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ABSTRACT 

This paper investigates the forecasting ability of a new uoivariate models 

family of unobservable components, when compared with other more standard 

univariate methodologies. A forecasting exercice is carried out with each 

method, in monthly time series of automobile sales. 

The accuracy of the differents methods is assesed by comparing several 

measures of forecasting performance on the out of sample predictions for 

various horizons as well as differents assumptions on the models parameters. 

RESUMEN 

El artículo investiga la capacidad predictiva de un nuevo conjunto de 

modelos univariantes de componentes no observables, comparándolo con otras 

metodologías univariantes que usan parámettos fijos y variables en el tiempo. 

Para ello, se lleva a cabo un ejercicio predictivo, con cada uno de los métodos, 

en series mensuales de ventas de automóviles. 

Finahnente. se analiza la eficiencia de estos métodos utilizando 

distintas medidas de comportamiento predictivo fuera de la muestra para 

diversos horizontes y con supuestos direrentes sobre ciertos parámetros de los 

modelós. 
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1. Introduction 

Mast of the forecasting literature in economics can be assigned to, bassically, two different 

frameworlcs. As Diebold (1989) has Doted, 00 the one hand, there is a long tradition that pIaces 

considerable emphasis 00 theoretical aspects (as opposed to empírical evidence) in guiding the 

evaluation of econometric models. AIthough sorne social scientists have clearly postulated that 

a good forecasting perfOlmance is-a necessary condition foc any theory to be given such status 

[Zellner (1988), Friedman and Schwartz (1991)], there is stiU a large number of academic 

economists and econometricians who tend to view the forecasting problem as afie of a secondary 

importance. Within tbis framework, primary ¡nterest is concentrated in understanding the 

economy (by estimating the parameters of an equation suggested by a priori theory)· resting 

secure in the belief that good forecasts will follow automaticalIy frOIn such understanding. 

On the other hand, those involved in the forecasting business know (and can provide many 

practical examples) that understanding the structural relationships in an economic system may 

not be a sufficient condition to forecast it welL Even if we leave aside theoretical questions 

related to the constancy of the parameters in the models [Lucas (1976)], there are many practical 

situations where deadlines must be met and enlarging the information sets is either impossible 

or prohibitively costly [García-Ferrer and del Hoyo (1987)]. This pragmatic observation is one 

of the main reasons of the pennanent interest on the univariate forecasting literature, in which 

foreeasts rather than models are the basic object of analysis!. 

This paper describes a forecasting comparison between a variety of old and new statistical 

methodologies. Each method is used to forecast monthly automobile sales up to several horizons 

in the future. The aecuraey of the different methods and models is assessed by comparing severaI 

measures of forecasting performananee of the out-of-sample predictions for various horizons as 

well as assumptions about certain parameters in the models. The plan of the paper is as follows. 

In section 2, we present the sources, defmitions and characteristics of tbe data. Section 3 

surnmarily describes the different univariate methodologies used, especially those with time 

varying parameters recently developed by Young (1984), Ng and Young (1990) and Young 
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(1994). In section 4, we present the empirica1 results and analyze the predictive performance of 

the models. Finally, in section 5, the conclusions are presented. 

2. The Data 

The automobile sector in Spain represent a very important area of economic activity both in 

tenns of the Ímancial flows involved, and its participation in the labor market. More than 10% 

of the Spanish working population are somehow involved with the auto industry and the total bill 

in 1980 U.S. dollars has increased frcm 5.6 billions in 1980 to 24 billians, nine years latero AIso 

in terms of physical units sold, Spain ranks tbe fifth in Europe afier West Gennany, United 

Kingdom, France and Italy. 

MontbIy sales data provided by the National Association of Automobile Manufacturers (ANF AC) 

have been divided in five groups according to their characteristics: 

1. The total nwnber of cars sold in Spain (CTM). 

2. The nwnber oí domestic (Spanish manufacrured) cars sold in Spain (CDOM). 

3. The number oí imported cars sold in Spain (CIMP). 

4. The number of luxury cars sold in Spain (CLUX). 

5. Car sales of ane of the leading import companies in Spaio (CSAL). 

[Insert Figs. 1-5] 

Plots of these variables for the period 1981.1-1990.6 are shown io Figures 1-5, where both 

nonstationarity as well as strong seasonality are clearly evident. Also, in Table 1 the annual rates 

of growth of the different variables are shown, indicating very different behavior of the series 

through time. In partit~lar, there are remarkable differences in the rates of growth between CfM 
f 

and CDOM and the 6ther three variables afier 1986, when Spain became a full mernber oí the 

EEC. Through a progressive reduction on impon tariffs since that year, imported cars have 

become more and more aífordable for the Spanish consumer. 

4 

[Insert Table 1] 

3. Methodologies 

Visual inspection of Figures 1 to 5 indicate that the statistical characteristics of such series 

change considerably over the sample interval, so that the series can be considered nonstationary 

in a statistical sense. All series exhibit a c1ear upward treod, together with pronounced annual 

periodicity. The trend behavior is a classic exarnple of statistical nonstationarity uf the mean, 

with tbe local mean value oí the series chaoging markedly over time. The nature of the 

periodicity (or seasonality), on the other band, varies over the five series but, in general, there 

are signs of steadily growing amplitude in most of them, indicating nonstationarity in the 

seasonality about the trend. 

