpretation (compared to

the orthodox interpretation) is that, in addition to the projection postulate, it postulates

of the necessity for classical concepts to describe quantum phenomena. Instead of deriving

classicality from the quantum world, e.g., by considering the macroscopic limit, the require-

ment for a classical description of the ‘phenomena’, which comprise the whole experimental

arrangement, is taken to be a fundamental and irreducible element of a complete quantum

theory.9.9

9.7. This section follows [Fine, 1986] chapter 2. See the latter for further detail.

9.8. Bohr is usually seen as taking the lead from Immanuel Kant, who is in turn frequently interpreted as a

defender of this view.
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Einstein strongly disagreed with this view. In a letter to Schrödinger – who had also

expressed the view that, given the limitation on the applicability of the concepts of position

and momentum embodied in the Heisenberg indeterminacy relations, these concepts would

eventually be replaced by new ones that apply not approximately but exactly – he writes:

‘Your claim that the concepts p, q [momentum, position] will have to be

given up, if they can only claim such ‘shaky’ meaning, seems to me to be

fully justified. The Heisenberg-Bohr tranquilizing philosophy – or religion? –

is so delicately contrived that, for the time being, it provides a gentle pillow

for the true believer from which he cannot very easily be aroused’ (cited in

[Fine, 1986], p.18)

Thus, whereas Bohr thought that the concepts of classical physics should be segregated

in the manner of his complementarity doctrine, Einstein defended the project of seeking

new concepts that would replace the classical ones in the quantum context. He thought

that holding classical concepts as necessary significantly obstructs any kind of scientific

progress. In his own words,

‘... concepts which have proved useful for ordering things easily assume so

great an authority over us, that we forget their terrestrial origin and accept

them as unalterable facts. They then become labeled as ‘conceptual neces-

sities’, ‘a priori situations’, etc. The road of scientific progress is frequently

blocked for long periods by such errors. It is therefore not just an idle game

to exercise our ability to analyze familiar concepts, and to demonstrate the

conditions on which their justification and usefulness depend, and the way

in which these developed, little by little from the data of experience. In this

way they are deprived from their excessive authority.’ (cited in [Fine, 1986],

p.15-16)

Thus Einstein did not conceal the difficulty in the interpretation of quantum theory

by appealing to the complementarity doctrine and continued searching for some concepts

that would yield an appropriate understanding of the quantum realm.

9.9. This introduces a quantum-classical dualism into the description of nature and requires the assumption of

an essentially non-movable boundary (the famous ‘Heisenberg cut’) between the ‘microworld’, containing the objects

that are to be treated as quantum systems, and the ‘macroworld’ that has to be described by classical physics.

However, the studies of decoherence phenomena demonstrate that quasiclassical properties, across a broad range

from microscopic to macroscopic sizes, can emerge directly from the quantum substrate through environmental

interactions. This makes the postulate of an a priori existence of classicality seem unnecessary, if not mistaken, and

it renders unjustifiable the placement of a fixed boundary to separate the quantum from the classical realm on a

fundamental level. See [Schlosshauer, 2004, 2007] and [Schlosshauer & Fine, 2008].
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Fine describes the debate between Bohr and Einstein over the conceptualization of

quantum theory with a beautiful analogy:

‘According to Bohr the system of classical concepts splits into mutually

exclusive packages if one attempts to use this system outside the region of

macroscopic physics, the region where all the concepts of the system have a

determinate, simultaneous application. To get beyond this central core one

must select which package of concepts to use. Different selections will enable

one to get beyond the core in different ways. But the results of these different

explorations do not combine into some unified picture of a region beyond the

core.

Bohr thus views the product of conceptual refinement as a wheel-like

structure: a central hub from which there extends a number of disjoint

spokes. Different explorers can move out separately along different spokes

but, according to Bohr, the reports they send back will not enable one to

piece together an account of some region between the spokes of a rim that

connects them. Thus the new conceptual structure for Bohr looks like the

steering wheel of an old-fashioned ship. The beauty of this steering mech-

anism and the aspect that Einstein saw as a ‘gentle pillow’ is that it enables

one to navigate into the quantum domain using only a classical chart in

any given direction.

Einstein’s dispute with Bohr (and others) is a dispute over this wheel-

like structure. Einstein asks whether the spokes must really be disconnected,

could there not at least be a rim? This is the question as to whether the

quantum theory allows a realist interpretation, a picture of the world as a

single entity with a rich set of simultaneously determinate properties that are

observer-independent. And Einstein asks whether the spoke must be made of

the same material as the hub. Must we, that is, stick with just the classical

concepts?’ ([Fine, 1986], p.21)

Two final remarks. First, note that the ‘Heisenberg-Bohr tranquilizing philosophy’

cannot provide an adequate recourse for the difficulties in the interpretation of probability

defined by the Lüders rule. For, from this perspective, one would need to argue that

this probability only makes sense for compatible events, and only then as conditional

probabilities. But then, what are we to do in all the other cases in which it applies de facto

to pairs of incompatible events and gives the correct probabilistic predictions? A Bohrian

would need to claim that in all these cases, which are precisely the ones in which the
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quantum predictions differ from the classical ones, the probability defined by the Lüders

rule makes no sense. But this claim is indeed quite difficult to defend in any satisfactory

way.

Second, note that Einstein did not believe that the new concepts would come from

quantum theory. Indeed, already in 1936 he describes quantum theory as

‘an incomplete representation of real things, although it is the only one

which can be built out of the fundamentals concepts of force and material

points.’ (quoted in [Fine, 1986], p.24)

He saw quantum theory as essentially statistical, unable to predict the simplest

phenomena unless one understood the theory as only treating statistical aggregates of

individual systems, and not the individual systems themselves. He thus felt that it could

not be fundamental in the sense of providing a framework for all physics. Rather, he

hoped that the framework of general relativity would provide the new fundamental con-

cepts and the theoretical basis from which the quantum theory would emerge as a statistical

approximation. He devoted his last years to exploring the possibility for thus finding

an account that would penetrate the quantum domain more deeply than does the present

theory. Unfortunately, he did not succeed.

9.2 Inadequacy of the Concept Refinement Account

The refinement account thus characterizes conceptual extension by means of its first

requirement, namely that of co-extension of the refined concept with the unrefined one

in the shared domain. This is taken to ensure that the refined concepts generalize or

extend the original ones. However, we have seen that in the case of the probabilities

defined by the Lüders rule, co-extension in the shared domain is not sufficient to charac-

terize conceptual extension: they reduce to classical conditional probabilities for compatible

events and yet cannot be understood in terms of conditionality for incompatible events.

In this section, we argue that this failure is not an isolated instance due to the partic-

ularly difficult task of interpreting the quantum formalism. That, in fact, co-extension in

the shared domain of application does not in general guarantee that the concept of the new

domain is an extension of the concept it is co-extensive with. In effect, co-extension of two

notions in a certain domain by no means guarantees that outside the shared domain the

new notion will have the same (core) meaning. And hence, it is not a sufficient condition

for a conceptual extension. The conceptual refinement account is, thus, shown to not be

an adequate account of conceptual extension.
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We argue for this claim by considering a particularly interesting example of a concept

which, while satisfying the co-extension requirement, cannot be seen as a proper extension

of the concept it formally reduces to, namely, the notion of ‘relativistic mass’.9.10 Indeed,

there are two possible formal functions in relativistic physics which are co-extensive with

classical mass for speeds small compared to the speed of light, i.e. in the shared domain

of classical and relativistic physics. However, only one of them can in fact be interpreted

as an extension of classical mass, something which, given both satisfy the co-extension

requirement, the method of conceptual refinement cannot account for. Let us see this in

some detail.

The Newtonian equations of motion are empirically correct only if the speed of the

object under description is considerably smaller than the speed of light. Otherwise they

are replaced by the equations of relativistic physics which involve mass in a new way. We

will focus on the fundamental equations of special relativity, which, for a free body, are

E2− p2c2 =m2c4 (9.1)

p =v
E

c2
(9.2)

where E is the energy, p the momentum and v the velocity of the particle, and c is the

speed of light.

What is the proper interpretation of the symbol m that appears in (9.1)? Is it just our

ordinary classical notion of mass? Or is it an extension of that concept to the relativistic

domain? Or, rather, is it a new concept altogether? Prima facie, m seems to define the

relativistic extension of the classical notion of mass. For the relativistic equations (9.1)

and (9.2) reduce to the classical expressions for momentum and energy involving classical

mass when the speed of the body is small relative to the speed of light. In effect, equation

(9.1) can be rewritten as E

mc2
= 1 +

p2

m2 c2

√

which in the Newtonian limit reduces to:9.11

E=mc2 +
p2

2m
(9.3)

Here we can identify p2

2m
as the classical kinetic energy of a particle. Similarly, writing

equation (8.2) as p

m
= v 1 +

p2

m2 c2

√

,9.12 we obtain the classical expression for momentum:

p =m v (9.4)

9.10. This discussion mainly follows [Lange, 2002], pp.224-240. See also [Adler, 1987], [Earman & Fine, 1977],

[Field, 1973], [Okun, 1989], [Okun, 2001], [Okun, 2002] and [Sandin, 1991].

9.11. Considering the case in which v≪ c so that x=
p2

m2c2
is very small, one can use the expansion 1+ x

√
=

1+
1

2
x+ o(x2) for small x’s.
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The problem is that the quantity symbolized by m is not standardly taken to define

relativistic mass. Rather many standard textbooks on relativity take the quantity mγ to

be the appropriate notion of mass in relativity. Indeed, equations (9.1) and (9.2) can be

rewritten as:9.13

p=mγ v (9.5)

E=mγc2 (9.6)

where γ=1/ 1− v2

c2

√

, and then it is mγ, rather than m alone, that seems to be the proper

extension of mass in relativity theory. For mγ reduces directly to the Newtonian notion

of mass when the speed of the particle is small compared to the speed of light. In effect,

when v≪c, γ reduces to one,9.14 andmγ directly reduces to classical mass. Moreover, the

relativistic equation (9.5) is analogous to the Newtonian expression of momentum p=mv.

Hence, mγ is generally taken to be the proper relativistic extension of mass and, as such,

is usually referred to as ‘relativistic mass’.

But is this really so? Is mγ, rather than m, the appropriate extension of classical mass

in relativity? No, it turns out, that the function m, and not mγ, is the proper extension

of the notion of mass in special relativity because it is the one which is Lorentz invariant.

Indeed, the quantity m is Lorentz invariant, that is, it does not depend or change upon

the transition from one inertial reference frame to another. To see this, one need only

substitute the Lorentz transformations for E and p, namely

E→ (E ′+v p′) γ (9.7)

px→ (px
′ +

vE ′

c2
) γ

py→ py
′

pz→ pz
′ (9.8)

where v is the velocity of one reference frame relative to another and v= |v | (we assume

that vector v is directed along the x axis), into equation (9.1). After some straightforward

calculation, one obtains the same equation for the transformed quantitiesE ′ and p′, namely

E ′2− p′2c2 =m2c4, where mass m appears unchanged.

9.12. Using the same expansion as before, only the first term survives for the second one is already of second

order.

9.13. Substituting in (9.2) the expression of energy from (8.1) we get p2 =
v2

c2
(m2 c4 + p2c2). And rearranging

this expression, p =
m

1− v
2

c2

√ v , which taking γ = 1− v2

c2

√

, is normally expressed as p = m γ v . Substituting this

expression into (9.3) we get E=mγc2.

9.14. Indeed, only the first term survives: 1− v2

c2

√

= 1− 1

2

v2

c2
+� = 1+ o(

v2

c2
)
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Lorentz invariant quantities are taken to be the physically relevant quantities because,

given that they do not depend on the reference frame respect to which they are described,

they seem to capture what is objective. Given that a body’s mass m is independent of its

speed and of any change of reference frame, it is thus the appropriate extension of mass in

relativity theory. In contrast, a body’s so-called ‘relativistic mass’ mγ can change simply

due to a change of the reference frame in respect to which it is described, and depending

on the reference frame, its variation will be different;9.15 this ‘change’ does not represent

an objective physical process. As Marc Lange observes:

‘Because ‘relativistic mass’ [mγ] is not an invariant quantity, the best thing

to do in order to avoid confusing frame-dependent quantities with invariant

ones is just avoid using the term ‘relativistic mass’ [...] We should just use

the term ‘mass’, applying to the invariant quantity symbolized m’ ([Lange,

2002], pp.224-225)

Or in Einstein’s words,

‘I find it not very good to say that the mass of a body in movement is

increased by the speed. It is better to use the word mass exclusively for

[Lorentz-invariant] rest mass.9.16 This rest mass, f.i. for a molecule of copper,

always the same, independent from the speed of the molecule.’

‘It is not good to introduce the concept of a mass which depends from

its velocity for this is not a clear concept.’

‘One should always introduce as ‘mass’ m a quantity independent of

motion.’ (quoted in [Earman & Fine, 1977], p.538)

In addition, relativistic massm is, as classical mass, a conserved quantity. Indeed, given

that E and p are conserved and together determinem by equation (9.1), mass conservation

holds in relativity theory.

To sum up, the notion of ‘relativistic mass’ m γ is not appropriate and is, at best,

highly misleading: the proper extension of the concept of mass to relativity is the Lorentz

invariant property symbolized by m in equation (9.1). Thus, we see that, in this case,

co-extension in the shared domain of application is again not sufficient to characterize

conceptual extension: it cannot determine which, if either, of the two purported notions of

relativistic mass appropriately extends the notion of classical mass. Given this example of

9.15. See [Lange, 2002] ,pp. 236-238 for several examples.

9.16. See the next section on why Einstein, inappropriately, or so we argue, terms Lorentz-invariant mass m

as ‘rest mass’.
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relativistic physics and the case of conditional probability in quantum physics, we contend

that in general co-extension is not sufficient to characterize conceptual extension.

As a final remark, notice that the function m γ allows the relativistic equation (9.5)

p =mγ v to take the classical form ‘momentum=mass× velocity’. However, this formal

analogy does not guarantee the interpretation of ‘m γ’ as a relativistic extension of the

classical notion of mass since, as we have seen, m γ is not Lorentz invariant. Indeed,

this formal analogy constitutes only a mnemonic device that leads to much conceptual

confusion. Hence, similarly to the case of the probabilities defined by the Lüders rule, we see

the need to disengage formal and interpretive features when evaluating whether a concept

is a genuine extension of the concept it is co-extensive with. Any satisfactory theory of

conceptual extension should be able to account for this feature.

