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ABSTRACT

This paper investigates the forecasting ability of a new univariate models
family of unobservable components, when compared with other more standard
univariate methodologies. A forecasting exercice is carried out with each

method, in monthly time series of antomobile sales.

The accuracy of the differents methods is assesed by comparing several
measures of forecasting performance on the out of sample predictions for
various horizons as well as differents assumptions on the models parameters.

RESUMEN

El articulo investiga la capacidad predictiva de un nuevo eonjunto de
modelos univariantes de componentes no observables, comparindolo con otras
metodologias univariantes que usan pardmettos fijos y variables en el tiempo.

Para ello, se lleva & cabo un ejercicio predictivo, con cada uno de los métodos,

en series mensuales de ventas de automdviles.

Finalmente, se analiza la eficiencia de estos métodos utilizando
distintas medidas de comportamiento predictive fuera de la muestra para

diversos horizontes y con supuestos direrentes sobre ciertos pardmetros de los

modelos.
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1. Introduction

Most of the forecasting literature in economics can be assigned to, bassically, two different
frameworks. As Diebold (1989) has noted, on the one hand, there is a long tradition that places
considerable emnphasis on theoretical aspects {as opposed to empirical evidence) in guiding the
evaluation of econometric models. Although some social scientists have clearly postulated that
a good forecasting performance is-a necessary condition for any theory to be given such statug
[Zellner (1988), Friedman and Schwartz (1991)], there is still a large mumber of academic
economists and econometricians who tend to view the forecasting problem as one of a secondary
importance. Within this framework, primary interest is concentrated in wnderstanding the
economy (by estimating the parameters of an equation suggested by a priori theory) resting
secure in the belief that good forecasts will follow automatically from such understanding.

On the other hand, those involved in the forecasting business know (and can provide many
practical examples) that understanding the structural relationships in an economic system may
not be a sufficient condition to forecast it well. Even if we leave aside theoretical guestions
related to the constancy of the parameters in the models {Lucas (1976)], there are many practical
situations where deadlines must be met and enlarging the information sets is either impossible
or prohibitively costly [Garcia-Ferrer and del Hoyo (1987)]. This pragmatic observation is one
of the main rcasons of the permanent interest on the univariate forecasting literature, in which
forecasts rather than models are the basic object of analysis®.

This paper describes a forecasting comparison between a variety of old and new statistical
methodologies. Each method is used to forecast monthly automobile sales up to several horizons
in the future. The accuracy of the different methods and models is assessed by comparing several
measures of forecasting performanance of the out-of-sample predictions for various horizons as
well as assumptions about certain parameters in the models. The plan of the paper is as follows.
In section 2, we present the sources, definitions and characteristics of the data. Section 3
suminarily describes the different univariate methodologies used, especially those with time
varying parameters recently developed by Young (1984), Ng and Young (1990) and Young
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(1994). In section 4, we present the empirical results and analyze the predictive performance of

the models. Finally, in section 5, the conclusions are presented.

2. The Data

The automobile sector in Spain represent a very important area of economic activity both in
terms of the financial flows involved, and its participation in the labor market. More than 10%
of the Spanish working population are somehow involved with the auto industry and the total bill
in 1980 U.S. dollars has increased from 5.6 billions in 1980 to 24 billions, nine years later. Also
in terms of physical units sold, Spain ranks the fifth in Burope after West Germany, United
Kingdom, France and Italy.
Monthly sales data provided by the National Association of Astomobile Manufacturers (ANFAC)
have been divided in five groups according to their characteristics:

1. The total number of cars sold in Spain (CTM).

2. The mumber of domestic (Spanish manufactured) cars sold in Spain (CDOM}.

3. The munber of imported cars sold in Spain (CIMP).

4. The number of luxury cars sold in Spain (CLUX).

5. Car sales of one of the leading import companies in Spain (CSAL).

{Insert Figs. 1-5]

Plots of these variables for the period 1981.1-1990.6 are shown in Figures 1-5, where both
nonstationarity as well as strong seasonality are clearly evident. Also, in Table I the annual rates
of growth of the different variables are shown, indicating very different behavior of the series
through time. In pat't@;éillar, there are remarkable differences in the rates of growth between CTH
and CDOM and the other three variables after 1986, when Spain became a full member of the
EEC. Through a progressive reduction on import tariffs since that year, imported cars have

become more and more affordable for the Spanish consumer.

P

[Insert Table 1]

3. Methodologies

Visual inspection of Figures I to 5 indicate that the statistical characteristics of such series
change considerably over the sample interval, so that the series can be considered nonstationary
in 2 statistical sense. All series exhibit a clear upward trend, together with prononnced annual
periodicity. The trend behavior is a classic example of statistical nonstationarity ef the mean,
with the Jocal mean value of the seties changing markedly over time. The nature of the
periodicity (or seasonality), on the other hand, varies over the five series but, in general, there
are signs of steadily growing amplitude in most of them, indicating nonstationarity in the
seasopality about the trend.

