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STRUCTURE THEOREMS FOR LINEAR AND NON-LINEAR

DIFFERENTIAL OPERATORS ADMITTING INVARIANT

POLYNOMIAL SUBSPACES

DAVID GOMEZ-ULLATE, NIKY KAMRAN, AND ROBERT MILSON

Abstract. In this paper we derive structure theorems that characterize the
spaces of linear and non-linear differential operators that preserve finite di-
mensional subspaces generated by polynomials in one or several variables. By
means of the useful concept of deficiency, we can write explicit basis for these
spaces of differential operators. In the case of linear operators, these results
apply to the theory of quasi-exact solvability in quantum mechanics, specially
in the multivariate case where the Lie algebraic approach is harder to apply.
In the case of non-linear operators, the structure theorems in this paper can
be applied to the method of finding special solutions of non-linear evolution
equations by nonlinear separation of variables.

AMS subject classification: 47F5, 35K55, 81R15

1. Introduction

It is a fact that the Schrödinger operators whose point spectrum, or at least
part of it, can be computed algebraically are often related to differential operators
admitting invariant spaces of polynomials. Lie algebras have played a unifying role
in this area, because many of these polynomial spaces turn out to be irreducible
modules for a faithful representation of a finite-dimensional Lie algebra by means of
first-order differential operators. The classical theory of quasi-exactly solvable po-
tentials has thus been built on the assumption that the exactly solvable Schrödinger
operator under study should be expressible as a quadratic element in the universal
enveloping algebra of a finite-dimensional Lie algebra of first-order differential op-
erators, admitting an explicitly computable invariant subspace of square-integrable
functions, or a complete infinite flag thereof [1–4]. Burnside’s Theorem serves as
a strong argument in favor the Lie algebraic approach since it implies that any
endomorphism of an irreducible module for a Lie algebra can be represented as
a polynomial in the generators of the algebra. However, recent results show that
the Lie algebraic approach suffers from various limitations that reduce severely its
applicability:

(1) In the case of polynomial subspaces in one variable, the Lie algebraic ap-
proach can only be applied to find the differential operators that leave the
polynomial space Pn = 〈1, z, z2, . . . , zn〉 invariant, but it cannot character-
ize the set of differential operators that map Pn into Pm ⊂ Pn with m < n.
This simple problem has motivated the important notion of deficiency used
throughout this paper, and applications of it can be found in the construc-
tion of solvable classical many-body problems by considering the motion of
zeros of polynomials whose coefficients evolve in a controlled manner [5].
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(2) Other subspaces generated by polynomials exist which are not isomorphic
to Pn. The Lie algebraic approach cannot be applied in these cases, as was
already noted by Post and Turbiner, who characterized the spaces of linear
differential operators which preserve polynomial subspaces in one variable
generated by monomials. In their work [6] they solved this problem with no
reference to Lie algebras. The case of a general space spanned by polynomi-
als — referred to as the generalized Bochner problem in [6]— remains still
open. Somewhat surprisingly this direct approach has not been pursued
until very recently, where it has been shown that the class of quasi-exactly
solvable potentials is larger than the Lie-algebraic class [7], and that even in
Lie-algebraic potentials other non-sl2 algebraizations exist which allow to
obtain more levels from the energy spectrum of the Hamiltonian, [8]. The
existence of differential operators that preserve a general polynomial space
and cannot be expressed as quadratic combinations of the generators of sl2

is not in contradiction with Burnside’s theorem, since a general polynomial
space is not the carrier space for an irreducible representation of sl2.

(3) In the case of multi-variable polynomial subspaces, the problem of char-
acterizing the set of linear differential operators that leave these spaces
invariant becomes untractable in the Lie algebraic approach. The reason is
that, contrary to the single variable case where essentially sl2 is the only
algebra of first order differential operators with finite dimensional repre-
sentations, in more variables many more algebras exist. But moreover, the
characterization of second order operators as quadratic combinations of the
generators of these algebras requires an extensive analysis of the syzygies
corresponding to the primitive ideals associated to the irreducible represen-
tations [9]. These problems are entirely bypassed in the direct approach, as
shown in Section 3 of this paper, where a simple characterization is given
for the set of linear differential operators of any given order r that leave
the simplicial module

Pn = span{xi1
1 . . . xiN

N | i1 + · · · + iN ≤ n}

invariant. Our results coincide with the formulas for the special case N = 2
and r = 2 derived in [9] using the Lie algebraic method.

It has now become clear that the connection to Lie algebras is not an essential fea-
ture of exact or partial solvability. Our goal in the first two Sections of this paper is
to present a direct method to characterize linear differential operators with invari-
ant polynomial subspaces which is simpler and more powerful than the Lie algebraic
approach. We restrict in this paper to the simplest case of polynomial subspaces,
namely the simplicial modules Pn, the case of general polynomial subspaces shall
be treated elsewhere. For any number of variables N , we provide an explicit ba-
sis for the space of linear differential operators of any order r that map Pn into
Pm ⊆ Pn with m ≤ n. It should be stressed that although these results allow to
construct many differential operators with invariant finite dimensional polynomial
subspaces, in general it is not known whether a transformations exists that puts
the operator in Schrödinger form. Therefore the results in Sections 2 and 3 are only
a first necessary step in the theory of higher dimensional quasi-exact solvability. A
general theory would need to face the difficulties of the equivalence problem [10].
Despite this fact, it is worth mentioning that a few examples of partially solvable
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multi-dimensional Hamiltonians exist [11–13], which are mostly extensions of the
Calogero-Sutherland class.

This paper also addresses the study of nonlinear differential operators with poly-
nomial nonlinearities which possess invariant polynomial subspaces. The motiva-
tion for this study is twofold:

(1) In [14], the important concept of operator duals is introduced. Given a
finite dimensional space of functions Fn = span{f1, . . . , fn} which are re-
quired to satisfy certain regularity conditions, the operator duals are linear
differential operators defined by the relations

Di[fj ] = δi
j .

These operators are used in the reduction of non-linear evolution equations
to dynamical systems by a method of non-linear separation of variables.
In [14] the existence of these differential operators is proved together with
results on the regularity of the coefficients. The proof is constructive and
therefore given any space Fn whose basis elements satisfy the required
regularity conditions, non-linear evolution equations can be written which
have solutions in the space Fn, i.e. special solutions exist of the form
u(t, x) =

∑n

i=1 ci(t)fi(x) where the coefficients ci(t) satisfy a system of
coupled non-linear ODEs. However, the order of the operator duals is
precisely the dimension of the space Fn. The price to pay in order to have
invariant spaces of high dimension is that the order of the resulting evolution
equations grows with the dimension of the space. For dimensions n larger
than six this reduces the applicative interest of the resulting equations.
The motivation coming from [14] is to construct operators that generalize
the operator duals, so that the order of the resulting equation and the
dimension of the invariant subspace can be independently chosen. In the
case of polynomial subspaces Pn , the generalization of the operator duals
to arbitrary order r ≤ n are the so called maximal deficiency operators
introduced in Section 2.