9.3 No Fast-Holding Conditions for Concept Extension

Co-extension in the shared domain hence cannot adequately characterize conceptual exten-

sion. What seems to really matter for a notion to be the conceptual extension of another is

that there is some ‘core’ meaning which both concepts share that carries over the boundary

between the old and the new context.9.17 When this happens co-extension will (usually) be

satisfied, but not (necessarily) vice versa. However, evaluating whether there is in fact some

shared core meaning is not a simple matter. In general, the concept of the new theory will

have some features in common with the old concept and some completely new features but

there does not seem to be a clear cut criteria to determine when the overlapping features

justify calling the concept an extension and when they will not. To take a provocative

example, think of the enormous controversy on whether or not the concept of ‘abortion’ is

an extension of the concept of ‘murder’.

Or think again about mass in relativistic physics. The Lorentz-invariant quantity sym-

bolized by m cannot, as in classical physics, be interpreted as the amount matter of which

a body is made of. This is because mass m is not additive in relativity theory: the total

matter of a whole system is not the sum of the matter of the system’s parts (where those

parts are non-overlapping and together include the entire system.) Take for example the

mass of a system composed of two subsystems. Given that energy and momentum are

additive we have that E=E1 +E2 and p= p1 + p2. But substituting this into expression

9.17. Meaning is here, and throughout the text, to be understood intuitively as the concept or sense marked

out by a word and not in a technical philosophical sense.
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(9.1) we get that m2=
(E1 +E2)

2

c4
− (p1 + p2)

2

c2
, which is not equal to the sum of the individual

masses (m1 +m2)
2. Only at v1 = v2 =0 does the second term vanish and is mass additive.

Nor is mass m a measure of inertia. That is, we cannot think of it as the property a

body possesses that determines its resistance to a force in the vein of ‘the more massive

the body, the more force is required to give it a certain acceleration’. Indeed, in the special

relativity framework the formula dp

dt
=F is valid and substituting in it equation (9.1) we get

a=
(F −F β)β

mγ
, where β=

v

c
. The acceleration is not parallel to the force as in the Newtonian

situation and hence we cannot cling onto the Newtonian relation of proportionality between

a and F . The Newtonian equation ‘F =m a’ cannot be used in the relativistic context,

and hence m cannot be interpreted as a measure of inertia.

Nevertheless, there seems to be a surrogate quantity which both classical and Lorentz-

invariant relativistic mass m are measures of. For even though energy is not generally a

Lorentz invariant quantity, in the special case of a body at rest, it is invariant given that

it is proportional to relativistic mass m – for p= 0 equation (9.1) yields m=E0/c
2 . And

it is the rest energy E0, ‘dormant’ in massive bodies, which Lorentz-invariant mass m,

along with classical mass, measures. Rest energy thus seems to be the core feature of the

notion of mass which is present both in the classical and relativistic domains, allowing us

to appropriately think of massm in relativity as an extension of the classical notion of mass.

Prima facie, one could argue that this is not really so; that is, that rest energy is really

not the core feature of the notion of mass, present both in the classical and relativistic

domains, which allows us to appropriately think of mass m in relativity as an extension of

the classical notion of mass. For when p=0, Lorentz-invariant massm=
E2

c4
− p2

c2

√

reduces

to so-called rest mass m0 = E0/c
2, and can be interpreted, analogously to Newtonian

mass, as the ‘dormant’ energy in massive bodies. But what does Lorentz-invariant mass

m=
E2

c4
− p2

c2

√

measure when p� 0? So far, we have only said negative things, namely that

it is not a measure of the amount of matter nor of inertia. What is it then a measure of?

This reasoning is, however, misguided for it is confused about the role that p=0 plays

in interpreting mass in relativistic physics, or, put somewhat differently, it is mistaken

in calling m = E0/c2 rest mass m0. Indeed, p = 0 is not a physically relevant condition

because momentum is not a physical property in relativity – in contrast to mass, neither

energy nor momentum are Lorentz-invariant and, therefore, are not objective properties of

the system. Thus, the condition p = 0 simply selects a particular frame of reference, one

which allows understanding mass as the rest energy E0, ‘dormant’ in massive bodies. It is

the only frame in which the combination of energy and momentum only reflects the body’s

mass; in general, a body’s combination of energy and momentum in a given frame reflects

both its mass and that frame.
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It is thus correct to consider rest energy as the core feature of the notion of mass; it

is this ‘dormant’ energy in bodies which allows us to appropriately think of mass m in

relativity as an extension of the classical notion of mass. (Note, that calling E0 rest energy

is, in contrast to calling m0 rest mass, fully justified.) The Lorentz-invariant mass m is

generally referred to as ‘proper mass’. Hence, the notion of proper mass in relativity theory

has some features in common with classical mass – both measure the rest energy in bodies

– and some completely new features – it is not a measure of the amount of matter nor of

inertia.

To determine which, if any, of the overlapping features are the critical features of the

notion of mass, we have needed to engage in a detailed study of the particular science

involved. This brings out the highly topic specificity in the evaluation of concept extension,

and the ensuing difficulty in giving a general account of it. The evaluation of concept

extension needs to be applied alongside with all the scientific knowledge of particular cases.

As Buzaglo points out in ‘The Logic of Concept Expansion’,

‘Modern logic, founded by Frege, gives us no tools for understanding

concept development, for it forces us to claim of the developed concept that

either it is identical to the old one or it is completely different from it. When

we get to philosophy, we feel that this sharp division is insufficient to get

to the bottom of the problem. [...] I suggest we should escape the narrow

dichotomy of the new concepts being identical or totally different from the

old. [...]

I propose to take examples of expansions from mathematics and science,

preferably as simple as possible, and to analyze them. Thus [...] we can see

what is happening in a clearer way.’ ([Buzaglo, 2002], p.169-170)

However, the project of giving an account of concept extension is not as hopeless as

it looks. Indeed, even if concepts have an ‘open texture’ that does not allow for a set of

jointly necessary and sufficient conditions to characterize an extended concept, one can try

to formulate a ‘cluster of markers’ which are expected to hold for the extended concept. If

too many of these markers fail then one would hesitate to regard the concept of the new

theory as an extension of an old one rather than a new concept altogether. And though

this account would be far from giving fast-holding conditions for concept extension, this

need not be considered as a vice but, rather, as a virtue. Indeed, we think that it can more

appropriately capture the complexity of the cases of conceptual change in actual scientific

practice.
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9.4 Cluster of Markers Account

So let us try to formulate this ‘cluster of markers’ which would characterize – in the loose

sense explained above – concept extension. First, we have seen that the requirement of co-

extension in the shared domain of two concepts is not sufficient to characterize conceptual

extension. For example, the probabilities defined by the Lüders rule are co-extensive with

conditional probabilities for compatible events, but this does not ensure that they can be

interpreted as conditional probabilities for general quantum events. Similarly, ‘relativistic

mass’ m γ reduces to classical mass in the Newtonian limit, yet it does not define an

acceptable notion of mass in the relativistic domain. Nevertheless, co-extension of two

concepts in their shared domain does seem to be a necessary feature of concept extension;

at least approximate co-extension is. Hence, we propose to take co-extension of the concepts

of the new and old theory in their shared domain of application as the first marker in our

cluster-of-markers account of concept extension.

Second, we have also emphasized that what seems to really matter for a notion to

be the conceptual extension of another is that there is some ‘core’ meaning which both

concepts share which thus carries over the boundary between the old and the new context.

The requirement of ‘teachability’ is, we think, a particularly useful way of capturing this

core meaning. Indeed, for a concept to extend an old one into a new context, it seems

crucial that teaching standard applications of the concept in the the old context allows its

application in the new one. This is so because it affords a way of focusing on the role that

inferences and explanations play in determining the meaning of a concept.9.18 Teachability

is, therefore, the second marker in our cluster-of-markers account of concept extension.

Consider, for example, the notion of cardinality. Cantor’s idea is that the extension

of the concept of ‘the number of elements of a set’ to encompass infinite numbers lies in

extending the idea of an ordering, like that associated with counting, to infinite sets. The

notion ‘number of’ is bound up with the process of counting both in the finite and infinite

domains thus making cardinality a genuine extension of the notion ‘number of’. Indeed, two

sets have the same number of elements just in case there is a one-to-one correspondence

between them both in the finite and infinite domain. This constitutes the central feature of

9.18. This is similar to the conceptual role semantics (CRS) approach. The basic idea of CRS (also called

functional role semantics) is that the content of syntactic entities and mental representations is at least partially

constituted by the cognitive or inferential role they have for a thinker or community. Concepts have a specific

role in thought, perception, decision making, and action. As CRS focuses on how content figures in reasoning and

rational behavior, it conforms to the idea that the crucial purpose of the ascription of concepts and thought content

is to explain behavior, including verbal behavior. The study of conceptual change is thus about the change of the

inferences and explanations supported by concepts, focusing on something that matters for scientific change and

progress. See [Brigandt, 2004] and references therein (especially footnote 4).
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the notion and as such, if taught in standard applications of the finite domain, will allow

its application in the infinite domain.

Similarly, if one teaches the concept of mass in classical mechanics as the measure

of ‘dormant’ energy in massive bodies, one can readily think of proper mass m in relativity

as an extension of the classical notion of mass. In contrast, even if one learns the notion

of conditional probability for compatible quantum events, one is left clueless as to how to

apply it for incompatible ones. The difficulty lies in that the notion of conditionality – in

contrast to the notion of the ‘number of elements of’ or the notion of mass which extend

smoothly from finite to infinite cases and from low velocities to high velocities, respectively

– does not extend smoothly from compatible cases in which the notion clearly applies to

incompatible ones.

Indeed, the quantum analogue of the classical rationale for obtaining conditional prob-

abilities is simply not available. And thus there seems to be no feature of conditionality

which, if taught for compatible events, will allow one to make an assignment of conditional

probabilities for incompatible events. To assign a number to two incompatible events one

has to introduce a special rule; one such rule is the Lüders rule. One might then call this

an ‘extension’ of conditional probability, but it is really a different concept that bears no

resemblance with conditionality.

This is certainly so if quantum events are interpreted as physical values or as meas-

urements results (both synchronically and diachronically). And if quantum events are

interpreted as projection operators, then, as we have seen, the same conclusion holds for

the diachronic notion and can be arguably shown to hold for the synchronic one. Indeed,

it is difficult to see why one would assign the probability of projector P conditional on

projector Q the pro-rata increase of the probability of the operator QPQ.

Third, an extended concept usually deepens or adds more resolution to an old concept.

This generally enhances our understanding both of the original and the new context.

Indeed, the extended concept helps us distinguish between critical and context-dependent

features of a concept; and it helps us acquire familiarity and understanding of the new

context by allowing us to think of the new area as if it were the old one. Buzaglo describes

it nicely

the extended concept usually leads to making distinctions ‘as if it had

taken an unpainted surface and painted it with a variety of colors, giving us

a way of demonstrating the differences between objects in the newly painted

area.’ ([Buzaglo, 2002], p.66)

Or, as Fine puts it,
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the extended concept ‘penetrate[s] into nature more deeply than its pre-

decessors; it [advances] our understanding by allowing us to put to nature

certain questions which were not clearly expressible on the basis of the old

concepts and it should lead us to expect that some such questions have

determinate answers.’ ([Fine, 1986], p.20).

We refer to this feature of concept extension as ‘conceptual fruitfulness’, a fruitfulness

which works both from the old to the new context and vice versa, and take it as the third

marker in our cluster-of-markers account of concept extension.

To illustrate it, take first the notion of cardinality. Learning this notion enhances

our understanding of the finite domain by showing that what is crucial about the notion

of ‘number of elements’ is the process of counting. Other features present in the finite

domain but not in the infinite one, as say, having fewer number of elements if a set is a

proper subset of another set, are now seen as accessory to the notion of ‘number of’, only

applying in the finite domain. In addition, the notion of cardinality enables to answer

questions pertaining to the infinite domain that did not have determinate answers in the

finite one, as say, the number of elements in the even set is the same as that of the set of

natural numbers.

Similarly, the relativistic notion of proper mass m deepens or adds more resolution

to the classical one. It leads to making further distinctions as, for example requiring to

decouple mass from matter or showing how mass is an objective property, in the sense

of being Lorentz invariant, whereas energy is not. Thus, it helps us distinguish between

critical and context-dependent features of the notion of mass – ‘dormant’ energy in massive

bodies versus a measure of the amount of matter or inertia – and it helps us acquire

familiarity and understanding of the relativistic domain.

Finally, a number of important results that are formulated in terms of the old concept

usually carry over to the extended domain. ‘Conservativeness’ from the old to the new

context will thus be the fourth and final marker in our cluster-of-markers account of concept

extension. For example, the extended concept of cardinality is extremely fruitful at a formal

level. Indeed, an important class of results as, for example, the results of finite arithmetic,

carry over from the finite to the infinite. This allows us to navigate the infinite domain

with an ease otherwise difficult to acquire.

However, special care must be taken with this marker. For formal fruitfulness is not

always a reliable indicator of concept extension: while formal features are a useful guide

for conceptual extension, these can easily lead one astray when drawing their interpretive

conclusions. For example, we have seen that the fact that m γ allows p = m γ v to take
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the classical form ‘momentum=mass× velocity’ gives no additional grounds to regard it

as the appropriate extension. Even if regarding m γ as the relativistic extension of mass

is formally fruitful, this formal analogy constitutes only a mnemonic device that leads to

much conceptual confusion. Thus, one has to make a detailed evaluation of each particular

case. As we already emphasized, the evaluation of conceptual extension needs to be applied

alongside with all the scientific knowledge of particular cases.

Consider also the case of conditional probability. As we have seen, there are two ways

of formally characterizing conditional probability in a classical probability space, namely

by its additivity property (theorem 2.4) and by the existence and uniqueness theorem

(theorem 2.1). Now the probabilities defined by the Lüders rule, while also being charac-

terized by an analogue existence and uniqueness theorem (theorem 4.2), do not retain the

additivity property. And we have argued that, even if the formal characterization of exist-

ence and uniqueness holds both for classical conditional probabilities and the probabilities

defined by the Lüders rule, it does not provide enough interpretive content for the latter

to be read as a conditional probability.

In analogue fashion, the notion of the ‘number of elements’ has two defining features in

the finite domain, namely two sets have the same number of elements if one can establish

a one-to-one correspondence between its elements, and one set has fewer elements than

another if it is a proper subset of it; and only the former property is retained in the infinite

domain. However, whereas in the case of the probabilities defined by the Lüders rule the

extended feature does not yield a genuine extension of conditional probability, in the

number case the extended feature does yield a genuine extension of the notion ‘number of’.