These kinds of nonstationarity are indicative oí changes in the underIying statistical properties 

oí the data. Therefore, any statistical model used to characterize these series should be able to 

model this nonstationarity feature if it is to represent them an acceptable way. Since Box and 

Jenkins (1970) proposed their influential ARIMA models, differencing (both the regular and the 

seasonal cornponents) and using simple nonlinear transfOlmations (such as the log of the data) 

prior to rnodel identification and estimation, have been widely and successful1y used as effective 

tooIs to deal with nonstationarity. None of them are without difficulties: in sorne cases, 

indiscriminate differentiation oí the data will amplify high frequency components; in others, even 

afier logarithmic transfonnation, the seasonality is still varying to sorne extent. What can we do 

in those siruations? Are there other ways to accouot for the nonstationarity problerns? 

Sorne recursive rnethods recently developed for Time Variable Parameter (TVP) estimation can 

provide an interesting alternative to ARIMA modelling in which parameter variation is 

characterised by sorne fonn of stochastic state-space (SS) model. Tbe SS model belongs to the 

class oí unobserved component ARIMA (UC-ARIMA) models developed by Engle (1978) and 

Nerlove et al. (1979), and have beeo popular in the íorecasting literature over the last years. 

However, it is only recently that papers which exemplify this TVP approach [Harvey (1984), 

Kitagawa and Gersch (1984), Engle et al. (1988) and Ng and Young (1990)] have been utilized 
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within the context of SS estimation. In particular, Young et al. (1990) and Young (1994) provide 

a novel spectraI interpretation of the SS smoothing algorithms to decompose the series into 

various, quasi-orthogonal components, the models for which can be identified and estimated 

using recursive methods of TVP estirnation [Young (1984)]. 

Following Young and Young (1990), we can write the componen! or structural model of a 

univariate time series l't as 

(3.1) 

where, Tt is a low frequency or trend component; Pt is a perturbational component around the 

long ron trend which may be either a zero mean stochastic component with fakIy general 

statistical properties or a sustained periodic or seasonal component; and, finaIly, El is a zero 

mean, serialIy uncorreIated wmte noise component with variance o!. 

Tbe Trend Mode) 

The low-frequency or trend component can be represented by a second-order generalized random 

walk (GRW) model of !he fonn: 

(3.2) 

where S¡ may be interpreted as the local slope or 'derivative' ofthe trend and 1/t and ~t are zero 

mean, serially and mytually uncorrelated white noise inputs. It is further assumed that they are 

statistically indepenA~nt of the white noise observational errors E¡ in equation (3.1), and 
·t, 

therefore: 

(3.3) 
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By introducing a trend model of this type, it is assumed that the time-series can be characterised 

by a varying mean value whose variability will depend upon the specific form of fue GRW 

model chosen. It can be shown that 1/t is mainly necessary to handle sharp discontinuities of level 

or slope [Young and Ng (1989)] and unless theyexist, can be constrained to zero. Ifthis is the 

case, then the variance of ~¡ is the only unknown in (3.2) and can be determined by the Noise 

Variance Ratio (NVR), that is the relatíon between o~ and the variance o~ ofthe observational 

noise €t in equation (3.11. 

Tbe Periodic or Seasona) Mode) 

It is assumed that the periodic component in (3.1) can be either a General Transfer Function 

(GTF) or a Dynamic Harmonic Regression (DHR) model: the fonner is a more general 

representation of any stochastic time-series; the latter is restricted prirnarily to series with strong 

seasonality and is particular1y useful in the context of adaptive seasonal adjustment 

The General Transfer Functíon Model 

The GTF model is similar to the ARlMA model employed by Box and Jenkins (1970) although 

no stationarity restrictions are imposed here. It is assumed that the sum of the stochastic per­

turbation Pe and the white noise component E¡ follows an ARMA process of the form: 

Pr + e, y(L)a 
<I>(L) , 

(3.4) 

where 

. 
$(L). L rP¡Li, rPII ~ 1 

j=O 



and 

m 

y(L) = L YiLi, Yo s j. 
i ~O 
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For convenience, the order m is assumed the same for both polynomials; however, different 

orders can be introduced without any furtber problem. In the ernpirical applications oí the GTF 

model described in tbe next section, we will concentrate on the use of the purely Autoregressive 

(AR) form of (3.4). In that case, an AR or subset AR model is identified for the perturbations 

using sorne of the identification criteria described in [Young (1985)]. 

The Dynamic Hannonic Regression Model 

In this case, the periodic component PI is represented in the following foun: 

F 

P, L [81" 008(2 • .t;t) + 8'1< sin(2 • .t;t)] 
j~ 1 

(3.5) 

where /;, i = 1,2, ... ,F, are the frequencies in cyc1es per unit of time, and the coefficients ~il' 

j = 1,2 and i = 1,2, ... ,Fare assumed to be time-variable, so that the model is able to handle 

nonstationary seasonality. The parameter variations are modelled as GRW processes which then 

allows the time series to exhibit amplitude-modulated periodic behavior. Since there are two 

parameters associated with each frequency component, the changes in the amplitude At of each 

component, defined by, 
i 

!l 
(3.6) 

provides a useful indication of the estimated amplitude modulation. 

-4 
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Two additional conunents about the DHR model are worth mentioning. First, the DHR model 

is rather different to the GTF model in that its parameters are assumed to be inherently time 

variable, rather than normally constan!, over the observatíon interval. Second, the DHR model 

can be contrasted with the Fourier model proposed by Harvey (1984), where the sine and cosine 

terms for each frequency appear in the state equations of the periodic model rather than, as here, 

in the observation equation. 