(2) The second motivation comes also from the results on non-linear separa-
tion of variables by King, Galaktionov and Svirshchevskii [15–19]. In these
papers special interest is given to translation-invariant evolution equations
with quadratic non-linearities which admit solutions via non-linear separa-
tion of variables. From a physical context, applications are found in nonlin-
ear diffusion and thin film equations. In this paper we extend these results
by providing a comprehensive structure theory for autonomous nonlinear
operators that preserve a polynomial space Pn.

Our paper is organized as follows. In Section 2, we present our direct approach
in the case of linear differential operators in one variable. Besides the order of a
differential operator, we introduce two key invariants which can be freely specified,
which are the degree and the deficiency of the operator relative to a polynomial
space Pn. The order, degree and deficiency are shown to specify the operator
uniquely up to scaling by a constant. The operators of maximal deficiency generalize
the operator duals of [14] to any order lower than n. We give an explicit basis for the
space of operators of given order and deficiency. Section 3 is concerned with linear
differential operators in N variables, where all the results of Section 2 are shown to
extend to the case of simplicial modules, that is multivariate polynomials of total
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degree bounded by a given integer. Section 4 is concerned with non-linear operators
preserving polynomial modules, where we give an explicit decomposition theorem
for the most general non-linear operator with polynomial coefficients preserving a
simplicial module. Section 5 studies the deficiency concept for non-linear operators
with polynomial nonlinearities. Section 6 concentrates on non-linear operators that
are translation invariant (autonomous) deriving also structure theorems for this
class. On Section 7 the application of these results to non-linear separation of
variables is discussed while some explicit formulas are given for quadratically non-
linear autonomous operators in Appendix A.

2. Linear operators in one variable

In this section, we consider the class of scalar linear differential operators on
the real line, with polynomial coefficients. We are interested in the subclass of
operators which have a definite order, degree and deficiency. These quantities are
defined as follows. The order of

(1) L =

r
∑

i=0

ai(x)Di, D :=
d

dx
,

is as usual the largest r for which the coefficient ar(x) is not identically zero. We
say that L is of degree d ∈ Z if for all j ∈ N, there exists cj 6= 0 ∈ R not all zero
such that

(2) L[xj ] = cj xj+d.

In order to define the deficiency, we fix n ∈ N and consider the vector space

(3) Pn = span{1, x, . . . , xn}

of polynomials in x of degree less than or equal to n. We say that L has deficiency
m ∈ Z relative to Pn if

(4) LPn ⊂ Pn−m, but LPn 6⊂ Pn−m−1.

Let L
(n)
r,m denote the set of linear differential operators with polynomial coefficients,

of order less than or equal to r and of deficiency greater than or equal to m relative
to Pn. Again, we emphasize that the notion of operator deficiency only makes
sense relative to a particular n. Most of our discussion will be carried out with the
assumption that the n in Pn has been fixed. As such, we will often omit the n in
our terminology and notation, simply speak of the deficiency of an operator, and

write Lr,m instead of L
(n)
r,m.

Proposition 1. The set Lr,m is a subspace of the vector space of all linear differ-
ential operators, i.e., it is closed under linear combinations.

Proof Given linear operators L, L′ ∈ Lr,m, the order of any linear combination of
L and L′ is less than or equal to r. Similarly, the deficiency of a linear combination
is greater than or equal to m. �

Proposition 2. The deficiency of a non-zero linear operator cannot exceed its
order.

Proof Suppose that L ∈ Lr,m is a linear operator such that m > r. The operator
Dn−m+1L annihilates Pn, but has order less than n + 1. This is impossible. �
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Trivial examples of operators with given order, degree and deficiency are given
by the operator Di, which has order i, degree −i and deficiency i, and the multipli-
cation operator xj has order zero, degree j and deficiency −j. These operators do
not depend on the degree n of the polynomial space Pn. A more significant exam-
ple, which depends explicitly on n, r, m, d with 0 ≤ m ≤ r ≤ n and −m ≤ d ≤ r−m
is the operator

(5) Lrmd := xi (n − j − xD )kDj , i = r − m, j = r − d − m, k = d + m

where we have introduced the Pochhammer operator

(6) (n − xD )k := (−1)k(xD − n )(xD − (n − 1) ) · · · (xD − (n − k + 1) ).

A basic result is the following:

Proposition 3. The operator Lrmd has order r, degree d and deficiency m.

Proof Since the k-fold composition appearing in the right-hand-side of (6) anni-
hilates the monomials xn, . . . , xn−k+1, the operator in (6) has order k, degree zero
and deficiency k. It follows that the operator (n− j−xD )kDj has order r = k+ j,
deficiency m = k + j and degree d = −j. By left-multiplying by a monomial of x
we raise the degree and lower the deficiency, so that Lrmd has order r, deficiency
m, and degree d. �

Following Proposition 2, it is helpful to refer to an operator whose deficiency
equals its order, as a maximal deficiency operator. To this end, we will use the
symbol

(7) Krj =
1

(r − j)!
Lr,r,−j =

1

(r − j)!
(n − j − xD )r−jD

j , 0 ≤ j ≤ r ≤ n,

to denote the operators of maximal deficiency. The normalization constant of 1
(r−j)!

will be useful in later formulas. These operators have a number of interesting
properties, and play a key role in our theory.

Proposition 4. Up to multiplication by a non-zero real constant, the operator Krj

is the unique rth order maximal deficiency operator with polynomial coefficients
having degree d = −j, where 0 ≤ j ≤ r.

Proof Let L be an rth order maximal deficiency operator with polynomial coeffi-
cients and having degree d. Since L has polynomial coefficients, d ≥ −r. As well,
L maps xk to a multiple of xk+d. Hence,

L[xk] = 0, n − r − d < k ≤ n.

However, a non-zero rth-order operator can annihilate at most r monomials. Thus,
we have established that 0 ≤ j ≤ r, where j = −d.

