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SUMMARY

Several works have reported that hematite has non-linear initial susceptibility at room

temperature, like pyrrhotite or titanomagnetite, but there is no explanation for the ob-

served behaviours yet. This study sets out to determine which physical property (grain-

size, foreign cations content, domain walls displacements) controls the initial suscepti-

bility. The performed measurements include microprobe analysis to determine magnetic

phases different to hematite; initial susceptibility (300K); hysteresis loops, SIRM and

backfield curves at 77K and 300K to calculate magnetic parameters and minor loops at

77K, to analyze initial susceptiblity and magnetization behaviours below Morin transi-

tion. The magnetic moment study at low temperatura is completed with measurements

of Zero Field Cooled- Field Cooled (ZFC-FC) and AC-susceptibility in a range from

5− 300K. The minor loops show that the non-linearity of initial susceptibility is closely

related to Barkhausen jumps. Because of initial magnetic susceptibility is controlled by

domain structure it is difficult to establish a mathematical model to separate magnetic

subfabrics in hematite-bearing rocks.
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1 INTRODUCTION

The theory of Anisotropy of Magnetic Susceptibility (AMS) assumes a linear relationship between

magnetization and applied field, that is, the initial susceptibility is field-independent (Tarling & Hrouda

1993). This theory is always valid for diamagnetic minerals, and for paramagnetic minerals when the

applied field is too small to align the magnetic moments or temperature is high enough to random-

ize the magnetic moments. In ferromagnetic minerals, this relationship is non-linear and susceptibil-

ity varies as a function of temperature and strength of applied field, although, the assumption that

the magnetization versus applied field is linear is generally acceptable for fields smaller than 1mT

(Tarling & Hrouda 1993). But there are certain ferromagnetic (s.l.) minerals which display an initial

field-dependent susceptibility. For example, pyrrhotite, whose field variation of susceptibility is con-

trolled by grain size (Worm 1991; Worm et al. 1993; de Wall & Worm 1993; Martı́n-Hernández et al.

2008); titanomagnetite, whose variation of susceptibility is controlled by their Ti content (Jackson

et al. 1998), or hematite, whose controlling factor of susceptibility behaviour is not well understood

(Hrouda 2002, 2007; Pokornỳ et al. 2004).

Field-dependent susceptibility can cause variations in the parameters of the AMS ellipsoid and

originates mistaken interpretations in magnetic fabrics studies and rock magnetism (Hrouda 2002;

Guerrero-Suarez & Martı́n-Hernández 2012). The variations of the susceptibility with field strength of

some minerals have been modelled mathematically by Hrouda et al. (2006) giving rise to a useful tool

to compute separation of magnetic subfabrics (Hrouda 2009; Hrouda & Ježek 2014), identification

of magnetic phases (Hrouda et al. 2006; Pokornỳ et al. 2006) and compositional analysis (Hrouda

& Ježek 2014). These models are precise in magnetite-titanomagnetite-bearing samples, but not in

hematite-bearing rocks, because the behaviour of initial susceptibility changes from one specimen to

another and the physical parameter that controls this behaviour is unknown (Hrouda 2002; Guerrero-

Suarez & Martı́n-Hernández 2012).

Some authors have hypothesized that the differences observed in initial susceptibility of hematite

samples are caused by measuring at fields high as those in which magnetization is in the irreversible

zone (Hrouda 2002). But Guerrero-Suarez & Martı́n-Hernández (2012) has recently proposed that the

domain orientation or displacements of Bloch walls might explain this phenomenon.

? Corresponding author: saguerre@ucm.es
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The current work aims to seek the mechanism that controls initial susceptibility as a function of

field strength. In particular, it will be checked which, among grain size, cations-content or domain

wall displacements, is responsible for the variation of susceptibility in the 2− 450A/m range.

1.1 Hematite at low temperature

Hematite (α−Fe2O3) is one of the most important carriers of remanent magnetization on Earth (Dun-

lop & Özdemir 2001) and a potential carrier of magnetic anomalies on the surface of Mars (Christensen

et al. 2000, 2001; Kletetschka et al. 2000b,a, 2005). It is the totally oxidized member of the Hematite-

Wüstite solid solution (Butler 1992) and has a magnetic transition at low temperature named Morin

transition (TM ∼ 250K) (Morin 1950). Above the transition, hematite has a spin-canted structure

with a small ferromagnetic moment constrained within the crystal basal plane (Morrish 1994). Be-

low the transition, all spins rotate out of the basal plane, becoming a pure antiferromagnetic mineral

with the spins lying along the c-axes (Fuller 1987). The mechanism is well explained by the classical

Dzyaloshinsky-Moriya theory (Dzyaloshinsky 1958; Moriya 1960). However, Morin transiton is in-

hibited by many factors, some of them being cation inclusions and defects (Morrish 1994), grain-size

(Özdemir et al. 2008) or accumulation of stress (Morrish 1994).

Besides spin-canted remanence, hematite has been reported to exhibt another magnetic moment

named defect moment (Dunlop 1971). This moment is resposible for the highly variable magnetic

properties of hematite and remains below the Morin transition temperature (Özdemir & Dunlop 2005,

2006; Martin-Hernandez & Hirt 2013). Both moments, defect and spin-canted, are not independent,

and a defect moment is necessary to renucleate the spin-canted moment during reheating through the

Morin transition (Dunlop & Özdemir 2001). Due to the complex magnetization mechanism and the

daily variation of temperature suffered on the red planet and some regions on Earth, magnetization of

hematite at low temperatures is of particular interest to understand how it is acquired and the rema-

nence can be modified after repeated cooling-heating cycles (Özdemir et al. 2008).

