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Results: Between 250 and 900CE, the vegetation above 1700 ma.s.l. consisted of
subalpine scrubland and scattered P. sylvestris trees/stands. Pinewoods with Betula
were widespread at slightly lower elevation. This vegetation was resilient to moderate
fire disturbance associated with limited pastoral activities. In contrast, enhanced fire
occurrence alongside heavier pastoralism led to the demise of pinewoods and their
replacement with Betula stands, subalpine scrublands, and meadows between 900
and 1100 CE. Later, the subalpine scrubland-birch tree line did not respond to Little
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1 | INTRODUCTION

High-mountain ecosystems like the upper forest line (or timber-
line), the tree line ecotone, and the subalpine meadows and scrub-
lands are particularly sensitive to changes in both climate and land
use (Ameztegui et al., 2016; Camarero & Gutiérrez, 2004; Gehrig-
Fasel et al.,, 2007; Steinbauer et al., 2018). Investigating their
dynamics over long time-scales, in response to both changing cli-
matic conditions and human activities, is therefore highly relevant
to assess their current status, predict their future developments,
and adapt their management if needed. In this regard, the Late
Holocene constitutes an ideal period to explore long-term vege-
tation change because of the notable climatic variability (Bliintgen
et al.,, 2011; Mann, 2007; Martin-Chivelet et al., 2011) and the
significant socio-economic changes occurred (Deza-Araujo
et al., 2020). In line with this, previous palaeoecological research
in the mountains of Central and Southern Europe has highlighted
the importance of accounting for long-term interactions between
climate, land use and vegetation to understand present-day land-
scapes (Feurdean & Willis, 2008; Morales-Molino et al., 2021;
Schworer et al., 2015).

Spatially precise reconstructions of tree line dynamics require
plant macrofossil analysis (Birks & Birks, 2000). The remarkable
paucity of macrofossil-stratigraphic records from the mountains of
Southern Europe (Allen et al., 1996; Cagliero et al., 2021; Leunda
et al.,, 2019; Morales-Molino et al.,, 2021; Sanchez Gofii &
Hannon, 1999; Tinner et al., 2016; Turner & Hannon, 1988) has se-
riously hampered tracking forest and tree line shifts through time
in response to environmental and anthropogenic forcing. Moreover,
although recent research has underlined the usefulness of inte-
grating pollen, plant macrofossils, conifer stomata, charcoal and
coprophilous fungi to investigate the timing and impact of transhu-
mant herding and fire on the high-elevation landscapes of Southern
Europe, studies applying the multiproxy approach are still notably
rare (e.g., Cagliero et al., 2021; Leunda et al., 2019; Lépez-Merino

Ice Age cooling. However, further intensification of transhumant herding between
1300 and 1860CE (‘La Mesta’) triggered birch decline and the establishment of the
modern treeless landscape.

Main conclusions: The extant high-elevation vegetation of the Cantabrian Range
is largely the legacy of intensive land use starting more than one millennium ago.
Recurrent and severe fires to promote pasturelands led to the regional extirpation of
the previously widespread Pinus sylvestris. Future management should aim at preserv-
ing the valuable cultural open landscape of mountain scrubland and meadows and

also at restoring patches of ancient pine-birch woodlands.

charcoal, cultural landscapes, heathlands, human impact, palaeoecology, Pinus sylvestris, plant
macrofossils, pollen, Spain, transhumance

et al., 2009). Additionally, most available palaeoecological records
from the mountains of Southern Europe do not have sufficiently pre-
cise chronologies for the Late Holocene because they often focused
on older periods (see Table 1). All in all, there is significant room
for improving our current knowledge of the dynamics of southern
European mountain vegetation during the past centuries and mil-
lennia and thus reinforcing our understanding of the origins of the
modern landscapes.

The Cantabrian Range, in northern lberia, is particularly well
suited to investigate the impact of climate change and land use
on long-term vegetation dynamics for the following reasons: (i) its
location on the oceanic-Mediterranean boundary near the North
Atlantic makes it particularly sensitive to climate change, and
(i) the long history of exploitation of its high-elevation pastures
with various transhumant herding systems (Gonzalez-Alvarez
et al., 2016). Indeed, for the past few decades the Cantabrian
Range has been one of the areas in Southern Europe most in-
tensively studied from a palaeoecological point of view. The
numerous pollen records published have notably improved our
knowledge about the postglacial vegetation dynamics in the area
(e.g., Allen et al., 1996; Mufioz Sobrino et al.,, 2001; Sanchez-
Morales et al., 2022; Figure 1). However, most available studies
have focused on the responses of vegetation to the Lateglacial and
Early Holocene climatic oscillations (e.g., Jalut et al., 2010; Munoz
Sobrino et al., 2007, 2013), and detailed well-dated multi-proxy
records focusing on Late Holocene landscape changes are rare
(Garcia-Anton et al., 1997; Morales-Molino et al., 2011). Finally,
palaeoecological research drawing on specific proxies for fire
(charcoal) and pastoralism (dung fungi) is almost lacking in the
region (but see Carracedo et al., 2018; Garcia-Anton et al., 1997,
Morales-Molino et al.,, 2011; Pérez-Diaz et al., 2016), despite
fire and transhumance are commonly considered major mod-
ellers of today's high-elevation Cantabrian landscape (Ezquerra &
Rey, 2011). This knowledge gap is particularly relevant because
the combined impact of fire and heavy pastoral farming has been
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TABLE 1 Pinus pollen declines and/or Pinus sylvestris (or P. sylvestris type) macrofossil evidence during the Late Holocene (from c.
2250BCE to present) in the upper montane and subalpine vegetation belts of the Cantabrian Range (northern Iberia)