One could also wonder what would happen if the additivity-with-respect-to-con-

ditioning-events characterization of conditional probability were to be retained in the

quantum case. Maybe, one could hope, the now additive probabilities defined by the

(somehow modified) Lüders rule, would genuinely extend the notion of conditional prob-

ability to the quantum context. However, these hopes would be unfounded. For one encoun-

ters difficulties in interpreting the probabilities defined by the Lüders rule as conditional

probabilities even in the absence of interference terms. Indeed, for our spin 1 particle,

both Pψ(Py+1|Px+1) – or Pψ(sy+1|sx+1
) – and Pψ(Psy+1

|Psx+1
+ Psx0) – or Pψ(sy+1|sx+1

or sx0) – cannot be interpreted as conditional probabilities. Hence, once more, we see

the intricate interplay between formal and interpretive features.

To sum up, the general markers we propose to characterize an extended concept are

the following:

1. Co-extension of the concepts of the new and old theory in their shared domain of
application.
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2. Teachability: teaching standard applications of the concept in the the old context
allow its application in the new context.

3. Conceptual fruitfulness: the extended concept enhances our understanding of both
the original and the new context.

4. Conservativeness : a number of important formal results that are formulated in
terms of the old concept carry over to the extended domain.

This cluster of markers is expected to hold if the concept of the new theory is to be regarded

as an extension of a concept of the old domain. However, they do not constitute a set of

jointly necessary conditions for conceptual extension. Indeed, the notion of proper mass

in relativity m, unlike m γ, fails to satisfy the conservativeness requirement and yet it is

a genuine extension of mass. And they are not individually sufficient either: for example,

‘relativistic mass’ mγ satisfies conservativeness and co-extension and yet does not define

a proper concept of mass. Nevertheless, taken all together they do seem to provide an

appropriate rationale for concept extension.

To finish, note that this account is yet to be further developed and would greatly benefit

from a detailed study of more particular mathematical and physical concepts. As Buzaglo

suggests, we should engage in a more promising case-by-case investigation so that ‘we can

see what is happening in a clearer way.’ ([Buzaglo, 2002], p.169) Moreover, this study

need not restrict itself to physical and mathematical concepts. For example, [Fine, 1978]

studies in some detail how the concept of sexuality underwent a significant expansion in

psychoanalytic theory.

9.5 Implications for Conceptual Change in Science

When new scientific theories are developed the concepts of the new theories may or may

not extend those of the older theories in a uniform way. Our attempt in this chapter has

been to provide a rationale to evaluate when conceptual change can be viewed as concept

extension. However, this perspective stands in contrast with much of the literature on

conceptual change in science, in which the emphasis has been more on the discontinuous

character of conceptual change. Indeed, the ‘radical’ historicist philosophers – such as

Norman R. Hanson, Paul Feyerabend and Thomas S. Kuhn – saw scientific change as

abrupt and discontinuous, and thus sought to characterize conceptual change in terms of

new conceptual structures as completely replacing the previous ones with inconsistent or,

more radically, with incommensurable ones.9.19

9.19. For the classical theses of incommensurability see [Kuhn, 1962], [Feyerabend, 1965, 1975].
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Under this view, the concepts employed in one theory are seen as radically different

and not comparable or translatable to those used in the other theory: it is as if different

observers of the same world see it from radically different and not comparable points of

view. For example, for Kuhn, theoretical changes are scientific revolutions, where

‘Scientific revolutions are here taken to be those non-cumulative develop-

mental episodes in which an older paradigm is replaced in whole or in part

by an incompatible new one’ ([Kuhn, 1962], p.92).

Kuhn does not simply define scientific revolutions as non-cumulative; rather, scientific

revolutions must be non-cumulative because of certain presumed truths about the nature

of paradigms, observation, and meaning. And when during these periods one scientific

theory is replaced by another, there are changes in the standards of governing permissible

problems, concepts, and explanations.

We do not wish to enter here the enormous literature surrounding the issue incommen-

surability and meaning change within theoretical change. What we want to do is emphasize

that claims of incompatibility and incommensurability between concepts of different sci-

entific theories should be handled with great care. Indeed, as we have already stressed,

evaluating whether there is in fact some shared core meaning between two concepts which

carries over the boundary between the old and the new context is not a simple matter.

There are no clear cut criteria to determine when the overlapping features justify calling

the concept an extension and when they will not, and much less to determine when the

new concept is (supposedly) not even comparable with the old one. The evaluation of

conceptual change is a very subtle and intricate issue that needs to be applied alongside

with all the scientific knowledge of particular cases.

Take again the notion of mass in the classical and relativistic contexts. While we have

argued that in relativistic physics the notion defined by Lorentz-invariant proper mass m

is an extension of the classical notion of mass, Kuhn claims that it is not . In his view, or

better in Field’s reconstruction of his view [Field, 1973], there are three different notions

of mass, namely Newtonian mass, proper mass m, and ‘relativistic mass’ mγ. Newtonian

mass is neither proper mass m nor ‘relativistic mass’ mγ. Indeed, like ‘relativistic mass’

mγ but unlike proper massm, Newtonian mass is equal to momentum divided by velocity.

Like proper mass m but unlike ‘relativistic mass’ mγ, Newtonian mass has the same value

in all reference frames and is conserved in all interactions. And, unlike both proper mass m

and ‘relativistic mass’ mγ, Newtonian mass is a measure of the amount of matter and of

inertia. Under this perspective, Newtonian mass does not, thus, denote the same physical

quantity that either proper mass m or ‘relativistic mass’ mγ denote.
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That is, Kuhn argued that Newtonian mechanics cannot even be seen as a limiting

case, even, of special relativity: although one can derive laws that look like the Newtonian

ones from the laws of special relativity under appropriate assumptions, namely low speeds,

the significance of these laws is vastly different in the two theories given that the concepts

marked by the terms shared by the two theories, i.e. mass, space, time, will have changed

radically in the move from one theory to another. In Kuhn’s words,

‘Though theNi’s [i.e. the equations derived from the set of statements E1,

E2,..., En, which together embody the laws of relativity theory, in the special

case of (
v

c
)2≪1)] are a special case of the laws of relativistic mechanics, they

are not Newton’s Laws. [...] The variables and parameters that in Einstein’s

Ei’s represented spatial position, time, mass, etc., still occur in the Ni’s; and

they there still represent Einsteinian space, time and mass. But the physical

referents of these Einsteinian concepts are by no means identical with those

of the Newtonian concepts that bear the same name. (Newtonian mass is

conserved; Einsteinian is convertible with energy. [...]) Unless we change the

definitions of the variables in theNi’s, the statements we have derived are not

Newtonian. If we do change them, we cannot say to have properly derived

Newton’s Laws [...].

[T]he transition from Newtonian to Einsteinian mechanics illustrates with

particular clarity the scientific revolution as a displacement of the conceptual

network through which scientists view the world.’

([Kuhn, 1962], pp. 100-101).9.20

The problem is that this view relies heavily on the assumption that the concepts marked

by the terms shared by the two theories, e.g. mass, space, time, have changed radically in

the move from one theory to another. But, as we have argued, this need not be the case.

Indeed, first, m γ should be dismissed as defining a valid concept of mass in relativistic

physics because it is not Lorentz-invariant, and thus not an objective property. And second,

the concepts marked by Newtonian and proper mass m have not radically changed as

Kuhn claims: they have a common feature which both share, namely they both measure

the ‘dormant’ energy in massive bodies. Indeed, it is not by coincidence that the symbol

m appearing in the relativistic equations (9.1) has been termed ‘proper mass’. As John

Earman remarks,

‘ ‘Proper mass’ is not a misnomer!’ ([Earman & Fine, 1977], p.537)

9.20. See Appendix E for some clarifications on the (supposed) mass-energy equivalence.
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Regarding proper mass m as an extension of classical mass in relativity theory allows

one to capture an evolution of the concept of mass which is closer to actual scientific

practice. Indeed, as we acquire more empirical data, and accordingly modify our scientific

theories, the concepts employed in them suffer changes. But these changes do not neces-

sarily give rise to completely unrelated, inconsistent or incommensurable concepts; rather

the concepts of the different theories have retained some relation, and this relation can

be stable enough to allow understanding the concept of the new theory as an extension of

that of the old theory. In the case of mass, the concept of proper mass m in relativity can

indeed be seen as an extension of the classical concept of mass.
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Chapter 10

Conclusion

Describing the conceptual changes from the classical to the relativistic notion of mass as

conceptual extension, one can account for the fact that the transition from classical to

relativistic physics is in fact marked by very significant conceptual innovation and change,

without making the process of scientific development degenerate into a series of irrational

choices, as the historicist philosophers view on radical conceptual change entails. But

what about in quantum theory? Have the concepts of quantum mechanics retained a

stable enough relation with respect to the concepts of classical mechanics to allow their

understanding as extensions of the classical ones?

We have argued that in the case of the probability defined by the Lüders rule, the

only possible candidate for a definition of a quantum notion of conditional probability,

this is not the case. That is, we have argued that the change of meaning from conditional

probability to the probability defined by the Lüders rule is so substantial that, even if these

probabilities are co-extensive in their shared domain of application, namely compatible

events, we cannot talk anymore about the same concept. We have shown this claim holds

for physical values, for measurement results, and at a formal level for projection operators,

both from a synchronic and a diachronic perspective.

In addition, in Chapter 8, we have argued that neither quantum Bayesianism nor

quantum Frequentism can provide an adequate interpretation of the quantum uncondi-

tional probabilities. We have concluded that, ultimately, the reason for the failure of these

interpretations is equivalent to the failure of interpreting the probability defined by the

Lüders rule as a conditional probability. Indeed, we have argued that there is no quantum

notion of joint probability, or equivalently, no quantum notion of conditional probability,

which can be interpreted at any level which is not thoroughly instrumental. We have

brought into this evaluation a very detailed analysis of (what now seems as) the relevant

scientific knowledge. Quantum mechanics remains conceptually as puzzling as ever.

Now the problem is that the quantum probabilities defined by the trace rule – both

using a general density operator W or the density operator given by the Lüders rule –

coincide, and to an incredible degree of accuracy, with the empirically found frequencies.
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Moreover, these frequencies provide the sole connection between quantum mechanics and

the empirical world. Does this then imply, as is widely held, that the classical and quantum

concepts are incommensurable? That the quantum world represents a radical conceptual

break with the classical one?

Maybe yes. And again maybe not. A conclusive answer does not seem to be yet forth-

coming. Perhaps, as Einstein hoped, there are new fundamental concepts and a new

theoretical basis from which the quantum theory will emerge as a statistical approxim-

ation. Or perhaps one of the (many) interpretations of quantum mechanics will turn out

to present a particularly appropriate reading of the quantum formalism. Who knows?

In this sense, we think that it would be interesting to apply our analysis of ‘conditional’

and ‘unconditional’ quantum probability within each particular interpretation of quantum

mechanics and that, hopefully, this will provide a fruitful guide for future research.
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Appendix A

Subjective Bayesian Interpretation of
Probability

Bayesianism takes probability to be a measure of ignorance, reflecting our state of know-

ledge about the world. In this approach, what constitutes a possible event is dictated

by Nature, i.e. is an objective fact of reality, but the probability assigned to that event

is not determined by objective features of the world; rather this probability represents

our uncertainty about facts. In particular, for the subjective Bayesian interpretation the

probability of an event is nothing more than a rational (later to be defined) agent’s degree of

belief on its occurrence.A.1 Further, it does not assume that rationality leads to consensus:

different individuals, although all perfectly reasonable and having the same evidence, may

have different degrees of belief in an event. Probability is thus defined as the degree of

belief of a particular individual, that is, as a subjective degree of belief.

A.1 Betting Quotients and Ramsey-de Finetti Theorem

Probabilities are numbers in the interval [0,1] which satisfy a certain mathematical defini-

tion (definition 2.3). Hence, if the subjective theory is to provide an adequate interpretation

of the mathematical calculus, one must first find a way of measuring the degrees of belief

of an individual so that these are assigned numerical values, and then show that these

degrees of belief satisfy the standard axioms of probability. Betting behavior provides an

answer to the first task and the Ramsey-de Finetti theorem fulfills the second requirement.

We will proceed to present both in turn.A.2

A.1. We here develop the account of subjective Bayesianism associated to [de Finetti, 1937], wherein credences

are regarded as capturing all information about the bets that you are prepared to enter into. Other accounts of

credences are the following. According to [van Fraassen, 1991], credences encapsulate all information about the

judgments that one makes. [Ramsey, 1926], [Savage, 1954] and [Jeffrey, 1983] derive both probabilities and utilities

(desirabilities) from rational preferences. And, in a similar spirit, [Lewis, 1986] analyzes credences as the probability

function belonging to the utility/probability function pair that best rationalizes ones behavioral dispositions.

A.2. This presentation of the subjective Bayesian interpretation follows [Gillies, 2000a], Chapter 4.
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Suppose that Ms A wants to measure the degree of belief of Mr B in some event E.

One way she can do this is by getting Mr B to agree on a bet on it under the following

conditions. Mr B has to choose a number q (called his betting quotient on E) and then

Ms A chooses the stake S. Mr B will pay Ms A q S in exchange for S if E occurs. Thus

his total gain will be S − q S if E occurs but he will loose q S if E does not occur. S can

be positive or negative but Mr B does not know this when choosing q for this guarantees

that he will adjust q to his actual belief.A.3 Under this betting set-up, q is taken to be a

measure of Mr B’s degree of belief in E.

Now it does not yet follow that these betting quotients are a probability measure.

Indeed it seems easy to imagine an individual whose degrees of belief are quite arbitrary and

do not satisfy the standard axioms of probability. The subjectivists solve this problem and

derive the axioms of probability by making the assumption of coherence. The coherence

assumption says that an agent will not accept terms for bets he wants to win that will

make him certain to loose whatever happens. More precisely,

Definition A.1. Coherence. If a bettor (Mr B) has to bet on a number of events E1,� ,
En, his betting quotients are said to be coherent if and only if the stake-maker (Ms A)

cannot choose stakes S1,� , Sn such that she wins whatever happens.

If Ms A can choose stakes so that she wins whatever happens, she is said to have made

a Dutch Book against Mr B. Mr B will obviously want his bets to be coherent to avoid

the possibility of losing whatever happens. An agent that holds coherent degrees of belief

is said to be rational.

It is a remarkable fact that the coherence condition is both necessary and sufficient for

betting quotients to satisfy the axioms of probability. This is the content of the so-called

Ramsey-de Finetti theorem:

Theorem A.1. Ramsey-de Finetti Theorem. A set of betting quotients is coherent if

and only if they satisfy the axioms of probability.

If your degrees of belief violate the probability axioms, then there exists a Dutch Book

against you, and if your degrees of belief do not violate the probability axioms, then there

does not exist a Dutch Book against you. Thus in the subjective theory the axioms of

A.3. If Mr B knew that the stake is positive then he would set q as low as possible so as to get more money if

E occurs (remember he gains S (1− q) if E occurs) and loose less money if E does not occur (remember he looses

q S if E does not occur). Whereas if Mr B knows that the stake is negative then it will be in his interest to set q

as high as possible.
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probability can be proved rigorously from the very plausible condition of coherence. We

will not provide a full proof of this result but we will consider parts of it and indicate the

reference to the missing ones.