These kinds of nonsiationarity are indicative of changes in the underlying statistical properties
of the data. Therefore, any statistical model used to characterize these series should be able to
model this nonstationarity feature if it is to represent them an acceptable way. Since Box and
Jenking (1970) proposed their influential ARIMA models, differencing (both the regular and the
seasonal components) and using simple nonlinear transformations (such as the log of the data)
prior to model identification and estimation, have been widely and successfully used as effective
tools to deal with nonstationarity. None of them are without difficulties: in some cases,
indiscriminate differentiation of the data wiil amplify high frequency components; in others, even,
after logarithmic transformation, the seasonality is still varying to some extent. What can we do
in those situations? Are there other ways to account for the nonstationarity problemis?

Some recursive methods recently developed for Time Variable Parameter (TVP) estimation can
provide an interesting alternative to ARIMA medelling in which parameter variation is
characterised by some form of stochastic state-space (5S) model. The S8 model belongs to the
class of unobserved component AREMA (UC-ARIMA) models developed by Engle (1978) and
Nerlove et al. (1979), and have been popular in the forecasting literature over the last years.
However, it is only recently that papers which exemplify this TVP approach [Harvey (1984),
Kitagawa and Gersch (1984}, Engle ef al. (1988) and Ng and Young {1990)] have been utilized
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within the context of S estimation. In particular, Young e# al. (1990) and Young (1994) provide
a novel spectral interpretation of the SS smoothing algorithms to decompose the series into

various, quasi-orthogonal components, the models for which can be identified and estimated

using recursive methods of TVP estimation {Young (1984}].
Following Young and Young (1990), we can wrile the component or structural model of a

univariate time series ¥; as
Y ,=T,+P +¢ (3.D
where, 7, is a low frequency or trend component; P, is a perturhational component around the

long rum frend which may be cither a zero mean stochastic component with fairly general

statistical properties or a sustained periodic or seasonal component; znd, finally, ¢, is a zero

mean, serially uncorrelated white noise component with vatiance 02.

The Trend Model

The low-frequency or trend component can be represenited by a second-order generalized random

walk (GRW) model of the form:

=T, +8 +mun

(3.2)
S =8: T &

where S, may be interpreted as the local slope or “derivative’ of the trend and », and £, are zero
mean, serially and mutnally uncorrelated white noise inputs. It is further assumed that they are
statistically indepengent of the white noise observational errors ¢ in equation (3.1), and

therefore:

E(emn,) = E(ei,) = B{n,E,) =0 Vt,5 33
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By introducing a trend model of this type, it is assumed that the time-series can be characterised
by a varying mean value whose variability will depend upon the specific form of the GRW
model chosen. It can be shown that 4, is mainly necessary to handle sharp discontinuities of level
or slope [Young and Ng (1989)] and unless they exist, can be constrained to zero. If this is the

case, then the variance of £, is the only unksnown in (3.2) and can be determined by the Noise
Variance Ratio (NVR), that is the relation between c% and the variance o2 of the cbservational

noise ¢, in equation (3.1

The Periodic or Seasonal Model

It is assumed that the periodic component in (3.1) can be either a General Transfer Function
(GTF) or a Dynamic Harmonic Regression (DHR) model: the former is a more general
representation of any stochastic time-series; the latter is restricted primarily to series with strong

seasonality and is particularly useful in the context of adaptive seasonal adjustment.
The General Transfer Function Model
‘The GTF model is similar to the ARIMA model employed by Box and Jenkins (1970) although

no stationarity restrictions are imposed here. It is assumed that the sum of the stochastic per-

turbation P, and the white noise component ¢, follows an ARMA process of the form:

3.4)

where

S(LY= Y HL7, ¢y =1
i=0




and

[
¥(L) = E YLy Yo = 1-

For convenience, the order m is assumed the same for both polynomials; however, different
orders can be introduced without any further problem. In the empirical applications of the GTF
model described in the next section, we will concentrate on the use of the purely Autoregressive
(AR) form of (3.4). In that case, an AR or subset AR model is identified for the perturbations

using some of the identification criteria described in [Young (1985)].
The Dynamic Harmonic Regression Model
In this case, the periodic component P, is represented in the following form:

g
P =Y [0, cos(2mfit) + 0y, sin(2mft}] (3.5

i=1

where £, i = 1,2,...,F, are the frequencies in cycles per unit of time, and the coefficients 8,
J=12andi = 1,2,...,Fare assumed to be time-variable, so that the model is able to handle
nonstationary seasonality. The parameter variations are modelled as GRW processes which then
allows the time series to exhibit amplitude-modulated periodic behavior. Since there are two
parameters associated with each frequency component, the changes in the amplitude 4, of each
component, defined by,

4
i

C

4, = Ve%iz + Bgn (3.6)

provides a useful indication of the estimated amplitude modulation.