In this work, rock magnetic measurements have been realized at temperature below Morin transi-

tion (77K), where domains should have disappeared since hematite should behave as a pure antifer-

romagnet, unless the transition is inhibited or the sample has a defect moment. Cycling through the

Morin transition is not recomended as a method of domain structure cleaning because if the sample has

defect moment, this one enhances at the expense of spin-canted moment (Dunlop & Özdemir 2001).

But any irreversible change in the domain configuration caused by cycling through TM may be re-

flected in the behaviour of intial susceptibility (de Boer et al. 2001). To study the magnetic moment at

low temperature, ZFC-FC magnetization curves and AC-susceptibility measurements have been made

in the 5− 300K range.
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2 MATERIALS AND METHODS

Several factors have been analyzed like possible controllers of the initial susceptibility behaviours

reported in hematite by Guerrero-Suarez & Martı́n-Hernández (2012). The studied parameters are

grain size, magnetic phases different to hematite, magnetic parameters and domain wall displacements.

All measurements in hematite natural crystals have been carried out within the basal plane.

2.1 Sample description

Two types of hematite natural samples have been analyzed: crystals and powder fractions. The crystal

samples are from Minas Gerais (Brazil) and are labelled as 1A, 4A, 8A, 17B, 2E, 4E, 1G and 4N. These

samples are irregularly-shaped specimens with approximately 4mm lengths. The specimens labelled

by the same letter, like 1A, 4A and 8A indicate that they have been extracted from the same larger

crystal. These samples have been selected because exhibit the three initial susceptibility behaviour

reported by Guerrero-Suarez & Martı́n-Hernández (2012).

Initial susceptibility at room temperature, in a field range from 2 up to 450A/m, has been measured

on a KLY-4S Kappabridge susceptometer manufactured by AGICO (Brno, Czech Republic) (Pokornỳ

et al. 2004). The measurements were made in the laboratory of Paleomagnetism at Universidad Com-

plutense de Madrid (Spain). Other twin specimens coming from the same larger samples have already

been reported previously elsewhere (Guerrero-Suarez & Martı́n-Hernández 2012; Martin-Hernandez

& Guerrero-Suárez 2012).

The powder fractions have been analyzed to determine the influence of grain size as a controlling

factor of the initial susceptibility. This set of samples belong to the personal collection of prof. M.

J. Dekkers. They are labelled as LH4, LHC (of unknown origin) and LH6 (Hellivara, Lapland), have

known grain-sizes and were previously studied by Harstra (1982); Dekkers (1988); de Boer & Dekkers

(2001); de Boer et al. (2001).

2.2 Compositional analysis

Quantification of different existing phases have been determined by microprobe analysis. Microprobe

analysis of 4A, 2E, 1G, 4N and 8A crystal samples has been carried out in a superprobe JXA-8900M

manufactured by JEOL company (Tokyo, Japan) at ICTS Centro Nacional de Microscopı́a Electrónica

(Universidad Complutense de Madrid, Spain). This measurement indicates the amount in % of the fol-

lowing phases:Al2O3,MnO, TiO2,Cr2O3, Fe2O3 and SnO2. X-ray diffraction and mass spectrom-

etry measurements on twin crystals specimens can be found elsewhere (Guerrero-Suarez & Martı́n-

Hernández 2012; Martin-Hernandez & Guerrero-Suárez 2012). Similar characterization (microprobe
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analysis, x-ray diffraction, optical microscopy) was carried out in grain size fractions by other authors

and further compiled by de Boer & Dekkers (2001).

2.3 Rock Magnetic crystal characterization

Classical rock magnetic characterization of the sample’s basal plane has been determined in a Vibrat-

ing Sample Magnetometer (VSM) manufactured by Princeton Measurements Corporation (Princeton,

NJ, USA). The measurements were made at Institute for Rock Magnetism (University of Minnesota,

USA).

Measurements were carried out at two temperatures, 77K and 300K, in fields up to 1.5T. The

magnetic properties of the crystals include the three parameters derived from hysteresis loops (Mr,

Ms, and Bc) and acquisition of saturation isothermal remanent magnetization curves (SIRM) and the

coercivity of remanence obtained (Bcr) from further static demagnetization (backfield SIRM).

Additional thermomagnetic curves on twin specimens of hematite natural crystals can be found

elsewhere (Martin-Hernandez & Guerrero-Suárez 2012).

2.4 Minor loops

The variation of the initial susceptibility with applied field at 77K has been derived from a set of

minor loops measured on a VSM at Institute for Rock Magnetism (University of Minnesota, USA).

Magnetization was measured with an averaging time of 0.1 s and a field increment of 10−6T.

Initial induced magnetization can be reasonably described by the Rayleigh law, which character-

izes a minor loop by a quadratic expression (Néel 1953; Borradaile & Jackson 2004; Bozorth 1993):

M = (χinit + αH0)H ± α/2(H2
0 −H2) (2.1)

where the negative sign applies to the ascending branch of the minor loop and the positive sign to

the descending branch. H0 is the maximum applied field for every individual loop, χ is the initial

susceptibility and α is the Rayleigh coefficient. Magnetization curve have been fitted into a second

order polynomial in order to calculate the value of χ at different values of H0.

Minor loops at 77K are also illustrative of the magnetization process. Hysteresis bellow the Morin

transition indicates a magnetic moment at low temperatures. Wall domain displacements can also be

recognised by abrupt changes in these magnetization curves.

2.5 Low temperature remanence magnetization

The magnetic moment observed at low temperature can be analyzed by DC and AC measurements. DC

measurements like ZFC-FC, give information about the static moment or remanence. In this study, the
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remanence (SIRM) was measured on warming from 5K to 300K starting from two initial states, field-

cooled (FC) in 2.5T field and zero-field-cooled (ZFC), from 300K to 5K after which a saturating

field of 2.5T was imparted. The measurements were made on a MPMS susceptometer manufactured

by Quantum Design at Institute for Rock Magnetism (University of Minnesota, USA).