Let us begin by showing how coherence implies 0 6 p(A) 6 1 for any event A ∈ F(S)

and p(B)= 1 in case of the certain event B. Imagine Mr B were to set his degree of belief

in an arbitrary event A to q(A)> 1. He would have a Dutch Book made against him for

Ms A would win whatever happens by choosing S > 0: if A occurs then Mr B’s total gain

S (1− q) would be negative, which simply means that he looses S (1− q); and if A does not

occur then Mr B would also loose, since qS is positive. And similarly if he set q(A)<0 for

now Ms A would win no matter what happens by choosing S<0. Hence to be coherent, Mr

B must choose 06 q(A)6 1. One can prove that q(B)= 1 in an analogue way: if q(B)> 1

Ms A can win by choosing S > 0 and if q(B)< 1 Ms A can win by choosing S < 0. Hence

to be coherent, Mr B must choose q(B) = 1. The reverse implications also hold, that is

if 0 6 p(A) 6 1 for any event A ∈F(S) and p(B) = 1 in case of the certain event B, then

coherence holds.A.4

Let us now show that coherence ensures that (finite) additivity holds, namely that

for events A and B mutually exclusive p(A ∪ B) = p(A) + p(B).A.5 Assume that Mr B

assigns a degree of belief q(A) to the occurrence of event A, q(B) to the occurrence of

event B and q(C) to the occurrence of event C = A ∪ B, and Ms A chooses the stakes

S(A), S(B) andS(C) respectively. What we want to prove is that coherence implies that

q(C)= q(A)+ q(B). To do so let us consider the possible outcome events and the net gain

of Mr B in each case:A.6

i. A and ¬B: SA (1− qA)−SB qB+SC (1− qC)

ii. ¬A and B: −SA qA+SB (1− qB)+SC (1− qC)

iii. ¬A and ¬B: −SA qA−SB qB−SC qC

(Note that we haven’t considered the event A and B because A and B are mutually

exclusive events.) Now for Ms A to not be able to chose stakes so that Mr B looses

whatever happens (net gain<0 for all SA, SB , SC) nor for Mr A to loose whatever happens

(net gain>0 for all SA, SB , SC), the net gain in each of these three cases must be 0. This

corresponds to setting the determinant of the set of equations

SA (1− qA)−SB qB+SC (1− qC) = 0

A.4. [Gillies, 2000a], p.61.

A.5. See [Williamson, 1999] on whether countable additivity is an acceptable axiom of subjective probability.

A.6. To make the notation easier we will simply set q(A) = qA and similarly for the rest.
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−SA qA+SB (1− qB) +SC (1− qC) = 0

−SA qA−SB qB−SC qC =0

to zero. The value of the determinant is qA + qB − qC, so it then follows that the

probability assignment is incoherent unless qA + qB = qC. And hence, (finite) additivity

holds for coherent degrees of belief. In reverse fashion, the addition law implies coher-

ence.A.7 Thus under a subjective Bayesian interpretation probabilities are defined as the

subjective degrees of belief of a coherent agent. Let us consider now the notion of subjective

conditional probability.

A.2 Subjective Conditional Probability

As we saw in Chapter 2, the most usual usual approach to subjective conditional prob-

ability is the so-called Ramsey test , which takes the subjective conditional probability

Pp(A|B) as given by the degree of belief one has in A when supposing B (or hypothetically

adding B to one’s stock of beliefs). The notion of supposition is crucial for it allows one’s

conditional degree of belief to differ from how one’s beliefs would actually change were one

to learn B with certainty.A.8 Indeed, if one defines Pp(A|B) as the degree of belief an agent

would have (or ought to have) if she were to learn (with certainty) that B is in fact the

case, then one faces several problems that are easily overcome by the supposition account.

For one, even in ordinary cases, it takes a lot of idealization to claim that there is a

single proposition that an agent learns between one time and another. And in many cases,

it seems there are infinitely many such propositions, and it’s not clear that an agent’s

algebra of events will always be closed under such infinite conjunctions. Furthermore, there

are also many cases in which an agent’s degrees of belief change by loss of certainty, rather

than gaining new knowledge. But supposition generally features a single event (or a finite

conjunction of them) rather than an infinite set of premises. And worries about lack of

certainty or the loss of information are irrelevant for there is no such thing as ‘partially

supposing’ a proposition, or ‘negatively supposing’ something.

However, care must be taken with the notion of supposition for it can lead to conclude

that one is omniscient – that is, one should believe ‘if p then I believe that p, and if I

believe that p, then p’. Both a subjunctive truth notion of supposition – on which Pp(A|B)

measures how strongly the agent believes that A would have been the case, if B had been

true – and a subjunctive belief notion of supposition – on which Po(A|B) measures how

A.7. See [Gillies, 2000a], p.61

A.8. We here follow [Easwaran, 2008].
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strongly the agent would believe A, if she believed B – face their own particular challenges.

(To give an example of these two notions of supposition. If A is the event that someone

wrote Macbeth, and B is the event that Shakespeare did not write Macbeth, then for most

people, on the subjunctive truth notion Pp(A|B) is quite low, while on the subjunctive

belief notion Pp(A|B) is fairly high. I would not stop believing that Macbeth had been

written, even if I learned that Shakespeare had not written it.)

The subjunctive truth notion can’t be the correct account since there are many cases

in which it violates the ratio analysis. For example, if A is the event that I exist, and B is

the event that humans have been in Europe for more than 100 years, then my subjunctive

value for Pp(A|B), is fairly low (if humans had not been in Europe, presumably history

would have been so radically different that I would never have come to exist), but the

ratio account says that Pp(A|B) = 1 because my degree of belief in A∩B is the same as

my degree of belief in B. The subjunctive belief account can’t be correct either, as was

already acknowledged by Ramsey:

‘The conditional probability Pp(A|B) is not the same as the degree to which

[the agent] would believe A, if he believed B for certain; for knowledge of B

might for psychological reasons profoundly alter his whole system of beliefs.’

([Ramsey, 1926], p. 180; notation adapted)

[van Fraassen, 1980] gives a particular example of this problem in raising worries

for Brian Ellis’ account of conditionals and [Chalmers & Hájek, 2007] also analyze this

problem.

But regardless of what exactly conditional degrees of belief are – or whether they can

be reduced to some notion of supposition – betting behavior, as with the notion of degree

of belief, sheds important light on this notion. Indeed, it seems that Pp(A|B) ought to

have some connection to the agent’s disposition to accept bets on A, that will be called off

if B is not true; and there is a standard Dutch book argument suggesting that under this

interpretation, one ought to set Pp(A|B) to what the ratio analysis stipulates.

In effect, coherence also implies that subjective conditional probabilities agree with

the probabilities defined by the ratio formula; that is, an agent would be incoherent, i.e.

be ‘Dutch Booked’, if she does not set her conditional degree of belief in A given B to her

degree of belief in their joint occurrence divided by the degree of belief in B, i.e. if she

does not set Pp(A|B) =
p(A∩B)

p(B)
. Hence the coherent agent will set his conditional degree

of belief to precisely what the ratio analysis requires. Let us consider this argument.A.9

A.9. See [Gillies, 2000a], pp. 62-64, and [Howson & Urbach, 1996], pp.63-64.
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The conditional betting quotient for A given B, qA|B, is defined as the betting quotient

which the bettor would give for A on the understanding that the bet is called off and

all stakes returned if B does not occur. Assume that Mr B assigns a degree of belief qB

to the occurrence of event B, qA&B to the occurrence of event A and B and qA|B to the

occurrence of event A given that B has occurred. And the stake-maker chooses the stakes

SB , SA|B and SA&B respectively. What we want to prove is that coherence implies that

qA|B = qA&B/qB. To do so, we consider again the possible outcome events and the total

gain of Mr B in each case:

i. B and A: SB (1− qB)+SA&B (1− qA&B) +SA|B(1− qA|B)

ii. B and ¬A: SB(1− qB)−SA&B qA&B−SA|B qA|B

iii. ¬B: −SB qB−SA&B qA&B

Note that when ¬B occurs the bet concerning the degree of belief on A conditional on

the occurrence of B is called off. Again, for Ms A to not be able to chose stakes so that

Mr B looses whatever happens (net gain<0 for all SA&B , SB , SA|B) nor for Mr A to loose

whatever happens (net gain>0 for all SA&B , SB , SA|B), the net gain in each of these three

cases must be 0. This corresponds to setting the determinant of the set of equations

SB (1− qB)+SA&B (1− qA&B) +SA|B (1− qA|B) = 0

SB (1− qB)−SA&B qA&B−SA|B qA|B= 0

−SB qB−SA&B qA&B=0

to zero. The value of this determinant is − qA|BqB+ qA&B and equating it to zero it follows

that the probability assignment is incoherent unless qA|B= qA&B/qB. Thus an agent would

be incoherent, i.e. be ‘Dutch Booked’, if she does not set her conditional degree of belief in

A given B to her degree of belief in their joint occurrence divided by the degree of belief

in B. Hence the coherent agent will set his conditional degree of belief to precisely what

the ratio analysis requires.

A.3 Conditionalization and Conditional Probability

Subjectivists typically recognize no constraints on initial or prior subjective probabilities

beyond the coherence condition or, equivalently, their conformity to Kolmogorov’s axioms.

But they typically advocate a learning rule for updating probabilities in the light of new

evidence. Suppose that you initially have a probability function, and that you become

certain of B (and of nothing more). What should be your new probability function? The

favoured updating rule among Bayesians is the so-called principle of conditionalization.
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Proposition A.1. Principle of Conditionalization. If at time ti one assigns an event

A an initial or prior probability pi(A), and one acquires new evidence B at a later time tf,

then one should systematically transform one’s initial assignment pi(A) to generate a final

or posterior probability assignment pf(A) at time tf by conditioning on B, that is,

pi(A) � pf(A)=Ppi(A|B) (A.1)

Conditionalization derives probabilities posterior to B by redistributing the prior probab-

ilities of all the sample points that B rules out pro rata over all the points that remain.

So, for example, the difference between Pp(1|odd) and p(1) represents the extent to which

the probability attached to ‘1’ changes on receipt of the knowledge that the outcome was

an odd number.

It is important to realize that the notions of conditional probability and conditional-

ization are distinct notions: while conditionalization is a diachronic notion – it applies to

probabilities held at a time prior to learning of evidence B and to probabilities held at a

time posterior to this learning, conditional probability is a synchronic notion – it applies

only to probabilities at one time. And arguments in favour of the synchronic notion do not

necessarily support the diachronic rule. Indeed, the Dutch Book argument which proved

that Pi(A|B) =
pi(A∩B)

pi(B)
only deals with probabilities at the initial time ti but can say

nothing as to whether the degree of belief in B at time tf, pf(B), should be equated with

the conditional on A degree of belief in B, Pi(A|B).

The principle of conditionalization is allegedly supported by a ‘diachronic’ Dutch Book

argument: one is subject to a Dutch book (with bets placed at different times) if one does

not conditionalize and conversely, if one does conditionalize, then one is immune to such

a Dutch Book.A.10 What is involved in this argument is the so-called diachronic coherence

condition, i.e. coherence over time, in contrast to the previous Dutch Book arguments that

involved only synchronic coherence.

There is, however, not a wide consensus on the validity of this argument. The main

criticism is that the allegedly diachronic Dutch Book argument relies on the unjustified

assumption that the probability the agent attaches to A if he were to know that B is

true does not change after he in fact learns that B is true. That is, that if at tf the agent

learns that B is true (and nothing more), then at tf he still maintains the value Pi(A|B),

i.e. Pi(A|B) = Pf(A|B). For then, under this assumption, the condition of synchronic

coherence is enough to guarantee that the agent will infer the unconditional fair betting

quotient on A, pf(A), to be Pi(A|B). But why should the agent be obliged to say in

advance how he is going to bet on A in the event of B’s being true? Moreover he will not

A.10. See [Teller, 1976] and [Lewis, 1997]
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be incoherent if he changes his mind between ti and tf. And in this case no Dutch Book

can be made against him.A.11 In Hacking’s words,

if ‘the man announces his post-B rates only after B is discovered, and

simultaneously cancels his pre-B rates, [then] there is no system for bet-

ting with him which is guaranteed success in the sense of a Dutch Book.’

([Hacking, 1967], p.315)

Thus the allegedly diachronic Dutch Book argument is criticized as being merely a

re-proof of the synchronic Dutch Book proof of ratio, that is, as begging the question.

However, even if the diachronic Dutch Book argument fails to show that conditionalization

is always right, this failure does not show that it is often or even ever wrong: even if it does

not follow from some general principle of rationality, the plausibility of its prescriptions

may still recommend it as a general rule.

A.11. See [Hacking, 1967], [Howson & Franklin, 1994], [Mellor, 2005].
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Appendix B

Problems for the Ratio Analysis

In section 2.3 we emphasized that the ratio formula (2.8) should not be regarded as a

stipulative definition of conditional probability, but rather as an analysis of that notion.

And we saw various justifications for why this should be so. However, [Alan Hájek, 2003]

has forcefully argued against the adequacy of the ratio formula as an analysis of conditional

probability. Briefly, he argues that conditional probabilities can be well defined in many

and important cases in which the ratio analysis goes silent.

In more detail, Hájek shows that every probability assignment has uncountably

many ‘trouble spots’ that come in three varieties which can create serious problems for

the ratio analysis. First, there is the so-called zero denominator problem. The ratio ana-

lysis is mute whenever the condition has probability zero – if p(B) = 0 then p(A∩B)

p(B)

is undefined so the ratio analysis delivers no verdict – and yet conditional probabilities

may nevertheless be well defined in such cases. Indeed, contingent propositions may be

assigned probability 0 – hence, probability 0 does not imply impossibility – and hence it

should be legitimate to form conditional probabilities with probability zero conditionals.B.1

The second problem arises when conditional probabilities are sharp, i.e. determine a

single probability function, and the corresponding unconditional probabilities are vague,

something which the ratio analysis cannot respect. For example, the probability that

the Democrats win in the next election is vague; but the probability that the Demo-

crats win, given that the Democrats win is not vague: the answer is clearly 1. Similarly,

p(the Democrats do not win, given the Democrats win) is not vague and is 0; and p(T ,

B.1. Kolmogorov himself was well aware of this problem and elaborated the ratio analysis to handle cases such

as these while preserving the guiding idea behind the simpler ratio analysis ([Hájek, 2003] p.291). However this

extended analysis also turns out to be inadequate for it also falls prey to the other two problems of the ratio analysis.