Elevation Pinus pollen decline (P)/
Site name (no. in Figure 1) Latitude (N) Longitude (W) (ma.s.l.) macrofossil presence (M)? References
Lago del Ausente® (1) 43°02'36" 5°21'11" 1740 700CE (P) This study
900CE (P)
850CE (M)
Lago de la Bana (6) 42°15'11" 6°45'17" 1450 50BCE (P) Janssen (1996)
Xan de Llamas® (10) 42°18'15" 6°19'17" 1500 1250BCE (P) Morales-Molino et al. (2011)
Laguna del Castro/ 42°56'59" 6°15'37" 1310 100BCE(?) (P) Jalut et al. (2010)
Villaseca (11)
Laguna del Miro/La Mata 42°58'04" 6°13'31" 1500 100BCE (P) Jalut et al. (2010)
(13) 500CE(?) (P)
Lago de Ajo (14) 43°02'27" 6°08'21" 1570 1200BCE(?) (P) Allen et al. (1996)
Laguillin (16) 42°52'51" 6°02'25" 1780 2100BCE (P) Garcia-Rovés (2007); Carridn
900BCE(?) (P) et al. (2012)
Puerto de San Isidro (20) 43°03'25" 5°23'00" 1650 1100BCE(?) (P) Fombella et al. (2001); Carrion
200BCE(?) (P) etal. (2012)
Lillo-11° (21) 43°04'34" 5°16'00" 1500 1100CE (P) Mufioz Sobrino et al. (2003)
Pinar de Lillo® (22) 43°03'39" 5°15'42" 1360 1100CE (P) Garcia-Anton et al. (1997)
1200CE (P)
Puertos de Riofrio (25) 43°02'12" 4°41'49" 1760 300BCE (P) Menéndez Amor and
500CE(?) (P) Florschiitz (1963)
Cueto de la Avellanosa 43°06'50" 4°21'55" 1340 1000BCE (P) Mariscal (1983); Carrion
(26) etal. (2012)
Zalama® (27) 43°08'06" 3°24'35" 1330 1000BCE (P) Pérez-Diaz et al. (2016)
Pobladura de la Sierra (8) 42°24'39" 6°28'12" 1550 630BCE (M) Ezquerra et al. (2019)
970BCE (M)
Vega de Viejos (12) 42°57'57" 6°14'00" 1300 1040BCE (M) Rubiales et al. (2008)
220BCE (M)
Mena de Babia (15) 42°55'18" 6°07'15" 1650 570CE (M) Rubiales et al. (2012)
Aralla de Luna (17) 42°53'44" 5°50'02" 1530 390CE (M) Rubiales et al. (2012)
Valle de Riopinos (18, 19) 43°02'52" 5°25'00" 1650 900BCE (M) Sanchez-Hernando
43°02'08" 5°26'00" 1430 60BCE (M) et al. (1999)
Rubiales et al. (2012)
Lldnaves de la Reina (23) 43°02'52" 4°46'59" 1450 550CE (M) Sanchez-Hernando
et al. (1999)
Valle de Pineda (24) 42°59'00" 4°37'57" 1450 50BCE (M) Ezquerra (2015)

?(?) denotes uncertain ages due to poorly constrained age-depth models.

bPalaeoecological records with two or more absolute dates for the past approximately two millennia.

hypothesised to be the main driver of the Late Holocene decline of
Cantabrian mountain pine forests (Rubiales et al., 2008, 2012), but
empirical data to test this hypothesis are largely missing.

In this article, we present a new high-resolution, well-dated and
multiproxy palaeoecological record (pollen, fern spores, dung fungi
spores, conifer stomata, plant macrofossils and microscopic char-
coal) from Lago del Ausente (northern Iberia) that spans the past c.
2000years. We reconstruct vegetation, fire and land-use history at
high elevation in the Cantabrian Range with the following aims: (i)
disentangling the legacy of historical land use from the impact of
past climatic variability on today's landscape and (ii) refining the
knowledge of the long-term ecology of high-elevation Cantabrian

vegetation, with particular focus on the striking decline of mountain

pinewoods.

2 | MATERIALS AND METHODS

2.1 | Studysite

Lago del Ausente (43°02'36.0"N, 005°21'10.9"W, 1740 ma.s.l.) is
a small (~3.5 ha) glacial lake (maximum water depth 13.4m) located
in the headwaters of the River Porma on the southern slope of the
Cantabrian Range (northern Spain; Figure 1). The hydrological lake
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FIGURE 1 (a) Current distribution of natural Pinus sylvestris stands in southwestern Eurasia (Caudullo et al., 2017), and situation of the