The leading order term of both L and Krj is a multiple of xr−jDr. Hence,
there exists an a ∈ R such that the order of L − aKrj is less than r. However, the
deficiency of L − aKrj is greater than, or equal to r. Therefore, by Proposition 2,
we have L = aKrj. �

Proposition 5. For every 0 ≤ j ≤ r ≤ n, we have

(8) (r − j)! Krj = (n − j − xD )r−j Dj = Dj(n − xD )r−j .
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Proof The operators (n− j − xD )r−j Dj and Dj(n− xD )r−j both have order r,
deficiency r and degree −j. By Proposition 4 they differ by a scalar multiple. By
comparing the coefficients of the leading order, we see that these two operators are
actually equal. �

Proposition 6. For a fixed r, the operators Krj are recursively defined by

(9) [D, Krj] = −Kr,j+1, Krr = Dr.

Proof Setting k = r − j, we have, by Proposition 5,

[D, Krj] =
1

(r − j)!

(

Dj+1(n − xD)k − (n − j − xD)kDj+1
)

=
1

(r − j)!
Dj+1((n − xD)k − (n + 1 − xD)k)

= −
k

(r − j)!
Dj+1(n − xD)k−1

= −Kr,j+1. �

We can also expand the maximal deficiency operators into an operator sum.

Proposition 7. We have

(10) Krj =

r−j
∑

k=0

(−1)k

(

n − k − j

n − r

)

xk

k!
Dk+j

Proof Let K̂rj denote the right hand side of (10). A direct calculation shows that

[D, K̂rj] = −K̂r,j+1, K̂rr = Dr.

Hence, by Proposition 6, Krj and K̂rj have the same recursive definition. Therefore,
the two operators are equal. �

Proposition 8. We have dimLr,r = r + 1. Indeed, the operators Krj, j =
0, 1, . . . , r form a basis for the vector space Lr,r.

Proof Let L ∈ Lr,r be given. Decomposing L into operator monomials of homo-
geneous degree, we have by Proposition 2 and the fact that Pn is generated by
monomials,

L =

r
∑

j=0

aj Krj.

Since the Krj are linearly independent, we conclude that dimLr,r = r + 1. �

The following corollary follows immediately.

Proposition 9. We have

(11) Lr,m = Pr−m ⊗ Lr,r, with dimLr,m = (r + 1)(r − m + 1).

In particular, the set of operators of order r or less that map Pn to itself is of
dimension given by (r + 1)2 = dim gl(r + 1, R).

We conclude this section with a simple example:



DIFFERENTIAL OPERATORS ADMITTING INVARIANT POLYNOMIAL SUBSPACES 7

Example 1. A basis for the vector space L2,2 of operators of order two and
deficiency two is given by

K22 = D2,

K21 = (xD − n + 1 )D = xD2 + (1 − n)D,

K20 = (xD − n )(xD − n + 1 ) = x2D2 + 2(1 − n)xD + n(n − 1).

3. Linear operators in several variables

The results of the preceding section extend readily to the case of linear operators
in N variables (x1, . . . , xN ). We consider the vector space

(12) PN
n = {xi1

1 . . . xiN

N | i1 + · · · + iN ≤ n},

of polynomials of degree n in N variables, of dimension
(

N+n
n

)

. We shall use the

standard multi-index notation whereby given a multi-index I = (i1 . . . iN) ∈ N
N ,

we let

(13) xI := xi1
1 . . . xiN

N , DI :=
∂

∂xi1
1

· · ·
∂

∂xin

N

.

The notions of order, degree and deficiency are defined similarly to the single-
variable case. Thus, an operator

(14) L =

r
∑

|I|=0

aI(x1, . . . , xN )DI ,

will be of degree d ∈ Z if for almost all I ∈ N
N , there exists cIJ 6= 0 ∈ (RN )2 such

that

(15) L[xI ] =
∑

|J|=|I|+d

cIJ xJ .

In order to define the deficiency, we fix again n ∈ N, and say that L has deficiency
m ∈ Z relative to PN

n if

(16) LPN
n ⊂ PN

n−m, but LPN
n 6⊂ PN

n−m−1.

As in the single variable case, it is easy to see that the deficiency of an operator can-
not exceed its order. For example, the operator DI has order |I|, degree −|I|, and
deficiency |I|, and the operator xI has order zero, degree |I|, and deficiency −|I|.
Again, a more significant example is obtained by introducing the Euler operator

(17) E :=

n
∑

i=1

xi

∂

∂xi

,

the Pochhammer operator

(18) (n − E )k := (−1)k(E − n )(E − (n − 1) ) . . . (E − (n − k + 1) ),

and considering the operator

(19) xI(n − |J | − E)kDJ .

This operator has order |J |+ k, degree |I| − |J | and deficiency |J |+ k− |I|. Again,
if we let Lr,m denote the vector space of linear differential operators in N variables
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(x1, . . . , xN ), with polynomial coefficients, of order r and deficiency m, then we
have

(20) dim Lr,m =

(

N + r − m

r − m

)(

N + r

r

)

,

or equivalently

(21) Lr,m = Pr−m ⊗ Lr,r.

This formula is in agreement with the result obtained in [9] for operators in two
variables, in which it was proved that

(22) dim Lr,0 =

(

2 + r

r

)2

.

The proof given in [9] was less direct and required an analysis of the syzygies defined
by the primitive ideals associated to the irreducible representations of sl(3, R).

It is easy to see that in contrast with the single variable case, the order, degree
and deficiency are not sufficient to characterize an operator uniquely up to a non-
zero factor. We have:

Proposition 10. A basis for the vector space of linear differential operators with
polynomial coefficients, of order r, degree d and deficiency m, in N variables is
given by

(23) xI(n − |J | − E)kDJ , |I| = r − m, |J | = r − d − m, k = d + m.

This vector space is thus of dimension

(24)

(

N + r − m − 1

r − m

)(

N + r − m − d − 1

r − m − d

)

.

4. Non-linear operators

Our objective in this section is to show that the results of the two preceding
sections can be applied to prove a structure theorem for a class of non-linear differ-
ential operators admitting invariant polynomial subspaces. We shall see that these
results complement the structure theorems for operators preserving simplicial mod-
ules which were proved in [14].

In dealing with non-linear operators it is convenient to identify differential op-
erators with functions on jet space. To that end, let

J r(R) = R × R
r+1

denote the bundle of r-jets of smooth maps from R to R. The r-th prolongation of
a smooth, real-valued function f(x) is a section of J r, namely

prr(f) = (f, Df, D2f, . . . , Drf)

Thus, the action of an operator on a function of x is the same thing as the compo-
sition of a function of the jet variables with the prolongation:

T [f ] = T ◦ prr(f).