2.6 AC susceptibility

AC susceptibility is an effective tool for characterizing minerals owing to the time dependence of

the induced moments and magnetization dynamics. The magnetization behaviour at low frequencies

follows the M(H) curve that would be measured in a DC experiment. At higher frequencies, the

magnetization curve shows the dynamic effects in the samples.

The AC magnetic susceptibility measurements yields two quantities: the real or in-phase suscep-

tibility (χ′) and the imaginary or out-phase susceptibility. When the maximum applied field is very

small, the quadratic terms in 2.1 can be discarded and the initial susceptibility would be:

χ′ = χinit + αH0 (2.2)

where χ′ is named in-phase susceptibility. The out-of phase or imaginary component (χ′′), would be

defined by:

χ′′ = 4αH0/3π (2.3)

Both χ′ and χ′′ are very sensitive to thermodynamic phase changes. In particular, the in-phase

susceptibility informs about the dissipative processes and, as such, it has been classically fitted into

an Arrhenius equation that relates frequency and activation energy (Özdemir et al. 2009; Church et al.

2011). An estimation of the activation energy can be obtained of the relaxation phenomenon (Ea):

τ = τ0 exp
Ea

κBT
(2.4)

where the relaxation time, τ = (2πf)−1, is obtained from the measurement frequency, f . κB is the

Boltzmann constant and τ0 is the characteristic attempt time. For a given susceptibility, the slope of

the Arrhenius plot, where ln(τ) is represented as a function of 1/T , yields Ea/κB and the intercept

ln(τ0).

The frequency-dependent susceptibility was measured with a Quantum Design (Magnetic Prop-

erties Measurement System, MPMS) cryogenic susceptometer (San Diego, CA, USA) at Institute

for Rock Magnetism (University of Minnesota, USA). The measurements were made between 5 and

300K, in frequencies of 1, 3, 10, 30, 100, 300 and 1000Hz.
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Table 1. Summary of amount of cationsAl2O3,MnO, TiO2,Cr2O3, Fe2O3 and

SnO2 in % for samples 8A, 4N, 4A, 2E and 1G.

Al2O3 MnO TiO2 Cr2O3 Fe2O3 SnO2

Samples Mean std Mean std Mean std Mean std Mean std Mean

8A 0.028 0.013 0.030 0.023 3.22 0.22 0.122 0.033 96.34 0.69 0.020

4N 0.029 0.021 0.051 0.010 4.83 0.21 0.280 0.039 94.59 0.36 0.017

4A 0.051 0.008 0.032 0.026 2.73 0.06 0.088 0.043 96.76 0.31 0.042

2E 0.033 0.022 0.042 0.019 5.01 0.32 0.275 0.036 93.87 0.23 0.018

1G 0.017 0.012 0.021 0.011 2.93 0.32 0.107 0.042 95.68 0.56 0.011

3 RESULTS

3.1 Microprobe compositional analysis

Natural hematite grain-sizes fractions were invesigated by Harstra (1982) and further compiled by

de Boer & Dekkers (2001). The grain-size fractions were characterized using microprobe analysis

(chemical composition), x-ray diffraction (unit-cell parameters) and optical microscopy (shape and

lamellar twinning) (Table 1 from (de Boer & Dekkers 2001)). Composition is similar between local-

ities, with mayor abundance of Fe2O3 (∼ 98%) and minor phases TiO2 (∼ 0.1 − 0.5%), Al2O3

(∼ 0.6%) and Cr2O3 (∼ 0.25%).

The natural crystals have been characterized using microprobe analysis. The results summarized

in Table 1, indicate that Fe2O3 is the major phase with a minimun value of 94% in sample 2E and

a maximum value of 97% in sample 4A. These samples have relevant TiO2 abundances and Cr2O3.

The maximum value of TiO2 is 5% in samples 2E and 4N and the minimum value is 3% for the rest of

samples. The minimum of Cr2O3 is 0.1% for sample 1G and the maximum value is 0.3% for sample

4N. Although Cr2O3 is unusual in hematite crystals from other localities, has been reported in Minas

Gerais by many authors (Morrish 1994). MnO, Al2O3 and SnO2 are residual in composition (Table

1).

3.2 Initial susceptibility measurements

3.2.1 Grain-size fractions

The initial susceptibility (χinit) as a function of field strength (H) in the 2− 450A/m range is shown

in Fig. 1 for eight grain-size fractions, which correspond to three different samples LH4, LH6 and

LHC. The grain-size fractions range between 10 and 150µm and all of them are PSD or MD (Harstra

1982). The initial susceptibility behaviour is constant for the whole range of applied fields in these

samples, except for the largest grain-size fraction of LHC, whose susceptibility increases linearly

(∼ 4%) between 2 and 450A/m. The break in slope at 350A/m showed in all of these fractions has
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8 S. Guerrero-Suarez

an instrumental origin owing to the autoranging of the pick-up unit according to the measurement

experience.
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Figure 1. Initial susceptibility versus field runs for grain-size fractions natural hematites, from 10 up to 150µm.

3.2.2 Natural crystal samples

The χinit vsH curves obtained for eight crystal samples at room temperature are shown in Fig. 2. The

maximum value of susceptibility ranges between 0.2 − 0.9 SI, except sample 17B whose maximum

susceptibility is one order of magnitud less, 0.02 SI. Each of these curves can be classified as one of

the three categories in hematite natural crystals, as already reported by Guerrero-Suarez & Martı́n-

Hernández (2012). In the first type (i), the samples 17B, 8A, and 1G show a linear increase of χinit vs

H in the whole range of applied fields (up to 450A/m). The second type (ii), samples 4A, 2E and 4N,

shows a sudden change in slope. Sample 4A has two changes in slope at 100 and 250A/m. Sample 2E
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10 S. Guerrero-Suarez

also has two changes in slope but at 20 and 200A/m and the sample 4N at 20 and 250A/m. In the third

type (iii), the samples 4E and 1A, exhibit breaks in slope too, but the slope change from being positive

to negative. Sample 4E has this inflection point at 200A/m, from this field value up to 450A/m, the

susceptibility value decreases ∼ 12%. Sample 1A has the inflection point at 300A/m, but susceptibility

drop is slightly (∼ 4%).
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Figure 2. Initial susceptibility vs field runs for hematite natural crystals in the range from 2 to 450A/m, at room

temperature.