8

Two additional comments about the DHR model are worth mentioning. First, the DHR model
is rather different to the GTF model in that its parameters are assumed te be inherently time
variable, rather than normally constant, over the observation interval. Second, the DHR model
can be contrasted with the Fourier model proposed by Harvey (1984), where the sine and cosine
terms for each frequency appear in the state equations of the periodic model rather than, as bere,
in the observation equation.

Having defined 88 model structures for all the components of the structural medel, it is
straightforward to assemble these into an aggregate SS form where the state vector is composed
of all the states from the different submodels and the observation matrix is simply a vector
chosen to extract from the state vector the structural components T, and P, [Ng and Young
(1990)]. The problems of stractural identification (similar to the ones that appear in standard
econometric models) and subsequent parameter estimation for the complete S5 model are
clearly non-trivial. In general, the imposition of certain restrictions —that is, imposing a given
structure— has been the way to achieve identification in the statistical literature on signal
extraction and a standard set of such restrictions is the orthogonality of the components (frend,
perturbation and noise in our case). A logical way to proceed is to verify these convenient
identifying Testrictions after an initial, unrestricted estimation of the component models®.
Unfortunately, as noted by Grether and Nerlove (1970}, the model for a component is different
from the model obtained by its estimator, and so it is perfectly possible to find that, whereas the
theoretical components are uncorrelated in general, the estimated components will be correlated.
Nevertheless, for practical purposes, it is important to verify the actual degree of orthogonality
among the estimated components in order to avoid spurious decompositions commonly found
with these procedures [Garcia-Ferrer and del Hoyo (1992)). In such cases, it can be shown that,
through an adequate choice of the NVR ratio (selecting a NVR value for the trend that does not
contain higher frequency components associated with the perturbational behavior) the
orthogonality problem is considerably reduced.

Finally, as regards estimation, the most obvious approach is to formulate the problem in
maximum likelihood (ML) terms. If the disturbances in the S8 model are normaily distributed,
the likelihood function for the observations may be obtained from the Kalman filter via the

prediction error decomposition {Harvey and Peters (1990)]. However, some practice with this
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approach indicate that it can turn out to be rather complex even for particularly simple structural
models*. An alternative, discussed in Young (1988) and based on an sequential spectral
decomposition, applies the S$8 smoothing algorithms to the various component submodels,
decomposing the solution to the overall estimation problem info a series of linear steps, each
solved in fully tecursive terms, Although the procedure is suboptimal (in a ML sense), it is

robust in practical applications ard well suited for adaptive forecasting.

4. Empirical Results and Forecasting Performance

All models are estimated for three different period intervals: 1981.0t to 1988.12, 1981.01 to
1989.06 and 1981.01 to 1989.12, in order to generate, respectively, 18, 12 and 6 step-ahead
forecasting errors for each modeF.

The estimation results for the ARIMA models for the period 1981,01 to 1988.12 are shown in
Table 2. Careful examination of the estimated residuals and their acf and pacf, as well as the
Ljung-Box statistics (not shown), did not indicate either the presence of important outliers in any
of the models or the existence of any type of stochastic structure in the residuals®,

In Table 3, the estimated GTF (IRW trend plus subset AR) for the detrended (perturbation) data
are shown. To obtain this model, the low-frequency trend which is so obvious in Figures 1 fo
5 was first estimated and removed by the IRWSMOOTH algorithm (included in microCAP-
TAIN) with different NVR values which were selected interactively so that the trend derivative
contains only a very slight leakage of the higher frequency components associated with the
apmual, 12 month cycle. The chosen NVR parameter for the trend should: (1) reflect the long
term, low frequency behavior of the series and (2) not contain (on the basis of the estimated
derivative, or slope of the teend) any higher frequemcy components associated with the
perturbational behag;f;r around this trend. Also, an interesting byproduct of the estimaied slope
is the possibility of '%{ferifying the existence of underlying quasi-periodic long term behavior so

common in socio-economic and business data.

{Insert Tables 2 and 3] .
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As indicated in the previous section, for models of the type given by equations (3.1) and (3.2),
the chosen NVR uniquely defines the performance of the algorithm. However, the question of
how to choose it remains an open one, since there are several ways in which the NVR can be
chosen. They all can be interpreted as defining the bandwidth of the filter in spectral terms. It
has been shown [Young, T.J. (1987)] for example, that the cur-off frequency Fy (i.e. the
frequency at which the filter attenuates the signal by 50%) is related to the NVR by the

empirical equation,
Fyy = 0.158 (NVR )%

so that the NVR that will extract a given band of fow frequencies could be computed from this
expression. Suppose, for instance, that we require that the trend reflects a fypical economic cycle
of, say, five years but contains the minimum of any higher frequenicy components such as annual

cycles. For our monthly data, Fy, can then be chosen to just pass the frequency components of

0.0167 [; WL] cycles per sample. Substituting this value for Fy, yields an NVR = 10+ which
5x12

is a very useful default value for this type of periodicity.