Indeed, Kolmogorov’s analysis equates a certain integral in which the relevant conditional probability figures, to the

probability of a conjunction; but when this latter probability is either vague or fails to exist at all, as in my cases

of undefined unconditional probabilities, the analysis goes silent and yet the corresponding conditional probabilities

are defined. In addition, the extended analysis delivers some conditional distributions that fail to comply to the

requirement that the probability of anything consistent, given itself , is 1, a requirement that is self-evident if an

analysis is to adequately capture the pre-theoretical notion of conditional probability. See [Hájek, 2008].
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given the Democrats win) = 1, and p(F , given the Democrats win) = 0, where T and F ,

respectively, stand for necessary and impossible events.

Finally, the third problem lies in that various conditional probabilities are defined even

when the corresponding unconditional probabilities appearing in the ratio analysis are

undefined, and indeed cannot be defined. For example, the probability that a fair coin lands

heads (H), given that I toss it fairly (FT) is 1/2. But the terms that appear in the ratio

formula, i.e. p(H ∩ FT) and p(FT), are undefined; and ‘undefined’ divided by ‘undefined’

does not equal 1/2.B.2 Hájek claims that ‘the trouble spots are inescapable, and that they

are, to put it mildly, plentiful’ ([Hájek, 2003], p.281) and thus concludes that the ratio

analysis is not an adequate analysis of conditional probability.

Nevertheless, he concedes that one might instead regard the ratio analysis as providing

a constraint on conditional probability:

‘... the ratio might be thought of as a successful partial analysis, one

that works for an important sub-class of conditional probabilities, in which

the conditions are met. A sufficient condition for a conditional probability

to equal a particular value is for the corresponding ratio to equal that value.

However, it is not a necessary condition: a conditional probability can equal

a particular value without the corresponding ratio equating that value.’

([Hájek, 2003], p.314)

Hájek then takes a further step and casts doubt on the very project of analyzing con-

ditional probability itself, and claims that conditional probability, and not unconditional

probability, should be in fact taken as the primitive notion. He says:

‘At best, this leaves unfinished the project of giving a correct analysis

of conditional probability [...] But perhaps the very project of analyzing

conditional probability was misguided from the start. [...] We should regard

conditional probability as conceptually prior to unconditional probability. So

I suggest that we reverse the traditional direction of analysis: regard condi-

tional probability to be the primitive notion, and unconditional probability

as the derivative notion.’ ([Hájek, 2003], p.314-315).

B.2. Note that this example is not an appropriate counterexample because the conditional probability involved

is not a (genuine) conditional-on-event probability but rather is a ‘conditional’-on-background-conditions probability

(see section 6.5). However Hájek gives another example that does involve an event conditional probability. Briefly,

imagine throwing an infinitely fine dart at the [0,1] interval, with you assigning a uniform distribution (Lebesgue

measure) over the points at which it could land. The probability you give to its landing in C is undefined (see [Hájek,

2003a] p.279). However, the probability of the dart’s landing in C, given that it lands in C is 1. So we have p(C,

given C) = 1 while ratio is undefined.

192 Problems for the Ratio Analysis



Be this as it may – actually, in a subsequent paper, Hájek says: ‘even primitive condi-

tional probabilities give at best an incomplete account’ ([Hájek, 2008] p.7) – it suffices for

our purposes to keep to Hájek’s conclusion on thinking of the ratio formula as a successful

partial analysis and simply concentrate on those cases in which it does work. For we are

interested in evaluating whether or not quantum theory admits a notion of conditional

probability; and the difficulties in defining such a notion are not related to the problems

we have considered in this appendix.

As a final remark note that, even in Hájek’s arguments against the adequacy of the ratio

analysis of conditional probability were directed toward the general ratio p(A∩B)/p(B),

they apply likewise to the ratio p(A)/p(B) for A⊆B which, as we showed in section 2.4,

suffices to characterize conditional probability. Indeed, theorem 2.1 shows that the ratio

p(A)/p(B) for A ⊆ B extends uniquely to the ratio p(A ∩ B)(p(B), and theorem 2.4 is

proved by first showing that additivity with respect to conditioning events holds for A⊆B
and then applying theorem 2.1 for all A and B in F(S).

We give one example of each of the three problems Hájek considers for the ratio p(A)/

p(B) for A⊆B. First, using the dart example of footnote B.2, the probability that A= the

dart lands on the point 1/4, given that B= it lands on either 1/4 or 3/4, where A⊆B, is

one half, and yet the probability that the point lands on 1/4 or 3/4 is zero according to the

uniform measure. Second, in the examples of the probability that A= the Democrats win,

given that B = the Democrats win, A is included in B. And finally, in the more involved

example of the third-case – the probability that A= the dart lies in C given that it B= lies

in C B.3 – A is also included in B.

B.3. The question of A being a subset of B cannot even arise for the simple example – probability thatA=a fair

coin lands heads, given that B= I toss it fairly – since it is not a (genuine) conditional probability (see footnote B.2).
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Appendix C

Proof of theorem 4.2

We prove that the following bi-conditional holds in L(H).

∀P , Q∈L(H)P(P |Q) =
Tr(QWQP )
Tr(QWQ)

⇔P(P |Q) =
p(P )
p(Q)

forP 6Q (C.1)

This proof mostly follows ([Malley, 2004], pp.13-15) and ([Beltrametti & Cassinelli, 1981],

p.288).

Let us first prove the implication reading from left to right

ifP(P |Q) =
Tr(QWQP )

Tr(QWQ)
for allP andQ, thenP(P |Q) =

p(P )

p(Q)
forP 6Q (C.2)

Assume that P 6 Q. Then Q P = PQ= P . By the cyclic property of the trace, we have

that Tr(QWQP ) =Tr(WQPQ) and hence Tr(QWQP ) =Tr(WQQP )=Tr(W QP )=

Tr(WP ) for P 6Q. Introducing these results in the general expression of the Lüders rule

we get

P(P |Q)=
Tr(QWQP )

Tr(QWQ)
=

Tr(WP )

Tr(WQ)
=
p(P )

p(Q)
(C.3)

which is the desired result for P 6Q.

Let us now prove the (much more difficult) implication reading from right to left

ifP(P |Q)=
p(P )

p(Q)
forP 6Q, then P(P |Q) =

Tr(QWQP )

Tr(QWQ)
for allP andQ (C.4)

By Gleason’s theorem, which shows that there is a one-to-one correspondence between the

set of probability measures on L(H) and the set of density operators on H, P( · |Q) must

be of the form Tr(W · ) for some density operator W . We will first show that this density

operator W is unique and then give its expression.

i. Assume there exist two density operators W1 and W2 such that for all P 6 Q

Tr(W1P )=
p(P )

p(Q)
and Tr(W2P )=

p(P )

p(Q)
. Hence Tr(W1Q)=1 and Tr(W2Q)=1. And

so

Tr(W1Q
⊥) =Tr(W2Q

⊥)= 0 (C.5)

for Q⊥ the orthogonal complement of projector Q.
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Consider now the unit vectors ϕi in the range of projector Q⊥ which are the

eigenvectors of Q⊥. We may express Q⊥ as the sum of the one dimensional pro-

jection operators onto the 1-D subspaces spanned by its eigenvectors. That is,

Q⊥ =
∑

i
Pϕi, where Pϕi = |ϕi〉〈ϕi|. For any density operator W it then follows

Tr(W Q⊥) =
∑

i
Tr(W Pϕi). Given that W is positive (by definition of density

operator) we have that Tr(W |ϕi〉〈ϕi|) = ϕi
∗Wϕi> 0 . And hence

Tr(WQ⊥) =
∑

i

ϕi
∗Wϕi (C.6)

where each term in the sum is positive or equal to zero. Now given (B.5) and (B.6)

W 1 ϕi=W2 ϕi=0 (C.7)

for all vectors ϕi in the range of Q⊥.

Next let Pϕ by any 1-D projector in L(H) so that Pϕ = |ϕ〉〈ϕ| for some unit

vector ϕ. Then Tr(W1Pϕ)= 〈ϕ,W1 ϕ〉 and Tr(W2Pϕ)= 〈ϕ,W1 ϕ〉. We can always

uniquely decompose ϕ into ϕ = ϕQ + ϕQ⊥ where ϕQ ∈ {v |v = Q u, u ∈ H} and

ϕQ⊥∈ {v |v= Q⊥u, u∈H}. Consequently, for i= 1, 2 we have

Tr(WiPϕ)= 〈ϕ,Wiϕ〉= 〈ϕQ,WiϕQ〉+ 〈ϕQ⊥,WiϕQ⊥〉+2Re 〈ϕQ,WiϕQ⊥〉 (C.8)

But given that by (B.7) WiϕQ⊥ = 0, we have that Tr(Wi Pϕ) = 〈ϕQ, Wi ϕQ〉.
Now 〈ϕQ, Wi ϕQ〉 = |ϕQ|2 Tr(Wi PϕQ), where PϕQ is the projector onto the 1-D

subspace generated by ϕQ. Note that PϕQ commutes with Q so that by assumption

Tr(W1 PϕQ) = Tr(W2 PϕQ). From this it follows that Tr(W1 P ) = Tr(W2 P ) for all

one-dimensional projectors Pf. And hence

Tr[(W1−W2)Pϕ] = 0 (C.9)

As W1 − W2 is a normal operator and a one-dimensional projection operator is

always positive, we can conclude from (C.9) that W1−W2 =0, and so W1 =W2.

ii. The operatorWQ=
QWQ

Tr(QWQ)
is a density operator, i.e. a trace class operator of unit

trace:

a) WQ is of the trace class: for two general operators A and B, if A is a trace-

class operator and B is a bounded linear operator, then A B and B A are

both in the trace class. Thus, for any density operatorW , the operator QW

is of the trace class as is also the operator QWQ. QWQ divided by the c-

number Tr(QWQ) is also of the trace class.

b) WQ is of trace one: Tr(WQ) =Tr( QWQ

Tr(QWQ)
)=

Tr(QWQ)

Tr(QWQ)
= 1

As we was shown in the first part of the proof,WQ=
QWQ

Tr(QWQ)
is such that p(P |Q)=

Tr(WQP )=
p(P )

p(Q)
forP 6Q. Given that by i. W is unique, it follows that W =WQ.
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Appendix D

Quantum Frequentism

The differences between classical and quantum probabilities stem from the fact that in

quantum mechanics observables are generally represented by non-commutative operators.

Thus a good place to study the peculiarities of quantum mechanics is by looking at

scenarios which involve probabilities for more than a single observable. The experiments

considered in section 4.4 provided one such scenario; correlation experiments provide

another such scenario, and a more appropriate one to consider unconditional probab-

ilities. In correlation experiments one performs simultaneous measurements of pairs of

different physical quantities on a system and studies the relations that hold between the

various single and joint probabilities.

In section D.1, we show that, for the classical case, these relations are well understood

by thinking of these probabilities as having their source in an ensemble of systems with

well-defined properties; that is, as reflecting the distributions of properties of the systems.

In addition to this objective reading of the classical probabilities, one can also provide a

subjective one and hence view the probabilities as reflecting degrees of belief of a rational

agent. Both interpretations turn out to be formally equivalent.

However, in quantum correlation experiments the empirically found (and theoretically

predicted) single and joint frequencies (probabilities) do not generally satisfy the classical

relations. In sections D.2 we show that the quantum probabilities do not, therefore, gener-

ally admit an ensemble representation, and that, thus, their understanding as revealing an

underlying distribution of properties of quantum objects or as subjective degrees of belief

is precluded. Finally, in section D.3, we explore one way in which one might modify the

classical construal of an ensemble interpretation so as to make it a viable interpretation

for the quantum probabilities.

The discussion in this appendix draws heavily on [Pitowsky, 1989] and [Fine, 1986].

D.1 Classical Correlations

We begin our discussion of classical correlations by focusing on the simplest classical cor-

relation experiment (section D.1.1). This experiment involves only two physical quantities

and is thus defined by the probabilities for each of the two individual physical quantities
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and the probability of their joint occurrence. We assume that the probabilities involved

can be thought of as arising from an ensemble of systems with well-defined properties and

study how this view constrains the relations between them.

We then consider a general correlation experiment (section D.1.2). Here we proceed

in reverse manner: we do not suppose that probabilities reflect proportions of properties

and then consider how this constrains the various single and joint probabilities; rather we

consider the different single and joint probabilities of a general correlation experiment as

uninterpreted numbers and ask when these frequencies allow an ensemble representation.

We give a formal answer to this question by means of a theorem that states the conditions

under which they admit (what we will define in mathematical precise terms as) an ensemble

representation. The discussion in these section draws on Pitowsky’s work ‘Quantum Prob-

ability. Quantum Logic’.

D.1.1 A simple example

Consider the typical understanding of probabilities in the simple scenario of an urn filled

with balls. Each ball has a set of different properties: color, material, size, etc. Now

imagine we randomly select one of the balls from the urn. We cannot know for certain what

properties the ball will have, but we can make some assertions as to the probabilities for

those properties to obtain. So if we want to know the probability that a randomly selected

ball is red we simply count the number of red balls in the urn and divide this number

by the total number of balls, i.e. p(red) =
Nred

N
. The probabilities thus simply reflect the

distribution of the different properties of the balls in the urn.

If we do not know the values of Nr,Nw,Nr&w and N , then to ascertain the values of the

various probabilities we would need to perform a large number of draws and subsequently

identify the probabilities with the relative frequency of the various results. This experiment

would constitute the simplest case of a correlation experiment since we only consider

the probability of the occurrence of two individual events and probability of their joint

occurrence.

Let us concentrate on two of these properties, namely color and material, each of which

can take only two values: either the ball is red (r) or it is blue (b), and it is either made

out of wood (w) or of plastic (p). Now imagine we randomly select one of the balls from

the urn. As we noted before, we cannot know for certain what properties the ball will have,

but we can make some assertions as to the probabilities that certain properties obtain. The

probabilities are simply given by proportions: the probability for selecting a red ball will be

given by the proportion of red balls in the urn, i.e., pr=
Nr

N
; the probability for selecting a
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wooden ball will be given by the proportion of wooden balls in the urn, i.e., pw=
Nw

N
; the

probability of selecting a ball that is both red and wooden will be given by the proportion

of red wooden balls in the urn pr&w=
Nr&w

N
; and so forth.