Fig. 3 shows the χinit vs H behaviour at 77K for the same eight crystal samples displayed in

Fig. 2 at room temperature. The χinit at 77K is computed as the linear term of the M(H) curve at the

end of the minor loops of magnetization. The error bars have been derived from the uncertainties of the

slope in the magnetization curves at 95% fiducial limit. In most of the samples, error bars are larger at

fields smaller than 100A/m, indicating that the measurement is less precise at low fields. Figs. 2 and 3

show that there is a big difference between the maximum value of susceptibility at 300K and at 77K,

except in sample 1A. Maximum susceptibility decreases ∼ 33% at 77K in samples 4A, 1G and 4E,

one order of magnitude less in samples 2E and 17B, and two orders of magnitude less in samples 8A
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and 4N. Fig. 3 shows that the linear fitting to the measured points is better in samples 8A, 1G, 17B,

2E and 4N. In the case of samples 17B, 2E and 4N, the fitting does not exclude a constant behaviour

for initial susceptibility. Sample 8A has a linear behaviour and sample 1G presents a change in slope

at 250A/m. Samples 1A, 4A and 4E display more than one change in slope for the whole range of

applied field (2− 450A/m).
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Figure 3. Initial susceptibility, derived from minor loops, vs field runs for hematite natural crystals in the range

from 2 to 450A/m, at low temperature (77K).

3.3 Rock magnetic parameters

Classical rock magnetic parameters derived from hysteresis loops, SIRM and back-field, obtained at

300K and 77K, are compiled in Table 2 and summarized in the Day plot of Fig. 4 (Day et al. 1977).

At 300K, only the sample 17B has a Mr/Ms ratio near 0.75, interpreted as a triaxial-dominated

anisotropy (Dunlop & Özdemir 2007; Martin-Hernandez & Guerrero-Suárez 2012). The rest of the

samples have aMr/Ms ratio smaller than 0.5, limit value interpreted as a uniaxial-dominated anisotropy

(Dunlop & Özdemir 2001). Mr/Ms ratios below 0.5 have already been reported for hematite natural
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Table 2. Magnetic parameters derived from hysteresis loops and backfield SIRM

for hematite natural crystals at both temperatures, 300 and 77K. Also the antifer-

romagnetic suscetibility.

Sample Bcr (mT) Bc (mT) Ms (Am2
/kg) Mr/Ms χant (SI) T (K)

17B 33 30 0.283 0.71 2.37 · 10−7 77

17B 25 14 0.393 0.65 2.66 · 10−7 300

1A 3 4 0.404 0.38 2.75 · 10−7 77

1A 3 2 0.433 0.23 2.53 · 10−7 300

1G 3 4 0.346 0.43 2.24 · 10−7 77

1G 2 2 0.482 0.20 2.44 · 10−7 300

2E 19 17 0.286 0.74 3.49 · 10−7 77

2E 6 7 0.395 0.30 2.96 · 10−7 300

4A 3 2 0.180 0.27 1.19 · 10−7 77

4A 3 3 0.475 0.30 2.32 · 10−7 300

4E 5 5 0.334 0.48 2.72 · 10−7 77

4E 2 2 0.455 0.16 2.52 · 10−7 300

4N 7 8 0.171 0.65 1.93 · 10−7 77

4N 2 3 0.445 0.33 2.93 · 10−7 300

8A 4 4 0.193 0.51 1.37 · 10−7 77

8A 2 2 0.225 0.23 1.43 · 10−7 300

crystals measured within the basal plane and natural bearing rocks (Martin-Hernandez & Guerrero-

Suárez 2012; Martin-Hernandez & Hirt 2013; Peters & Dekkers 2003).

At 77K, Mr/Ms increases in all samples except in sample 4A, where the difference of magneti-

zation ratios at both temperatures is 0.03, giving rise to an almost constant ratio. At this temperature,

magnetization ratio of samples 2E, 17B and 4N is nearly laying on the triaxial area, and the ratio of

samples 4E and 8A is almost in the uniaxial area, but the ratio of samples 1G and 1A is smaller than

0.5. Bcr/Bc decreases. Sample 2E coercivity ratio can be explained by a lack of precision.

Saturation magnetization of all samples is higher at 300K than at 77K and coercivity of rema-

nence for samples 17B, 2E and 4N is significantly higher at 77K than at 300K. The antiferromagnetic

susceptibility, or susceptibility above the saturation of the ferromagnetic phase, for all samples has the

same order of magnitude for both temperatures (Morrish 1994).
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uniaxial

triaxial

Figure 4. Day plot for the hematite natural crystals (Day et al. 1977). Open symbols represent measurements

at room temperature and full symbols correspond to measurements at 77K. Compilation of previously reported

values is also shown (gray squares (Martin-Hernandez & Guerrero-Suárez 2012) and gray triangles (Martin-

Hernandez & Hirt 2013)).

3.4 Minor loops

Besides initial susceptibility, Barkhausen jumps can be obtained from minor loops. Equation 2.1 de-

scribes the relationship between magnetization and applied field within the Rayleigh region (Bozorth

1993) Fig. 5 displays the magnetization gradient (Barkhausen jumps) as a function of applied field.