Having defined SS model structures for all the components of the structural model, it is 

straightforward to assemble these into an aggregate SS form where the state vector is composed 

of all the states from the different submodels and the observation matrix is simply a vector 

chosen to extract from the state vector the structural components T¡ and PI [Ng and Young 

(1990)]. The problems of structural identification (similar to the ones that appear in standard 

econometric models) and subsequent parameter estimation for the complete SS model are 

clearly non-trivial. In general, the imposition of certain restrictions -that is, imposing a given 

structure- has been the way to achieve identification in the statistícal literature on signa! 

extractíon and a standard set of such restrictions is the orthogonality of the components (trend, 

perturbatíon and noise in our case). A logical way to proceed is to verify these convenient 

identifying restrictions after an ¡nitíal, unrestricted estimation of the component models3. 

Unfortunately, as noted by Grether and Nerlove (1970), the model for a component is different 

from the model obtained by its estimator, and so it is perfectly possible to fmd that, whereas the 

theoretical components are uncorrelated in general, the estimated components will be correlated. 

Nevertheless, for practical purposes, it is important to verify the actual degree of orthogonality 

among the estimated components in order to avoid spurious decompositions cornmonIy found 

with these procedures [García-Ferrer and del Hoyo (1992)]. In such cases, it can be shown that, 

through an adequate choice of the NVR ratio (selecting a NVR value for the trend that does not 

contaio higher frequency cornponents associated with the perturbational behavior) the 

orthogonality problem is considerably reduced. 

Finally, as regards estimation, the most obvious approach is to fonnulate the problem in 

rnaximum likelihood (ML) terms. If the disturbances in the SS ruodel are normally distributed, 

the likelihood function for the observations may be obtained from the Kalman filter via the 

prediction error decomposition [Harvey and Peters (1990)]. However, sorne practice with this 
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approach indicate tbat it can tum out to be rather complex even for particularIy simple structural 

models4• An alternative, discussed in Young (1988) and based on an sequential spectral 

decomposition, applies the SS smoothing algorithms to the various component submodels, 

decomposing the solution to the overaIl estimation problem into a series of linear steps, each 

solved in fully recursive teons. Although the procedure is suboptimal (in a ML sense), it is 

robust in practical applications and well suited for adaptive forecasting. 

4. Empírical Results and Forecasting Performance 

AH models are estimated for three different period intervals: 1981.01 to 1988.12, 1981.01 to 

1989.06 and 1981.01 to 1989.12, in arder to generate, respectively, 18, 12 and 6 step-ahead 

forecasting errors for each model5 • 

The estimation results for the ARIMA models for the perlad 1981.01 to 1988.12 are shown in 

Table 2. Careful examination of the estimated residuals and their acf and pacf, as well as the 

Ljung-Box statistics (not shown), did not indicate either the presence of important outliers in any 

of the models or the existence of any type of stochastic strucrure in the residualsli. 

In Table 3, the estimated GTF (lRW trend plus subset AR) for the detrended (perturbation) data 

are showo. To obtaio this model, tbe low-frequency trend which is so ohvious in Figures 1 to 

5 was first estimated and removed by the IRWSMOOTH algorithm (included in microCAP­

T AIN) with different NVR values which were selected interactively so that the trend derivative 

contains only a very slight leakage of the higher frequency components assocÍated witb the 

annual, 12 month cycle. The chosen NVR parameter for the trend should: (1) reflect the long 

term, low frequency behavior of the series and (2) not contaio (on the basis of the estimated 

derivative, or slope of the trend) any higher frequency components associated with the , 
perturbational beha-vlor around this trend. AIso, an interesting byproduct of the estimated slope 

" 
is the possibility of"verifying the existence of underlying quasi-periodic long term behavior so 

cornmon in socio-economic and business data. 

[Insert Tables 2 ami 3] 

4 
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As indicated in the previous section, for models of the type given by equations (3.1) and (3.2), 

the chosen NVR uniquely defines the performance of the algorithm. However, the question of 

how to choose it remains an open one, since there are several ways in which the NVR can be 

chosen. They al! can be interpreted as defining the bandwidth of the filter in spectral tenns. It 

has been shown [Young, T.J, (1987)] for example, that tbe cut-off frequency Fm (i.e. the 

frequency at which the filter attenuates tbe signal by 50%) is related to the NVR by fue 

empirical equation, 

Fso " 0.158 (NVR ¡o.2S 

so that the NVR that will extract a given band of low frequencies could be computed from this 

expression. Suppose, for instance, that we require that the trend reflects a typical economic cycle 

of, say, five years but contaios the minimum of any higher frequency components such as annual 

cycles. For our montbly data, Fso can then be chosen to just pass the frequency components of 

0.0167 [, _1_] cycles per sample. Substituting- this value for Fm yields an NVR = 10-4 which 
5 x 12 

is a very useful default value for this type of periodicity. 

In any case, the estimated derivative can provide additional useful information in deciding an 

appropriate set of values for the NVR. To see how changing the NVR values affects the trend 

estimation, let us try a number of different parameter values for one of the series, i.e. the CSAL 

data set. Figures 6a to 6c show the results obtained in each of the three cases (NVR values of 

10-1, 10-2 and 10-4, respectively). Apparently, the three trends track the long perlad behavior very 

well. However, the results for NVR = 1 (TI and NVR = 10-2 are not as good as it looks at first 

sight: we see from the associated trend derivative plots (Figures 7a and 7b) that the estimated 

trends actually contain sorne higher frequency components related to the shorten period aonua! 

cycle; components which are amplified by the derivative operation inherent in the trend 

derivative estimation and show up very well 00 the derivative plot. 

[Insert Figures 6 and 7] 
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An additional piece of continnation of this faet is provided by the periodograms of the three 

derivatives shown in Figures 8a to 8e. While in the two fonner cases there 18 a strong evidence 

of higher frequencies, the periodogram for the default value (NVR = 10-4) shows the typicallow 

frequency concentration with no leakage of higher frecuencies. 