We introduce the standard jet coordinates x, u0 = u, u1 = ux, u2 = uxx, . . . , ur on
J r so that

Dj [f ] = uj ◦ prr(f).
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Henceforth, we fix n. By Propositions 8 and 9, all linear operators of order r
are expressed uniquely as polynomial linear combinations of the maximal deficiency
operators Krj . Thus, a linear operator Krj maps Pn to Pn−r; a quadratically non-
linear KriKrj maps Pn to P2(n−r), a cubically nonlinear KriKrjKrk maps Pn to
P3(n−r), etc. This implies:

Proposition 11. Every operator ( linear or non-linear ) of order r can be uniquely
expressed as

(25) T := p(x)+
∑

i

pi(x)Kri +
∑

i≤j

pij(x)KriKrj +
∑

i≤j≤k

pijk(x)KriKrjKrk + · · · ,

The operator in question will map Pn to Pn if and only if

(26) p ∈ Pn, pi ∈ Pr, pij ∈ P2r−n, pijk ∈ P3r−2n, . . .

The above proposition has the following obvious consequence:

Corollary 1. An operator of order r < n
2 , mapping Pn to Pn is necessarily linear.

If r < 2n
3 , then the operator will have at most quadratic non-linearities.

Conversely, the above proposition can be used to bound the degree of any poly-
nomial space which can be left invariant by a non-linear operator. We have, for
example:

Corollary 2. A second-order operator will preserve a polynomial space of degree
at most four.

The extension of these results to multivariate differential operators acting on
simplicial polynomial modules is straightforward. We are interested in writing
down all non-linear differential operators of order r that preserve

(27) Pn = {xi1
1 . . . xiN

N | i1 + · · · + iN ≤ n}.

We recall that for fixed order r the maximum deficiency that an operator can attain
is r, which is achieved by any of the following maximum deficiency operators:

KJ ∈ Lr,r, =⇒ KJ = (n − |J | − E)r−|J| D
J ,(28)

J = {j1, . . . , jN | j1 + · · · + jN ≤ r}.(29)

The extension of Proposition 11 to the case of multivariate differential operators
and polynomial modules is straightforward by just substituting the simple indices
i, j into multi-indices I, J , each of which can assume dimLr,r =

(

N+r
r

)

different
values. Similarly, the two Corollaries hold verbatim in the multivariate case.
Example 2. Write down all second order operators with quadratic non-linearities
that map P4 into itself. A direct application of Proposition 11 allows to write:

(30) T [u] =
∑

0≤i≤j≤2

pij K2iK2j

where pij = pji are constants, and where

K20 = 6u0 − 3xu1 + 1
2 x2u2,

K21 = 3u1 − xu2,

K22 = u2
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The resulting quadratic combination is the following six parameter family of oper-
ators:

T = p00u
2
2 + p01 (−xu2

2 + 3u1u2) + p02 (x2u2
2 − 6xu1u2 + 12u2u0)

+ p11 (x2u2
2 + 9u2

1 − 6xu1u2)

+ p12 (−x3u2
2 + 9x2u1u2 − 6x(2u2u0 + 3u2

1) + 36u1u0))

+ p22

(

1
4 x4u2

2 − 3x3u1u2 + 3x2(2u2u0 + 3u2
1) − 36xu1u0 + 36u2

0

)

If we are interested in finding only autonomous non-linear equations we need to
consider the translation-invariant subfamily of the above operators, i.e. operators
where the variable x does not appear in the coefficients. Imposing this condition
leads to

p10 = p12 = p22 = 0; p11 + p20 = 0,

so that the only autonomous second order non-linear operators which preserve the
space P4 are:

(31) {u2
xx , 4uxxu − 3u2

x}.

The first of these two operators is easily seen to map P4 into itself. The second
operator is more interesting. Each of the non-linear terms u2

x and uxxu transform
a 4th-degree polynomial into a 6th-degree polynomial. However, the linear combi-
nation 4uxxu − 3u2

x cancels the coefficients of degree 6 and 5, and hence defines a
map from P4 to itself (see also [15] and [19]).

We investigate further in the analysis of autonomous non-linear operators with
invariant polynomial subspaces in the following section.

5. The algebra of polynomially non-linear operators

In this section we continue the study non-linear operators that are polynomial
in the function and its first n derivatives. First, let us fix some notation. Let

T = R[x, u0, . . . , un]

denote the commutative algebra of non-linear operators that can be expressed as
polynomials over R in x and the derivatives uj. Multiplication in this algebra is by
pointwise multiplication, rather than operator composition. We grade this algebra
by total degree in the uj variables:

T =
∞
⊕

l=0

Tℓ,

where

Tℓ = span{xj ui1ui2 · · ·uiℓ
| 0 ≤ j < ∞}.

We will refer to the integer ℓ as an operator’s degree of non-linearity. Thus, T1

is the vector space of linear operators, T2 the vector space of quadratically non-
linear operators, etc. The vector space T0 is the space of constant operators. For
example, the operator x maps all of Pn to x. Thus, T0 is a subalgebra of T , which
is isomorphic to the polynomial algebra in the variable x. All the other Tℓ, ℓ ≥ 1
are merely subspaces of T , not subalgebras.

We further grade each Tℓ according to the following monomial weighting scheme:

(32) wt(ui) = n − i, wt(x) = 1.
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Thus,

(33) Tℓ =

∞
⊕

k=0

Tℓ,k,

where

(34) Tℓ,k = span{xj ui1ui2 · · ·uiℓ
| j + nℓ −

ℓ
∑

s=1

is = k}

is the subspace generated by monomials having weight k. We will refer to the
integer n − k as the monomial deficiency. If M = xjui1ui2 . . . uiℓ

is an operator
monomial with

(35) k = wt(M) = j + nℓ −

ℓ
∑

s=1

is,

then, in accord with the above-introduced meaning of deficiency, M maps Pn into
Pk, but not into Pk−1.

In other words, every operator T ∈ T admits the unique decomposition

(36) T =
∑

ℓ,k

Tℓ,k,

where

(37) Tℓ,k =
∑

0≤i1≤i2≤···≤iℓ≤n

k=j+nℓ−(i1+i2+···+iℓ)

Cji1i2...iℓ
xjui1ui2 . . . uiℓ

,

and where the sum is taken over finitely many values of ℓ and k. For generic values
of the coefficients Cji1...iℓ

, the operator Tℓ,k has deficiency n − k. However, for
certain very specific values of the coefficients, the actual deficiency is greater than
the monomial deficiency. This is so because in the linear combination (37) there
might occur some cancellations in the terms of highest degree. We see for instance
in Example 2 that relative to P4, the operator

4uxxu − 3u2
x = 4u2u0 − 3u2

1

has monomial deficiency 4− k = 4− 8 + 2 = −2. However, the actual deficiency of
this operator is zero.