Let us consider the relations that obtain between these numbers. First, we know that

the number of red wooden balls must be at most equal to that of red balls (in which

case there are no plastic red balls), and this number is in turn at most equal to the total

number of balls (in which case there are no blue balls). That is, 0 6Nr&w 6Nr 6N . So

the following relation between the probabilities must hold (we simply divide by N ):

0 6 pr&w6 pr6 1 (D.1)

And similarly, the number of red wooden balls must be at most equal to that of wooden

balls (in which case there are no blue wooden balls), and this number is in turn at most

equal to the total number of balls (in which case there are no plastic balls). In symbols,

0 6Nr&w6Nw6N . So the following relation between the probabilities must hold:

0 6 pr&w6 pw6 1 (D.2)

Thirdly, the number of balls which are either red or wood (or both) is the number of red

balls plus the number of wooden balls minus the number of red wooden balls (in order

to not count the red wooden balls twice). In symbols, Nr orw = Nr + Nw − Nr&w. Now

the number of balls that are either red or wooden is at most equal to the total number of

balls (in which case there are no blue plastic balls) so the following inequality must hold:

Nr+Nw−Nr&w6N . Translating this into probabilities:

pr+ pw− pr&w6 1 (D.3)

We have derived these three inequalities by considering a priori constraints on proportions

of properties. That is, we have shown that if the probabilities pr, pw, pr&w reflect propor-

tions of well-defined properties of the balls in the urn then they must satisfy inequalities

(D.1)-(D.3). It turns out these three inequalities are not only necessary for the numbers pr,

pw, pr&w to represent proportions of properties but also sufficient.D.1 That is, inequalities

(D.1)-(D.3) are both necessary and sufficient for the numbers pr, pw, pr&w to represent

probabilities of two events and their joint respectively when these have their source in an

urn filled with balls with well-defined properties. Hence if in a correlation experiment the

probabilities of two events and their joint do not satisfy these inequalities, their under-

standing as reflecting proportions of properties will be forbidden. As we will see in section

D.2, this is precisely what happens for the quantum probabilities.

D.1. The references to this and similar results are given in the following section.
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We can also analyze the correlation experiment from a subjective Bayesian point of

view. Call r the proposition that the selected ball is red and w the proposition that the

selected ball is wooden, and consider the four different possibilities for the draw of the ball:

1. a blue plastic ball is drawn, in which case both r and w are false (so r&w is false)

2. a red plastic ball is drawn, in which case r is true and w is false (so r&w is false)

3. a blue wooden ball is drawn, in which case r is false and w is true (so r&w is false)

4. a red wooden ball is drawn, in which case both r and w are true (so r&w is true)

We are asked to place bets on these four different possibilities. We denote by q1 our

degree of belief in the first case, by q2 our degree of belief in the second case and so forth.

Given that our degrees of belief ought to be coherent and that these four possibilities

are mutually exclusive and jointly exhaustive, these degrees of belief must add to 1, that

is q1 + q2 + q3 + q4 = 1. Our degrees of belief in propositions r, w and r&w can then be

expressed in terms of the previous qi’s as follows: given that proposition r is true in the

second and the fourth case, we have pr = q2 + q4; given that proposition w is true in the

third and the fourth case, we have pw = q3 + q4; and given that proposition r&w is true

only in the fourth case, we have pr&w= q4.

Let us express this result in the formal language of vectors. We can represent the

numbers pr, pw, pr&w as the components of a vector in R
3, namely (pr, pw, pr&w) and

write the relation of these pi’s to the qi’s as (pr, pw, pr&w) = (q2 + q4, q3 + q4, q4). This is

equivalent to writing (pr, pw, pr&w) as the following sum: (pr, pw, pr&w)= q1 (0,0,0)+ q2(1,

0, 0) + q3(0, 1, 0) + q4(1, 1, 1) which, given that q1 + q2 + q3 + q4 = 1, is simply the convex

sumD.2 or weighted average of the four previous vectors. Letting 1 stand for ‘true’ and

0 stand for ‘false’, these vectors can be interpreted as the truth values assigned to the

propositions r,w and r&w in the four possible cases: (0, 0, 0) corresponds to the first case

wherein r,w and r&w are all false; (1,0,0) corresponds to the second case wherein r is true

but both w and r&w are false; and so forth. Hence if pr, pw, pr&w represent our degrees

of belief in two propositions and their conjunction then they will be expressed as a convex

combination of all truth value assignments.

Now it turns out that the set of vectors (pr, pw, pr&w) which can be expressed as a

convex sum of the vectors (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 1) is equivalent to the set of

vectors (pr, pw, pr&w) whose components pr, pw, pr&w satisfy inequalities (D.1)-(D.3). That

is, pr, pw, pr&w satisfy the inequalities (D.1)-(D.3) if and only if (pr, pw, pr&w) = q1 (0, 0,

0) + q2(1, 0, 0) + q3(0, 1, 0) + q4(1, 1, 1), where
∑

i=1
4

qi = 1. Hence the numbers pr, pw,

pr&w of our correlation experiment can only represent degrees of belief of a rational agent

D.2. By definition a convex sum of vectors {v1, � , vn} is another vector v =
∑

i=1
n

λi vi such that ∀i, λi ∈ R

and
∑

i=1
n

λi=1.
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in two propositions and their conjunction or proportions of two properties and their joint

in a given sample if they satisfy inequalities (D.1)-(D.3) or, equivalently, if they can be

expressed as the convex sum of vectors (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 1).

To conclude, we have considered two different understandings of the probabilities in our

simple correlation experiment: an objective reading that regards probabilities as reflecting

distributions of properties and a subjective reading that views them as reflecting degrees

of belief of a rational agent. Both of these readings have been grounded in thinking of the

ensemble of balls in the urn as their source. We have also seen how both interpretations

are formally equivalent: the objective view leads to constraints on the probabilities in

terms of linear inequalities while the subjective view leads to constraints as convex sums

of certain vectors, where both constraints are mathematically equivalent. We turn now to

generalizing our previous results for a general correlation experiment.

D.1.2 General Correlation Polytopes & Ensemble Representations

The structure of this section is as follows: we first present the general way of talking about

the single and joint probabilities in a general correlation experiment, then we define what it

is to give an ensemble or classical representation for these probabilities and last we consider

the conditions under which this representation can be given.

Let us first name the various single and joint probabilities of a general correlation

experiment. Let N be a non-empty subset of the set of pairs of numbers (i, j) such that

for a given n> 2, 16 i< j6n. That is N ⊆{(i, j): 16 i< j6n}. To give some examples,

− for n=2: N ⊆{(1, 2)}

− for n=3: N ⊆{(1, 2), (1, 3), (2, 3)}
− for n=4: N ⊆{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

We denote by |N | the cardinality of N , that is, the number of elements of N . Note that

N is a subset of {(i, j)} so it does not necessarily contain all the possible pairs.

We are given n+ |N | numbers as follows:

− pi i= 1,� , n
− pij (i, j)∈N

These numbers are intended to represent the single and joint probabilities of the different

quantities involved in a correlation experiment. We give some particular instances:

− for n=2, are given 2 +1 numbers, namely p1, p2, p12.

− for n= 3 and N = {(1, 2), (1, 3), (2, 3)}, are given 3 + 3 numbers, namely p1, p2, p3,

p12, p13, p23.

− for n= 4 and N = {(1, 3), (1, 4), (2, 3), (2, 4)}, are given 4 + 4 numbers, namely p1,

p2, p3, p4, p132, p14, p23, p24.
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We can think of these numbers as determining an (n+ |N |)-tuple which we denote (p1,� ,
pn,� .pij� .) where the pij are ordered by their indices ij ordered lexicographically. Each

of these tuples defines a correlation experiment.

One formally defines what it means to give an ensemble representation of the p1, � ,
pn,� .pij� numbers as follows.D.3

Definition D.1. Ensemble Representation. The (n+ |N |)-tuple (p1,� , pn,� , pij ,� )

admits an ensemble or classical space representation if

i. there exists a probability space 〈S,F(S), p〉.

ii. there exist (not necessarily distinct) sets A1,� , An∈Σ such that for all i∈{1,2,� ,
n} and all (i, j)∈N we have

pi= µ(Ai) and pij = µ(Ai∩Aj) (D.4)

Let us now consider the conditions under which the (n + |N |)-tuple (p1, � , pn, ..pij� )

admits an ensemble representation. To give an answer we will first need to introduce the

notion of a classical correlation polytope. And to do so at this level of generality we again

need to introduce some more notation. Let {0,1}n denote the set of all n-tuples of 0’s and

1’s. To give some particular cases:

− for n=2, {0, 1}2 = {(1, 1), (1, 0), (0, 1), (0, 0)}

− for n=3, {0,1}3 = {(1,1,1), (1,1,0), (1,0,1), (0,1,1), (1,0,0), (0,1,0), (0, 0,1), (0,0,

0)}

The cardinality of {0, 1}n is 2n. Now denote by ε any such n-tuple. That is, ε ∈ {0,
1}n, which we can write as ε = (ε1, � , εn) where the εi can be either a 0 or a 1. Clearly

there are 2n possible ε’s. With this notation we can express the (n + |N |)-tuple (p1, � ,
pn,� .pij� .)when the pi’s and pij’s take only values 0 or 1 as pε=(ε1,� , εn,� , εi εj ,� ),

where the term εi εj appears only if (i, j)∈N . For example,

− for n=2 and N = {(1,2)} there are 22 possible ε’s: (1,1), (1,0), (0,1) and (0,0), and

the 4 corresponding pε= (ε1, ε2, ε12)’s are:

p(1,1) =(1, 1, 1) p(1,0) = (1, 0, 0) p(0,1) =(0, 1, 0) p(1,1) = (0, 0, 0)

− for n=3 and N ={(1,2), (2,3)}, the pε’s take th form pε=(ε1, ε2, ε3, ε12, ε23), which

for a particular ε, say ε=(1, 1, 0), yields the tuple p(1,1,0) = (1, 1, 0, 1, 0).

The classical correlation polytope c(n, N ) is the set of all n + |N | vectors that can be

expressed as a convex or weighted sums of the 2n vectors of the form pε, where ε∈{0,1}n.
D.3. One can show that definition 8.1 of a classical space representation is equivalent to a deterministic hidden

variable model that explicitly constructs observables as random variables over a classical probability space, i.e. the

space of hidden variables. For a proof in a simple case see [Malament,1], pp.7-9. See also [Fine,1982a], p.165.
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Definition D.2. Convex Polytope. c(n, N) is the closed, convex polytope in R
(n+|N |)

whose vertices are the 2n vectors of the form pε, where ε∈{0, 1}n.

This characterizes the polytope as the convex hull of its vertices. Thus a given vector

(p1, � , pn, ..pij� ) is an element of the polytope if and only if it can be expressed as a

convex combination of the vertices pε. Consider the n= 2 case where N = {(1, 2)}. The
polytope c(2,N ) is the set of all vectors (p1, p2, p12) that can be expressed as a convex sum

of p(1,1) = (1, 1, 1), p(1,0) =(1, 0, 0), p(0,1) = (0, 1, 0) and p(1,1) = (0, 0, 0). So a given vector

(p1, p2, p12) is an element of the polytope c(2, N) if and only if it can be expressed as a

convex combination of the vertices (1, 1, 1), (1, 0, 0), (0, 1, 0) and (0, 0, 0).

Now every convex polytope in R
(n+|N |) has another description. Under this second

description a vector is an element of the polytope if and only if its coordinates satisfy a set of

linear inequalities which represent the supporting hyperplanes of the polytope. However the

characterization of the general correlation polytope as the set of vectors whose components

satisfy a particular set of linear inequalities turns out to be extremely complex (in fact it

is practically impossible since it would require too much, i.e. exponential, timeD.4). In the

simple case of c(2,N) the vector (p1, p2, p12) belongs to c(2,N ) if and only if the following

inequalities hold:D.5

0 6 p126 p1 6 1

0 6 p126 p2 6 1

p1 + p2− p126 1 (D.5)

This set of inequalities correspond to the inequalities (D.1)-(D.3). We will also give the

inequalities that characterize two other important polytopes in sections D.1.3 and D.1.4.

We are now ready to answer the main question of this section, namely when does the

(n+ |N |)-tuple (p1, � , pn, � .pij� .) admit an ensemble representation? We motivate the

answer by reasoning on the c(2,N ) case of the previous section.

Recall that (pr, pw, pr&w) can be seen as representing proportions of two properties and

their joint in a given sample only if these numbers satisfy inequalities (D.1)-(D.3). And

that they can be seen as the degrees of belief of a rational agent on two propositions and

their conjunction only if (pr, pw, pr&w) can be expressed as the convex sum of the vectors

(1,1,1), (1,0,0), (0,1,0) and (0,0,0). Now inequalities (D.1)-(D.3) and the convex sum of

vectors (1, 1, 1), (1, 0, 0), (0, 1, 0) and (0, 0, 0) are precisely the two ways of characterizing

the polytope c(2,N); and giving an ensemble representation for pr, pw, pr&w is what allows

their reading as proportions of properties or as degrees of belief. Thus we see that (pr, pw,

pr&w) admits an ensemble representation only if it belongs to the polytope c(2, N).

D.4. See [Pitowsky, 1989], pp.33-46 for an account of the intractability of this problem.

D.5. For a proof see [Pitowsky, 1989], p. 24 or [Malament, 1], p.5.
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It turns out that this result holds generally as the following theorem states:D.6

Theorem D.1. For all n and N, the (n + |N |)-tuple (p1, � , pn, � .pij� .) admits an

ensemble representation if and only if it belongs to the polytope c(n,N ).

We now focus on two particular polytopes which will be important for our discussion

of the quantum probabilities.

D.1.3 The Bell-Wigner polytope

Let n=3 and N = {(1, 2), (1, 3), (2, 3)}. Theorem D.1 tells us that a vector (p1, p2, p3, p12,

p13, p23) admits a classical representation if an only if it belongs to the the polytope c(3,

N ). This is the so-called Bell-Wigner polytope. Let us see the two characterizations of

this polytope.

a) As a convex sum of its vertices: c(3,N ) is the closed, convex polytope in R
6 whose

vertices are the 23 vectors of the form pε = (ε1, ε2, ε3, ε12, ε13, ε23), where ε ∈ {0,
1}3 = {(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)}

Thus a vector (p1, p2, p3, p12, p13, p23) belongs to the polytope c(3,N ) if and only

if it can be expressed as a convex sum of the following eight pε’s:

(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (1, 1, 0, 1, 0, 0), (1, 0, 1,

0, 1, 0), (0, 1, 1, 0, 0, 1), (1, 1, 1, 1, 1, 1) (D.6)

b) In terms of linear inequalitiesD.7: a vector (p1, p2, p3, p12, p13, p23) belongs to the

Bell-Wigner polytope c(3, N) if and only if for all i, j ∈{1, 2, 3} and (i, j)∈R,

0 6 pij 6 pi6 1

0 6 pij 6 pj 6 1

pi+ pj− pij 6 1

p1 + p2 + p3− p12− p13− p236 1

p1− p12− p13+ p23> 0

p2− p12− p23+ p13> 0

p3− p13− p23+ p12> 0 (D.7)

The last 4 inequalities go by the name of the ‘Bell inequalities’ and as we shall see

in section D.2.2 they are violated by the quantum probabilities.