[Insert Figure 8] 

Once the perturbational series are obtained, the procedures for AR fiadel identification used in 

nllcroCAPTAIN are based on the identification criteria proposed by Akaike (1974). Afier the 

unrestricted AR madel i8 chaseo and estimated, further examination may indicate that dífferent 

subset AR models with certain parameters constrained to zero provide superior AlC and YIC 

valu~s, although with only marginal decreases in the R2
• These restricted subset AR models 

shown in Table 37• 

The complete estimation results for the DHR models with deJault NVR value (DHRD) are based 

on a fundamental frequency (the 12 months annual cycle) and its principal hannonics at periods 

6, 4, 3, 2.4, and 2 months, respectively, using the F suboption in microCAPTAIN (where the 

parameters are modeUed as RW processes), with tbe automatic mode (NVR = 10-4 for the trend 

component and NVR = 10.2 for all the other components). The complete results of the 

estimarlon process include infonnation about the trend, tbe seasonal components, the nonseasonal 

componen!, the seasonal amplitudes, and the fitted (forecasted) data. Exhaustive analysis ofthese 

results are outside the scope of this paper, but as might expected from a TVP estimation method, 

the statistical fitting to the historical data in aH series is quite remarkably accurate. 

Comparisons among the statistical fittings of the estimated ARIMA, GTF and DHRD models 

for this particular data set must be carried out cautiously since the different measures of statisti­

cal fitting are not always strictly comparable. However, there are two cases in which such 
:' 

" comparison is possi~e: the residual variances (82 and /-) of estimated ARIMA and GTF models 
.~ a e 

in Tables 2 and 3, and the lf for the original series in the case of the ARIMA and the DHRD 

modeIs. The results are shown in TabIe 4, where, except for the CTM series, the GTF shows 

better statistical fitting than its correspondent ARIMA alternative under the r~sidual variance 

12 

criterion. When using the R?- criterion, the DHRD clearly outperforms the ARIMA model as 

expected, given the characteristics of the DHRD algorithms and the strong periodic behavior of 

our series. As a matter of tact, we have observed that the DHRD model beats almost any other 

univariate (and many multivariate) altemative models for tbis type of data in terros of statistical 

fitting, as might be expected because its parameters are allowed to vary over the observation 

interval. 

[Insert Table 4] 

Forecasting Performance 

Leaving aside the statistical fitting characteristics of the different alternatives, our main interest 

in this paper is to analyze the predictive performance of the models for several time horizons. 

The forecast period (1989.01 to 1990.06) was chosen because it is not particularly easy to 

predict since 1989 anticipated a reduction in the rate of growth of sales (afier four consecutiv
e 

years of booming sales) that lead to a negative growth rate in 1990 of 10.4%8. Since our 

information set only ineludes historical data, without any leading indicator variables or any 

device to predict turning points as it is the case in Zellner et al. (1991), we expect considerable 

overprediction in the most important series (CTM, CDOM and CIMP), while the biases in the 

other series may have different signs. In any case, it is very important to see how the models 

adapt their predicrlons as soon as new information becomes available. 

Forecasts have been evaluated according to different (individual and aggregate) forecasting 

measures [Meese and Geweke (1984)]: 

1. The One Step-Ahead Percentage Forecasting Error (OSFE) eomputed after eaeh 

estimation periodo Since we have 3 estimation periods and 5 variables, we will have 15 

observations to compare for each modelo 

2. The Percentage Prediction Error (%PE) defined as 



%PE E F(t+j) - A(t+j) X lOO 
A(t+j) 
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whereA(t) i8 the actual value, F(t) denotes the farecast value, andj = 1,2, ... i8 the total numher 

of forecasts. 

3. The Aggregate Percentage Prediction Error (APE) defmed as 

h h 

L F(t+j) - L A(t+j) 
APE 2 jd j-¡ X lOO 

h 

L A(t+j) 
j~1 

h = 6, 12 and 18. This i8 not commonIy used since it allows foc the cancellation of large errors 

of different signs, but it becomes relevant when the target i8 the total numher ofunits in the long 

run rather than ¡ts monthly distribution. 

4. The Percentage Root Mean Squared error (%RMSE) defined as 

%RMSE E [.!. t (F(t+j) - A(t+ j ))' X lOO]'" 
h jo¡ A(t+)) 

h := 6, 12 and 18. l 
!J ;g 

5. The Percentage Mean Absolute Error (%MAE) defined as 

... 

h ~ 6, 12 and 18. 

I
F(t+j) -A(t+j)1 X lOO 

A(t+j) 

6. The Percentage Mean Error (%ME) defined as 

h 

%ME E .!. L 
h }_1 

h ~ 6, 12 and 18. 

F(t+j) - A(t+j) X lOO 
A (t + j) 
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Regardless of the madel used to construct the fatecast, all farecast values are for the original 

series in levels. For the component models, the estimated trend and/or seasonals were reinserted, 

and foc the case of the ARIMA models the differences were converted to levels if preliminary 

differences had been employed. 

Results fOI the OSFE, APE, %RMSE, %ME, and %MAE criteria for the tbree models considered 

so far are shown in the first three columns of Tables 5 to 9. The meaning of the fourth column 

will be explained later. As might be expected, no model dominates the others under all the 

forecasting criteria. However, sorne tentative conclusions can be drawn from such tables: 

[Insert Tables 5-9] 

1. In terms of the one-step ahead percentage forecasting error (OSFE) criteria, the ARIMA 

roodel seems to perfonn better than the other two altematives. However, the dominance 

is not uniform among aH series at a11 forecasting intervals. The ARIMA seems to work 

better for CFM and CIMP, the GTF model seems to be better for CDOM and CLUX, and 

the DHRD model for the case of CSAL. 
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2. The long-ron forecasting behavior (as measured by the APE criteria) 18 months ahead is 

reasonably good. given that our three alternatives are univariate models. Within this 

eriteria, fue GTF fiadel outperfonns the other two alternatives by a considerable margino 

0nly in CDOM for the ARIMA and in CSAL for the DHRD. do the altematives perfonn 

better for sorne time horizons. 