Next, we describe generators for T that will allow us to precisely determine the
deficiency of an operator. Following Proposition 7, let us re-introduce the linear,
nth-order operators of maximal deficiency:

(38) vj = Knj =

n−j
∑

i=0

(−1)i xi

i!
ui+j j = 0, . . . , n.
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Thus,

vn = un,(39)

vn−1 = un−1 − xun,(40)

vn−2 = un−2 − xun−1 + 1
2 x2un−2,

vn−3 = un−3 − xun−2 + 1
2 x2un−3 −

1
6 x3un−4,

...

These operators transform all elements of Pn into a constant. In other words, the
vj are the operator duals [14] to the monomial basis of Pn:

vj [x
k/k!] = δj

k, k = 0, 1, . . . , n.

More, generally let us write

(41) ũj(t) =

n−j
∑

i=0

ui+j

ti

i!
j = 0, . . . , n.

In this way,

vj = ũj(−x).

Proposition 12. We have

(42) ũj(s + t) =

n−j
∑

i=0

ũi+j(s)
ti

i!
.

Proof We have

ũj
′(t) = ũj+1(t), j = 0, 1, . . . , n − 1,

ũn
′(t) = 0,

ũj(0) = uj.

Hence, uj 7→ ũj(t) defines a 1-parameter transformation group of T . The desired
result follows immediately. �

Now, we can invert the relations (38), and express the uj in terms of the vj .

Proposition 13. For j = 0, . . . , n, we have

(43) uj =

n−j
∑

i=0

vi+j

xi

i !
,

Proof We apply (42) with s = −x and t = x. �

Proposition 13 shows that x, v0, . . . , vn freely generate the algebra T . The rela-
tions (38) and (43) are homogeneous relative to the weights (32). Hence, setting

(44) wt(vj) = n − j,

we recover the grading by monomial deficiency relative to this basis. We now deepen
the grading by defining

Tℓ,k,m = span{xm vi1vi2 · · · viℓ
| m + nℓ −

ℓ
∑

s=1

is = k},
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so that

Tℓ,k =

k
⊕

m=0

Tℓ,k,m.

Proposition 14. The elements of Tℓ,k,m have monomial deficiency n−k and actual
deficiency n − m. Consequently, every operator T ∈ R[x, u0, . . . , un] has deficiency
n − m, where m is the x-degree of the polynomial

T = Q(x, v0, . . . , vn)

that expresses T relative to the x, vj basis.

Proof Since the relations (38) (43) are homogeneous relative to the weighting
scheme (32) (44), the elements of Tℓ,k,m have weight k, and hence have monomial
deficiency n−k. Since the operators vj map all polynomial to constants, an operator
Q(x, v0, . . . , vn) ∈ T , having m as its x-degree, maps Pn to Pm, but not to Pm−1.
Therefore such an operator has deficiency n − m. �

The key application of the above grading has to do with the decomposition
of an operator according to monomial deficiency. Our analysis would be greatly
simplified if we could be certain that the decomposition of a non-linear operator
T according to monomial deficiency respects the actual deficiency. In other words,
when considering operators of a fixed deficiency, no generality is lost by considering
operators that are homogeneous in degree of non-linearity and monomial deficiency.

Corollary 3. Let T be a non-linear operator whose deficiency is n − m or more,
i.e., T maps Pn into Pm. Let Tℓ,k be the summands of the decomposition of T
according to degree of non-linearity and monomial defiency as per (36) (37). Then,
each Tℓ,k also maps Pn into Pm.

6. Autonomous, non-linear operators

Our main focus in this section is the subalgebra

(45) A = R[u0, · · · , un] ⊂ T

of translation-invariant non-linear opearators. The subalgebra inherits the bi-
grading relative to degree of non-linearity and monomial deficiency, with

A =
∞
⊕

ℓ=0

nℓ
⊕

k=0

Aℓ,k,(46)

where

Aℓ,k = A ∩ Tℓ,k = span{ui1ui2 · · ·uiℓ
| nℓ −

ℓ
∑

s=1

is = k}(47)

Our key result in this section is the characterization of the deficiency of autonomous
operators. In other words, we describe A ∩ Tℓ,k,m.

The obvious approach to construct non-linear operators of deficiency m would
be to write a generic polynomial p(x) ∈ Pn with indeterminate coefficients, act on
it by (36) where the degree of the possible non-linearities is bounded by Proposition
11 and impose that the coefficients of all the terms in xj for j > n − m vanish.
However, based on the useful concept of deficiency we choose here to adopt a
somewhat different approach.
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We seek operators that are both translation-invariant and that have maximum
deficiency. To this end, we define

ξ =
un−1

un

;(48)

In−j = ũj(−ξ) =

n−j
∑

i=0

(−1)k ui+j

ξi

i!
, j = 0, . . . , n,(49)

and note that

(50) I0 = un, I1 = 0.

The jet space function ξ is only defined on open neighborhood un 6= 0 of J n.
Thus, the operators Ij are defined only for elements of P×

n = Pn \ Pn−1, the set
of polynomials of degree exactly equal to n. We can still speak of the deficiency of
such operator, but this has to be understand in terms of P×

n rather than Pn.

Proposition 15. The non-linear operators I2, I3 . . . , In are translation-invariant,
and have maximum deficiency n. In other words, these autonomous, nonlinear
operators transform every nth degree polynomial into a constant.

Proof By definition,

vj = ũj(−x), In−j = ũj(−ξ).

As well,

(51) ξ = x +
vn−1

vn

.

Hence, Proposition 12 implies that in addition to (49) we also have

(52) In−j =

n−j
∑

k=0

(−1)k 1

k!
vk+j

(

vn−1

vn

)k

.

Hence, the operators Ij are polynomials of the vj divided by a certain power of
vn = un. Therefore, these operators are both translation invariant and of maximal
deficiency. �

We can also invert the relations (49), and express the uj in terms of the Ij .

Proposition 16. For j = 0, . . . , n, we have

uj =

n−j
∑

i=0

In−i−j

ξi

i !
,(53)

=

n−j
∑

i=0

Ii

ξn−j−i

(n − j − i) !
,(54)

Proof We apply (42) with s = −ξ and t = ξ. �

Thus, relations (49) (53) tell us that the operators I0, ξ, I2 . . . , In also generate the
algebra of autonomous operators. These relations are homogeneous with respect to
the monomial weights defined in (32). Hence, setting

(55) wt(Ij) = j, wt(ξ) = 1

we recover the grading by monomial deficiency relative to this basis.
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Unfortunately, the operators Ij , ξ are not polynomials in the uj, and hence are
not elements of A. Let us therefore consider the larger algebra

(56) Â = R[I0, ξ, I2, I3, . . . , In]

generated by ξ and the autonomous operators of maximal deficiency. Thanks to
(53) we know that A ⊂ Â, but this inclusion is strict.