study area in north-western Iberia. (b) Location of the study site (1 Lago del Ausente) and other palaeoclimatic/palaeoecological sites in the
Cantabrian Range, the Galician Mountains (southwest) and the Northern Iberian Range (southeast). The current natural distribution of P. sylvestris
in northern lberia is also shown. (c) Detailed elevation map of Lago del Ausente, its catchment, and the location of isolated natural P. sylvestris
trees (Ezquerra & Garcia, 2017). Sites: 1 Lago del Ausente (this study), 2 caves: 2.1 Kaite Cave, 2.2 Cueva del Cobre, 2.3 Cueva Mayor (Martin-
Chivelet et al., 2011), 3 Lagoa de Lucenza (Mufioz Sobrino et al., 2001), 4 Pozo do Carballal (Mufioz Sobrino et al., 1997), 5 Laguna de la Roya
(Allen et al., 1996), 6 Lago de la Baia (Janssen, 1996), 7 Pena Velosa (Mufioz Sobrino et al., 2012), 8 Pobladura de la Sierra (Ezquerra et al., 2019),
9 Puerto de Leitariegos (Carrion et al., 2012; Garcia-Rovés, 2007), 10 Xan de Llamas (Morales-Molino et al., 2011), 11 Laguna del Castro (Jalut

et al., 2010), 12 Vega de Viejos (Rubiales et al., 2008), 13 Laguna del Miro (Jalut et al., 2010), 14 Lago de Ajo (Allen et al., 1996), 15 Mena de Babia
(Rubiales et al., 2012), 16 Laguillin (Carridn et al., 2012; Garcia-Rovés, 2007), 17 Aralla de Luna (Rubiales et al., 2012), 18-19 Valle de Riopinos
(Rubiales et al., 2012; Sanchez-Hernando et al., 1999), 20 Puerto de San Isidro (Carrién et al., 2012; Fombella et al., 2001), 21 Lillo-Il (Mufioz
Sobrino et al., 2003), 22 Pinar de Lillo (Garcia-Antén et al., 1997), 23 Llanaves de la Reina (Sanchez-Hernando et al., 1999), 24 Valle de Pineda
(Ezquerra, 2015), 25 Puertos de Riofrio (Menéndez Amor & Florschiitz, 1963), 26 Cueto de la Avellanosa (Carrion et al., 2012; Mariscal, 1983), 27
Zalama (Pérez-Diaz et al., 2016), 28 las Pardillas Lake (Sanchez Gofi & Hannon, 1999), 29 Quintanar de la sierra (Pefalba, 1994), 30 Laguna Grande
(Ruiz-Zapata et al., 2002), 31 Hoyos del Iregua (Gil-Garcia et al., 2002). Map projection: WGS84.
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catchment extends over c. 45 ha, spanning an elevation range be-
tween 1740 and 2041 ma.s.l., and there is no relevant inlet stream
(Figure 1). The bedrock is siliceous, comprising Ordovician quartz-
ite, conglomerate, slate and sandstone. The climate is mountain
oceanic, corresponding to the Dsc type (cold with dry and cool
summer) of the Képpen-Geiger classification. At the Puerto de
San Isidro weather station (1540 ma.s.l.), located c. 3km away
anuary (cold-
(warmest month) are 5.7, 0 and 13.4°C, re-
spectively. Mean annual precipitation amounts to 1290 mm and
P to 172.6 mm (P,

July-September
drought. Extant vegetation in the catchment is treeless, domi-

from Lago del Ausente, mean annual temperature, T,
est month) and TJuly

ugust 48.4mm), so there is no summer
nated by subalpine scrublands (Cytisus oromediterraneus, Erica
spp., Daboecia cantabrica, Calluna vulgaris, Halimium lasianthum
subsp. alyssoides, Vaccinium myrtillus, Juniperus communis subsp.
alpina) and meadows (Figure S1). The broader high-elevation
landscape around Lago del Ausente is also largely deforested and
dominated by scrublands and grasslands. Trees are restricted to
some sparse stands of Betula pubescens, few scattered natural
Pinus sylvestris trees (Figure 1), and pine reforestations (mainly P.
sylvestris) carried out from c. 1970 CE onwards. Regionally, natural
high-elevation forest vegetation consists of Fagus sylvatica (up to
1700 ma.s.l.), B. pubescens (reaching 1800-2100 ma.s.l.), P. sylves-
tris (up to 1900 ma.s.l.), Quercus petraea (up to 1600 ma.s.l.) and
Q. robur (up to 1850 ma.s.l.) stands. Natural occurrences of P. syl-
vestris in the central Cantabrian Range are highly fragmented and
limited to three major relict pinewoods (Pinar de Lillo—~300ha-,
Redipollos—~20ha-, and Velilla del Rio Carrion—~40ha-, located
~7,9,and 50km away from Lago del Ausente, respectively), as well
as few smaller stands and scattered individuals mostly in the River
Porma headwaters (Figure 1; Ezquerra & Garcia, 2017).