3. In the case afthe %RMSE eriteria, the ARIMA madel seems 10 perfonn better than the other 

two models. Again, the ARIMA advantage is concentrated on CTM, CDOM and CIMP. 

Por the CLUX and CSAL, tbe DHRD ruadel ouperfonns the other altematives. The GTF 

liadel does not seem to be working well under this criteria. 

4. When using the rernaining forecasting performance criteria (%MAE and %ME), the GTF 

fiadel again outperfonns the other two models. In the case of the %ME, the DHRD does 

not perfonns well, while in the case ofthe %MAE criteria, all models perfonn in similar 

tenns. 

The interpretation of the results in Tables 5 to 9 must be exercised with care. The main intention 

of this forecasting exercise was not to provide a kind of forecasting competition a la Makridakis 

el al. (1982), but to explore the potential forecasting ability for economic time series of a new 

set of univariate procedures recently developed in other areas of control engineering and systems 

theory. In this respect, the results obtained for the GTF model are very promising and compete 

very favorably with a well established univariate modelling strategy as it is the ARIMA 

methodology. The results for the DHRD model are somehow surprising, having in mind the 

excellent statistical fitting shown by this TVP estimadon method. 

One explanation of this finding is related to the difficulties in forecasting the parameters 

variation. Given our present assumptions, the DHRD model will ooly work if the RW or IRW 

forecasts are good. _, 
I 

Another explanatio¿¡ has to do with the way in which the models were estimated. While in the 
" case of the GTF model the choice of the NVR value was decided by the authors by looking at 

the trend derivative in each data set, this was not the case for the DHRD model, where a11 the 

estimation and forecasting exercises were carried out under the automatic mode (using default , 
values for the NVR). This was not a very sensible decision since forecasts- using this SS 

4 
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approach can be very sensitive to the estimation of the trend NVR, probably because the 

assumed RW or IRW models, which ret1ect ooly the characteristics of the local trend, do not 

adequately model any long tenn variations in the trend derivative. The implications of the 

previous results suggest that a different NVR value may improve the forecasting behavior over 

different parts of the data and, consequently, that the trend NVR should be adaptively updated 

during estimation; an option which has not been available in microCAPTAIN until very 

recently. 

The Choice of the NVR Value Revisited 

The following example provides a good illustration of the potentíal gain if the NVR is used as 

a tuning parameter in a forecasting exercise. Let us take the cases of the CTM and CLUX 

variables, where the DHRD model has not perfonned too well over the prediction interval. In 

particular, and to maintain brief fue exposition, let us look at the CTM variable where systematic 

overprediction has taken place along the predictive horizon. It is obvious that, as soon as we 

observe the trend changes, the default NVR value is not a very realistic assumption. As an 

alternative, if an arbitrary higher value is selected (Le. NVR = 10.3), the forecasting algorithm 

weights more heavily the recent changes in the trend and produces better multi-step forecasts as 

shown in Table 10. 

[Toser! Table 10] 

If we compare the results from Table 10 with those of fue first three columns of Tables 5 to 9, 

we can see that, except for the case of the OSFE criterion, the DHR could rank f¡rst in 

forecasting perfonnance for the CI'M variable at the 18 steps-ahead forecasting horizon. We 

think that this result is very promising and demonstrates the potential advantage of using the 

NVR as a tuning device. Nevertheless, this last point deserves further analysis since it is also 

desirable to have in practice general guidelines for the actual choice of the NVR value. 
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So far, somehow, our approach in dealing with the DHR model can be considered halfthe way 

between the objective optimisation approach and the subjective bayesian one: parameters need 

to be chosen, but those selected are reduced to a minimum, and vaIues are provided to aid in 

their choice. Note, however, that manual tuning can be dangerous and sorne more objective 

adaptive adjustment would be preferably. 

RecentIy, Tych and Young (1993) have developed a method of optimising the NVR values based 

upon tbe spectral properties of tbe random waIk family of models used to describe the 

nonstationary parameters, so tbat the logarithm of tbe pseudo-spectrum (pseudo because the IRW 

model is nonstatíonary) matches the logarithm of either tbe AR spectrum or tbe periodogram of 

the data, in a least squares sense. A measure of goodness of fit is introduced, closely related to 

the Fisher metric, and the method also allows the estimatioo of the NVR values associated 

with the maio seasonal frequency (and its harmonic) of the DHR models. 

With this aItemative, we estimated the eorresponding new DHR models for the whole set of 

variables using the same sample intervals as before in arder to produce 18, 12, and 6 forecast 

errors for each variable. Afier the last iteratíon, the estimated (optimised) NVR values for the 

trends, ranging between 8XlO-J and 10-3, show both large differences among the different 

variables as well as big discrepancies with tbe 10"' defalult value used in the DHRD mode!. 

AIso, there are some discrepancies in the NVR values corresponding to the fundamental seasonal 

frequency and its harmonic. The forecasting results for the different measures are shown in the 

fourth column of Tables 5 to 9 under de DHRO (for optimiseá) heading. The first thing we 

notice is the considerable improvement in forecasting accuracy over the previous default DHRD 

model for almost all time forecasting horizons and different dteda. As a matter of faet, out of 

the 75 possible outcomes, the DHRO model beats the DHRD one in 52 cases (70% 

approximately), confrrming the potencial advantage of updating the NVR over the sample 

interval in tenns of ~rrecasting accuracy. 