In any case, the estimated derivative can provide additional useful information in deciding an
appropriate set of values for the NVR. To see how changing the NVR values affects the trend
estimation, let us try a number of different parameter values for one of the series, i.e. the CSAL
data set. Figures 6a to 6¢ show the results obtained in each of the three cases (NVR values of
10, 102 and 10, respectively). Apparently, the three trends track the long period behavior very
well. However, the results for NVR = 10" and NVR = 107 are not as good as it looks at first
sight: we see from the associated trend derivative plots (Figures 7a and 7b) that the estimated
trends actually contain some higher frequency components related to the shorten period annual
cycle; components which are amplified by the derivative operation inkerent in the trend

derivative estimation and show up very well on the derivative plot.

[Insert Figures 6 and 7]
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derivatives shown in Figures 8a to 8c. While in the two former cases there is a strong évi: dé‘ﬁé- [
L

of higher frequencies, the periodogram for the default value (NVR = 10} shows the typical'-]"" L
allow.

frequency concentration with no leakage of higher frecuencies.
[Insert Figure 8]

Of}ce the perturbational series are obtained, the procedures for AR model identification used in
microCAPTAIN are based on the identification criteria proposed by Akaike (1974). After the
unrestricted AR model is chosen and estimated, further examination may jndicate that different
sibset AR models with certain parameters constrained to zero provide superior AIC and YIC
values, although with only marginal decreases in the R”. These restricted subset AR models
shown in Table 37, '

The complete estimation results for the DHR models with defanlt NVR value (DHRD) arc based
on a fundamental frequency (the 12 months annval cycle} and its principal harmonics at periods
6. 4, 3, 2.4, and 2 months, respectively, using the F suboption int microCAPTAIN (where the
parameters are modelled as RW processes), with the automatic mode (NVR = 10* for the trend
component and NVR = 10? for ail the other components). The compiete results of the
estimation process include information about the trend, the scasonat components, the nonseascnal
component, the seasenal amplitudes, and the fitted (forecasted) data. Exhaustive analysis of these
resulis are outside the scope of this paper, but as might expected from a TVP estimation method,
the statistical fitting to the historical data in all series is quite remarkably accurate.
Comparisons among the statistical fittings of the estimated ARIMA, GTF and DHRD models
for this particular data set must be carried out cautiously since the different measures of statisti-

cal flnll'.lg are not always Slrictl com alable- lIOWeVe[ there are two cases in W hich such
p Y y P '
compar 1son iS l)OSSE‘]’ilB.’ the residual variances ) and by Oi estimated
g ( a & ) 4 II{}]VIJ A and GTF models

in Tables 2 and 3, and the R? for the original series in the case of the ARIMA and the DHRD
models. The results are shown in Table 4, where, except for the CTM series, the GTF shows

better statistical fitting than its correspondent ARIMA alternative under the rgsidual variance

k)
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criterion. When using the B criterion, the DHRD clearly outperforms the ARIMA model as

expected, given the characteristics of the DHRD algorithms and the strong periodic behavior of

our series. As a matier of fact, we have observed that the DHRD model beats almost any other

univariate (and many multivariate) alternative models for this type of data in terms of statistical

fitting, as might be expected because its parameters are allowed to vary over the observation

interval.

[Insert Table 4]

Forecasting Performance

Leaving aside the statistical fitting characteristics of the different alternatives, our main interest

in this paper is to analyze the predictive performance of the models for several time horizons.

The forecast period (1989.01 to 1990.06) was chosen because it is not particularly easy to

predict since 1989 anticipated a reduction in the rate of growth of sales (after four consecutive

that lead to a negative growth rate in 1990 of 10.4%". Since our
information set only includes historical data, without any leading indicator variables or any
as it is the case in Zeliner et al. (1991}, we expect considerable
ortant series (CTM, CDOM and CIMF), while the biases in the

In any case, it is very imporiant to se¢ how the models

years of booming sales)

device to predict turning points
overprediction in the most imp
other series may have different signs.
adapt their predictions as SooR as new information becomes available.
Forecasts have been evaluated according to different (individual and apgregate) forecasting
measures [Meese and Geweke (1984)]:

1. The One Step-Ahead Percentage Forecasting Error (OSFE} computed after each
estimation period. Since we have 3 estimation periods and § variables, we will have 15

observations to compare for cach maodel.

2. The Percentage Prediction Error (%ePE) defined as
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%PE = Fleei) - AU+ oo
At+f)

where A(f) is the acmal value, F(f) denotes the forecast value, and j = 1,2,... is the total mumber

of forecasts.
3. The Aggregate Percentage Prediction Error (APE) defined as

h h
_E F(t+]) - E A(t+j)
APE = 12! f=1 % 100

.3
Y Ar+f)
f=1

h = 6, 12 and 18. This is not commonly used since it allows for the cancellation of large errors
of different signs, but it becomes relevant when the target is the total mumber of units in the long

run rather than its monthly distribution.