2.2 | Coring, dating, and age-depth modelling

On September 2018, we retrieved four short cores from the deepest
part of Lago del Ausente using a UWITEC gravity corer. All the cores
were correlated according to their lithostratigraphy to produce a ~60-
cm long master core. In the field, we extruded the core AUS18-SA and
subsampled it in 1-cm thick slices for 2°Pb and '’Cs dating, which was
carried out at the St Croix Watershed Research Station (Science Museum
of Minnesota, USA). Lead-210 dates were obtained from the unsup-
ported 2'°Pb activity profile using the Constant Rate of Supply model
(Appleby, 2001). Additionally, we radiocarbon-dated four terrestrial plant
macrofossil samples from the core AUS18-SB using accelerator mass
spectrometry (AMS) at the Laboratory for the Analysis of Radiocarbon
with AMS (LARA) of the University of Bern. Radiocarbon dates were
calibrated using CALIB 8.2 (Stuiver et al., 2022) and the IntCal20 calibra-
tion curve (Reimer et al., 2020). Based on the 219p and 4C dates, we
modelled the age-depth relationship using the Bayesian approach imple-
mented in the package ‘rbacon’ 2.5.5 (Blaauw & Christen, 2011) running
in R (R Core Team, 2021) with the following settings: ‘acc.mean’ = 30, ‘acc.
shape’ = 1.5, ‘mem.mean’ = 0.5, ‘mem.strength’ = 15, and ‘thick’ = 1.
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2.3 | Pollen, spore, charcoal and
macrofossil analyses

Sixty 1-cm thick contiguous sediment subsamples of 1 cm® were
treated for palynological analyses in the laboratory according to
standard protocols (Moore et al., 1991). We added a known amount
of Lycopodium spores to estimate pollen, spore, and microscopic
charcoal concentrations (Stockmarr, 1971). Influx values were then
calculated dividing concentrations by the sediment deposition
times obtained from the age-depth model. To reconstruct local-to-
regional vegetation dynamics and land use through time, we identi-
fied pollen and spores up to a terrestrial pollen sum (i.e., excluding
pollen of aquatic and wetland plants) of >500 pollen grains, using
a transmitted light microscope at 500x magnification. For pollen
and spore identification, we used dichotomous keys (Beug, 2004;
Moore et al., 1991; Punt et al., 1976-2009), photographic atlases
(Reille, 1992), and the reference collection at the Institute of Plant
Sciences of the University of Bern. Although ‘Ericaceae undiff.
contains some Vaccinium pollen grains, the vast majority of the pol-
len included within this pollen type corresponds to Erica. We will
therefore usually name this type ‘Erica’ hereafter. Likewise, ‘Quercus
robur type’ embraces pollen not only of Quercus robur but also of
Q. petraea and Q. pyrenaica, so we will usually refer to it as ‘de-
ciduous Quercus’ hereafter. Normally, we will express pollen data
as percentages calculated with respect to the previously defined
terrestrial pollen sum. Dung fungal spores (e.g., Sporormiella type,
Sordaria type, Podospora type), a proxy for local grazing activities
(Baker et al., 2016; Gill et al., 2013), were also identified according
to van Geel and Aptroot (2006). We quantified microscopic charcoal
particles, a proxy for regional fire activity (Adolf et al., 2018; Tinner
et al., 1998), in the same slides used for palynological analyses, fol-
lowing the recommendations by Tinner and Hu (2003) and Finsinger
and Tinner (2005). To track local vegetation changes around Lago
del Ausente, we took contiguous 2-cm thick sediment subsamples of
8-16 cm?® (average + standard deviation: 12 +2 cm®) and sieved them
through a 200-pm mesh. Then, we identified the plant macrofossils
under a stereomicroscope at 8-50x magnification using botanical
illustrations (Castroviejo, 1986-2021; Eggenberg & Mohl, 2020) and
reference material collected in the study area. Macrofossil concen-
trations were then standardised to the median sample volume of
12cm?.

2.4 | Numerical analyses

First, we delimited statistically significant local pollen assemblage
zones (‘pollen zones' or ‘AUS-’ hereafter) using the optimal splitting
by sums-of-squares method (Birks & Gordon, 1985) and the broken-
stick model (Bennett, 1996). Pollen percentage data were square-
root transformed prior to the analysis. The zonation of the pollen
sequence was also applied to the plant macrofossil record. Second,
we used cross-correlation analysis to investigate long-term fire ecol-

ogy in more detail (Gil-Romera et al., 2014; Tinner et al., 1999) using
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the software MYSTAT 12 (Systat, 2007). Cross-correlations were
calculated on pollen percentage and microscopic charcoal influx
data (see Schworer et al., 2015). Cross-correlation coefficients were
calculated at +5 lags (approximately +150vyears, as each lag corre-
sponds to 30.9 +3.9years) during the interval spanning the decline
of pine (59-30cm; ~250 to 1150CE). Prior to the cross-correlation
analysis, we detrended linearly the pollen percentage and the char-
coal influx data series to extract the main temporal trends (and thus

reduce temporal autocorrelation, see Colombaroli et al., 2007).

3 | RESULTS

3.1 | Lithology and chronology

The sedimentary sequence is quite homogeneous throughout. The
sediment mostly consists of brown organic-rich siliciclastic silts with
diatoms, with few thin lighter-coloured bands of coarse silts and
sands intercalated (Figure 2). Only the uppermost 6 cm of the sedi-
mentary sequence contained unsupported 2:°Pb that allowed assign-
ing them a date (Table S1). Sediment accumulation rate has therefore
been rather slow during the past two centuries. Nevertheless, the
near-exponential curve of the 2!°Pb activity profile indicates a high
reliability of the 2'°Pb dates. The slow sedimentation prevented de-
tecting the 1963 CE *¥’Cs maximum peak related to thermonuclear
bomb testing. The age-depth model fitted to lead-210 (Table S1) and
radiocarbon dates (Table S2) provides an age of ~250 CE for the bot-
tom of the studied sedimentary sequence and indicates a rather con-
stant sediment accumulation rate (Figure 2).