Samples 8A, 17B and 4N do not show magnetization gradients larger than signal noise. Sample 1G

and 4E have significant jumps above 250A/m and sample 4A below 250A/m.
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3.5 ZFC-FC remanence

The ZFC-FC curves are displayed in Fig. 6. These graphs show two types of the remanent magnetiza-

tion in the basal plane as a function of temperature (5−300K). Most of the samples have a decrease in

magnetization with increasing temperature, except sample 4N and 2E (Fig. 6 and Supplementary ma-

terial). These two samples (4N and 2E) have constant magnetization in FC warming and experiment

recovery of remanence in ZFC warming, at temperature higher than 30K. There are two common

features in all samples: the absence of a clear Morin transition and a remanence loss in the warming

curve at about ∼ 20K.

Morin transition, which is exclusive of hematite (Morin 1950) is characterized by a magnetization

drop when the temperature goes below ∼ 250K. In this set crystals, only samples 2E and 4N show

a magnetization decrease in ZFC until ∼ 30K (Fig. 6 and Supplementary material). However this

decrease is not a typical magnetization drop in hematite. Samples 17B and 8A exhibit an inflection

point in the magnetization at temperature around 200K, but with opposite trend, magnetization in-

creases slightly below 200K (Fig. 6 and Supplementary material). The rest of samples do not show

any special feature around the theoretical Morin temperature (Supplementary material).

All samples show a sharp drop of magnetization in FC and slight drop of magnetization in ZFC

in the range from 5 to ∼ 20K. During this range of temperature, the differences between MFC and

MZFC are larger and tend to vanish with increasing temperature, so above 20K ZFC-FC curves of

most of the samples are completely reversible. The irreversibility temperature (Tirr) reported in Table

3, is calculated as the temperature (in warming) at which the value of (MFC −MZFC)/MFC is less

than 1%. Almost all samples have a Tirr ∼ 20K, except samples 17B, 4N and 2E, whose Tirr are

25K, 40K and 255K, respectively. Sample 1A has another irreversibility region between 160−200K

and sample 8A shows irreversibility above 200K.

Another important parameter derived from ZFC curves is Tp, the temperature at which the ZFC

curve has an inflection point (cusp) or maximum. The Tp range is between 25− 35K (Table 3).
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Figure 5. Barkhausen jumps at 77K
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Figure 6. ZFC-FC from 5 to 300K for hematite natural crystals. a) sample 17B and b) sample 2E.

3.6 AC susceptibility

The in-phase susceptibility for the 5 − 300K temperature range and the corresponding Arrhenius

plot are summarized in Fig. 7 Specific values of the activation energy (Ea) and relaxation time are

summarized in Table 3. Two phenomena can be distinguished in Fig. 7: a relaxation phenomenon and

a phase transition.

Relaxation phenomenon starts around 20K for all samples and, depending on the frequency, ex-

tends up to a maximum temperature of about 150K in samples 1A and 4E (Supplementary material).

The samples with lower frequency dependece (17B, 4N and 2E) have a smaller relaxation time with
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Table 3. Summary of Activation energy (Ea), relaxation time (τ0), irreversible

temperature (Tirr) and inflection point temperature (Tp) for hematite natural crys-

tals.

Sample Ea(eV) τ0(s) Tirr(K) Tp(K)

1A 0.055 2.6 · 10−7 21.7 36.6

4A 0.054 1.5 · 10−7 21.6 36.6

8A 0.053 1.2 · 10−7 20.6 25.5

17B 0.050 1.1 · 10−9 25.5 25.5

2E 0.095 5.8 · 10−10 255.5 35.6

4E 0.054 1.7 · 10−7 20.6 30.6

1G 0.046 4.5 · 10−8 20.6 35.5

4N 0.053 1.8 · 10−9 40.5 30.6

values lower than 10−8 s (Table 3) and a χ′′ value smaller than 10−8 m3/kg, except the sample 2E,

whose χ′′ is bigger. However, despite the differences in the characteristic relaxation time, the acti-

vation energies are very similar, with a mean value of 0.053 eV, similar to the activation energy of

hematite nanoparticles reported in the literature (Tadić et al. 2007), except for sample 2E that has an

activation energy value of 0.095 eV. In the vicinity of the Morin transition a small increase in χ′ and in

χ′′ is observed in samples 1A, 8A, 4A, 17B, 4E and 2E. This cusp is a typical feature of susceptibility

parallel to the basal plane (Morrish 1994) at the Morin transition.
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4 DISCUSSION

The non-linear behaviour of the initial susceptibility on hematite with increasing field strength is a

behaviour reported in the recent years. Other common minerals in nature, like titanomagnetite or

pyrrhotite, show a dependence of initial susceptibility vs field with the amount of Ti and the grain size,

respectively (Jackson et al. 1998; Worm et al. 1993). In hematite, some authors have hypothesized that

the non linear behaviour of susceptibility is related to measurements made in fields higher than the

coercivity or outside the Rayleigh zone (Hrouda 2002). In the current study, the influence of magnetic

phases, grain size, magnetic parameters and domain walls displacements on the initial susceptibility

behaviour of hematite samples has been analyzed.

The major phase observed by microprobe analysis different to Fe2O3, in hematite crystal sam-

ples is TiO2, but it seems an unlikely dominant parameter controlling initial susceptibility. Data are

contradictory in this respect. While sample 4A is non linear and has the lowest Ti content, sample 8A

has the most linear behaviour and still a “moderate” Ti content with respect to other samples (Table 1

and Fig. 2).

Specific experiments on grain sized fractions exclude a possible influence of the physicl dimension

of grains (Fig. 1). The initial magnetic susceptibility is constant for all the analyzed samples, except

for LHC100-150 what shows a linear increase (Fig. 1). In this work, the strong variation of initial

susceptibility is only observed in natural crystals.