"" :g 
[Insert T.bles 11, 12 •• nd 12b] 

As regards overall comparisons among the different methods, we have summarized the results , 
of Table 5 to 9 in Table 11, where we show the number of times that each method ranks first 
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aOO last under the different criteria. The same exercise is carried out on Tables 12a and 12b 

where the results have been splitted according to the different forecast horizons. Again, the 

interpretation of the results in these tables must be exercised with careo The reader should be 

aware that although it is useful to report forecast performance based on various measures, it 

might be DÚsleading to synthesize tbe performance of different metbods by aggregating 

results of various measures. 

With this caveat in mind, we will try to surnrnarize the main results that emerge from the 

previous tables. FirstIy, again no mudel dominates the others under all the forecasting 

criteria for all sedes and forecasting intervals. This is not surprising, given the different trend 

behaviour of the different series during the forecasting periodo Secondly, Table 11 confirms this 

finding showing the superiority of the GTF model in the case of the APE and %ME criteria, 

while the DHRO model perfonns the best for the %RMSE and %MAE measures. For the OSFE 

criterion, both the ARIMA and the DHRO share the lead. ThirdIy, if we pay attention to the 

worst perfonners, the DHRO appears to be clearly superior to its competitors for all measures 

except for the APE one. Somehow, ifwe use a minimax criterion, the DHRO might emerge as 

the best altemative for this particular data set and forecasting periodo Fourthly, with regard to 

the performance for different forecast horizons, Table 12a indicates that both the GTF and the 

DHRO outperfonn the other methods for the 18 and 12 months forecasting horizons. Only for 

tbe short 6 months period, the ARIMA works as well as the GTF does. Again, Table 12b 

indicates how the DHRO roodel appears very few times as tbe worst altemative, confirming its 

good minimax properties. 

5. Conclusions 

This paper has explored the forecasting abilities of a new set of univariate unobserved 

components models with fixed and time varying parameters and compares its performance with 

a well established methodology like the ARIMA Box-Jenkins approach. The time series data, 

belonging to the Spanish automobile sector, were chosen beeause they showed a non-homoge­

neous break in the trend during the forecasting period in some of the series, making the 



-------------------.-------------~-------------------------------------------------------------------------, 

19 

prediction exercise more complicated. In arder to assess the forecasting abilities of the different 

alternatives, five measures of the forecasting accuracy are proposed. 

According to the empirical results afthe previous sections, several conclusions can be advanced, 

though it must be recognized that these are inferences from a particular data set and foreeast 

petiod and that further evidence is necessary befare any generalizatian is made. Neither the 

scape llor the number of series analyzed allow very strong statements abont the superiority of 

ane particular method over the athers. Nevertheless, sorne tentative conclusions can be 

suggested: 

1. In terms of the statistical fitting to the historical data, the DHR models outperfonn the fixed 

parameter models by considerable margino Although it is well known that gajns in resid­

ual varlance are not a sufficient condition for gains in forecasting accuracy, improve­

ments in residual variance always imply shorter forecasting intervals. 

2. In our forecasting exercise, there has been no intention to raok: the different forecasting 

performance criteria. On the contrary, we believe that this is something tbat has to be 

decided by the user in terms of bis/her needs. Conflicts among them (although not 

desirable) are on1y an indication of different goals of altemative prediction exercises. 

However. om results eontend that many forecasting eomparisons in the literature may 

be misleadmg if they are based solely in a single criterion. A thorough discussion on the 

nature and the relationships among the forecasting eriterla should be provided before any 

general conclusions are drawn. 

3. For the set of forecasting performance criteria used in tbis paper, there is no uniform 

dominance of one method over the others (for aH eriteria and at all foreeasting intervals). 

Being unknown, the s~tistieal distribution of these criteria cannot be used to pose the 

empirical evidenee in a formal statistical testing framework. Therefore, sorne of the 

discrepancies fpund among the models may not be statistically significant. However, if 

we use an agJ'egate minimax: criterion across measures and forecast horizons (given the 

" warnings mentioned in the previous section), the DHRO mode1 can be considered as the 

best candidate for this particular data set and forecasting periodo Other forecasting 

exercises with a larger data set, as in García-Ferrer et al. (1994), confinn ¡ts potential 

as an interesting methodology in the f¡eId of univariate forecasting. 

Notes 

1. An interesting attempt to reconcile these two divergent lines of literature may be seen in 
Diebold (1989). 

2. This NVR ratio uniquely defines the performance of the algorithm since an the other 
parameters in the model are constrained to unity. There are various ways in which the 
NVR can be chosen, some of which are discussed in Young and Benner (1988). The 
choice of the NVR value is a very important step in the identifieation process, among 
other things, to ensure the orthogonality condition among the different components in 
(3.1). 

3. Unconstrained ML estimation could have problerns with a poorIy defined ML hypersurface. 
Indeed, there is sorne evidence that the likelihood surface in this class of mode1s is 
generally rather flato Unfortunately, this evidenee is inconclusive since no one, as far 
as we are aware, has studied the problern in depth. 

4. Additionally, it is not easy to solve the ML problern with the parameters, as well as the 
states, being estimated recursively. 

5. Two different types of software were used. For tbe component models, both the GTF and the 
DHR options are estimated using the microCAPTAIN software recently developped by 
Young and Benner (1988). The ARIMA models were estimated by exaet ML methods 
using the SCA computer programo 

6. The interpretatíon of the R?- criterion is somehow misleading here since it refers to the fitting 
of the original series not the transfonned (stationary) ones. 