4. The Percentage Root Mean Squared error (%RMSE} defined as

h=6, 12 and 18, §

k4

5. The Percentage Mean Absolute Error (%MAE) defined as

k . ;
% MAE = E F(e+f) - A{t+0)} . 100

1
h i A{e+j)

k=6, 12 and 18.

6. The Percentage Mean Error (%ME) defined as

k , ,
% ME = E F(ri-])—A(rU)me

1
ki A(t+j)

h = 6,12 and 18.

Regardless of the mode] used to construct the forecast, all forecast values are for the original
series in levels. For the component models, the estimated trend and/or seasonals were reinserted,
and for the case of the ARIMA models the differences were converted to levels if preliminary
differences had been employed.

Results for the OSFE, APE, %RMSE, %ME, and %MAE criteria for the three models considered
so far are shown in the first three columns of Tables 5 to 9. The meaning of the fourth column
will be explained later. As might be expected, no model dominates the others under all the

forecasting criteria. However, some tentative conclusions can be drawn from such: tables:
[Insert Tables 5-9]

1. In terms of the one-step ahead percentage forecasting error (OSFE} criteria, the ARIMA
model seems to perform better than the other two alternatives. However, the dominance
is not uniform among all series at all forecasting intervals, The ARIMA seems to work
petier for CTM and CIMP, the GTF model seems to be better for CDOM and CLUX, and
the DHRD model for the case of CSAL.
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2. The long-run forecasting behavior (as measured by the APE criteria) 18 months ahead is
reasonably good, given that our three alternatives are univariate models. Within this
criteria, the GTF model outperforms the other two alternatives by a considerable margin,
Only in CDOM for the ARIMA and in CSAL for the DHRD, do the alternatives perform
better for some time horizons.

3. In the case of the %RMSE criteria, the ARTMA moedel seems to perform better than the other
two models. Again, the ARIMA advantage is concentrated on CTM, CDOM and CIMP.
For the CLUX and CSAL, the DHRD model ouperforms the other alternatives, The GTF
model does not seem to be working well under this criteria.

4. When using the remaining forecasting performance criteria (%$MAE and %ME), the GTF
modetl again outperforms the other two modeis. In the case of the %ME, the DHRD does
not performs well, while in the case of the %MAE criteria, all models perform in similar

terms.

The interpretation of the results in Tables 5 to 9 must be exercised with care. The main intention
of this forecasting exercise was not to provide a kind of forecasting competition a la Makridakis
et al. (1982), but to explore the potential forecasting ability for economic time series of a new
set of univariate procedures recently developed in other areas of control engineering and systems
theory. In this respect, the reswlts obtained for the GTF model are very promising and compete
very favorably with a well established univariate modelling strategy as it is the ARIMA
methodology. The results for the DHRD model are somehow surprising, having in mind the
excellent statistical fitting shown by this TVP estimation method.

One explanation of this finding is related to the difficulties in forecasting the parameters
variation. Given our present assumptions, the DHRD model will only work if the RW or IRW
forecasts are good. ,

Another axplanatiorif;§f has to do with the way in which the models were estimated. While in the
case of the GTF motlel the choice of the NVR value was decided by the authors by looking at
the trend derivative in each data set, this was not the case for the DHRD model, where all the
estimation and forecasting exercises were carried ot under the automatic mode (using default

3,
values for the NVR). This was not a very sensible decision since forecasts using this §S

k)
H
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approach can be very sensitive to the estimation of the trend NVR, probably because the
assumed RW or IRW models, which reflect only the characteristics of the local trend, do not
adequately model any long term variations in the trend derivative. The implications of the
previous results suggest that a different NVR value may improve the forecasting behavior over
different parts of the daia and, consequently, that the trend NVR should be adaptively updated

during estimation; an option which has not been available in microCAPTAIN until very

recently.

The Choice of the NVR Value Revisited

The following example provides a good illustration of the potentia! gain if the NVR is used as
a tuning parameter in a forecasting exercise. Let us take the cases of the CTM and CLUX
variables, where the DHRD mode! has not performed too well over the prediction interval. In
particular, and fo maintain brief the exposition, let us look at the CTM variable where systematic
overprediction has taken place along the predictive horizon. It is obvious that, as soon as we
observe the trend changes, the default NVR value is not a very realistic assumption. As an
alternative, if an arbitrary higher value is selected (i.e. NVR = 10%), the forecasting algorithm
weights more heavily the recent changes in the trend and produces better multi-step forecasts as

shown in Table 10.
[Insert Table 10]

If we compare the results from Table 10 with those of the first three columns of Tables 5 to 9,
we can see that, except for the case of the OSFE criterion, the DIR could rank first in
forecasting performance for the CTM variable at the 18 steps-ahead forecasting horizon. We
think that this result is very promising and demonstrates the potential advantage of using the
NVR as a tuning device, Nevertheless, this last point deserves further analysis since it is also

desirable to have in practice general guidelines for the actual choice of the NVR value.
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So far, somehow, our approach in dealing with the DHR model can be considered half the way
between the objective optimisation approach and the subjective bayesian one: parameters need
to be chosen, but those selected are reduced to a minimum, and values are provided to aid in
their choice. Note, however, that manual tuning can be dangerous and some more objective
adaptive adjustment would be preferably.