At the light of values compiled in Table 2, coercivity can also be rejected as a dominant factor

in the variation of initial susceptibility with field strength. Samples 8A, 4A and 4E, with the same

coercivity display the three types of behaviour: type i), ii) and iii), respectively (Fig. 2).

Minor loops measurements at 77K show most of the samples have open loops at low fields,

they suffer from hysteresis, so the applied field is out of the reversible zone. However, sample 2E

exemplarizes a case with linear susceptibility, but minor loops displaying hysteresis at 77K.

Comparing results from the Day plot (Fig. 4) and initial susceptibility at 330K and 77K (Figs. 2

and 3), data suggest that samples with Mr/Ms > 0.5 display linear or constant behaviour.

In a previous work, Guerrero-Suarez & Martı́n-Hernández (2012) suggested the influence of

the domain structure within the basal plane as a parameter controlling of initial susceptibility be-

haviour in hematite natural crystals. Minor loops measurements cannot provide information about

domain structure, but domain wall displacements can be recognised by abrupt changes in magnetiza-

tion (Barkhausen jumps). A closer look into Figs 3 (initial suscepibility at 77 k) and 5 (Barkhausen

jumps) shows that the susceptibility slope changes coincide with Barkhausen jumps. Fig. 8 displays the

comparison between the initial susceptibility at 77K, obtained by minor loops and the magnetization

gradient (Barkhausen jumps) as a function of field. Sample 1A shows a non-linear initial susceptibility
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Figure 7. AC-susceptibility for (a) sample 1G and (b) sample 17B. Inset: Arrhenius plot, it is obtained from the

temperature at which each curve crosses the dashed line.
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(Fig. 8a) where susceptibility slope changes are related to large increments of magnetization (Fig. 8b).

Fig. 8c corresponds to sample 17B, in this case the initial susceptibility is constant within error, and its

magnetization gradient, displayed in Fig. 8d, is lower than the signal noise. In summary, Fig. 8 shows

that the samples with significant jumps have non-linear initial susceptibility.
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Possible mechanisms causing Barkhausen jumps are: (1) nucleation of domain walls, the creation

and expansion of walls into the particle volume to produce a fully developed domain structure; and

(2) bulk pinning of full-scale domain walls (Coey 2010, 2001; Halgedahl & Fuller 1983; Menyeh &

O’Reilly 1995). Thermal effects are discarded because they are not relevant for the Barkhausen effect

in bulk three dimensional samples (Urbach et al. 1995). The main features of bulk pinning are high

susceptibility, low coercivity and domain wall displacements at low field (∼ 5− 10Oe) (Halgedahl &

Fuller 1983). Bulk pinning would also explain the negative slope in initial susceptibility in samples 4E

and 1A, but domain nucleation cannot be excluded from these measurements. On the contrary, domain

nucleation would explain the recovery magnetization in ZFC-FC curves of sample 2E above 30K and

the constant susceptibility at 77K in samples 2E, 4N and 17B. Therefore, a combination of domain

nucleation and pinning is proposed to explain the magnetization behaviour.

Samples with significant Barkhausen jumps show hysteresis phenomena at 77K too. This mag-

netic moment is analyzed from ZFC-FC curves and AC-susceptibility measurements. ZFC-FC curves

yield anomalous results for hematite crystals, none of the samples exhibit Morin transition. There are

several reasons for Morin transition being suppressed, among the most relevant one could cite Ti or

grain size. Titanium is known to suppress the transition in concentrations as low as less than 1% (Kaye

1962; Morrish 1994), and the TiO2 minimum value of our samples is 3% (Table 1). However contrary

to expectations, samples with an inflection at the Morin temperature have the highest TiO2 content

(Table 1, Fig. 6, left column). In this study, in most of the samples (Fig. 6 and Supplementary mate-

rial) the ZFC-FC continuously increases with decreasing temperature at applied field of 2.5T, which

is characteristic from nano-systems but not from bulk materials or structures with a diameter higher

than 40 nm (Luna et al. 2012; Bhowmik & Saravanan 2010). In nano-structures, remanence increase

is related to surface anisotropy increase (Coey 2010).

According to the classical Preisach model, the temperature dependence of the magnetic response

below a critical temperature (e.g. the Morin transition) has two possible sources: (a) intrinsic to the

system, such as the spontaneous moment and the free energy barriers or (b) extrinsic to the system,

such as thermal fluctuations which reduce all of the subsystem energy barriers (Bertotti 1998). The

systems with intrinsic sources are denominated anisotropy-dominated systems, and those dominated

by extrinsic sources are named fluctuation-dominated systems (Song et al. 2001). The behaviour of

ZFC-FC curves is different for anisotropy-dominated and fluctuation-dominated systems (Song et al.

2001).

The range of temperature where the diffence between FC and ZFC is statistically significant (ir-

reversible zone) is very low in this study, the Tirr value is around 20K for many samples (except

2E, 4N and 17B), well below the temperature range at which susceptibility is low-field analyzed.
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Figure 8. Low-field susceptibility at 77K obtained by minor loops and Barkhausen jumps for the samples 1A

and 17B.
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Two mechanisms could explain the low value of the irreversible temperature, either the relaxation

mechanism is the same for both FC and ZFC curve for most of the temperature range, or the applied

field is high enough to saturate the irreversible effects. A closer look into the imaginary part of the

AC susceptibility, which reveals the irreversible magnetization mechanism, suggests that the second

mechanism (field not high enough to saturate irreversible effects) is more likely to happen. The rea-

son for the irreversibility might be magnetic frustrations, arising from the competing ferromagnetic

and antiferromagnetic exchange, besides deformed lattices and random distribution of the magnetic

cations. In particular, samples 2E and 4N, which have the highest Tirr, have also higher coercivity at

77K, a plateau in FC between Tp and Tirr (indicative of high interactions of the system) and low fre-

quency dependence, all typical features of interactions of exchange bias type between ferromagnetic

and antiferromagnetic phases (Coey 2010).