3.2 | Plant macrofossil, pollen and charcoal

During the pollen zone AUS-1 (59-37.5 cm; ~250 to 950CE), plant
macrofossil assemblages are dominated by subalpine shrubs (Calluna
vulgaris, Erica, Vaccinium myrtillus, Cytisus oromediterraneus, Juniperus
communis subsp. alpina), with some Pinus remains (Figure 3 and
Figure S2). The pollen assemblages are dominated by trees (50%-
70%), with arboreal pollen (trees+shrubs, ‘AP’) reaching maxima
~80%. Pinus (~30% to 45%) and deciduous Quercus (~10% to 20%)
are the main taxa, with B. pubescens type and Fagus sylvatica at
lower abundances (Figure 3 and Figure S3). A notable reduction
in Pinus pollen percentages (from >40% to ~25%) occurs at ~700-
800CE, followed by a slight recovery to ~30% at ~800 to 900CE
(Figure 3). Betula and Fagus increase their abundances slightly but
significantly at the time of the transient decline of Pinus (Figure 3
and Figure S3). Pollen concentrations and influxes corroborate the
robustness of these patterns (Figure S4). Erica and Corylus (usually
~5% each) are the most relevant shrubs (which amount to ~10% to
15% in total; Figure 3 and Figure S3). Poaceae (~10% to 20%) are
the most abundant upland herbs (~20% to 30% in total) followed by
Artemisia, Rumex acetosa/acetosella type, Plantago alpina type, and
Plantago lanceolata type (usually around 1%-2% each; Figure 3 and
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FIGURE 2 Chronology of the Lago del Ausente sedimentary
sequence (Cantabrian Range, northern Iberia). Left: Picture of the
sedimentary sequence. Right: Age-depth model built using ‘rbacon’
2.5.5 (Blaauw & Christen, 2011), where turquoise and blue areas
represent the probability distribution of the 21°Pb and **C dates
(calibrated) respectively, the red dashed line shows the median age,
and the dashed black lines delimit the 95% confidence interval.

Figure S3). Between c. 700 and 800 CE upland herb pollen increases
(~30% to 35%), mainly driven by Poaceae (~20% to 25%; Figure 3
and Figure S3). It is worth noting that Cerealia type pollen also in-
creases notably during this period, consistently showing values ~1%
(Figure 3). Sporormiella type and Sordaria type are the most impor-
tant dung fungi throughout the Lago del Ausente palaeoecological
record (Figure S3), featuring moderate abundances (both influxes
and concentrations) during AUS-1, with maxima at ¢. 350 and 800 CE
(Figure 3 and Figures S3, S4). Charcoal influx (and concentration)
shows mostly moderate values (~5000 to 10,000 # cm™ year™; ‘#’ =
‘no. of charcoal particles’) with a prominent peak at the beginning of
the record (20,000 # cm™2 year™, ¢. 250 CE), a marked increase at
~700 to 750 CE (maximum ~15,000 # cm ™2 year'l), and a final abrupt
increase towards a large peak at the transition to AUS-2 (~27,000 #
cm™? year‘l, c. 950CE; Figure 3 and Figure S4).

Pinus macrofossils are absent in the pollen zone AUS-2 (37.5-
15.5 cm; ~950 to 1570CE), where the only (rare) tree macrofossils
correspond to tree Betula (Figure 3 and Figure S2). Calluna vulgaris
and Erica continue dominating the plant macrofossil assemblages,
although concentrations are usually lower than in AUS-1 (Figure 3).
The decline of Pinus pollen continued during this pollen zone (from
~30% at ~900CE to <5% at ~1100CE), driving an overall decrease
in tree pollen (~30% to 40%) and a less pronounced in AP (~45% to
60%; Figure 3 and Figure S3). In contrast, Betula pollen abundances
follow an increasing trend until ~1200 CE (>10% between 1200 and
1300CE) before starting an overall decreasing tendency particularly
steep since ~1500CE (Figure 3 and Figure S3). Meanwhile, both
deciduous Quercus and Fagus maintain their representation (~10%
to 15% and ~5%, respectively; Figure S3). Pollen concentration and
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influx data attest to the demise of pine around Lago del Ausente as
well as to its partial replacement by birch (Figure S4). Shrub pollen
rises slightly (~15% to 25%) with Erica (usually ~10%), Corylus (~4% to
8%) and Calluna (~2% to 5%) as the main taxa, and Juniperus type fol-
lowing an increasing stepwise trend (from <1% to ~5%; Figure 3 and
Figure S3). Nevertheless, shrub pollen concentrations and influxes
remain unchanged during this pollen zone (Figure S4). The abun-
dance of upland herbs is significantly higher (~40% to 50%): mainly
Poaceae (~20% to 35%), disturbance-tolerant or rock-dwelling taxa
(mainly Rumex, but also Plantago lanceolata type and Plantago al-
pina type to a lesser extent), and cereals (Cerealia type ~1% to 3%,
Secale continuous curve and even >1%; Figure 3 and Figure S3).
Coprophilous fungal spores are rare and even lacking until they in-
crease to moderate values at ~1300 CE (Figure 3, Figures S3 and S4).
Charcoal influxes drop at the beginning of this zone following the
large peak at ~950CE, and then stay at generally moderate values
(~5000 to 10,000 # cm™ year™?) punctuated by peaks at ~1150CE
(~20,000 # cm 2 year™), 1350 CE (~14,000 # cm ? year *) and 1520 CE
(~12,000 # cm™ year'l).