7. YIC represents the Young Information Criterion and provides a good compromise between 
fiodel fitting parameter efficiency. As with the Ale, the best model will normal1y be the 
one with the greatest negative VICo The exact defmition of the YIC can be found in 
Young (1985). 

8. Again this behavior is not unifarm during the farecast period among the different subgroups 
in the automobile industry. 
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Table 1: Annllal Growth Rates for Different Subgroups 
in tbe Spanish Automobile Sector: 1981-1989 

Yoo' CFM I CDOM I CIMP I CLUX I CSAL 

1982 8.3 6.7 21.7 6.2 -8.0 

1983 3.2 4.2 -3.7 25.5 18.7 

1984 -6.6 -5.3 -16.6 -17.2 -12.6 

1985 lOA 6.5 43.9 19.9 8.1 

1986 18.9 12.1 61.7 39.1 34.8 

1987 32.5 20.6 85.0 49.2 47.9 

1988 11.5 3.1 35.8 37.9 21.8 

1989 7.3 3.7 15.3 49.4 11.7 

Source: ANFAC. 
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Table 3: Estimaled GTF Models for lbe Perturbations of lhe Series: 1981.1-1988.12 

NVR Model \AICJYIC\R'\ 

" 10"'(4.6) 
(1 - (~~L - (!~;L3 - (~9~L12 - (~?6;L15)PCTM¡ = a¡ 

17.7 -2.41 .426 

1O.~ (4.7) 
(1 + (.~~~L2 + (;;9~L4 + (~?~L6 - ¡~~~L12 - (~?~L24)PCDOM¡ = a¡ 

17.2 -2.17 .534 

10.5 (4.8) 
(1 - ~~~L + (~~~L4 + /l~~LIO - (~~~Lll - ¡~~~L¡2 + ~1;¡/13)PClMPI : al 

14.7 -2.51 .450 

104 (4.9) 
(1 - (~c!; L - ;~~8~ L 12 + i~;~ L 13) PCLUX, = a, 

lO.3 -2.89 .428 

10-1 (4.10) (l - .609L - .162L4 + .268L5 - .699L12 + .475 L 13 )PCSALI = a f 
(.085) (.082) (.086) (.102) (.1l9) 

8.25 -3.15 .545 
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Table 5: One-Step Ahead Percentage Forecasting error 

%OSFE ARlMA I GTF I DHRD DHRO 

CIM (18) .76 7.57 9.68 

crM (12) .23 -JO.08 1.74 

CTM (6) -1.80 6.01 5.97 

CDOM(18) 15.91 12.62 18.86 

CDOM(l2) -8.81 -4.24 3.12 

CDOM(6) -6.26 .03 -1.45 

CIMP (18) -3.25 -9.35 -4.45 

CIMP (12) -14.27 -23.07 -,81 

C/MP (6) 9.23 17.37 20.35 

CLUX (18) -3.75 2.50 -8.50 

CLUX (12) -10.65 -15.17 -20.64 

CLUX (6) 11.91 1.95 4.69 

eSAL (18) -7.01 -20.15 -2.98 

eSAL (12) -6.61 -14.38 ..3.26 

CSAL (6) 7.27 21.22 18.10 

Note: Bold typescript means the method ranks first, 
while italic typescript means the method ranks lasto 

.81 

-2.61 

-1.88 

6.43 

2.12 

-7.08 

-8.21 

-6.65 

6.37 

-6.73 

-17.79 

3.22 

.12 

-7.96 

3.94 

Table 6: Aggregate Percentage PE Criterion 

APE I ARlMA I GTF I DHRD DHRO 

CFM (lB) 2.98 2.12 8.42 

CIM(12) 12.44 9.25 16.94 

CIM(6) 4.82 10.81 8.80 

CDOM (18) -0.63 -,85 6.35 

CDOM(l2) 6.87 11.40 14.45 

CDOM(6) 7.80 1.11 9.32 

CIMP (18) 17.58 .98 12.35 

CIMP (12) 7.70 2.26 21.61 

CIMP(6) -2.58 -.61 7.90 

CLUX (18) -12.16 -1.81 -19.97 

CLUX (12) 5.04 .12 -1.54 

CLUX (6) 7.33 -2.06 -3.42 

CSAL (18) 7.32 -2.24 3.19 

CSAL (12) -5.53 -3.06 1.96 

CSAL (6) -5.22 .33 1.10 

Note: Bold typescript means the method ranks first, 
while itaUe typescript means the method ranks lasto 

2.28 

9.93 

6.09 

-2.86 

6.99 

9.44 

621 

14.65 

-3.03 

-12.87 

·2.89 

3.90 

17.21 

-7.99 

-4.89 



Table 7: Percentage RMSE Criterion 

%RMSE ARIMA I GTFI DHRD 

CIM (18) .78 1.12 

CIM (12) 1.38 1.39 

CIM (6) .6' 1.20 

CDOM(18) .92 .93 

CDOM (12) 1.36 1.63 

CDOM(6) 1.50 1.73 

CIMP (18) 2.29 1.25 

CIMP (12) 1.38 1.49 

C/MP(6) .9. 1.31 

CLUX(18) 1.31 .97 

CLUX(12) 1.05 .96 

CLUX(6) 1.21 .82 

CSAL (18) 1.26 1.18 

CSAL (12) .98 1.41 

CSAL (6) 6.94 7.14 

Note: Bold typescript means tbe method ranks first, 
while italic typescript means tbe method ranlcs last. 