At low temperature, below 20K, an abrupt increase of magnetization occurs and the difference

between ZFC and FC is meaningful, suggesting the presence of long-range magnetic ordering. This

may be due to the spin-glass like behaviour observed previously by Ishikawa et al. (1985).Moreover,

MFC decreases sharply with increasing temperature and there is not a plateau in low temperature (5−

20K), indicating the low interaction of the system (Fig. 5). ZFC curve shows a smooth inflection point

around 20K and increases at low temperature, this behaviour indicates that the system is dominated

by anisotropy (Song et al. 2001). The inflection point in ZFC is attibuted to some domains that do

not rotate around the applied field (Fig. 5). These domains might correspond to crystallites oriented

outside the basal plane. After the highest magnetization loss in ZFC-FC curves (Figs. 5 and 6), there is

dispersion of susceptibility with frequency that starts at Tp (Figs. 7 and Supplementary material). The

activation energy computed (Table 3) is also similar to that of superparamagnetic hematite particles

(Tadić et al. 2007).

In this study, AC-susceptibility experiment has been a more sensitive tool than ZFC-FC curves to

detect the Morin transition. In ZFC-FC curves, the samples exhibit a slight change around the Morin

temperature, except samples 1A, 4A, 1G and 4E. In AC-susceptibility curves, the samples display a

sharp inflection point in χ′ or χ′′, around the Morin temperature, except samples 1G and 4N (Morrish

1994).

5 CONCLUSION

The main aim of this work is to determine what property controls initial susceptibility as a function

of field strength in hematite samples: grain-size, cation inclusions or domain wall displacements. The

results show that:
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· Known grain-size fractions, in the range of 5 − 150µm, display constant initial susceptibility,

except for sample LHC100-150 that exhibits slight linear increase.

· Magnetic phases different to hematite, particularly TiO2, do not show a direct correlation with

the variations of initial susceptibility with increasing field.

· The changes of susceptibility slope at low-field correspond to domain wall displacements (Barkhausen

jumps).

· The non-linerarity of initial susceptibility increases with increasing magnetization gradient (Barkhausen

jumps), obtained from minor loops. To the best of the authors’ knowledge, these minor loops are the

first curves that have been reported for hematite natural crystals at low temperature 77K.

· Initial susceptibility at 300K achieves its maximum in samples 4E and 1A, and then decreases

along with the magnetic field. This behaviour may be caused by domain walls pinning.

· Almost all of the samples, except samples 2E and 4N, display ZFC-FC curves similar to nano-

structures with diameter less than 40 nm. ZFC-FC magnetization and AC susceptibility have similar

behaviour to acicular nanoparticles with low interactions, because the distance between particles is

higher than their grain size. In-phase susceptibility, in particular, shows an activation energy in the

range 20− 90K similar to that of hematite nanoparticles.

· All crystals show spin-glass like behaviour between 5 − 20K and frequency-dependence in AC

susceptibility for temperatures higher than 20K.

In summary, the initial susceptibility of hematite natural crystals is controlled by domain struc-

ture, what invalidates a model that can be used to separate magnetic subfabrics mathematically as

the models proposed by Hrouda (2011) for pyrrhotite and titanomagnetite. The differences observed

in magnetization behaviour (ZFC-FC) may be related to the origin of magnetic interactions between

ferromagnetic and antiferromagnetic phases, such as exchange bias or exchange coupling between

magnetic clusters. The exchange bias would explain the behaviour of samples 2E and 4N, while Fe-

rich clusters with strong intra-cluster magnetic coupling but weak inter-cluster coupling would explain

the behaviour of the rest of the samples. Similar results have been reported in ilmenite-hematite solid

solution (Harrison & Redfern 2001) and synthetic hematite (Ishikawa et al. 1985). But in order to

verify this hypothesis, it would be useful to observe the domains with TEM, MOKE or some other

imaging technique and/or rotational hysteresis determination. Also low-temperature hysteresis after

field cooling is recomended.
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Figure A8. ZFC-FC from 5 to 300K for hematite natural crystals. a) sample 1A and b) sample 1G.
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Figure A9. ZFC-FC from 5 to 300K for hematite natural crystals. a) sample 4A and b) sample 4E.
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Figure A10. ZFC-FC from 5 to 300K for hematite natural crystals. a) sample 1G and b) sample 17B.
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Figure A11. AC-susceptibility.
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Hrouda, F., Chlupáčová, M., & Mrázová, Š., 2006. Low-field variation of magnetic susceptibility as a tool for

magnetic mineralogy of rocks, Physics of the Earth and Planetary Interiors, 154(3), 323–336.

Ishikawa, Y., Saito, N., Arai, M., Watanabe, Y., & Takei, H., 1985. A new oxide spin glass system of (1-x)

fetio3–x fe2o3. i. magnetic properties, Journal of the Physical Society of Japan, 54(1), 312–325.

Jackson, M., Moskowitz, B., Rosenbaum, J., & Kissel, C., 1998. Field-dependence of ac susceptibility in

titanomagnetites, Earth and Planetary Science Letters, 157(3), 129–139.

Kaye, G., 1962. The effect of titanium on the low temperature transition in natural crystals of haematite,

Proceedings of the Physical Society, 80(1), 238.

Kletetschka, G., Wasilewski, P. J., & Taylor, P. T., 2000a. Hematite vs. magnetite as the signature for planetary

magnetic anomalies?, Physics of the Earth and Planetary Interiors, 119(3), 259–267.

Kletetschka, G., Wasilewski, P. J., & Taylor, P. T., 2000b. Mineralogy of the sources for magnetic anomalies

on mars, Meteoritics & Planetary Science, 35(5), 895–899.