Thus the vector (p1, p2, p3, p12, p13, p23) admits an ensemble representation if and only if it

can be expressed as a convex sum of the eight vectors in (8.8) or if its components satisfy

the inequalities (8.9).

D.6. For a proof see [Pitowsky, 1989], p.23 or [Malament, 1], pp.2-3.

D.7. For a proof see [Pitowsky, 1989], pp.25-27 or [Malament, 1], pp.5-6.
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We could have arrived at this same result by the same route that we used in section

D.1.1 First consider the subjective view on probability and how it leads naturally to a

description of the correlation polytope c(3, N ) in terms of its vertices. Consider three

propositions a1, a2, a3 and their possible three conjunctions a1&a2, a1&a3, a2&a3. In terms

of our urn experiment we can think of a1 as the proposition that the selected ball is red,

a2 as the proposition that the selected ball is wooden, and a3 as the proposition that the

selected ball is small, where there are only two sizes (small or large).

There are eight possible cases when a ball is drawn: 1) a big blue plastic ball is drawn,

in which case a1, a2, a3 and all the possible conjunctions are false; 2) a big red plastic ball

is drawn, in which case a1 is true but a2 anda3 and all the possible conjunctions are false;

3) a big blue wooden ball is drawn, in which case a2 is true and a1, a3 and all the possible

conjunctions are false; 4) a small blue plastic ball is drawn, in which case a3 is true and

a1, a2 and all the possible conjunctions are false; 5) a big red wooden ball is drawn, in

which case a1, a2, a1&a2 are true and a3, a1&a3, a2&a3 are false; 6) a small red plastic ball

is drawn, in which case a1, a3, a1&a3 are true and a2, a1&a2, a2&a3 are false; 7) a small

blue wooden ball is drawn, in which case a2, a3, a2&a3 are true and a1, a1&a2, a1&a3 are

false; and 8) a small red wooden ball is drawn, in which case a1, a2, a3 and all the possible

conjunctions are true. These eight possible truth value assignments are exactly what the

vectors in equation (8.8) correspond to.

Now we are asked to place bets on these eight different possibilities. We denote by qi

our degree of belief in the i case, with i=1,� ,8. Given that our degrees of belief ought to

be coherent and that these eight possibilities are mutually exclusive and jointly exhaustive,

we have that
∑

i=1
8

qi = 1. We can then express our degrees of belief in propositions a1,

a2, a3, a1&a2, a1&a3, a2&a3, namely p1, p2, p3, p12, p13, p23, in terms of these qi’s. This will

result in expressing (p1, p2, p3, p12, p13, p23) as the convex sum of the vectors in (8.8). Thus

if (p1, p2, p3, p12, p13, p23) are to be regarded as coherent degrees of belief then they must

belong the Bell-Wigner polytope. And the converse also holds true.

The frequency view is most naturally connected to the description of the correlation

polytope in terms of linear inequalities. Consider three events with probabilities p1, p2, p3

and the joints p12, p13, p23. In terms of our urn example we can think of p1 as expressing

the proportion of red balls, p2 that of wooden balls, p3 that of small balls, p12 that of red

wooden balls, p13 that of small red balls, and p23 that of small wooden balls. Just as in

our urn example, each pair out of the three events must satisfy the inequalities for pair of

events and their joint. So we have for 1 6 i < j6 3:

0 6 pij 6 pi6 1 0 6 pij 6 pj 6 1 pi+ pj− pij 6 1 (D.8)
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Now these inequalities are not sufficient for the numbers p1, p2, p3, p12, p13, p23 to represent

proportions of properties; we have to add some constraints on all three events and not just

pairs. First, we know that the number of balls which are either red or wood or small is

the number of red balls, plus the number of wooden balls, plus the number of small balls,

minus the number of red wooden balls, minus the number of small red balls and minus the

number of small wooden balls. In symbols, N1 or2 or3 =N1 +N2 +N3 −N12−N13−N23.

Now the number of balls that are either red or wooden or small is at most equal to the

total number of balls (in which case there are no big blue plastic balls) so the following

inequality must hold:

p1 + p2 + p3− p12− p13− p236 1 (D.9)

We also know that the number of balls which are either not red (so blue) or wood or small

is the number of blue balls (N¬1 = N − N1), plus the number of wooden balls, plus the

number of small balls, minus the number of blue wooden balls (N¬12=N2−N12), minus the

number of small blue balls (N¬13=N3−N13) and minus the number of small wooden balls.

In symbols, N¬1 or2 or3 =N¬1 +N2 +N3−N¬12−N¬13−N23=N −N1 +N12+N13−N23.

Now again the number of balls that are either blue or wooden or small is at most equal to

the total number of balls so the following inequality must hold:

p1− p12− p13+ p23> 0 (D.10)

By considering that the number of balls which are red or plastic or small is at most equal

to the total number of balls, and that the number of balls which are red or wooden or big is

at most equal to the total number of balls we deduce the remaining two inequalities, namely

p2− p12− p23+ p13> 0 p3− p13− p23+ p12> 0 (D.11)

D.1.4 The Clauser-Horne polytope

Let n=4 and N ={(1,3), (1,4), (2,3), (2,4)}. Theorem D.1 tells us that a vector (p1, p2, p3,

p4, p13, p14, p23, p24) admits a classical representation if an only if it belongs to the polytope

c(4,N). This is the so-called Clauser-Horne polytope. We won’t characterize this polytope

in terms of its vertices (which by now is straightforward), but will give its characterization

in terms of inequalities. A vector (p1, p2, p3, p4, p13, p14, p23, p24) belongs to c(4, N ) if and

only if for all i, j ∈{1, 2, 3} and (i, j)∈N ,D.8

0 6 pij6 pi6 1

0 6 pij 6 pj6 1

pi+ pj − pij 6 1

− 1 6 p13+ p14+ p24− p23− p1− p4 6 0

D.8. For a proof see [Pitowsky, 1989], pp.28-30 or [Malament, 1], pp.6-8.
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− 1 6 p23+ p24+ p14− p13− p2− p4 6 0

− 1 6 p14+ p13+ p23− p24− p1− p3 6 0

− 1 6 p24+ p23+ p13− p14− p2− p3 6 0 (D.12)

The last 4 inequalities go by the name of the ‘Clauser-Horne inequalities’ and as we shall

see in section D.2.1 they are violated by the quantum probabilities.

Following the procedure of the previous section we could deduce these inequalities by

assuming that the probabilities represent proportions or relative frequencies. Similarly, we

can also deduce the representation of c(4,N ) in terms of its vertices by assuming that the

probabilities represent degrees of belief on four propositions and their conjunctions.

To conclude, the probabilities p1, � , pn, � pij � of a general correlation experiment

can only represent proportions of single properties and their joints in a given sample or

the degrees of belief of a rational agent on various propositions and their conjunctions

if the vector (p1, � , pn, � pij� ) belongs to the polytope c(n, N). The frequency view is

most naturally connected to the description of the correlation polytope in terms of linear

inequalities while the subjective view leads naturally to a description of the correlation

polytopes in terms of its vertices. But both views lead to the same set of constraints on

correlations.

D.2 Quantum Correlations

In this section we consider several quantum correlation experiments and show how in many

cases the quantum probabilities do not admit an ensemble representation. We begin in

section D.2.1 by considering a correlation experiment involving the measurement of spin on

a two-electron system in four different directions. We show that for certain directions the

single and joint probabilities of this experiment violate the Clauser-Horne inequalities, thus

posing difficulties for their interpretation. In section D.2.2 we briefly consider a quantum

correlation experiment involving three physical quantities and how for certain situations

this leads to violations of the Bell inequalities.

D.2.1 Violations of the Clauser-Horne inequalities

Consider the following experiment performed on a composite system of two electrons which

briefly interact and then become widely separated in space. When a pair is emitted the two

electrons travel in opposite directions ‘left’ and ‘right’. On each particle we perform one

of two incompatible measurements: we measure the spin of the left electron either in the

x direction (Sx) or in the y direction (Sy); and we measure the spin of the right electron

either in the z direction (Sz) or in the w direction (Sw). Measurements on the pair are

made simultaneously.
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The quantum mechanical analysis of this experimental situation determines the prob-

abilities for any measurement outcome for each observable separately and the joint probab-

ilities for any pair of outcomes in a simultaneous measurement of either Sx or Sy on

the left electron with either Sz or Sw on the right electron. These probabilistic predic-

tions are in accordance with the experimental results, where these probabilities can be

interpreted as physical values or measurement results. Let us consider this analysis.

Quantum mechanics describes the space of the spin states of each individual electron

by a two-dimensional Hilbert space H. We denote by Sx the operator corresponding to a

measurement of the spin of the electron in the x direction which has (normalized) eigen-

states ψ+x and ψ−x corresponding to ‘spin up’ and ‘spin down’ in the x direction. P+x and

P−x are the projection operators on the one-dimensional subspaces spanned by ψ+x and

ψ−x respectively; by the spectral theorem we have Sx =
1

2
(P+x − P−x). Analogue results

hold for Sy, Sz and Sw corresponding to measurement of spin in the y, z and w direction

respectively. Taking spherical coordinates (r, θ, φ) in physical space, the following relations

hold between the eigenvectors corresponding to the spin in the z = (1, 0, 0) direction Sz

and those corresponding to the spin in a general u= (1, θ, φ) direction Su:

ψ+u= cos(
θ

2
)e

− iφ

2 ψ+z+ sin(
θ

2
)e

iφ

2 ψ−z

ψ−u=− sin(
θ

2
)e

− iφ

2 ψ+z+ cos(
θ

2
)e

iφ

2 ψ−z (D.13)

The space of spin states of a two-electron system is described by the tensor product

of the Hilbert spaces of each individual electron, i.e., H(L) ⊗H(R). We shall perform our

experiment on electron pairs in the so-called singlet state; this state corresponds to a state

of total spin zero and is expressed as:

ψS=
1

2
√ [ψ+ξ⊗ ψ−ξ− ψ−ξ⊗ ψ+ξ] (D.14)

for an arbitrary direction ξ. We denote byWS the corresponding density operator which is

simply the projection operator in H(L)⊗H(R) onto the one-dimensional subspace spanned

by ψS, i.e., WS=PψS.

We are interested in calculating the probabilities of certain ‘properties’ of the two-

electron system:

− single probabilities: for the left electron to have spin up in the x direction (p1); for

the left electron to have spin up in the y direction (p2); for the right electron to

have spin up in the z direction (p3); and for the right electron to have spin up in

the w direction (p4).
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− joint probabilities: for the left electron to have spin up in the x direction and the

right electron to have spin up in the z direction (p13); for the left electron to have

spin up in the x direction and the right electron to have spin up in the w direction

(p14); for the left electron to have spin up in the y direction and the right electron

to have spin up in the z direction (p23); and for the left electron to have spin up in

the y direction and the right electron to have spin up in the w direction (p24).

Note that this situation corresponds to setting n= 4 and N = {(1, 3), (1, 4), (2, 3), (2, 4)}
in the formal description of correlation experiments. These single and joint probabilities

are given by quantum probability theory as:

pi=Tr(WSPi)

pij =Tr[WS (Pi∧Pj)] (D.15)

In order to proceed to their calculation we first need to identify the projection operators

Pi on H(L) ⊗H(R) that correspond to the ‘properties’ we are interested in. Consider the

projector associated with the left electron having spin up in the x direction: for the left

electron the projection operator is simply P+x, defined on H(L); given that we are not

considering any property of the right electron we may identify the projection operator

on H(R) with the identity, which can be expressed as P+x∨P−x. Hence, the projector on

H(L)⊗H(R) corresponding to the left electron having spin up in the x direction is

P1 =(P+x⊗P+x)∨ (P+x⊗P−x) (D.16)

Similarly, the projector corresponding to the left electron having spin up in the y direction

is:

P2 =(P+y⊗P+y)∨ (P+y⊗P−y) (D.17)

the projector corresponding to the right electron having spin up in the z direction is:

P3 =(P−z⊗P+z)∨ (P+z⊗P+z) (D.18)

and the projector corresponding to the right electron having spin up in the w direction is:

P4 =(P−w⊗P+w)∨ (P+w⊗P+w) (D.19)

Let us now identify the projections corresponding to the joint properties of the composite

system, namely

P1∧P3 =P+x⊗P+z corresponds to the left electron having spin up in the x direction

and the right electron to have spin up in the z direction,

P1∧P4 =P+x⊗P+w corresponds to the left electron having spin up in the x direction

and the right electron to have spin up in the w direction,

P2∧P3 =P+y⊗P+z corresponds to the left electron having spin up in the y direction

and the right electron to have spin up in the z direction, and
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P2∧P4 =P+y⊗P+w corresponds to the left electron having spin up in the y direction

and the right electron to have spin up in the w direction.

Note that the spin observables for the left electron commute with those of the right

electron, i.e., [P1, P3]= [P1,P4]= [P2, P3]= [P2, P4]=0, so that all the joint probabilities we

are considering correspond to well-defined measurements. Also note that the spin observ-

ables for each particle are incompatible, i.e., [P1, P2]� 0 and [P3, P4]� 0.

We are now ready to calculate the various probabilities predicted by quantum theory

for this correlation experiment. For the single probabilities pi=Tr(WSPi) the calculation

yields:D.9

p1 = p2 = p3 = p4 =
1
2

(D.20)

We can calculate the joint probability p13=Tr(WS (P1∧P3) as |〈ψ+x⊗ψ+z |ψS〉|2. Taking
spherical coordinates (r, θ, φ) in physical space with z=(1, 0, 0) and u= x= (1, θ, φ),

ψ+x= e
iϕ

2 cos(
θ

2
)ψ+z+ e

− iϕ

2 sin(
θ

2
)ψ−z (D.21)

where θ=xz , which yields:D.10

p13=
1
2
sin2(

xz

2
) (D.22)

Similarly,

p14=
1
2
sin2(

xw

2
); p23=

1
2
sin2(

yz

2
); p24=

1
2
sin2(

yw

2
) (D.23)

This concludes the calculation of the single and joint probabilities for this quantum correl-

ation experiment. We can now easily show that for certain choices of x, y, z, w the vector

p=(p1, p2, p3, p4, p13, p14, p23, p24) does not belong to the correlation polytope c(4,N ). Set

for example xz =xw = yw = 120◦ and z= y so that yz =0◦. Substituting these values in

equations (D.20)-(D.23) yields the following values p= (
1

2
,

1

2
,

1

2
,

1

2
,

3

8
,

3

8
, 0,

3

8
). Given that

p13+ p14+ p24− p23− p1− p4 =
1
8
> 0 (D.24)

these probabilities do not satisfy one of the Clauser-Horne inequalities (D.12), namely

− 1 6 p13+ p14+ p24− p23− p1− p4 6 0 (D.25)

The maximal violations of the Clauser-Horne inequalities occur for xz = xw = yz = 135◦

and yw = 45◦.