Recently, Tych and Young (1993) have developed a method of optimising the NVR values based
upon the spectral properties of the random walk family of models used (o describe the
nonstationary parameters, so that the logarithm of the pseudo-spectrum (pseudo because the IRW
model is nonstationary) matches the logarithm of either the AR spectrum or the periodogram of
the data, in a least squares sense. A measure of goodness of fit is introduced, closely related to
the Fisher metric, and the method also allows the estimation of the NVR valugs associated
with the main seasonal frequency (and its harmonic) of the DHR models.

With this alternative, we estimated the correspording new DHR models for the whole set of
variables using the same sample intervals as before in order to produce 18, 12, and 6 forecast
errors for each variable. After the Iast iteration, the estimated (optimised) NVR values for the
rends, ranging between 8x10? and 107, show both large differences among the different
variables as well as big discrepancies with the 10" defalult value used in the DHRD model.
Also, there are some discrepancies in the NVR values corresponding to the fundamental seasonal
frequency and its harmonic. The forecasting resules for the different measures are shown in the
fourth column of Tables 5 to 9 under de DHRO (for oprimised) heading. The first thing we
notice is the considerable improvement in forecasting accuracy over the previous defanit DHRD
model for almost all time forecasting horizons and different citeria. As a matter of fact, out of
the 75 possible outcomes, the DHRQO model beats the DHRD one in 52 cases (70%
approximately), confirming the potencial advantage of updating the NVR over the sample

inderval in terms of fi?recasting ACCUracy.
i

L

[Insert Tables 11, 12a and 12b]

As regards overall comparisons among the different methods, we have summafized the results
of Table 5 1o 9 in Table 11, where we show the nmumber of times that each method ranks first

i
i3
3

18

and last under the different criteria. The same exercise is carried out on Tables 12a and 12b
where the results have been splitted according to the different forecast horizons. Again, the
interpretation of the results in these tables must be exercised with care. The reader should be
aware that although it is useful to report forecast performance based on various measures, it
might be misleading to synthesize the performance of different methods by aggregating
results of various measures.

With this caveat in mind, we will try to summarize the main results that emerge from the
previous tables. Firstly, again no model dominates the others under all the forecasting
criteria for all series and forecasting intervals. This is not surprising, given the different trend
behaviour of the different series during the forecasting period. Secordly, Table 11 confirms this
finding showing the superiority of the GTF model in the case of the APE and %ME criteria,
while the DHRO maodel performs the best for the %RMSE and %MAE measures. For the OSFE
criterion, both the ARIMA and the DHRO share the lead. Thirdly, if we pay attention to the
worst performers, the DHRO appears to be clearly superior to its competitors for all measures
except for the APE one. Somehow, if we use a minimax criterion, the DHRO might emerge as
the best alternative for this particular data set and forecasting period. Fourthly, with regard to
the performance for different forecast horizons, Table 12a indicates that both the GTF and the
DHRO outperform the other methods for the 18 and 12 months forecasting horizons. Only for
the short 6 months period, the ARIMA works as well as the GTF does. Again, Table 12b
indicates how the DHRO model appears very few times as the worst alternative, confirming its

good minimax properties.

5. Conclusions

This paper has explored the forecasting abilities of a new set of univariate unobserved
components models with fixed and time varying parameters and compares its performance with
a well established methodology like the ARIMA Box-Jenkins approach. The time series data,
belonging to the Spanish automobile sector, were chosen because they showed a non-homoge-

neous break in the trend during the forecasting period in some of the series, making the
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prediction exercise more complicated. In order to assess the forecasting abilities of the different
alternatives, five measures of the forecasting accuracy are proposed.
According to the empirical results of the previous sections, several conclusions can be advanced,
though it must be recognized that these are inferences from a particular data set and forecast
period and that further evidence is necessary before any generalization is made. Neither the
scope nor the number of series analyzed allow very strong statements about the superiority of
one particular method over the others. Nevertheless, some tentative conciusions can be
suggested:

1. In terms of the statistical fitting to the historical data, the DHR models outperform the fixed
parameter models by considerable masgin. Although it is well known that gains in resid-
ual variance are not a sufficient condition for gains in forecasting accuracy, improve-
ments in residual variance always imply shorter forecasting intervals.

2. In our forecasting exercise, therc bas been no intention to rank the different forecasting
performance criteria. On the confrary, we believe that this is something that has to be
decided by the user in terms of his/her needs, Conflicts among them (although not
desirable) are only an indication of different goals of alternative prediction exercises.
However, our results contend that many forecasting comparisons in the literature may
be misleading if they are based solely in a single criterion. A thorough discussion on the
nature and the relationships among the forecasting criteria should be provided before any
general conclusions are drawn.