We now deepen the grading of Â by defining

Âℓ,k,m = span{ξm Ii1 · · · Iiℓ
| m + i1 + · · · + iℓ = k},

so that

Â =

∞
⊕

ℓ=0

nℓ
⊕

k=0

k
⊕

m=0

Âℓ,k,m.

Proposition 17. We have Âℓ,k,m = Â ∩ Tℓ,k,m, i.e., the elements of Âℓ,k,m have
monomial deficiency n − k and actual deficiency n − m.

Proof This follows from (51) (52), and the fact that the operators vj have maximal
deficiency. �

In other words, the deficiency of an autonomous operator is n minus the ξ-degree of
the polynomial that expresses that operator relative to the ξ, Ij basis. We are left

with the question of the nature of the inclusion of A in Â. In other words, which
polynomials in ξ, Ij define true polynomial operators.

Theorem 1. Let T = P (x, u0, . . . , un) ∈ T be a non-linear operator, and let T =
Q(x, v0, . . . , vn) be the expression of this operator relative to the non-autonomous
generators x, vj . Then T is autonomous, i.e. P is independent of the variable x if
and only if

T = Q(ξ, In, . . . , I2, 0, I0).

In this case, the deficiency of T is equal to n minus the ξ-degree of the polynomial
Q(ξ, In, . . . , I0).

Proof By Propositions 13 and 16, we have

uj =

n−j
∑

i=0

vi+j

xi

i !
=

n−j
∑

i=0

In−i−j

ξi

i !
, j = 0, 1, . . . , n,

where, as we noted before, I1 = 0, and I0 = vn = un. �

Example 3. Let us recast the analysis began in Example 2 in terms of the above
operator bases. Relations (43) and (53) take the form

u4 = v4 = I0;

u3 = v3 + xv4 = ξI0,

u2 = v2 + xv3 + 1
2 x2v4 = I2 + 1

2 ξ2 I0

u1 = v1 + xv2 + 1
2 x2v3 + 1

6 x3v4 = I3 + ξI2 + 1
6 ξ3I0;

u0 = v0 + xv1 + 1
2 x2v2 + 1

6 x3v3 + 1
24 x4v4 = I4 + ξI3 + 1

2 ξ2I2 + 1
24 ξ4I0.

Our goal is to write down all autonomous operators with quadratic non-linearity
and zero deficiency, i.e., operators that map P4 into itself. By Proposition 17
and the above relations, we are obliged to consider polynomials that are quadratic
in I0, I1, I2, I4 and that have degree 4 or less in the ξ variable. The question
is: which operators of such form are quadratic in u0, u1, u2, u3, u4? By Corollary
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3, no generality is lost by considering operators of a fixed monomial deficiency.
Evidently, if the monomial deficiency is 0 or more, the operator will preserve P4.
Hence, we must consider operators having monomial deficiency −4,−3,−2,−1,
which corresponds to k = 8, 7, 6, 5, respectively. The most general operator having
k = 8 is a multiple of the monomial (u0)

2. Such an operator will have actual
deficiency of −4 as well. Similarly reasoning holds for operators with k = 7; these
are multiples of u0u1. Let us consider the case k = 6. The ansatz is now

C02 u0u2 + C11 u2
1 =

1

144
(3C02 + 4C11) v2

4 x6 +
1

24
(3C02 + 4C11) v3v4 x5 + l.o.t.

=
1

144
(3C02 + 4C11) I2

0 ξ6 + 0 ξ5 + l.o.t.

Hence, such an operator preserves P4 if and only if is a multiple of 4u0u2 − 3u2
1, as

has already been proven by other methods.
Finally, let us consider the case k = 5. Now, the ansatz is

C03 u0u3 + C12 u1u2 =
1

24
(C03 + 2C12) v2

4 x5 +
5

24
(C03 + 2C12) v3v4x

4 + l.o.t.

=
1

24
(C03 + 2C12) I2

0 ξ5 + 0 ξ4 + l.o.t.

Hence, such an operator preserves P4 if and only if is a multiple of 2u0u3−u1u2. In-
deed, because I1 = 0, the above calculation shows that this operator has deficiency
1, i.e. it maps P4 into P3.

Autonomous operators with quadratic non-linearities. We restrict from
here on to T2, the vector space of operators with homogeneously quadratic non-
linearity. We present a complete characterization of such operators in terms of de-
ficiency, thereby extending the results of Svirshchevskii [19] and Galaktionov [15].
Our analysis can be extended to operators with higher non-linearities, but this shall
be treated elsewhere.

Following (33), we let

Q =

n
⊕

k=−n

Qk

be the linear space of quadratic autnomous non-linear operators up to order n,
graded according to monomial deficiency. Thus,

Q = A2 = span{uiuj | 0 ≤ i ≤ j ≤ n},(57)

dimQ =

(

n + 2

2

)

,(58)

Qk = A2,n−k = span{uiuj | i + j = n + k, 0 ≤ i, j ≤ n},(59)

dimQk =

⌊

n − |k|

2

⌋

+ 1,(60)

where and ⌊·⌋ denotes the floor function.
Each of the elements of the above basis of Qk has a different order r, the minimum

and maximum orders for each k being:

(61) r
(k)
min =

⌈

n + k

2

⌉

, r(k)
max = min(n, n + k)
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All of the above basis elements have the same deficiency k, i.e. they map Pn into
Pn−k. However, Example 2 and Example 3 show that within each Qk there can be
elements whose deficiency is greater than k.

Remarkably, each Qk possesses an adapted basis that further grades it according

to operator order and deficiency. In this regard, for r
(k)
min ≤ r ≤ r

(k)
max, let us

introduce the operators

(62) Qk,r =

r
∑

i=k+n−r

(−1)i

(

i − k + 1

n − r + 1

)(

n − i

n − r

)

ui un+k−i,

We are now ready to state the main result of this Section:

Theorem 2. The operator Qk,r has monomial deficiency k, order r, and deficiency

(63) m(k, r) = k + 2
(

r − r
(k)
min

)

.

Furthermore, {Qk,r | r
(k)
min

≤ r ≤ r
(k)
max} forms a basis of Qk.

This result is similar to that proved in Proposition 4 for linear operators: up
to a scalar multiple there is only one quadratic autonomous operator with a given
order r, monomial deficiency k, and deficiency m(k, r). In Appendix A we show
the explicit form of these operators for n = 4, 5 and 6.