Finally, plant macrofossil assemblages consist of Calluna vulgaris,
Erica and Juniperus communis subsp. alpina during AUS-3 (15.5-0 cm;
~1570 to 2018CE), without any tree macrofossil (Figure 3 and
Figure S2). Concerning the pollen record, trees decrease further
(~20% to 25% until the final rise to >35%), shrubs increase signifi-
cantly (~25% to 30%, so AP continued ~50% to 55%), and upland
herbs stay stable (~45% to 50%; Figure 3). Deciduous Quercus
(although <10%) and Fagus (~5%) are the main trees (Figure S3),
whereas Betula and Pinus are almost absent (Figure 3). In contrast,
Castanea sativa reaches higher values (often 1% to 2%), and Olea eu-
ropaea experiences a notable increase during the past ~200years (to
>5%), particularly steep for the past few decades (Figure 3). Erica
(~10% to 20%), Calluna (~4% to 8%) and Juniperus type (~1% to 5%)
are the commonest shrubs, particularly during the last ~150years
(Figure 3), and Corylus undergoes a reduction (Figure S3). The com-
position of the herbaceous pollen assemblages does not show rel-
evant changes compared to the AUS-2 pollen zone (Figure 3 and
Figure S3). Charcoal influx usually features moderate values (~5000
to 10,000 # cm™ year™!) with two maxima at c. 1650 (~18,000 #
cm? year™) and 1830CE (~16,000 # cm™2 year™; Figure 3). Dung
fungal spore influxes show overall moderate values until ~1860CE,
with two major increases at c. 1700 and 1830CE (Figure 3), to be-
come later relatively low till present (Figure 3). The huge peak in
charcoal influx (~60,000 # cm ™2 year'l) close to the top is an artefact
created by the age-depth model, given that the peak does not paral-
lel the trends observed in charcoal concentration and is shared by all

the pollen and spore types (Figure 3 and Figure S4).

3.3 | Cross-correlation analyses

The results of cross-correlation analyses show significant negative cor-
relations between Pinus pollen percentages and microscopic charcoal
influxes at lags O to +2 (i.e., 0-60years following the peak in microscopic

charcoal influx; Figure 4). In contrast, Erica and Rumex acetosa/aceto-
sella type pollen percentages are significantly positively correlated with
microscopic charcoal influxes at lag O (i.e., right after the charcoal peak;
Figure 4). Poaceae and Calluna also bear positive correlations with mi-
croscopic charcoal at lag 0, although not significant (Figure 4). Finally,
Betula pollen percentages present rather high positive correlations with
microscopic charcoal influxes (significant at lag —2—i.e., ~60years be-
fore charcoal peaks—almost significant at lags -1 and O -i.e.~30years

preceding the charcoal peak and at the time of this; Figure 4).

4 | DISCUSSION

4.1 | The high-elevation landscape of the
Cantabrian Range prior to medieval land-use
intensification