3. For the set of forecasting performance criteria used in this paper, there is no uniform
dominance of one method over the others (for all criteria and at all forecasting intervals).
Being unknown, the statistical distribution of these criteria cannot be used to pose the
empirical evidence in a formal statistical testing framework, Therefore, some of the
discrepancies found among the models may not be statistically significant. However, if
we use an agggegate minimax criterion across measures and forecast horizons (given the
warnings meriioned in the previous section), the DHRO model can be considered as the
best candidate for this particolar data set and forecasting period. Other forecasting
exercises with a larger data set, as in Garcia-Ferrer er al. (1994), confirm its potential

as an interesting methodology in the field of univariate forecasting.

5
4
4

Notes

. An interesting attempt to reconcile these two divergent lines of literature mway be seen in

Diebold (1989).

. This NVR ratio uniquely defines the performance of the algorithm since all the other

parametess in the model are constrained to unity. There are vatious ways in which the
NVR can be chosen, some of which are discussed in Young and Benner {1988). The
choice of the NVR value is & very important step in the identification process, among
other things, to ensure the orthogonality condition among the different components in

(3.1).

. Unconstrained M. estimation could have problems with a poorly defined ML hypersurface.

Indeed, there is some evidence that the likelihood surface in this class of models is
generally rather flat. Unfortonately, this evidence is inconclusive since no one, as far
as we are aware, has studied the problem in depth.

. Additionally, it is not easy to solve the ML problem with the parameters, as wel as the

states, being estimated recursively.

. Two different types of software were used. For the compenent models, both the GTF and the

DHR options are estimated using the microCAPTAIN software recently developped by
Young and Benner (1988). The ARIMA models were estimated by exact ML methods
using the SCA computer program.

. The interpretation of the R® criterion is somehow misleading here since it refers to the fitting

of the original series not the transformed (stationary) ones.

. YIC represents the Young Information Criterion and provides 2 good compromise between

model fitting parameter efficiency. As with the AIC, the best model will normally be the
one with the greatest negative YIC. The exact definition of the YIC can be found in

Young {1985).

. Again this behavior is not uniform during the forecast period among the different subgroups

in the automobile industry.
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Table 3: Estimated GTF Models for the Perturbations of the Series: 1981.1-1988.12
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Table 5: One-Step Ahead Percentage ¥orecasting error Table 6: Aggregate Percentage PE Criterion

: %OSFE awma | GrF | purp_| DHRO 4PE | ARIMA | GIF | pmmp | paro
CIM (18) .76 7.57 9.68 81 [ CTM (18) 2.98 2.12 8.42 2,28
CTM (1D 23 -10.08 1.74 -2.61 CTM (12) 12.44 9.25 16.94 9.93
CTM (6) -1.80 6.01 5.97 -1.88 ; CTM (6) 48 108 8.80 5.09
CDOM (18) 15.97 12.62 18.86 6.43 : CDOM (18) -0.63 -85 6.35 2.86
CDOM (12) 881 -4.24 312 2.12 CDOM (12) 687 1140 14.45 6.99
€DOM (6) -6.26 .03 -1.45 -7.08 CDOM (6) 7.80 1.1 9.32 9.4
CIMP (18) 425 935 4.45 -8.21 CIMP (18) 17.58 98 12.35 621
CIMP (12) 1427 -23.07 -81 .65 CIMP (12) 790 2.26 21.61 14.65
CIMP (6) 923  17.37 20.35 6.37 ' CIMP (6) 2.58 -61 7.90 -3.03
CLUX (18) 3,75 2.50 -8.50 6.73 : CLUX (18) 1216 181 1997 | -12.87
CLUX (12) A0.65  -15.17 2064)  -17.79 : CLUX (12) 5.04 12 1.54 289
CLUX {6) 1.9 1.95 4.69 3.22 ; CLUX (6) 733 -2.06 3.42 3.90
CSAL (18) S1oL <2005 -2.98 -12 CSAL (18) 7.32 2.24 3.19 17.21
CSAL (12) 6.61  -14.38 3.26 -1.96 ' CSAL (12) 553 .3.06 1.96 7.99
CSAL (6) 7.27 21.22 18.10 3.94 CSAL (6) _5.22 33 1.10 -4.89