We will prove the theorem by finding a generating function for the operators
Qk,r. This requires some new notation. For a bivariate formal series,

p(z, w) =
∑

i,j≥0

pij ziwj ,

let us define

(64) G{p(z, w)} =
∑

i≥0

pi,iz
i

to be the series formed from terms where the two variables have equal exponents.
We will also adopt the convention that

(65)

(

a

i

)

=







a(a − 1) · · · (a − i + 1)

i!
, i ≥ 0

0 i < 0

Proof [ Proof of Theorem 2 ] We extend the definition (62) of Qk,r to all 0 ≤ r ≤ n
by setting

(66) Qk,r =

min(n,n+k)
∑

i=max(0,k)

(−1)i

(

i − k + 1

n − r + 1

)(

n − i

n − r

)

ui un+k−i.
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We can now form a generating function for Qk,r as follows:

Q(z, t) =
n
∑

k=−n

n
∑

r=0

Qk,r z
n−r

t
n−k

(67)

=

n
∑

i,j=0

n
∑

r=0

(−1)i

(

n − i

n − r

)(

n − j + 1

n − r + 1

)

uiuj z
n−r

t
2n−i−j

=
n
∑

i,j=0

(−1)i
z
−1G{z(1 + z)n−i(1 + w)n−j+1}uiuj t

2n−i−j

=
n
∑

i,j=0

n
∑

p,q=0

(−1)i

(

s

n − i − p

)

z
−1G{z(1 + z)n−i(1 + w)n−j+1}IpIq

ξs

s!
t
2n−i−j

,(68)

where s = 2n − i − j − p − q, and where we used relation (54) to replace the uj

with the Ij , the autonomous generators of maximal deficiency defined by (49). Let
us extend the definition of Ij to all j ≥ 0 by setting

(69) Ij =

j
∑

i=0

(−1)iun+i−j

ξi

i!
,

and agreeing that uj = 0 for j < 0. However, we must note that the newly
defined autonomous operators Ij , j > n are no longer maximal deficiency operators.
Interchanging the summation order in (68) and re-indexing with

i → n − p − i, j → n − q − j

we obtain

Q(z, t) =

n
∑

p,q=0

n−p
∑

i=0

n−q
∑

j=0

(−1)i

(

s

n − p − i

)

z
−1G{z(1 + z)n−i(1 + w)n−j+1}IpIq

ξs

s!
t
2n−i−j

=
n
∑

p,q=0

n−p
∑

i=0

n−q
∑

j=0

(−1)i

(

s

i

)

z
−1G{z(1 + z)p+i(1 + w)q+j+1}IpIq

ξs

s!
t
p+q+s

,

with s = i + j henceforth. Relation (54) holds for j < 0, thanks to the extended
definition (69) of Ij , j > n. Hence,

Q(z, t) =

2n
∑

p,q=0

2n−p−q
∑

i=0

2n−p−q−i
∑

j=0

(−1)i

(

s

i

)

z
−1G{z(1 + z)p+i(1 + w)q+j+1}IpIq

ξs

s!
t
p+q+s

=
2n
∑

p,q=0

2n−p−q
∑

s=0

s
∑

i=0

(−1)n−p−i

(

s

i

)

z
−1G{z(1 + z)p+i(1 + w)q+1+s−i}IpIq

ξs

s!
t
p+q+s

=
2n
∑

p,q=0

2n−p−q
∑

s=0

(−1)n−p
z
−1G{z(1 + z)p(1 + w)q+1(w − z)s}IpIq

ξs

s!
t
p+q+s(70)

For every positive integer s, let us introduce the generating function

(71) φ(p, q, s; z) = G{(1 + z)p(1 + w)q(w − z)s} =
∞
∑

ρ=0

φp,q,ρ,s zρ,

where

(72) φp,q,ρ,s =

ρ
∑

i=0

(−1)ρ−i

(

p

i

)(

q

2ρ − s − i

)(

s

ρ − i

)

,
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Thus,

φp,q,ρ,s = 0, s > 2ρ,(73)

φp,q,ρ,2ρ = (−1)ρ

(

2ρ

ρ

)

,

φp,q,ρ,2ρ−1 = (q − p)

(

2ρ − 1

ρ

)

,

φp,q,ρ,2ρ−2 =

((

q

2

)

−

(

p

2

))(

2ρ − 2

ρ

)

− p q

(

2ρ − 2

ρ − 1

)

Before continuing, let us note the following properties of this function:

φ(p, q, s; z) = (−1)sφ(q, p, s; z)(74)

φ(p, q, s + 1, z) = φ(p, q + 1, s; z)− φ(p + 1, q, s; z)(75)

This function is relevant to our proof, because

(76) G{z(1 + z)p(1 + w)q+1(w − z)s} = φ(p + 1, q + 1, s; z)− φ(p, q + 1, s; z).

Hence,

(77) Q(z, t) =

n
∑

k=−n

n
∑

r=0

2n
∑

s=0

Qk,r,s

ξs

s!
zn−r tn−k

where

Qk,r,s = Qk,n−ρ,s =
∑

p+q=n−k−s

(−1)n−p(φp+1,q+1,ρ+1,s − φp,q+1,ρ+1,s) IpIq,(78)

n
∑

r=0

Qk,r,sz
n−r =

∑

p+q=n−k−s

(−1)n−p
z
−1(φ(p + 1, q + 1, s; z) − φ(p, q + 1, s; z)) IpIq.(79)

Let m(k, r) denote the deficiency of Qk,r. By Proposition 1, m(k, r) is equal to n
minus the largest value of s for which Qk,r,s 6= 0. By (73) and (78), we know that
Qk,n−ρ,s = 0 for s > 2ρ + 2. For s = 2ρ + 2, we have

φp+1,q+1,ρ+1,2ρ+2 − φp,q+1,ρ+1,2ρ+2 = (−1)ρ+1

((

2ρ + 2

ρ + 1

)

−

(

2ρ + 2

ρ + 1

))

= 0,

and hence, Qk,n−ρ,s = 0 for s = 2ρ + 2.
The analysis now breaks up into two cases. Suppose that n − k is even. For

s = 2ρ + 1 we again use (73) and (78) to obtain

Qk,n−ρ,2ρ+1 =
∑

p+q=n−k−2ρ−1

(−1)n−p+ρ+1

(

2ρ + 1

ρ

)

IpIq = 0,

because of p, q symmetry. For s = 2ρ, we have

Qk,n−ρ,2ρ =
∑

p+q=n−k−2ρ

(−1)n−p−ρ (2r + p + q + 2)

2(ρ + 1)

(

2ρ

ρ

)

IpIq 6= 0.