D.9. p1 = |〈ψ+x ⊗ ψ+x ∨ ψ+x ⊗ ψ−x|ψS〉|2 =
1

2
|〈ψ+x ⊗ ψ+x ∨ ψ+x ⊗ ψ−x|ψ+x ⊗ ψ−x − ψ−x ⊗ ψ+x〉|2 =

1

2
|〈ψ+x⊗ ψ−x|ψ+x⊗ ψ−x〉|2 =

1

2
. Similarly for p2, p3, p4.

D.10. p13= |〈ψ+x⊗ψ+z|ψS〉|2= |〈ψ+x⊗ψ+z| 1

2
√ [ψ+z⊗ψ−z−ψ−z⊗ψ+z]〉|2=

1

2
|〈ψ+x⊗ψ+z |ψ+z⊗ψ−z〉|2+

1

2
|〈ψ+x⊗ ψ+z |ψ−z⊗ ψ+z]〉|2 = 0+

1

2
|〈ψx|ψ−z〉|2 =

1

2
|〈e

iϕ

2 cos(
θ

2
)ψ+z+ e

− iϕ

2 sin(
θ

2
)ψ−z |ψ−z〉|2 =

1

2
sin2(

θ

2
)
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Now as we showed in section D.1.4, p = (p1, p2, p3, p4, p13, p14, p23, p24) admits an

ensemble representation if and only if it satisfies equations (D.12). Hence the quantum

probabilities of this correlation experiment cannot be given an ensemble representation.

That is, they cannot be given an objective reading in terms of frequencies or proportions

of properties nor a subjective reading in terms of degrees of belief, both if the events are

interpreted as physical values or measurement results.

D.2.2 Violations of the Bell Inequalities

We now show how the quantum probabilities also violate the Bell Inequalities. The exper-

imental situation is similar to the one in the previous section, but now we consider the

following projections on H(L)⊗H(R) for three direction x, y, z:

P1 =(P+x⊗P+x)∨ (P+x⊗P−x) (D.26)

the projector corresponding to the left electron having spin up in the x direction,

P2 =(P+y⊗P+y)∨ (P+y⊗P−y)∨ (P−y⊗P−y) (D.27)

the projector corresponding to the left electron having spin up in the y direction or the

right electron having spin down in the y direction, and

P3 =(P−z⊗P−z)∨ (P+z⊗P−z) (D.28)

the projector corresponding to the right electron having spin down (not up as before) in

the z direction. The projections corresponding to the joint properties of the composite

system are:

P1∧P2 =P+x⊗P−y

P1∧P3 =P+x⊗P−z

P2∧P3 =P+y⊗P−z (D.29)

As before we perform this experiment on an electron pair system in the singlet state, so

the quantum probabilities are given by equation (D.15). Similarly we find:

p1 = p2 = p3 =
1
2

(D.30)

p12=
1
2
cos2(

xy

2
); p13=

1
2
cos2(

xz

2
); p23=

1
2
cos2(

yz

2
) (D.31)

We can now easily show that for certain choices of x, y, z the vector p=(p1, p2, p3, p12, p13,

p23) does not belong to the correlation polytope c(3,N), with N ={(1,2), (1,3), (2,3)}. Set
for example xy =xz = yz = 120◦. Substituting these values in equations (8.29) and (8.30)

yields the following values p=(
1

2
,

1

2
,

1

2
,

1

8
,

1

8
,

1

8
). Given that

p1 + p2 + p3− p12− p13− p23=
9
8
> 1 (D.32)

these probabilities do not satisfy one of the Bell inequalities (D.7), namely

p1 + p2 + p3− p12− p13− p236 1 (D.33)
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D.3 Modifying the Ensemble Interpretation

In this section we briefly explore one way in which one might modify the classical construal

of an ensemble interpretation so as to make it a viable interpretation for the quantum

probabilities. It is provided by Fine’s ‘prism models’ [Fine, 1986].

To discuss this issue we focus on the Clauser-Horne case. Fine considers a general

version of this correlation experiment. As before we perform the experiment on a composite

system of two particles, call them α and β, which briefly interact and then become widely

separated in space. Let ψ denote the state function of this coupled system. On each particle

we perform one of two incompatible measurements: we can measure either A or A′ on α,

and either B or B ′ on β. Each of these observables has only two possible values: a1 or a2

for A , a1
′ or a2

′ for A′, b1 or b2 for B and b1
′ or b2

′ B ′. Observable A commutes with B and

B ′, as does A′. Measurements on the pair are made simultaneously.

The quantum mechanical analysis of this experimental situation determines the prob-

abilities for any measurement outcome for each observable separately and the joint probab-

ilities for any pair of outcomes in a simultaneous measurement of A or A′ with either

B or B ′. For example, for the composite system in state ψ quantum mechanics determ-

ines the following single probabilities pψ(a1), pψ(a1
′ ), pψ(b1), pψ(b1

′ ) and the following

joint probabilities pψ(a1&b1), pψ(a1&b1
′ ), pψ(a1

′&b1), pψ(a1
′&b1

′ ).D.11 The question again

is whether these quantum probabilities can be seen as arising from an ensemble of two-

particle systems all prepared in state ψ.

We know from our previous section that one can give an ensemble representation for

AA′ BB ′ in state ψ if and only if the Clauser-Horne inequalities are satisfied in state

ψ. Fine shows that in this situation of correlated systems the existence of an ensemble

representation is fully equivalent to the existence of a well-defined joint distribution for the

incompatible observables of each particle. That is, there exists an ensemble interpretation

only if one can interpolate a well-defined joint distribution for the incompatible observables

(the AA′&BB ′ pair) among the given quantum distributions for the compatible ones (the

AB pairs). The following theorem states this result:D.12

D.11. In terms of our previous notation we have: p1 = pψ(a1), p2 = pψ(a1
′ ), p3 = pψ(b1), p4 = pψ(b1

′ ),

p13 = pψ(a1 &b1), p14 = pψ(a1 &b1
′ ), p23 = pψ(a1

′&b1), p24 = pψ(a1
′&b1

′ ). Note that it is enough to consider the

single and joint probabilities for one of the outcomes of the observables, say, a1, a1
′ , b1, b1

′ , for we can calculate

the probabilities for the rest of the outcomes form these: (i) we can calculate the rest of the single probability

distributions p(a2),p(a2
′ ),p(b2) and p(b2

′ ). For example, p(a2) is simply p(a2) = 1 − p(a1); (ii) we can calculate the

various joints. For example, given that p(a1)= p(a1b1)+ p(a1b2) we get p(a1b2)= p(a1)− p(a1b1). And analogously

for p(a1b2
′ ), p(a1

′b2) and p(a1
′b2

′ ); Also, given that p(b1) = p(a1b1) + p(a2b1) we get p(a2b1) = p(b1) − p(a1b1).

And analogously for p(a2b1
′ ), p(a2

′b1) and p(a2
′b1

′ ); and finally we can calculate, say, p(a2b2) since we know that

p(a1b1) + p(a1b2)+ p(a2b1)+ p(a2b2) = 1. Analogously for p(a2b2
′ ), p(a2

′b2) and p(a2
′b2

′ ).
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Theorem D.2. There exists an ensemble representation for the observables AA′BB ′ in

state ψ if and only if there is a well-defined distribution for BB ′ (relative toAA′).

There is a well-defined distribution for B andB ′ (relative to A and A′) in state ψ if

i. there exists a joint distribution for ABB ′ that returns as marginals the quantum

mechanical distributions for AB and for AB ′ and analogously for A′BB ′.

ii. Each of these distributions p(A′BB ′) and p(A′BB ′) returns one and the same joint

distribution for BB ′

Hence we can conclude that an ensemble representation can be given, or, equivalently, the

Clauser-Horne inequalities are satisfied for AA′BB ′ in ψ, if and only if there exists this

well-defined joint distribution for BB ′ and AA′ in state ψ. Thus, if the Clauser-Horne

inequalities are violated, there is no joint distribution for BB ′ and AA′.

The problem in giving an ensemble representation thus appears when we consider a

unique probability function defined over an ensemble of systems in which all four observ-

ables AA′BB ′ together take determinate pre-measurement values. For it is then that we

cannot ignore the incompatibility between the values given for the BB ′ correlations by the

ABB ′ distribution and those given by the A′BB ′ distribution. Hence if one could somehow

get rid of this incompatibility then the quantum statistics might be understood as having

their source in an ‘urn’ of systems with well-defined properties.

Fine presents a clever way of avoiding this incompatibility which he puts to work in

his ‘Prism Models’.D.13 We considered this possibility in section 8.2.2.

D.12. See [Fine, 1986] p.44, or [Fine, 1982b], p.292, Proposition 1.

D.13. See [Fine, 1986], pp. 51-57 and references therein.
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Appendix E

The Mass-Energy ‘Equivalence’

In the passage cited in section 9.5, when comparing classical and relativistic mass, Kuhn

writes that Newtonian mass is conserved while Einsteinian is convertible with energy. Both

these claims are incorrect. First, as we saw in section 9.3, proper mass m, like classical

mass, is a conserved quantity. Indeed, given that E and p are conserved and together

determine m by equation (9.1), mass conservation holds in relativity theory. And second,

mass is not convertible into energy. Indeed, the supposed conversion of mass into energy

(or vice versa) is not a physical process: whether and when a ‘conversion’ occurs depends

on the frame respect to which we describe the real physical process. As Lange says:

‘To think of the ‘conversion’ of mass into energy (or vice versa) as a

process that really occurs in nature, like the conversion of a caterpillar into a

butterfly, would make sense only if energy and mass were (or measured the

quantities of) real [i.e. objective] stuff.’ ([Lange, 2002] p.240)

Let us see why this is so. Sometimes physics textbooks present examples in which mass

is ‘converted’ into energy, and the equation E=mc2 is then used to determine how much

energy is ‘equivalent’ to the mass that disappears. For example, after a radioactive nucleus

decays, there is a ‘mass defect’: the sum of the masses of the daughter bodies is less (by

∆m) than the mass of the original nucleus. Some of the original mass (∆m) is said to

have been converted into the kinetic energy E of the daughter bodies, where E=(∆m) c2.

(Since c is so large, a very small mass can be ‘turned into’ a great deal of energy).

The equation E=mc2 is thus generally taken as saying that mass and energy are two

forms of the same thing, and that one can be converted into the other. For example, Edwin

F. Taylor and John Archibald Wheeler, in their famous book ‘Space time Physics’, write

[J]oules and kilograms are two units – different only because of historical

accident – for one and the same kind of quantity, mass-energy [...]. The

conversion factor c2, like the factor of conversion from [...] miles to feet, can

today be counted, if one wishes, as a detailed of convention, rather than as

a new deep principle’ (quoted in [Lange, 2002] p.227)

And physicist-philosopher of physics Max Jammer, in his book ‘Concepts of Mass in

Classical and Modern Physics’, says
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‘Are not the two entities [i.e. mass and energy] which are interchangeable

essentially the same? Is not what is generally spoken of as an equival-

ence relation in reality an identity? Are therefore not ‘mass’ and ‘energy’

merely synonyms for the same physical reality, which [...] may perhaps be

termed ‘massergy’?’ ([Jammer, 1961], p.184)

whose answers he clearly intends to be ‘yes’. Even Einstein himself writes

‘Mass and energy are therefore essentially alike; they are only different

expressions for the same thing.’ (quoted in [Lange, 2002], p.227)

But is this mass-energy identification correct? In relativistic physics mass is an

objective property (recall that mass is Lorentz invariant) whereas energy is not, and hence

mass should not be viewed as a form of energy nor as converting into it (or vice versa).

To understand the conceptual mistake, let us look in detail at the following example of

a radioactive nucleus decay. When a tritium nucleus – one proton, two neutrons (1
3T ) –

decays into a helium-3 nucleus – two protons, one neutron (2
3He) – along with an electron

(e−) and an anti-neutrino (v̄e), i.e.

1
3T� 2

3He+ e− + vē

the tritium’s mass exceeds the sum of the product’s masses by a small quantity.E.1 In this

decay there is a ‘mass defect’ in that the masses of a helium-3 nucleus, an electron, and

an anti-neutrino add up to less than the mass of a tritium nucleus. The ‘missing mass’ is

said to have been ‘converted’ into kinetic energy of the resulting bodies.

Now, while the transformation of the tritium’s neutron into a proton, an electron,

and an anti-neutrino is a real occurrence, this ‘conversion’ of mass into energy is not , in

contrast, real. The ‘mass defect’ appears to rise from the fact that the sum of the three

masses after the decay is less than the system’s mass before the decay, the difference

reflecting the three bodies’ kinetic energies in the p = 0 frame. (Recall that equation

E=mc2 only holds in the p= 0 frame). But the sum of the three masses after the decay

is also less than the system’s mass after the decay, that is, it is less not only before the

decay. This is because, as we showed in section 9.3, mass is not additive. It is our mistaken

expectation that it is additive (arising because we expect it to measure the amount of

matter forming the bodies) that leads us to characterize the system as suffering from

a ‘mass defect’ and to ask where the ‘missing mass’ has gone. There is simply no ‘missing

mass’ and no ‘conversion’ into energy.

E.1. The tritium releases 18.6 keV of energy in the decay process. The electron has an average kinetic energy

of 5.7 keV, while the remaining energy is carried off by the electron anti-neutrino.
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The supposed ‘conversion’ of mass into energy is an illusion produced by a subtle shift

in our perspective. Indeed, we treated the system as initially forming a single body: a

tritium nucleus; but we treated the system after the decay as consisting of three bodies,

each with its own mass. This change of perspective is what led us to characterize the system

as suffering from a ‘mass defect’. But the system’s mass after the decay is the same as the

system’s mass before the decay. There is no ‘mass defect’ here for mass is conserved given

that E and p are conserved and together determinem by equation (9.1). As Lange explains,

The ‘mass defect’ results not from some physical transformation of

matter-stuff into energy-stuff, but rather from our illicitly trying to view

the system from two different ‘perspectives’ at the same time. It is pro-

duced by our treating the post-decay system as a collection of bodies though

we treated the pre-decay system as a single body. The fact that ∆m of the

system’s initial mass ‘becomes’ energy (∆m) c2 when we think of the post-

decay system as a collection of bodies, each with its own mass, does not mean

that mass is really nothing but energy or that mass and energy are different

ways of measuring the same property (like distance in feet and in miles).

The ‘conversion’ of mass into energy occurs because we have shifted our

perspective, not because the nucleus has decayed.’ ([Lange, 2002] pp.238-239)
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