The Lago del Ausente macrofossil record shows that the tree line eco-
tone was the dominant vegetation at high elevation (>1700 ma.s.l.) on
the southern slope of the Cantabrian Range on siliceous bedrock be-
tween c¢. 250 and 900 CE (Figure 3). This tree line ecotone consisted of
scattered Pinus trees/stands, perhaps ‘krummholz’, within subalpine
scrublands (Erica, Calluna vulgaris, Vaccinium myrtillus, Juniperus com-
munis subsp. alpina, Cytisus oromediterraneus; Figure 3). The regional
macrofossil evidence (cones; Rubiales et al., 2008) and the modern
distribution range (Caudullo et al., 2017; Figure 1) suggest that P. syl-
vestris was the main pine species involved. Further, according to stud-
ies investigating modern vegetation-pollen relationships in the Iberian
Peninsula (e.g., Morales-Molino et al., 2020), the Lago del Ausente pol-
len record strongly suggests that the upper forest limit was close to
the elevation of the lake. Pollen evidence indicates that the lower sub-
alpine and upper montane forests were dominated by Pinus (Figure 3).
Betula, and deciduous Quercus and Fagus probably played a second-
ary role in these mountain forests (Figure 3). Regional pollen records
and macrofossil finds show that P. sylvestris forests persisted as the
dominant high-elevation forest vegetation on the inner slopes of the
Cantabrian Range and adjacent mountains for most of the Holocene
(Figure 1, Table 1). In some sites, these were mixed with Betula or were
alternating as dominant forests. In such settings, pinewoods benefit-
ted from the more continental and submediterranean climate with
respect to the seaward slopes (Rubiales et al., 2010). Even more conti-
nental and drier climatic conditions, alongside widespread poor soils,
would have favoured the persistent dominance of pinewoods on the
southern slopes of the Northern Iberian Range until today (Gil-Garcia
et al., 2002; Pefnalba, 1994; Ruiz-Zapata et al., 2002; Sanchez Gofi
& Hannon, 1999; Figure 1). This pattern markedly contrasts with the
early replacement of pinewoods with deciduous broadleaved forests
(usually dominated by Quercus) observed in more oceanic settings at
the onset of the Holocene or even during the Lateglacial intersta-
dial (Allen et al., 1996; Mufoz Sobrino et al., 1997, 2001; Rubiales
et al., 2010; Figure 1). A maximum in microscopic charcoal followed
by an increase in dung fungal spores suggest the use of fire to pro-
mote pasturelands during late Roman Times (Figure 3), which agrees
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with the archaeological evidence of transhumance since the Neolithic
in the region (Gonzalez-Alvarez et al., 2016). Pastoral burning peak-
ing at ~250 to 300 CE may also be responsible for the slight pine for-
est retreat occurred between c. 300 and 450CE, suggested by the
lower pollen abundances and lack of macrofossils of Pinus (Figure 3).
One of the main Roman roads crossing the Cantabrian Range used
the San Isidro pass (1520 ma.s.l.), located ~3 km away from our study
site (Gonzalez-Alvarez, 2011), which supports local land use at that
time. Cooler temperatures in the Cantabrian region at the end of the
Roman Warm Period (Martin-Chivelet et al., 2011; Figure 3) might
have also contributed to triggering the downslope shift of the tree
line. Following this minor deforestation event, subalpine pine forests
recovered and expanded. Indeed, pine trees recolonised the sur-
roundings of Lago del Ausente during the Dark Ages (~500 to 700 CE),
a period of socioeconomic and demographic collapse in northern
Iberia following the fall of the Western Roman Empire (Bonassie
et al., 2001). Pinus woodlands were partially replaced with grasslands
and Betula stands later, between c. 700 and 800 CE (Figure 3). Despite
the pine retreat was limited according to pollen and macrofossil evi-
dence, pinewoods never completely recovered afterwards. Cereal
cultivation started increasing at ~600CE, probably on south-facing
slopes and in the adjacent lowlands (Figure 3). Afterwards, a substan-
tial rise in fire activity occurred at ~700 to 750CE, followed by a rise
in pastoral activities at ~800 CE (Figure 3). Our new data suggest that
coupled fire and grazing caused the moderate pine forest retreat ob-
served around Lago del Ausente, with warmer temperatures at the
end of the Dark Ages (Martin-Chivelet et al., 2011) probably favouring
fire spread. Increased farming activities could be related to the his-
torically documented migration of people from the Northern Iberian
Plateau to the Cantabrian Range at ~750 to 850 CE fleeing the Muslim
invasion (Figure 3; Bonassie et al., 2001; Ezquerra & Gil, 2004).

4.2 | Anthropogenic high-elevation pinewood
decline mediated by fire

The final demise of pinewoods as well as the near disappearance
of pine trees from the tree line ecotone around Lago del Ausente
occurred from c. 900 to 1100CE. The latter low Pinus pollen rep-
resentation (2-4%) could be associated with: (i) the persistence
of scattered trees or small stands in the catchment (Ezquerra &
Garcia, 2017), (ii) the long-distance transport of pollen from the
close Valle de Riopinos (where several medieval toponyms refer to
pine occurrence) and the Pinar de Lillo and (i) the reforestations
accomplished in the 20th century CE. Betula stands replaced to
some extent the declining pinewoods (Figure 3), alongside mountain
scrubland (Ericaceae, Calluna vulgaris, Genista type, Juniperus type),
and disturbance-tolerant upland herb communities (mainly Poaceae
and Rumex acetosa/acetosella type, but also several Plantago pollen
types; Figure 3). The replacement of P. sylvestris with Betula, in some
cases with an intermediate stage of heathlands, was widespread on
the most continental slopes of the Cantabrian Range and adjacent
mountains during the Late Holocene (Fombella et al., 2001; Garcia-
Antén et al., 1997; Jalut et al., 2010; Janssen, 1996; Morales-Molino
et al., 2011; Mufoz Sobrino et al., 2003). Several authors had ar-
gued that human activities, more specifically fire and grazing, trig-
gered the demise of mountain pinewoods on the Cantabrian Range
(Ezquerra et al., 2019; Jalut et al., 2010; Mufioz Sobrino et al., 2004;
Rubiales et al., 2008), but empirical evidence supporting this hypoth-
esis was still quite limited (Garcia-Antén et al., 1997).