Therefore, if n − k is even, we have m(k, r) = n − 2ρ = 2r − n. This agrees with
(63).

Next, suppose that n − k is odd. Now for s = 2ρ + 1 we have

Qk,n−ρ,2ρ+1 =
∑

p+q=n−k−2ρ−1

(−1)n−p+ρ+1

(

2ρ + 1

ρ

)

IpIq 6= 0,
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because now p and q have the same parity. Therefore, if n−k is odd, then m(k, r) =
n − 2ρ − 1 = 2r − n − 1. Again, this agrees with (63). �

7. Separation of variables in non-linear evolution equations

One of the main applications of the results of this paper lies in the method of
separation of variables in non-linear evolution equations. Let u ∈ Pn and T be a
non-linear differential operator with deficiency m ≥ 0. This means that TPn ⊂ Pn,
or more explicitly

(80) T

[

n
∑

i=0

pix
i

]

=

n
∑

i=0

fi(p1, . . . , pn)xi

The non-linear evolution equation

(81) ut = T [u] = p(x, u, u1, . . . , un)

admits separable solutions of the form

(82) u(x, t) =

n
∑

i=0

ϕi(t)xi,

where the functions ϕ(t) satisfy the following system of first order ordinary differ-
ential equations:

(83) ϕ̇i = fi(ϕ1, . . . , ϕn), i = 0, . . . , n.

These results extend immediately to the multivariate case. This technique has been
used by King to find new exact multidimensional solutions of non-linear diffusion
equations [16, 18] and exact solutions of high order thin film equations [17]. In a
more mathematical context, Galaktionov [15] and Svirshchevskii [19] have analyzed
non-linear operators that preserve low dimensional spaces spanned by polynomials
and trigonometric functions.
Example 4 Consider the following non-linear evolution equation for u = u(t, x):

(84) ut = 7

(

u uxxxx −
5

2
ux uxxx +

45

28
u2

xx

)

This equation has solutions in P8 of the form

(85) u(x, t) =
8
∑

i=0

ϕi(t)xi,

where the functions ϕi(t) satisfy the following first order system:

ϕ̇0 = 45 ϕ2
2 − 105 ϕ1ϕ3 + 168 ϕ0ϕ4

ϕ̇1 = 60 ϕ2ϕ3 − 252 ϕ1ϕ4 + 840 ϕ0ϕ5

ϕ̇2 = 90 ϕ3
3 − 132 ϕ2ϕ4 − 210 ϕ1ϕ5 + 2520 ϕ0ϕ6

ϕ̇3 = 108 ϕ3ϕ4 − 360 ϕ2ϕ5 + 420 ϕ1ϕ6 + 5880 ϕ0ϕ7

ϕ̇4 = 108 ϕ2
4 − 135 ϕ3ϕ5 − 330 ϕ2ϕ6 + 2205 ϕ1ϕ7 + 11760 ϕ0ϕ8

ϕ̇5 = 108 ϕ4ϕ5 − 360 ϕ3ϕ6 + 420 ϕ2ϕ7 + 5880 ϕ1ϕ8

ϕ̇6 = 90 ϕ3
5 − 132 ϕ4ϕ6 − 210 ϕ3ϕ7 + 2520 ϕ2ϕ8

ϕ̇7 = 60 ϕ5ϕ6 − 252 ϕ4ϕ7 + 840 ϕ3ϕ8

ϕ̇8 = 45 ϕ2
6 − 105 ϕ5ϕ7 + 168 ϕ4ϕ8
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Appendix A

In this Appendix we list the specialized autonomous operator basis Qk,r de-
scribed in Theorem 1. Recall that each Qk,r has monomial deficiency k, order
r, and deficiency m = m(k, r). The following tables for n = 4, 5, 6 display the
non-linear operators with {k, r, m} in the ranges

−n ≤ k ≤ n,

⌈

n + k

2

⌉

≤ r ≤ min(n, n + k), m = k + 2(r − rmin) .

Recall that an operator with deficiency m maps Pn to Pn−m, but not Pn−m−1.
Hence all operators with m ≥ 0 map Pn to Pn and can be used to construct an
evolution equation solvable by non-linear separation of variables.

Table 1. Quadratic autonomous operators acting on P4

k Qk,r m

-4 u2
0 -4

-3 u0u1 -3
-2 u2

1 3u2
1 − 4u0u2 -2 0

-1 u1u2 u1u2 − 2u0u3 -1 1
0 u2

2 2u2
2 − 3u1u3 u2

2 − 2u1u3 + 2u0u4 0 2 4
1 u2u3 u2u3 − 3u1u4 1 3
2 u2

3 u2
3 − 2u2u4 2 4

3 u3u4 3
4 u2

4 4

Table 2. Quadratic autonomous operators acting on P5

k Qk,r m

-5 u2
0 -5

-4 u0 u1 -4
-3 u2

1 4u2
1 − 5u0u2 -3 -1

-2 u1u2 3u1u2 − 5u0u3 -2 0
-1 u2

2 3u2
2 − 4u1u3 9u2

2 − 16u1u3 + 10u0u4 -1 1 3
0 u2u3 u2u3 − 2u1u4 u2u3 − 3u1u4 + 5u0u5 0 2 4
1 u2

3 2u2
3 − 3u2u4 u2

3 − 2u2u4 + 2u1u5 1 3 5
2 u3u4 u3u4 − 3u2u5 2 4
3 u2

4 u2
4 − 2u3u5 3 5

4 u4u5 4
5 u2

5 5
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Table 3. Quadratic autonomous operators acting on P6

k Qk,r m

-6 u2
0 -6

-5 u0 u1 -5
-4 u2

1 5u2
1 − 6u0u2 -4 -2

-3 u1u2 2u1u2 − 3u0u3 -3 -1
-2 u2

2 4u2
2 − 5u1u3 6u2

2 − 10u1u3 + 5u0u4 -2 0 2
-1 u2u3 3u2u3 − 5u1u4 2u2u3 − 5u1u4 + 5u0u5 -1 1 3
0 u2

3 3u2
3 − 4u2u4 9u2

3 − 16u2u4 + 10u1u5 u2
3 − 2u2u4 + 2u1u5 − 2u0u6 0 2 4 6

1 u3u4 u3u4 − 2u2u5 u3u4 − 3u2u5 + 5u1u6 1 3 5
2 u2

4 2u2
4 − 3u3u5 u2

4 − 2u3u5 + 2u2u6 2 4 6
3 u4u5 u4u5 − 3u3u6 3 5
4 u2

5 u2
5 − 2u4u6 4 6

5 u5u6 5
6 u2

6 6
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