Note: Bold typescript means the method ranks first, : Note: Bold typescript means the method ranks first,
while italic typescript means the method ranks last. ' while italic typeseript means the method ranks last.
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Table 7: Percentage RMSE Criterion Table 8: Percentage ME Criterion
%RMSE ARIMA | GIF | DHRD DHRQ : %ME ARIMA i GIF ] DHRD DHRO
- " L12 119 61 ; CTM (18) 3.46 3.39 8.95 2.62
CIM (12) 1.38 139 1.87 1.16 T CTM (12) .60 1028 1736 | 10.02
M ®) P 1.20 05 N : CTM (5) 470 1098 8.79 5.93
DO (15) o ™ 122 By :' CDOM (18) 42 21 7.10 2.43
CcooM () 136 L6 190 127 ; CDOM (12) 775 1237 15.07 7.22
CDOM (6) 1.50 1.7 1.55 1.59 CDOM (6) 819  11.72 9.82 9.81
CIMP (18) 2,29 125 1.92 1.46 : CIMP (18) 18.70 2.46 13.77 771
P () 138 1.49 2.62 1.96 : CIMP (12) 8.90 3.78 23.44 16.34
cnp @ 90 131 136 9 CIMP (6) -1.59 1L.01 9.36 -1.66
LUK (1) LA o7 201 137 _ CLUX (18) 1143 101 1876 | -11.87
LU 42) 105 . 5 83 CLUX (12} 5.36 32 -65 -2.8%
LUK © 131 52 31 83 : CLUX (6) 752 -L83 -2.96 3.90
CSAL (8) 126 118 1.02 1.99 CSAL (18} 7.82 116 3.93 17.63
CSAL (12 o8 141 L10 o6 CSAL (12) -4.68 -95 3.38 -7.10
CSAL (6) 6.94 7.14 5.26 57 CSAL (6) -4.52 1.28 2.08 -4.39

Note: Bold typescript means the method ranks first, . . . No{e: ?Ol.d vp escr@pt means the method ranks first,
while italic typescript means the method ranks last. ; while italic typescript means the method ranks last.
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Table 9: Percentage MAE Criterion

Table 10: Forecasting Performance of the DHR model for CTM.

NVR Valies Forecasting Performance Criveria (18 steps ahead)

Jor the Trend OSFE I APE I %RMSE I %MAE ! %ME
104 9.68 8.42 1.19 10.11 8,95
10 3.97 -1.23 0.55 4.78 -0.81

%MAE ARIMA l GIF ] DHRD | DHRO
CTM (18) 6.77 9.90 1011 515
CTM (12) 1260 12,147 17.36 10,43
CTM (6) 530 10,98 8.79 6.47
CDOM (18) 7.26 7.28 8.55 6.17
CDOM (12) 1020 13.08 15.07 9.07
CDOM (6) 1037 1172 10.30 11.84
CIMP (18) 19.65 1070 15.75 12.35
CIMP (12) 12,07 1124 23.58 17.67
CIMP (6) 512 1.7 11.70 121
CLUX (18) 11.43 7.82 18,76 12.26
CLUX (12) 8.75 8.13 6.54 6.71
CLUX (6) 10.19 .11 7.20 6.43
CSAL (18) 10.86 9.12 8.52 17.63
CsAL (12) 808 10.29 8.07 8.79
CSAL (6) 6.94 7.14 5.26 552

Note: Bold typescript means the method ranks first,
while italic typescript means the method ranks last.
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Tabie 11: Number of Times that Each Method Ranks First (Lowest) and Last (Highest) under Different Criteria.

e
Lo,

Ranks First Rarks Last

g}iﬁ;i Models Models
Crireria armaa | GTF | purp | DHRO | ammva | TR | pHRD | DHRO
OSFE 5 3 2 5 2 8 4 1
APE 3 11 1 0 4 1 7 3
%RMSE 4 2 2 7 2 4 8 i
AMAE 1 3 5 6 3 4 6 2
%ME 2 10 0 3 4 2 7 2
Total 15 29 10 21 15 19 32 9

Table 12a: Number of Times that Each Method Ranks First (Lowest) under Different Criteria for Different Forecast Horizons.

Source: Tables 5 to 9.

18 Months Ahead 12 Months Aread 6 Months Ahead
gg;f;ﬂ"ﬂ’i Models Modeis Models
Criteria ARIMA | GTF | DHRD | DHRO | ARIMA | GTF | DHRDJ DHRO | ARIMA | GTF | DHRD l DHRO
OSFE 2 1 0 2 2 0 2 1 i 2 0 2
APE 1 4 0 0 1 3 1 0 1 4 0 0
%RMSE o] 2 1 A 1 0 0 4 3 0 1 1
BMAD 0 2 1 2 0 1 2 2 1 0 2 2
%ME 0 4 0 1 0 3 0 2 2 3 ] 0
Toral 3 13 2 7 4 7 5 9 g ] 3 b

Table 12h: Number of Times that Each Method Ranks Last (Highest) under Different Criteria for Different Forecast Horizons.

18 Months Ahead 12 Months Ahead 6 Months Ahead
}f:;f:;‘:fe Models Modsls Models
Criteria ARIMA | GTF | DHRD | DHRO | ARIMA | GTF | DHRD | DHRO | ARIMA | GTF | DHRD l DHRO
OSEE 1 2 2 0 1 3 i 0 1 3 0 1
APE 1 o 3 ; 1 1 3 0 2 1 1 1
%RMSE 0 0 4 1 1 1 3 0 1 3 1 0
%MAE 10 3 1 1 1 3 0 1 3 o 1
%GME 10 3 1 i 0 3 0 2 2 1 )
Total ) 15 4 5 6 13 1 712 3 3

Source: Tables 5 to 9.
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