The new palaeoecological record from Lago del Ausente has
allowed testing this hypothesis because it includes proxies for fire
(charcoal) and pastoral activities (dung fungi), in addition to the
more usual cultural indicator pollen types. First, a further increase
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in fire occurrence started at ~900CE (peaking at ~950CE), and fire
activity remained rather high until ~1200 CE (Figure 3). This strongly
suggests that fire played a relevant role in the decline of P. syl-
vestris around Lago del Ausente. The results of cross-correlation
analysis corroborate the high sensitivity of Pinus to fire (Figure 4).
Considering that adult P. sylvestris trees are resistant to surface fires,
because of their thick bark, but not adapted to crown fires (Tapias
et al., 2004), one can hypothesise that the episode/s triggering the
Cantabrian pine decline were crown fires. In fact, multi-decadal
monitoring of postfire regeneration in P. sylvestris forests of north-
eastern Iberia has also highlighted the inability of this species to re-
cover after crown fires (Vila-Cabrera et al., 2012). On the contrary,
our results strongly suggest that Betula's resprouting capacity and
high recruitment ability enabled successful post-fire recovery of
birch (Figure 4; Costa et al., 2005; Connor et al., 2012; Gil-Romera
et al., 2014). Spreading from fire refugia on peatlands and scree
slopes, birches probably encroached the pasturelands, thus moti-
vating further pastoral burning (Figure 4). Similarly, Erica and Rumex
responded very positively to fire (Figure 4), as previously observed
at other sites located in the mountains of Iberia (Connor et al., 2012;
Morales-Molino et al., 2011; Sdnchez Gofi & Hannon, 1999). Warm
climate during the Medieval Climate Anomaly (Martin-Chivelet
et al., 2011; Moreno et al., 2012; Figure 3) must certainly have fa-
voured fire spread, but evidence concerning the cause of such fires
is not conclusive. On the one hand, pollen data indicate that arable
farming increased notably in the region synchronously with the de-
cline of P. sylvestris (Figure 3), suggesting that forests were burnt to
obtain open land for arable farming in the lowlands. Pollen-inferred
rising land use agrees with the increasing human population density
on the Cantabrian Range and adjacent lowlands (on the Northern
Iberian Plateau) associated with people fleeing from the Christian-
Muslim border (Isla, 2019). On the other hand, relatively low dung
fungal spore abundances suggest that pastoral activities were not
particularly heavy near Lago del Ausente at that time (Figure 3) de-
spite some powerful monasteries from the Northern Iberian Plateau,
like the Benedictine Monastery of Sahagun, were expanding their
summer-pasturing areas close to the study site (Orden, 2013).
Climatic forcing for the observed pine demise seems quite unlikely
because the warmer temperatures reconstructed for the Medieval
Climate Anomaly in the region should have favoured pine recruit-
ment and therefore woodland densification in the Lago del Ausente
catchment, and not the other way round.

4.3 | The deforested landscapes of the Cantabrian
Range as legacy of intensified transhumant herding

Following the pine decline, high-elevation vegetation was fundamen-
tally open around Lago del Ausente, characterised by the increasing
dominance of grasslands, disturbance-tolerant/rock-dwelling vegeta-
tion (Poaceae, Artemisia, Rumex, Plantago), and heathlands (Figure 3).
More specifically, the macrofossil evidence allows inferring the local
presence of a quite open tree line ecotone with heathlands and

scattered Betula trees between c. 1100 and 1500 CE (Figure 3). Our
palaeobotanical data show that trees (Betula) were able to continue
growing at least at the elevation of Lago del Ausente (1700 ma.s.l.)
after the abrupt cooling occurred at the beginning of the Little Ice
Age (Martin-Chivelet et al., 2011; Figure 3). Therefore, the decline
of Betula since ~1300CE (particularly marked after ~1500CE) and
the synchronous spread of heathlands and grasslands (with increas-
ing abundances of disturbance-tolerant/rock-dwelling species) can-
not be explained satisfactorily on purely climatic grounds (Figure 3).
Instead, the coprophilous fungi record strongly suggests that grazing
activities increased around the lake since ~1300CE and continued
until ~1860CE, whereas microscopic charcoal point to the regu-
lar occurrence of fires in the region (Figure 3). The Late Holocene
replacement of high-elevation Betula stands with heathlands
and pasturelands was widespread in the Cantabrian Range (Jalut
etal., 2010; Morales-Molino et al., 2011; Mufoz Sobrino et al., 1997)
and elsewhere in Atlantic Iberia (Morales-Molino et al., 2013; van
der Knaap & van Leeuwen, 1995). Our data suggest that this process
may have been related to the high sensitivity of Betula to excessive
browsing (Morales-Molino et al., 2019). Concerning the abovemen-
tioned period of high grazing and burning activity, this corresponds
unequivocally to the ‘Honrado Concejo de La Mesta’ or ‘La Mesta’
(1273-1836 CE) and the more intensive use of the summer pas-
tures owned by the Sahagin and Eslonza monasteries (Gutiérrez-
Alvarez, 2008). ‘La Mesta’ was an organisation established to
promote a herding system involving the long-distance transhumance
of huge flocks of merino sheep between low-elevation warmer and
drier regions (winter pastures) and high-elevation cooler and moister
areas (summer pastures; Gonzalez-Alvarez et al., 2016). The south-
ern slope of the Cantabrian Range experienced a particularly intense
use as summer farming area (Gonzélez-Alvarez et al., 2016), al-
though areas with acidic soils were less heavily exploited than those
on limestone because of the worse grazing quality of their pastures
(Rodriguez-Pascual, 2011). These results highlight the relevance
of transhumance in driving vegetation change in the mountains of
southern Europe (Brown et al., 2013; Garcia-Ruiz et al., 2020; Lopez-
Saez et al., 2014). The further spread of mountain scrublands (Erica,
Calluna, Juniperus) and development of Castanea sativa cultivation
are the most remarkable vegetational shifts that occurred since ~
1550CE around Lago del Ausente (Figure 3). Finally, it is worth not-
ing the prominent pollen reflection that the relatively recent ex-
pansion of olive cultivation in the Iberian Peninsula generated on
the remote Lago del Ausente (Figure 3). This phenomenon has also
been observed in other Iberian fossil pollen records (e.g., Leunda
et al., 2017; Pérez-Sanz et al., 2013) and surface samples (Leunda
et al., 2017; Morales-Molino et al., 2020) located far away from the

main olive cultivation areas.
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