1.19 

1.87 

.95 

1.22 

1.90 

1.55 

1.92 

2.62 

1.36 

2.01 

.85 

.81 

1.02 

1.10 

5.26 

DHRO 

.61 

1.16 

.74 

.77 

1.27 

1.59 

1.46 

1.96 

.91 

1.37 

.83 

.83 

1.99 

.96 

.57 

Table 8: Percentage ME Criterion 

%ME ARIMA I GTFI DHRD 

CIM (18) 3.46 3.39 8.95 

Cl'M (12) 12.60 10.28 17.36 

CIM (6) 4.70 10.98 8.79 

CDOM(18) .42 .21 7.10 

CDOM (12) 7.75 12.37 15.07 

CDOM(6) 8.29 11.72 9.82 

CIMP (18) 18.70 2.46 13.77 

CIMP (12) 8.90 3.78 23.44 

C/MP (6) -1.59 1.01 9.36 

CLUX (18) -11.43 ~1.01 -18.76 

CLUX (12) 5.36 .32 -.65 

CLUX (6) 7.52 -1.85 -2.96 

CSAL (18) 7.82 -1.16 3.93 

CSAL (12) -4.68 -.95 3.38 

CSAL (6) -4.52 1.28 2.08 

Note: Bold typescript means the method ranks first 
while italic typescript means the method ranks last.' 

DHRO 

2.62 

10.02 

5.93 

-2.43 

7.22 

9.81 

7.71 

16.34 

-1.66 

-11.87 

-2.89 

3.90 

17.63 

-7.10 

-4.39 



Table 9: Percentage MAE Criterion 

%MAE ARIMA I GTF¡ DHRD 

C1M (18) 6.77 9.90 

CTM (12) 12.60 12.17 

CIM(6) 5.30 10.98 

CDOM (18) 7.26 7.25 

CDOM(12) 10.20 13.08 

CDOM(6) 10.37 11.72 

C1MP (18) 19.65 10.70 

CIMP (12) 12.07 11.24 

CIMP(6) 8.12 11.76 

CLUX (18) 11.43 7.82 

CLUX (12) 8.75 8.13 

CLUX (6) 10.19 7.11 

CSAL (18) 10.86 9.12 

CSAL (12) 8.08 10.29 

CSAL (6) 6.94 7.14 

Note: Bold typeseript means the method ranks first, 
while ¡talie types~ript means Ihe melhod ranks last. 

10.11 

17.36 

8.79 

8.55 

15.07 

10.30 

15.75 

23.58 

11.70 

18.76 

6.54 

7.20 

8.52 

8.07 

5.26 

Table 10' Forecasting Perfonnance of the DHR model for CTM 

NVR Values Foreeasting Performance Criteria (18 steps ahead) 
DBRO jor ¡he Trend OSFE ¡ APE I %RMSE I %MAE I %ME 

5.15 W 9.68 8.42 1.19 10.11 8,95 
10.43 10.3 3.97 -1.23 0.55 4.78 -0.81 
6.47 

6.17 

9.07 

11.84 

12.35 

17.67 

7.21 

12.26 

6.71 

6.43 

17.63 

8.79 

5.52 
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Table 11: Num;;;~f Times that Each Method Ranks First (Lowest) and Last (Highest) under Different Criteria. 

Ranks First Ranks Last 
Forecasting 

Models Models Perfonnance 
Criteria ARIMA 1 GTF 1 DHRD 1 DHRO ARlMA 1 GTF 1 DHRD 1 DHRO 

OSFE 5 3 2 5 2 8 4 1 

" APE 3 11 1 O 4 1 7 3 

%RMSE 4 2 2 7 2 4 8 1 

%MAE 1 3 5 6 3 4 6 2 

%ME 2 10 O 3 4 2 7 2 

Total 15 29 10 21 15 19 32 9 

Source: Tables 5 to 9. 

Table 12a: Number of Times tbat Each Method Ranks First (Lowest) under Dlfferent Criteria for Different Forecast Horizons. 

18 Months Ahead 12 Months Ahead 6 Months Ahead 
Forecasting 

Models Models Models Peifomumce 
ARIMA 1 GTFl DHRD 1 DHRO ARIMA 1 GTF 1 DHRD 1 DHRO ARIMA 1 GTF 1 DHRD 1 DHRO Criteria 

OSFE 2 1 O 2 2 O 2 1 1 2 O 2 

APE 1 4 O O 1 3 1 O 1 4 O O 

%RMSE O 2 1 2 1 O O 4 3 O 1 1 

%MAE O 2 1 2 O 1 2 2 1 O 2 2 

%ME O 4 O 1 O 3 O 2 2 3 O O 

Total 3 13 2 7 4 7 5 9 8 9 3 5 

Table 12b: Number of Times that Each Method Ranks Last (Highest) under Different Criteria for Different Forecast Horizons. 

18 Months Ahead 12 Months Ahead 6 Montks Ahead 
Forecasting 

Models ModeIs Models 
Perfonnance 

ARIMA 1 GTF 1 DHRD 1 DHRO ARIMA 1 GTF 1 DHRD 1 DHRO ARIMA 1 GTF I DHRD-I DHRO Criteria 

OSFE 1 2 2 O 1 3 1 O 1 3 O 1 

APE 1 O 3 1 1 1 3 O 2 1 1 1 

%RMSE O O 4 1 1 I 3 O 1 3 1 O 

%MAE 1 O 3 1 1 1 3 O 1 3 O 1 

%ME 1 O 3 1 1 O 3 O 2 2 1 O 

Total 4 2 15 4 5 6 13 1 7 12 3 3 --

Source: Tables 5 to 9. 
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