Kletetschka, G., Ness, N. F., Connerney, J., Acuna, M., & Wasilewski, P., 2005. Grain size dependent potential

 by guest on A
pril 8, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/
https://www.researchgate.net/publication/222149556_A_Thermodynamic_Theory_of_Weak_Ferromagnetism_of_Antiferromagnetics?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/222149556_A_Thermodynamic_Theory_of_Weak_Ferromagnetism_of_Antiferromagnetics?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/258965573_9_Experimental_Methods_in_Rock_Magnetism_and_Paleomagnetism?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/258965573_9_Experimental_Methods_in_Rock_Magnetism_and_Paleomagnetism?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/225578563_Magnetic_anisotropy_of_hematite_natural_crystals_Increasing_low-field_strength_experiments?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/225578563_Magnetic_anisotropy_of_hematite_natural_crystals_Increasing_low-field_strength_experiments?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/251441465_The_dependence_of_magnetic_domain_structure_upon_magnetization_state_with_emphasis_upon_nucleation_as_a_mechanism_for_pseudo-single-domain_behavior?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/251441465_The_dependence_of_magnetic_domain_structure_upon_magnetization_state_with_emphasis_upon_nucleation_as_a_mechanism_for_pseudo-single-domain_behavior?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/251441465_The_dependence_of_magnetic_domain_structure_upon_magnetization_state_with_emphasis_upon_nucleation_as_a_mechanism_for_pseudo-single-domain_behavior?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/225495949_Short-_and_long-range_ordering_in_the_ilmenite-hematite_solid_solution?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/225495949_Short-_and_long-range_ordering_in_the_ilmenite-hematite_solid_solution?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/229540296_Low-field_variation_of_magnetic_susceptibility_and_its_effect_on_the_anisotropy_of_magnetic_susceptibility_of_rocks?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/229540296_Low-field_variation_of_magnetic_susceptibility_and_its_effect_on_the_anisotropy_of_magnetic_susceptibility_of_rocks?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/225169510_Anisotropy_of_magnetic_susceptibility_of_rocks_in_the_Rayleigh_Law_region_Modelling_errors_arising_from_linear_fit_to_non-linear_data?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/225169510_Anisotropy_of_magnetic_susceptibility_of_rocks_in_the_Rayleigh_Law_region_Modelling_errors_arising_from_linear_fit_to_non-linear_data?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/248242758_Determination_of_field-independent_and_field-dependent_components_of_anisotropy_of_susceptibility_through_standard_AMS_measurement_in_variable_low_fields_I_Theory?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/248242758_Determination_of_field-independent_and_field-dependent_components_of_anisotropy_of_susceptibility_through_standard_AMS_measurement_in_variable_low_fields_I_Theory?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/226231806_Anisotropy_of_Magnetic_Susceptibility_in_Variable_Low-Fields_A_Review?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/226231806_Anisotropy_of_Magnetic_Susceptibility_in_Variable_Low-Fields_A_Review?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/260112589_Frequency-dependent_AMS_of_rocks_A_tool_for_the_investigation_of_the_fabric_of_ultrafine_magnetic_particles?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/260112589_Frequency-dependent_AMS_of_rocks_A_tool_for_the_investigation_of_the_fabric_of_ultrafine_magnetic_particles?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/248216427_Low-field_variation_of_magnetic_susceptibility_as_a_tool_for_magnetic_mineralogy_of_rocks?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/248216427_Low-field_variation_of_magnetic_susceptibility_as_a_tool_for_magnetic_mineralogy_of_rocks?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/248216427_Low-field_variation_of_magnetic_susceptibility_as_a_tool_for_magnetic_mineralogy_of_rocks?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/239648933_A_new_Oxide_spin_glass_system_of_1_-xFeTiO3-xFe2O3_I_Magnetic_properties?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/239648933_A_new_Oxide_spin_glass_system_of_1_-xFeTiO3-xFe2O3_I_Magnetic_properties?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/223617535_Field-dependence_of_AC_susceptibility_in_titanomagnetites?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/223617535_Field-dependence_of_AC_susceptibility_in_titanomagnetites?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/243670490_The_Effect_of_Titanium_on_the_Low_Temperature_Transition_in_Natural_Crystals_of_Haematite?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/243670490_The_Effect_of_Titanium_on_the_Low_Temperature_Transition_in_Natural_Crystals_of_Haematite?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/222664389_Hematite_vs_Magnetite_as_the_signature_for_planetary_magnetic_anomalies?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/222664389_Hematite_vs_Magnetite_as_the_signature_for_planetary_magnetic_anomalies?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/227780093_Mineralogy_of_the_source_for_magnetic_anomalies_on_Mars?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==
https://www.researchgate.net/publication/227780093_Mineralogy_of_the_source_for_magnetic_anomalies_on_Mars?el=1_x_8&enrichId=rgreq-2af1fca1d74381066c68aaceafbe41b8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTk3ODk1OTtBUzozNDg1NTkwOTEyMjQ1NzZAMTQ2MDExNDM3MTMwOQ==


34 S. Guerrero-Suarez

for self generation of magnetic anomalies on mars via thermoremanent magnetic acquisition and magnetic

interaction of hematite and magnetite, Physics of the Earth and Planetary Interiors, 148(2), 149–156.

Luna, C., Vega, V., Prida, V. M., & Mendoza-Reséndez, R., 2012. Morin transition in hematite nanocrystals

self-assembled into three-dimensional structures, Journal of nanoscience and nanotechnology, 12(9), 7571–

7576.
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Özdemir, Ö., Dunlop, D. J., & Berquo, T. S., 2008. Morin transition in hematite: Size dependence and thermal

hysteresis, Geochemistry, Geophysics, Geosystems, 9(10).
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